Replication fork reversal in eukaryotes: from dead end

Nature Reviews Molecular Cell Biology 16, 207-220 DOI: 10.1038/nrm3935

Citation Report

#	Article	IF	CITATIONS
1	The WRN exonuclease domain protects nascent strands from pathological MRE11/EXO1-dependent degradation. Nucleic Acids Research, 2015, 43, gkv836.	6.5	67
2	Inhibition of Topoisomerase (DNA) I (TOP1): DNA Damage Repair and Anticancer Therapy. Biomolecules, 2015, 5, 1652-1670.	1.8	110
3	Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification. PLoS Genetics, 2015, 11, e1005699.	1.5	42
4	Deciphering the Code of the Cancer Genome: Mechanisms of Chromosome Rearrangement. Trends in Cancer, 2015, 1, 217-230.	3.8	46
5	Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart. Nucleic Acids Research, 2015, 43, gkv880.	6.5	86
6	Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling. Nucleic Acids Research, 2015, 43, gkv896.	6.5	51
7	Poly(ADP-Ribosyl) Glycohydrolase Prevents the Accumulation of Unusual Replication Structures during Unperturbed S Phase. Molecular and Cellular Biology, 2015, 35, 856-865.	1.1	42
8	Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. Journal of Cell Biology, 2015, 208, 563-579.	2.3	549
9	HLTF's Ancient HIRAN Domain Binds 3′ DNA Ends to Drive Replication Fork Reversal. Molecular Cell, 2015, 58, 1090-1100.	4.5	163
10	Error-Free DNA Damage Tolerance and Sister Chromatid Proximity during DNA Replication Rely on the Polî±/Primase/Ctf4 Complex. Molecular Cell, 2015, 57, 812-823.	4.5	129
11	Mycobacterium tuberculosis RecG Protein but Not RuvAB or RecA Protein Is Efficient at Remodeling the Stalled Replication Forks. Journal of Biological Chemistry, 2015, 290, 24119-24139.	1.6	12
12	MERIT40 cooperates with BRCA2 to resolve DNA interstrand cross-links. Genes and Development, 2015, 29, 1955-1968.	2.7	22
13	Targeting homologous recombination repair in cancer. , 2016, , 225-275.		3
14	The Causes and Consequences of Topological Stress during DNA Replication. Genes, 2016, 7, 134.	1.0	61
15	Replication-Associated Recombinational Repair: Lessons from Budding Yeast. Genes, 2016, 7, 48.	1.0	7
16	Genetic and biochemical evidences reveal novel insights into the mechanism underlying Saccharomyces cerevisiae Sae2-mediated abrogation of DNA replication stress. Journal of Biosciences, 2016, 41, 615-641.	0.5	5
17	Replication fork regression and its regulation. FEMS Yeast Research, 2017, 17, fow110.	1.1	11
18	The MMS22L–TONSL heterodimer directly promotes RAD51â€dependent recombination upon replication stress. EMBO Journal, 2016, 35, 2584-2601.	3.5	64

#	Article	IF	CITATIONS
19	DNA damage tolerance by recombination: Molecular pathways and DNA structures. DNA Repair, 2016, 44, 68-75.	1.3	129
20	FANCJ is essential to maintain microsatellite structure genome-wide during replication stress. Nucleic Acids Research, 2016, 44, 6803-6816.	6.5	33
21	High-resolution genomic assays provide insight into the division of labor between TLS and HDR in mammalian replication of damaged DNA. DNA Repair, 2016, 44, 59-67.	1.3	25
22	CD4 + T-cell subsets in inflammatory diseases: beyond the T h 1/T h 2 paradigm. International Immunology, 2016, 28, 163-171.	1.8	343
23	DNA damage tolerance. Current Opinion in Cell Biology, 2016, 40, 137-144.	2.6	67
24	Excess Polî, functions in response to replicative stress in homologous recombination-proficient cancer cells. Biology Open, 2016, 5, 1485-1492.	0.6	22
25	Nucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability. Nucleic Acids Research, 2016, 44, 10676-10690.	6.5	22
26	Class I Histone Deacetylase HDAC1 and WRN RECQ Helicase Contribute Additively to Protect Replication Forks upon Hydroxyurea-induced Arrest. Journal of Biological Chemistry, 2016, 291, 24487-24503.	1.6	20
27	TRAIP regulates replication fork recovery and progression via PCNA. Cell Discovery, 2016, 2, 16016.	3.1	35
28	Activating ATR, the devil's in the dETAA1I. Nature Cell Biology, 2016, 18, 1120-1122.	4.6	5
29	Replication intermediates that escape Dna2 activity are processed by Holliday junction resolvase Yen1. Nature Communications, 2016, 7, 13157.	5.8	31
30	Relocalization of DNA lesions to the nuclear pore complex. FEMS Yeast Research, 2016, 16, fow095.	1.1	43
31	Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4+. G3: Genes, Genomes, Genetics, 2016, 6, 3049-3063.	0.8	6
32	Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nature Cell Biology, 2016, 18, 777-789.	4.6	244
33	DNA damage processing at telomeres: The ends justify the means. DNA Repair, 2016, 44, 159-168.	1.3	35
34	TPP1 Blocks an ATR-Mediated Resection Mechanism at Telomeres. Molecular Cell, 2016, 61, 236-246.	4.5	48
35	A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nature Communications, 2016, 7, 10660.	5.8	149
36	Identification of a Substrate Recognition Domain in the Replication Stress Response Protein Zinc Finger Ran-binding Domain-containing Protein 3 (ZRANB3). Journal of Biological Chemistry, 2016, 291, 8251-8257.	1.6	18

		CITATION REPORT		
#	Article		IF	CITATIONS
37	Replication stress: getting back on track. Nature Structural and Molecular Biology, 2016, 23, 10	3-109.	3.6	199
38	Smoking and Air Pollution as Pro-Inflammatory Triggers for the Development of Rheumatoid Artl Nicotine and Tobacco Research, 2016, 18, 1556-1565.	nritis.	1.4	47
39	Cell cycle control of DNA joint molecule resolution. Current Opinion in Cell Biology, 2016, 40, 74	I-80.	2.6	23
40	Differential effects of α4β7 and GPR15 on homing of effector and regulatory T cells from patier UC to the inflamed gut in vivo. Gut, 2016, 65, 1642-1664.	ts with	6.1	138
41	Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageir Research Reviews, 2017, 33, 105-114.	g	5.0	196
42	DNA replication stress: from molecular mechanisms to human disease. Chromosoma, 2017, 126	, 1-15.	1.0	61
43	Bloom's syndrome: Why not premature aging?. Ageing Research Reviews, 2017, 33, 36-51.		5.0	63
44	Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at a endogenous locus. Nature Communications, 2017, 8, 13905.	n	5.8	154
45	Moonlighting at replication forks – a new life for homologous recombination proteins <scp>BRCA</scp> 1, <scp>BRCA</scp> 2 and <scp>RAD</scp> 51. FEBS Letters, 2017, 591, 108	3-1100.	1.3	141
46	Myotonic dystrophy: disease repeat range, penetrance, age of onset, and relationship between r size and phenotypes. Current Opinion in Genetics and Development, 2017, 44, 30-37.	epeat	1.5	80
47	Genomic rearrangements induced by unscheduled <scp>DNA</scp> double strand breaks in sor mammalian cells. FEBS Journal, 2017, 284, 2324-2344.	natic	2.2	39
48	S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion. Cellular and Molecular Life Sciences, 2017, 74, 2361-2380.		2.4	57
50	A genetic study based on PCNA-ubiquitin fusions reveals no requirement for PCNA polyubiquityl in DNA damage tolerance. DNA Repair, 2017, 54, 46-54.	ition	1.3	14
51	CXCR6-Mediated Simian Immunodeficiency Virus SIVagmSab Entry into Sabaeus African Green N Lymphocytes Implicates Widespread Use of Non-CCR5 Pathways in Natural Host Infections. Jour Virology, 2017, 91, .	lonkey nal of	1.5	24
52	Substrate preference of Gen endonucleases highlights the importance of branched structures as damage repair intermediates. Nucleic Acids Research, 2017, 45, 5333-5348.	DNA	6.5	21
53	Building up and breaking down: mechanisms controlling recombination during replication. Critic Reviews in Biochemistry and Molecular Biology, 2017, 52, 381-394.	al	2.3	71
54	Control of structure-specific endonucleases to maintain genome stability. Nature Reviews Molec Cell Biology, 2017, 18, 315-330.	ular	16.1	138
55	The BRCA1 Ubiquitin ligase function sets a new trend for remodelling in DNA repair. Nucleus, 20 116-125.	17, 8,	0.6	46

#	Article	IF	CITATIONS
56	Combining electron microscopy with single molecule DNA fiber approaches to study DNA replication dynamics. Biophysical Chemistry, 2017, 225, 3-9.	1.5	31
58	Functions of SMARCAL1, ZRANB3, and HLTF in maintaining genome stability. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 696-714.	2.3	105
59	Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers. Molecular Cell, 2017, 68, 414-430.e8.	4.5	295
60	Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nature Communications, 2017, 8, 859.	5.8	286
61	DNA Fiber Analysis: Mind the Gap!. Methods in Enzymology, 2017, 591, 55-82.	0.4	142
62	Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity. Molecular Cell, 2017, 67, 882-890.e5.	4.5	190
63	Oncofetal HMGA2 effectively curbs unconstrained (+) and (â^') DNA supercoiling. Scientific Reports, 2017, 7, 8440.	1.6	22
64	The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nature Reviews Genetics, 2017, 18, 535-550.	7.7	199
65	ATM Deficiency Generating Genomic Instability Sensitizes Pancreatic Ductal Adenocarcinoma Cells to Therapy-Induced DNA Damage. Cancer Research, 2017, 77, 5576-5590.	0.4	94
66	The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nature Reviews Molecular Cell Biology, 2017, 18, 622-636.	16.1	589
67	Investigation of the Melting Behavior of DNA Three-Way Junctions in the Closed and Open States. Biophysical Journal, 2017, 113, 529-539.	0.2	6
68	Replication Fork Reversal: Players and Guardians. Molecular Cell, 2017, 68, 830-833.	4.5	218
69	Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts. Annual Review of Genetics, 2017, 51, 477-499.	3.2	90
70	Mechanism of tandem duplication formation in BRCA1-mutant cells. Nature, 2017, 551, 590-595.	13.7	118
71	The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nature Reviews Molecular Cell Biology, 2017, 18, 610-621.	16.1	1,041
72	Distinct functions of human RecQ helicases during DNA replication. Biophysical Chemistry, 2017, 225, 20-26.	1.5	18
73	Cellular responses to replication stress: Implications in cancer biology and therapy. DNA Repair, 2017, 49, 9-20.	1.3	11
74	Cyclin E Deregulation and Genomic Instability. Advances in Experimental Medicine and Biology, 2017, 1042, 527-547.	0.8	38

#	Article	IF	CITATIONS
75	Replication Through Repetitive DNA Elements and Their Role in Human Diseases. Advances in Experimental Medicine and Biology, 2017, 1042, 549-581.	0.8	35
76	Termination of Eukaryotic Replication Forks. Advances in Experimental Medicine and Biology, 2017, 1042, 163-187.	0.8	14
77	Homologous Recombination and Replication Fork Protection: BRCA2 and More!. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 329-338.	2.0	54
78	Fork Protection and Therapy Resistance in Hereditary Breast Cancer. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 339-348.	2.0	16
79	PrimPol—Prime Time to Reprime. Genes, 2017, 8, 20.	1.0	56
80	The Intra-S Checkpoint Responses to DNA Damage. Genes, 2017, 8, 74.	1.0	87
81	53BP1 and BRCA1 control pathway choice for stalled replication restart. ELife, 2017, 6, .	2.8	64
82	DNA2—An Important Player in DNA Damage Response or Just Another DNA Maintenance Protein?. International Journal of Molecular Sciences, 2017, 18, 1562.	1.8	26
84	Filling gaps in translesion DNA synthesis in human cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2018, 836, 127-142.	0.9	26
85	The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression. Journal of Biological Chemistry, 2018, 293, 8484-8494.	1.6	35
86	Causes and consequences of genomic instability in laminopathies: Replication stress and interferon response. Nucleus, 2018, 9, 289-306.	0.6	42
87	When Telomerase Causes Telomere Loss. Developmental Cell, 2018, 44, 281-283.	3.1	6
88	53BP1 Mediates ATR-Chk1 Signaling and Protects Replication Forks under Conditions of Replication Stress. Molecular and Cellular Biology, 2018, 38, .	1.1	53
89	GPR81, a Cell-Surface Receptor for Lactate, Regulates Intestinal Homeostasis and Protects Mice from Experimental Colitis. Journal of Immunology, 2018, 200, 1781-1789.	0.4	99
90	Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe. Cell, 2018, 172, 439-453.e14.	13.5	79
91	Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma, 2018, 127, 187-214.	1.0	242
92	Lesion Bypass and the Reactivation of Stalled Replication Forks. Annual Review of Biochemistry, 2018, 87, 217-238.	5.0	135
93	The MRE11–RAD50–NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair. Annual Review of Biochemistry, 2018, 87, 263-294.	5.0	303

		CITATION REPO	RT	
#	Article	IF		Citations
94	Targeting the replication stress response in cancer. , 2018, 188, 155-167.			124
95	Olaparib for the treatment of breast cancer. Expert Review of Anticancer Therapy, 2018, 18, 519-	530. 1.	1	37
96	Dynamic Architecture of Eukaryotic DNA Replication Forks In Vivo, Visualized by Electron Microso Methods in Molecular Biology, 2018, 1672, 261-294.	ору. о.	.4	37
97	Beyond interstrand crosslinks repair: contribution of FANCD2 and other Fanconi Anemia proteins the replication of DNA. Mutation Research - Fundamental and Molecular Mechanisms of Mutager 2018, 808, 83-92.		.4	15
98	Endogenous DNA Double-Strand Breaks during DNA Transactions: Emerging Insights and Methoo Genome-Wide Profiling. Genes, 2018, 9, 632.	s for 1.	0	43
99	On your marks, get SET(D1A): the race to protect stalled replication forks. Molecular and Cellular Oncology, 2018, 5, e1511209.	0.	.3	3
100	Role of the Mre11 Complex in Preserving Genome Integrity. Genes, 2018, 9, 589.	1.	0	73
101	Homologous Recombination: To Fork and Beyond. Genes, 2018, 9, 603.	1.	0	37
102	A tough row to hoe: when replication forks encounter DNA damage. Biochemical Society Transactions, 2018, 46, 1643-1651.	1.	6	15
103	Loss of Cohesin Subunit Rec8 Switches Rad51 Mediator Dependence in Resistance to Formaldeh Toxicity in Ustilago maydis. Genetics, 2018, 210, 559-572.	yde 1.	2	10
104	Spatiotemporal dynamics of homologous recombination repair at single collapsed replication for Nature Communications, 2018, 9, 3882.	RS. 5.	8	46
105	SLX4: multitasking to maintain genome stability. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 475-514.	2.	3	35
106	Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication. Internation Journal of Molecular Sciences, 2018, 19, 2909.	nal 1.	8	12
107	Movement of the RecG Motor Domain upon DNA Binding Is Required for Efficient Fork Reversal. International Journal of Molecular Sciences, 2018, 19, 3049.	1.	8	13
108	Therapeutic targeting of cellular stress responses in cancer. Thoracic Cancer, 2018, 9, 1575-1582	2. 0.	.8	36
109	CtIP-Mediated Fork Protection Synergizes with BRCA1 to Suppress Genomic Instability upon DNA Replication Stress. Molecular Cell, 2018, 72, 568-582.e6.	4.	5	93
110	Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcom cell cycle checkpoint inhibition. Cancer Treatment Reviews, 2018, 71, 1-7.	e by 3.	4	91
111	ATR-Mediated Global Fork Slowing and Reversal Assist Fork Traverse and Prevent Chromosomal Breakage at DNA Interstrand Cross-Links. Cell Reports, 2018, 24, 2629-2642.e5.	2.	9	100

#	Article	IF	CITATIONS
112	RPA and RAD51: fork reversal, fork protection, and genome stability. Nature Structural and Molecular Biology, 2018, 25, 446-453.	3.6	264
113	Integrating the DNA damage and protein stress responses during cancer development and treatment. Journal of Pathology, 2018, 246, 12-40.	2.1	79
114	Histone Methylation by SETD1A Protects Nascent DNA through the Nucleosome Chaperone Activity of FANCD2. Molecular Cell, 2018, 71, 25-41.e6.	4.5	87
115	p53 orchestrates DNA replication restart homeostasis by suppressing mutagenic RAD52 and POLÎ, pathways. ELife, 2018, 7, .	2.8	78
116	Replication stress response in cancer stem cells as a target for chemotherapy. Seminars in Cancer Biology, 2018, 53, 31-41.	4.3	31
117	Rad51 recruitment and exclusion of non-homologous end joining during homologous recombination at a Tus/Ter mammalian replication fork barrier. PLoS Genetics, 2018, 14, e1007486.	1.5	24
118	Tel1/ <scp>ATM</scp> prevents degradation of replication forks that reverse after topoisomerase poisoning. EMBO Reports, 2018, 19, .	2.0	25
119	Complex repeat structure promotes hyper-amplification and amplicon evolution through rolling-circle replication. Nucleic Acids Research, 2018, 46, 5097-5108.	6.5	2
120	Preserving replication fork integrity and competence via the homologous recombination pathway. DNA Repair, 2018, 71, 135-147.	1.3	133
121	Histone Ubiquitination by the DNA Damage Response Is Required for Efficient DNA Replication in Unperturbed S Phase. Molecular Cell, 2018, 71, 897-910.e8.	4.5	78
122	Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments. EMBO Reports, 2018, 19, .	2.0	136
123	ATP Binding to Rad5 Initiates Replication Fork Reversal by Inducing the Unwinding of the Leading Arm and the Formation of the Holliday Junction. Cell Reports, 2018, 23, 1831-1839.	2.9	30
124	Replication Fork Breakage and Restart in Escherichia coli. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	89
125	The Initial Response of a Eukaryotic Replisome to DNA Damage. Molecular Cell, 2018, 70, 1067-1080.e12.	4.5	100
126	Selective Loss of PARG Restores PARylation and Counteracts PARP Inhibitor-Mediated Synthetic Lethality. Cancer Cell, 2018, 33, 1078-1093.e12.	7.7	238
127	Targeting the Ataxia Telangiectasia and Rad3 Signaling Pathway to Overcome Chemoresistance in Cancer. , 2019, , 203-230.		2
128	Diverse mechanisms of PARP inhibitor resistance in ovarian cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 188307.	3.3	14
129	The DNA repair protein SHPRH is a nucleosome-stimulated ATPase and a nucleosome-E3 ubiquitin ligase. Epigenetics and Chromatin, 2019, 12, 52.	1.8	19

#	Article	IF	CITATIONS
130	Replisome structure suggests mechanism for continuous fork progression and post-replication repair. DNA Repair, 2019, 81, 102658.	1.3	18
131	RIF1 promotes replication fork protection and efficient restart to maintain genome stability. Nature Communications, 2019, 10, 3287.	5.8	91
132	Defining and Modulating â€~BRCAness'. Trends in Cell Biology, 2019, 29, 740-751.	3.6	122
133	DNA damage tolerance in stem cells, ageing, mutagenesis, disease and cancer therapy. Nucleic Acids Research, 2019, 47, 7163-7181.	6.5	55
134	DNA double-strand break repair-pathway choice in somatic mammalian cells. Nature Reviews Molecular Cell Biology, 2019, 20, 698-714.	16.1	839
135	WRNIP1 Protects Reversed DNA Replication Forks from SLX4-Dependent Nucleolytic Cleavage. IScience, 2019, 21, 31-41.	1.9	23
136	Contacts and context that regulate DNA helicase unwinding and replisome progression. The Enzymes, 2019, 45, 183-223.	0.7	15
137	Checkpoint inhibition of origin firing prevents DNA topological stress. Genes and Development, 2019, 33, 1539-1554.	2.7	17
138	Control of Eukaryotic DNA Replication Initiation—Mechanisms to Ensure Smooth Transitions. Genes, 2019, 10, 99.	1.0	22
139	Freedom of movement. Nature Chemical Biology, 2019, 15, 209-210.	3.9	0
140	Claspin: From replication stress and DNA damage responses to cancer therapy. Advances in Protein Chemistry and Structural Biology, 2019, 115, 203-246.	1.0	9
141	XLF and H2AX function in series to promote replication fork stability. Journal of Cell Biology, 2019, 218, 2113-2123.	2.3	15
142	Immune cell trafficking and retention in inflammatory bowel disease: mechanistic insights and therapeutic advances. Gut, 2019, 68, 1688-1700.	6.1	108
143	EXD2 Protects Stressed Replication Forks and Is Required for Cell Viability in the Absence of BRCA1/2. Molecular Cell, 2019, 75, 605-619.e6.	4.5	26
144	Resolving Roadblocks to Telomere Replication. Methods in Molecular Biology, 2019, 1999, 31-57.	0.4	11
145	Replication-Coupled DNA Repair. Molecular Cell, 2019, 74, 866-876.	4.5	178
146	The chromatin structuring protein HMGA2 influences human subtelomere stability and cancer chemosensitivity. PLoS ONE, 2019, 14, e0215696.	1.1	15
147	The mechanism of DNA unwinding by the eukaryotic replicative helicase. Nature Communications, 2019, 10, 2159.	5.8	53

#	Article	IF	CITATIONS
148	Replication Licensing Aberrations, Replication Stress, and Genomic Instability. Trends in Biochemical Sciences, 2019, 44, 752-764.	3.7	81
149	Rescuing Replication from Barriers: Mechanistic Insights from Single-Molecule Studies. Molecular and Cellular Biology, 2019, 39, .	1.1	2
150	Structure-Specific Endonucleases and the Resolution of Chromosome Underreplication. Genes, 2019, 10, 232.	1.0	27
151	Rad52 prevents excessive replication fork reversal and protects from nascent strand degradation. Nature Communications, 2019, 10, 1412.	5.8	60
152	Remodeling Collapsed DNA Replication Forks for Cancer Development. Cancer Research, 2019, 79, 1297-1298.	0.4	4
153	Decoding without the cipher. Nature Chemical Biology, 2019, 15, 210-212.	3.9	2
154	Replication stress: Driver and therapeutic target in genomically instable cancers. Advances in Protein Chemistry and Structural Biology, 2019, 115, 157-201.	1.0	15
155	ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress. Nature Communications, 2019, 10, 5718.	5.8	35
156	Smarcal1 and Zranb3 Protect Replication Forks from Myc-Induced DNA Replication Stress. Cancer Research, 2019, 79, 1612-1623.	0.4	23
157	The Genetic Basis of Mutation Rate Variation in Yeast. Genetics, 2019, 211, 731-740.	1.2	39
158	Toward understanding genomic instability, mitochondrial dysfunction and aging. FEBS Journal, 2019, 286, 1058-1073.	2.2	52
159	PRIMPOL-Mediated Adaptive Response Suppresses Replication Fork Reversal in BRCA-Deficient Cells. Molecular Cell, 2020, 77, 461-474.e9.	4.5	148
160	Clofarabine Commandeers the RNR-α-ZRANB3 Nuclear Signaling Axis. Cell Chemical Biology, 2020, 27, 122-133.e5.	2.5	9
161	PDS5 proteins are required for proper cohesin dynamics and participate in replication fork protection. Journal of Biological Chemistry, 2020, 295, 146-157.	1.6	51
162	DNA helicases and their roles in cancer. DNA Repair, 2020, 96, 102994.	1.3	20
163	Roles of OB-Fold Proteins in Replication Stress. Frontiers in Cell and Developmental Biology, 2020, 8, 574466.	1.8	18
164	<i>RAD51</i> Gene Family Structure and Function. Annual Review of Genetics, 2020, 54, 25-46.	3.2	118
165	Sequential role of RAD51 paralog complexes in replication fork remodeling and restart. Nature Communications, 2020, 11, 3531.	5.8	63

#	Article	IF	CITATIONS
166	Two replication fork remodeling pathways generate nuclease substrates for distinct fork protection factors. Science Advances, 2020, 6, .	4.7	53
167	The Ubiquitin Ligase TRIP12 Limits PARP1 Trapping and Constrains PARP Inhibitor Efficiency. Cell Reports, 2020, 32, 107985.	2.9	68
168	Duplex DNA engagement and RPA oppositely regulate the DNA-unwinding rate of CMG helicase. Nature Communications, 2020, 11, 3713.	5.8	21
169	Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease. DNA Repair, 2020, 95, 102943.	1.3	25
170	DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells. Experimental and Molecular Medicine, 2020, 52, 1705-1714.	3.2	72
171	Structure of the HLTF HIRAN domain and its functional implications in regression of a stalled replication fork. Acta Crystallographica Section D: Structural Biology, 2020, 76, 729-735.	1.1	1
172	Limiting homologous recombination at stalled replication forks is essential for cell viability: DNA2 to the rescue. Current Genetics, 2020, 66, 1085-1092.	0.8	10
173	SDE2 integrates into the TIMELESS-TIPIN complex to protect stalled replication forks. Nature Communications, 2020, 11, 5495.	5.8	33
174	Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers. Frontiers in Oncology, 2020, 10, 670.	1.3	13
175	Ahr-Foxp3-RORÎ ³ t axis controls gut homing of CD4 ⁺ T cells by regulating GPR15. Science Immunology, 2020, 5, .	5.6	43
176	MCM8IP activates the MCM8-9 helicase to promote DNA synthesis and homologous recombination upon DNA damage. Nature Communications, 2020, 11, 2948.	5.8	28
177	Inhibition of the translesion synthesis polymerase REV1 exploits replication gaps as a cancer vulnerability. Science Advances, 2020, 6, eaaz7808.	4.7	76
178	Disease-associated DNA2 nuclease–helicase protects cells from lethal chromosome under-replication. Nucleic Acids Research, 2020, 48, 7265-7278.	6.5	11
179	Preemptive Homology-Directed DNA Repair Fosters Complex Genomic Rearrangements in Hepatocellular Carcinoma. Translational Oncology, 2020, 13, 100796.	1.7	6
180	A Survey of Essential Genome Stability Genes Reveals That Replication Stress Mitigation Is Critical for Peri-Implantation Embryogenesis. Frontiers in Cell and Developmental Biology, 2020, 8, 416.	1.8	9
181	Telomerase Repairs Collapsed Replication Forks at Telomeres. Cell Reports, 2020, 30, 3312-3322.e3.	2.9	28
182	Replication Fork Barriers and Topological Barriers: Progression of DNA Replication Relies on DNA Topology Ahead of Forks. BioEssays, 2020, 42, e1900204.	1.2	1
183	The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nature Reviews Molecular Cell Biology, 2020, 21, 633-651.	16.1	198

CITATION REPO	ODT -
CHAHON REPO	JKI

#	Article	IF	CITATIONS
184	Location, Location, Location: The Role of Nuclear Positioning in the Repair of Collapsed Forks and Protection of Genome Stability. Genes, 2020, 11, 635.	1.0	15
185	Chromatin Architectural Factors as Safeguards against Excessive Supercoiling during DNA Replication. International Journal of Molecular Sciences, 2020, 21, 4504.	1.8	11
186	RADX condenses single-stranded DNA to antagonize RAD51 loading. Nucleic Acids Research, 2020, 48, 7834-7843.	6.5	20
187	AÂspontaneous complex structural variant in rcan-1 increases exploratory behavior and laboratory fitness of Caenorhabditis elegans. PLoS Genetics, 2020, 16, e1008606.	1.5	9
188	RECQ5: A Mysterious Helicase at the Interface of DNA Replication and Transcription. Genes, 2020, 11, 232.	1.0	15
189	On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. Journal of Biological Chemistry, 2020, 295, 4134-4170.	1.6	178
190	WAPL-Dependent Repair of Damaged DNA Replication Forks Underlies Oncogene-Induced Loss of Sister Chromatid Cohesion. Developmental Cell, 2020, 52, 683-698.e7.	3.1	36
191	Discovery of ATR kinase inhibitor berzosertib (VX-970, M6620): Clinical candidate for cancer therapy. , 2020, 210, 107518.		66
192	Physiological and Pathological Roles of RAD52 at DNA Replication Forks. Cancers, 2020, 12, 402.	1.7	20
193	Structure of HIRAN domain of human HLTF bound to duplex DNA provides structural basis for DNA unwinding to initiate replication fork regression. Journal of Biochemistry, 2020, 167, 597-602.	0.9	7
194	New insights into abasic site repair and tolerance. DNA Repair, 2020, 90, 102866.	1.3	86
195	A fork in the road: Where homologous recombination and stalled replication fork protection part ways. Seminars in Cell and Developmental Biology, 2021, 113, 14-26.	2.3	44
196	Making choices: DNA replication fork recovery mechanisms. Seminars in Cell and Developmental Biology, 2021, 113, 27-37.	2.3	30
197	Roles of ATM and ATR in DNA double strand breaks and replication stress. Progress in Biophysics and Molecular Biology, 2021, 161, 27-38.	1.4	14
198	Beyond Kinases: Targeting Replication Stress Proteins in Cancer Therapy. Trends in Cancer, 2021, 7, 430-446.	3.8	24
199	PRIMPOL ready, set, reprime!. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 17-30.	2.3	22
200	The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome Stability. Molecular Cell, 2021, 81, 198-211.e6.	4.5	46
201	Targeting translesion synthesis (TLS) to expose replication gaps, a unique cancer vulnerability. Expert Opinion on Therapeutic Targets, 2021, 25, 27-36.	1.5	16

#	Article	IF	Citations
202	Methods for the detection of DNA damage. , 2021, , 679-697.		1
203	SUMOylation mediates CtIP's functions in DNA end resection and replication fork protection. Nucleic Acids Research, 2021, 49, 928-953.	6.5	13
204	Natural cystatin C fragments inhibit GPR15-mediated HIV and SIV infection without interfering with GPR15L signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
205	DCAF14 promotes stalled fork stability to maintain genome integrity. Cell Reports, 2021, 34, 108669.	2.9	9
206	To skip or not to skip: choosing repriming to tolerate DNA damage. Molecular Cell, 2021, 81, 649-658.	4.5	56
207	Control of replication stress and mitosis in colorectal cancer stem cells through the interplay of PARP1, MRE11 and RAD51. Cell Death and Differentiation, 2021, 28, 2060-2082.	5.0	19
208	Clinical Candidates Targeting the ATR–CHK1–WEE1 Axis in Cancer. Cancers, 2021, 13, 795.	1.7	50
209	FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. Journal of Huntington's Disease, 2021, 10, 95-122.	0.9	34
210	Structure of Rad5 provides insights into its role in tolerance to replication stress. Molecular and Cellular Oncology, 2021, 8, 1889348.	0.3	0
211	GPR15 Facilitates Recruitment of Regulatory T Cells to Promote Colorectal Cancer. Cancer Research, 2021, 81, 2970-2982.	0.4	17
212	Repriming DNA synthesis: an intrinsic restart pathway that maintains efficient genome replication. Nucleic Acids Research, 2021, 49, 4831-4847.	6.5	28
213	Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Molecular Cell, 2021, 81, 1084-1099.e6.	4.5	57
214	DNA2 in Chromosome Stability and Cell Survival—Is It All about Replication Forks?. International Journal of Molecular Sciences, 2021, 22, 3984.	1.8	8
215	Telomere Replication: Solving Multiple End Replication Problems. Frontiers in Cell and Developmental Biology, 2021, 9, 668171.	1.8	52
216	The Targeting of MRE11 or RAD51 Sensitizes Colorectal Cancer Stem Cells to CHK1 Inhibition. Cancers, 2021, 13, 1957.	1.7	8
217	Smc5/6 functions with Sgs1-Top3-Rmi1 to complete chromosome replication at natural pause sites. Nature Communications, 2021, 12, 2111.	5.8	17
218	Replication Fork Reversal and Protection. Frontiers in Cell and Developmental Biology, 2021, 9, 670392.	1.8	26
219	A Cytotoxic Bis(1,2,3â€triazolâ€5â€ylidene)carbazolide Gold(III) Complex Targets DNA by Partial Intercalation. Chemistry - A European Journal, 2021, 27, 8295-8307.	1.7	14

#	Article		CITATIONS
220	SMARCAD1-mediated active replication fork stability maintains genome integrity. Science Advances, 2021, 7, .	4.7	15
221	Mind the replication gap. Royal Society Open Science, 2021, 8, 201932.	1.1	9
222	Activation of DNA Damage Tolerance Pathways May Improve Immunotherapy of Mesothelioma. Cancers, 2021, 13, 3211.	1.7	4
223	The Replication Stress Response on a Narrow Path Between Genomic Instability and Inflammation. Frontiers in Cell and Developmental Biology, 2021, 9, 702584.	1.8	22
224	Histone dynamics during DNA replication stress. Journal of Biomedical Science, 2021, 28, 48.	2.6	7
225	FANCM regulates repair pathway choice at stalled replication forks. Molecular Cell, 2021, 81, 2428-2444.e6.	4.5	37
227	Single-Molecule Techniques to Study Chromatin. Frontiers in Cell and Developmental Biology, 2021, 9, 699771.	1.8	11
228	Ubiquitylation at Stressed Replication Forks: Mechanisms and Functions. Trends in Cell Biology, 2021, 31, 584-597.	3.6	17
230	Roles of ATM and ATR in DNA double strand breaks and replication stress. Progress in Biophysics and Molecular Biology, 2021, 163, 109-119.	1.4	14
231	DNA damage responses that enhance resilience to replication stress. Cellular and Molecular Life Sciences, 2021, 78, 6763-6773.	2.4	11
232	The "Dark Side―of autophagy on the maintenance of genome stability: Does it really exist during excessive activation?. Journal of Cellular Physiology, 2022, 237, 178-188.	2.0	3
233	Targeting the p53 Pathway in CLL: State of the Art and Future Perspectives. Cancers, 2021, 13, 4681.	1.7	9
235	Non-Recombinogenic Functions of Rad51, BRCA2, and Rad52 in DNA Damage Tolerance. Genes, 2021, 12, 1550.	1.0	5
236	The Th1 cell regulatory circuitry is largely conserved between human and mouse. Life Science Alliance, 2021, 4, e202101075.	1.3	1
237	Toxic R-loops: Cause or consequence of replication stress?. DNA Repair, 2021, 107, 103199.	1.3	17
238	Structural basis for the multi-activity factor Rad5 in replication stress tolerance. Nature Communications, 2021, 12, 321.	5.8	10
241	Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading. Cell Reports, 2018, 23, 3419-3428.	2.9	63
242	HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis. Molecular Cell, 2020, 78, 1237-1251.e7.	4.5	125

#	Article	IF	CITATIONS
243	Eukaryotic clamp loaders and unloaders in the maintenance of genome stability. Experimental and Molecular Medicine, 2020, 52, 1948-1958.	3.2	24
244	A protease-activated, near-infrared fluorescent probe for early endoscopic detection of premalignant gastrointestinal lesions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
245	E3 ligase RFWD3 is a novel modulator of stalled fork stability in BRCA2-deficient cells. Journal of Cell Biology, 2020, 219, .	2.3	13
246	ISG15 fast-tracks DNA replication. Journal of Cell Biology, 2020, 219, .	2.3	2
250	Active Replication Checkpoint Drives Genome Instability in Fission Yeast mcm4 Mutant. Molecular and Cellular Biology, 2020, 40, .	1.1	5
251	Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing. Journal of Clinical Investigation, 2019, 129, 712-726.	3.9	117
252	Bacterial Proliferation: Keep Dividing and Don't Mind the Gap. PLoS Genetics, 2015, 11, e1005757.	1.5	30
253	The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage. PLoS Genetics, 2017, 13, e1007136.	1.5	47
254	Super-resolution visualization of distinct stalled and broken replication fork structures. PLoS Genetics, 2020, 16, e1009256.	1.5	16
255	Human CST complex protects stalled replication forks by directly blocking MRE11 degradation of nascentâ€strand DNA. EMBO Journal, 2021, 40, e103654.	3.5	29
256	CDC7 kinase promotes MRE11 fork processing, modulating fork speed and chromosomal breakage. EMBO Reports, 2020, 21, e48920.	2.0	26
257	A game of substrates: replication fork remodeling and its roles in genome stability and chemo-resistance. Cell Stress, 2017, 1, 115-133.	1.4	18
258	DNA replication stress: oncogenes in the spotlight. Genetics and Molecular Biology, 2020, 43, e20190138.	0.6	36
259	DNA replication stress: oncogenes in the spotlight. Genetics and Molecular Biology, 2020, 43, e20190138.	0.6	40
260	CDK1 promotes nascent DNA synthesis and induces resistance of cancer cells to DNA-damaging therapeutic agents. Oncotarget, 2017, 8, 90662-90673.	0.8	13
261	PARP1 is required for preserving telomeric integrity but is dispensable for A-NHEJ. Oncotarget, 2018, 9, 34821-34837.	0.8	14
262	RecQ Family Helicases in Replication Fork Remodeling and Repair: Opening New Avenues towards the Identification of Potential Targets for Cancer Chemotherapy. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 1311-1326.	0.9	2
263	Monoubiquitination by the human Fanconi anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays. ELife, 2020, 9, .	2.8	52

#	Article	IF	CITATIONS
264	Lamin A/C recruits ssDNA protective proteins RPA and RAD51 to stalled replication forks to maintain fork stability. Journal of Biological Chemistry, 2021, 297, 101301.	1.6	21
265	DisA Restrains the Processing and Cleavage of Reversed Replication Forks by the RuvAB-RecU Resolvasome. International Journal of Molecular Sciences, 2021, 22, 11323.	1.8	5
266	RIF1 Links Replication Timing with Fork Reactivation and DNA Double-Strand Break Repair. International Journal of Molecular Sciences, 2021, 22, 11440.	1.8	3
267	Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells. Molecular Cell, 2021, 81, 4026-4040.e8.	4.5	87
268	FBH1: A new checkpoint factor. Oncotarget, 2015, 6, 19354-19355.	0.8	0
270	RAD52 Prevents Excessive Replication Fork Reversal and Protects from Nascent Strand Degradation. SSRN Electronic Journal, 0, , .	0.4	0
278	Mechanism of Replication Fork Reversal and Protection by Human RAD51 and RAD51 Paralogs. SSRN Electronic Journal, 0, , .	0.4	0
282	The RECQL helicase prevents replication fork collapse during replication stress. Life Science Alliance, 2020, 3, e202000668.	1.3	4
289	Crosstalk between CST and RPA regulates RAD51 activity during replication stress. Nature Communications, 2021, 12, 6412.	5.8	8
294	RAD52: Paradigm of Synthetic Lethality and New Developments. Frontiers in Genetics, 2021, 12, 780293.	1.1	30
295	Bacillus subtilis RecA, DisA, and RadA/Sms Interplay Prevents Replication Stress by Regulating Fork Remodeling. Frontiers in Microbiology, 2021, 12, 766897.	1.5	7
296	Two-Dimensional Gel Electrophoresis to Study the Activity of Type IIA Topoisomerases on Plasmid Replication Intermediates. Biology, 2021, 10, 1195.	1.3	0
297	WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells. Nature Communications, 2021, 12, 6561.	5.8	20
298	WEE1 kinase protects the stability of stalled DNA replication forks by limiting CDK2 activity. Cell Reports, 2022, 38, 110261.	2.9	22
300	Mechanism for inverted-repeat recombination induced by a replication fork barrier. Nature Communications, 2022, 13, 32.	5.8	21
302	PrimPol: A Breakthrough among DNA Replication Enzymes and a Potential New Target for Cancer Therapy. Biomolecules, 2022, 12, 248.	1.8	6
303	DNA Damage Tolerance Pathways in Human Cells: A Potential Therapeutic Target. Frontiers in Oncology, 2021, 11, 822500.	1.3	9
304	Studying Single-Stranded DNA Gaps at Replication Intermediates by Electron Microscopy. Methods in Molecular Biology, 2022, 2444, 81-103.	0.4	4

#	Article	IF	CITATIONS
305	G-Quadruplex Matters in Tissue-Specific Tumorigenesis by BRCA1 Deficiency. Genes, 2022, 13, 391.	1.0	5
306	Mre11 exonuclease activity promotes irreversible mitotic progression under replication stress. Life Science Alliance, 2022, 5, e202101249.	1.3	2
308	DNA repair defects in cancer and therapeutic opportunities. Genes and Development, 2022, 36, 278-293.	2.7	45
309	Active DNA damage eviction by HLTF stimulates nucleotide excision repair. Molecular Cell, 2022, 82, 1343-1358.e8.	4.5	16
310	Mechanistic insights into the multiple activities of the Rad5 family of enzymes. Journal of Molecular Biology, 2022, , 167581.	2.0	1
311	SUMO-Based Regulation of Nuclear Positioning to Spatially Regulate Homologous Recombination Activities at Replication Stress Sites. Genes, 2021, 12, 2010.	1.0	6
312	Homologous Recombination as a Fundamental Genome Surveillance Mechanism during DNA Replication. Genes, 2021, 12, 1960.	1.0	14
313	Genomic Instability and Replicative Stress in Multiple Myeloma: The Final Curtain?. Cancers, 2022, 14, 25.	1.7	5
314	Chromatin and Nuclear Dynamics in the Maintenance of Replication Fork Integrity. Frontiers in Genetics, 2021, 12, 773426.	1.1	6
315	The Interplay of Cohesin and the Replisome at Processive and Stressed DNA Replication Forks. Cells, 2021, 10, 3455.	1.8	14
316	Canonical and novel non-canonical activities of the Holliday junction resolvase Yen1. Nucleic Acids Research, 2022, 50, 259-280.	6.5	4
317	Cockayne syndrome group B protein regulates fork restart, fork progressionÂand MRE11-dependent fork degradation in BRCA1/2-deficient cells. Nucleic Acids Research, 2021, 49, 12836-12854.	6.5	5
318	Protection of nascent DNA at stalled replication forks is mediated by phosphorylation of RIF1 intrinsically disordered region. ELife, 2022, 11, .	2.8	11
319	Flap endonuclease 1 and DNA-PKcs synergistically participate in stabilizing replication fork to encounter replication stress in glioma cells. Journal of Experimental and Clinical Cancer Research, 2022, 41, 140.	3.5	4
321	RNF4 controls the extent of replication fork reversal to preserve genome stability. Nucleic Acids Research, 2022, 50, 5672-5687.	6.5	9
322	MDM2 binds and ubiquitinates PARP1 to enhance DNA replication fork progression. Cell Reports, 2022, 39, 110879.	2.9	13
324	Selective recognition of A/T-rich DNA 3-way junctions with a three-fold symmetric tripeptide. Chemical Communications, 0, , .	2.2	5
326	Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice. Journal of Fungi (Basel, Switzerland), 2022, 8, 621.	1.5	5

#	Article		CITATIONS
327	Rrp1, Rrp2 and Uls1 – Yeast SWI2/SNF2 DNA dependent translocases in genome stability maintenance. DNA Repair, 2022, 116, 103356.	1.3	3
328	Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex. Nucleic Acids Research, 2022, 50, 8008-8022.	6.5	18
331	Poxvirus Recombination. Pathogens, 2022, 11, 896.	1.2	11
332	The Biochemical Mechanism of Fork Regression in Prokaryotes and Eukaryotes—A Single Molecule Comparison. International Journal of Molecular Sciences, 2022, 23, 8613.	1.8	4
334	RAD51 is a druggable target that sustains replication fork progression upon DNA replication stress. PLoS ONE, 2022, 17, e0266645.	1.1	3
335	RAD51 protects human cells from transcription-replication conflicts. Molecular Cell, 2022, 82, 3366-3381.e9.	4.5	19
336	Histone–lysine N-methyltransferase 2 (KMT2) complexes – a new perspective. Mutation Research - Reviews in Mutation Research, 2022, 790, 108443.	2.4	8
337	Role of Cockayne Syndrome Group B Protein in Replication Stress: Implications for Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 10212.	1.8	4
338	Dynamic switching of crotonylation to ubiquitination of H2A at lysine 119 attenuates transcription–replication conflicts caused by replication stress. Nucleic Acids Research, 2022, 50, 9873-9892.	6.5	13
339	Creation and resolution of non-B-DNA structural impediments during replication. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 412-442.	2.3	8
340	MAD2L2 promotes replication fork protection and recovery in a shieldin-independent and REV3L-dependent manner. Nature Communications, 2022, 13, .	5.8	8
341	The mismatch recognition protein MutSα promotes nascent strand degradation at stalled replication forks. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	1
343	Lagging strand gap suppression connects BRCA-mediated fork protection to nucleosome assembly through PCNA-dependent CAF-1 recycling. Nature Communications, 2022, 13, .	5.8	8
344	The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. Journal of Hematology and Oncology, 2022, 15, .	6.9	20
346	A genome-wide screen identifies SCAI as a modulator of the UV-induced replicative stress response. PLoS Biology, 2022, 20, e3001543.	2.6	5
347	Leveraging the replication stress response to optimize cancer therapy. Nature Reviews Cancer, 2023, 23, 6-24.	12.8	33
348	Mechanisms of PARP1 inhibitor resistance and their implications for cancer treatment. NAR Cancer, 2022, 4, .	1.6	9
350	Rad5 participates in lesion bypass through its Rev1-binding and ubiquitin ligase domains, but not through its helicase function. Frontiers in Molecular Biosciences, 0, 9, .	1.6	0

		CITATION REPORT		
#	Article		IF	CITATIONS
352	Assessment of DNA fibers to track replication dynamics. Methods in Cell Biology, 2024, ,	285-298.	0.5	0
353	RFWD3 promotes ZRANB3 recruitment to regulate the remodeling of stalled replication of Cell Biology, 2023, 222, .	orks. Journal	2.3	3
355	UFL1, a UFMylation E3 ligase, plays a crucial role in multiple cellular stress responses. Fro Endocrinology, 0, 14, .	ntiers in	1.5	4
356	RNA:DNA hybrids from Okazaki fragments contribute to establish the Ku-mediated barrier to replication-fork degradation. Molecular Cell, 2023, 83, 1061-1074.e6.		4.5	10
357	The TIMELESS effort for timely DNA replication and protection. Cellular and Molecular Life Sciences, 2023, 80, .		2.4	8
358	Short-term molecular consequences of chromosome mis-segregation for genome stabilit Communications, 2023, 14, .	y. Nature	5.8	16
359	The telomerase reverse transcriptase elongates reversed replication forks at telomeric re Science Advances, 2023, 9, .	peats.	4.7	0
361	Noncanonical Roles of RAD51. Cells, 2023, 12, 1169.		1.8	8
373	Genome maintenance meets mechanobiology. Chromosoma, 2024, 133, 15-36.		1.0	1
374	Regulation of Human DNA Primase-Polymerase PrimPol. Biochemistry (Moscow), 2023, 8	8, 1139-1155.	0.7	0
393	DNA replication and replication stress response in the context of nuclear architecture. Cl 2024, 133, 57-75.	iromosoma,	1.0	2