On the Stability of Random Multiple Access With Stocha

IEEE Journal on Selected Areas in Communications 33, 571-584

DOI: 10.1109/jsac.2015.2391731

Citation Report

#	Article	IF	CITATIONS
1	Effect of channel estimation errors on the stability of channel-aware random access., 2012,,.		2
2	Network-level cooperation in energy harvesting wireless networks. , 2013, , .		12
3	On hybrid access for cognitive radio systems with time-varying connectivity. , 2013, , .		2
4	The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines. Sensors, 2016, 16, 171.	3.8	11
5	Effect of energy harvesting on stable throughput in cooperative relay systems. Journal of Communications and Networks, 2016, 18, 261-269.	2.6	20
6	Optimal Transmission Policies for Relay Communication Networks With Ambient Energy Harvesting Relays. IEEE Journal on Selected Areas in Communications, 2016, 34, 3754-3768.	14.0	39
7	Stability Analysis of Slotted Aloha With Opportunistic RF Energy Harvesting. IEEE Journal on Selected Areas in Communications, 2016, 34, 1477-1490.	14.0	15
8	Achievable Throughput Analysis of Opportunistic Spectrum Access in Cognitive Radio Networks With Energy Harvesting. IEEE Transactions on Communications, 2016, 64, 1399-1410.	7.8	39
9	Advances in Energy Harvesting Communications: Past, Present, and Future Challenges. IEEE Communications Surveys and Tutorials, 2016, 18, 1384-1412.	39.4	453
10	Channel-Aware Random Access in the Presence of Channel Estimation Errors. IEEE Transactions on Control of Network Systems, 2017, 4, 439-450.	3.7	1
11	Modeling Timely-Delivery Ratio of Slotted Aloha With Energy Harvesting. IEEE Communications Letters, 2017, 21, 1823-1826.	4.1	9
14	Energy harvesting in delay-aware cognitive shared access networks. , 2017, , .		7
15	Wireless sensor with data and Energy Packets. , 2017, , .		5
16	A Stochastic Geometry Analysis of Large-Scale Cooperative Wireless Networks Powered by Energy Harvesting. IEEE Transactions on Communications, 2017, 65, 3343-3358.	7.8	12
17	Stability Analysis of Frame Slotted Aloha Protocol. IEEE Transactions on Mobile Computing, 2017, 16, 1462-1474.	5.8	17
18	Self-Sustainable Robotic Environment Discovery for Energy Harvesting Internet of Things. , 2017, , .		O
19	Cooperative jamming for energy harvesting multicast networks with an untrusted relay. IET Communications, 2017, 11, 2058-2065.	2.2	11
20	Wireless network-level partial relay cooperation: A stable throughput analysis. Journal of Communications and Networks, 2018, 20, 93-101.	2.6	9

#	Article	IF	CITATIONS
21	On the Tradeoff Between Collision and Cooperation in a Random Access Wireless Network With Energy Harvesting Nodes. IEEE Transactions on Vehicular Technology, 2018, 67, 2501-2513.	6.3	8
22	Energy-Harvesting Irregular Repetition Slotted ALOHA with Unit-Sized Battery. , 2018, , .		5
24	Irregular Repetition Slotted ALOHA With Energy Harvesting Nodes. IEEE Transactions on Wireless Communications, 2019, 18, 4505-4517.	9.2	11
25	Achievable Throughput Analysis and Channel Access in Energy Harvesting Cognitive Radio Sensor Network. IEEE Access, 2019, 7, 82277-82287.	4.2	5
26	Transmission Capacity Analysis for Underlay Relay-Assisted Energy Harvesting Cognitive Sensor Networks. IEEE Access, 2019, 7, 63778-63788.	4.2	10
27	Optimal Design of RF Energy-Harvesting Network: Throughput and Delay Perspective. Sensors, 2019, 19, 145.	3.8	3
28	Distributed Optimal Random Access Scheme for Energy Harvesting Devices in Satellite Communication Networks. Sensors, 2019, 19, 99.	3.8	1
29	Proportional Fairness in ALOHA Networks With RF Energy Harvesting. IEEE Wireless Communications Letters, 2019, 8, 277-280.	5.0	19
30	Stability Analysis of Wireless Powered Communication Networks. , 2020, , .		0
31	Optimal Irregular Repetition Slotted ALOHA Under Total Transmit Power Constraint in IoT-Oriented Satellite Networks. IEEE Internet of Things Journal, 2020, 7, 10465-10474.	8.7	8
32	Modeling and Analysis of Energy Harvesting and Smart Grid-Powered Wireless Communication Networks: A Contemporary Survey. IEEE Transactions on Green Communications and Networking, 2020, 4, 461-496.	5.5	83
33	Energy Harvesting Irregular Repetition ALOHA With Replica Concatenation. IEEE Transactions on Wireless Communications, 2021, 20, 955-968.	9.2	14
34	S-ALOHA Systems with Successive Transmission: Emulating CSMA System. IEEE Transactions on Communications, 2021, , 1-1.	7.8	0
35	Stability and performance analysis of wireless powered communication networks. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 0, , 1748006X2110167.	0.7	2
36	Performance Analysis of a MIMO System With Bursty Traffic in the Presence of Energy Harvesting Jammer. IEEE Transactions on Green Communications and Networking, 2022, 6, 1157-1172.	5.5	1
37	Asymptotically Optimal Power Allocation for Wireless Powered Communication Network with Non-orthogonal Multiple Access., 2016,, 231-251.		1
38	Stability Analysis of Frame Slotted Aloha Protocol. , 2019, , 7-42.		1
39	Uncertainty analysis of galloping based piezoelectric energy harvester system using polynomial neural network. Journal of Intelligent Material Systems and Structures, 2022, 33, 2019-2032.	2.5	15

#	Article	IF	CITATIONS
40	Managing the harvested energy in wireless sensor networks: A priority $Geo/Geo/1/k$ approach with threshold. Energy Reports, 2022, 8, 2448-2461.	5.1	3
41	A Theoretical Framework for Random Access: Stability Regions and Transmission Control. IEEE/ACM Transactions on Networking, 2022, 30, 2173-2200.	3.8	3