Transformation of the Excited State and Photovoltaic E CH₃NH₃PbI₃Per Humidified Air

Journal of the American Chemical Society 137, 1530-1538 DOI: 10.1021/ja511132a

Citation Report

#	Article	IF	CITATIONS
6	Ab Initio Analysis of Charge Carrier Dynamics in Organic-Inorganic Lead Halide Perovskite Solar Cells. Materials Research Society Symposia Proceedings, 2015, 1776, 19-29.	0.1	4
7	Planar Heterojunction Perovskite Solar Cells Incorporating Metal–Organic Framework Nanocrystals. Advanced Materials, 2015, 27, 7229-7235.	21.0	134
8	Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1501066.	19.5	395
9	Stability of Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1500963.	19.5	1,045
10	Controllable Perovskite Crystallization by Water Additive for Highâ€Performance Solar Cells. Advanced Functional Materials, 2015, 25, 6671-6678.	14.9	321
11	The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angewandte Chemie - International Edition, 2015, 54, 8208-8212.	13.8	749
12	Morphology ontrolled Synthesis of Organometal Halide Perovskite Inverse Opals. Angewandte Chemie - International Edition, 2015, 54, 13806-13810.	13.8	68
13	The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angewandte Chemie, 2015, 127, 8326-8330.	2.0	154
15	Similar Structural Dynamics for the Degradation of CH ₃ NH ₃ PbI ₃ in Air and in Vacuum. ChemPhysChem, 2015, 16, 3064-3071.	2.1	80
16	Mapping Electric Fieldâ€Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films. Advanced Energy Materials, 2015, 5, 1500962.	19.5	225
17	Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 2200-2205.	4.6	205
18	Photoinduced Reversible Structural Transformations in Free-Standing CH ₃ NH ₃ PbI ₃ Perovskite Films. Journal of Physical Chemistry Letters, 2015, 6, 2332-2338.	4.6	190
19	Solid state transformation of the crystalline monohydrate (CH3NH3)PbI3(H2O) to the (CH3NH3)PbI3 perovskite. Chemical Communications, 2015, 51, 11290-11292.	4.1	51
20	Photonic–Plasmonic Devices Created by Templated Self-Assembly. Journal of Physical Chemistry Letters, 2015, 6, 2112-2113.	4.6	1
21	Origin of the Thermal Instability in CH ₃ NH ₃ PbI ₃ Thin Films Deposited on ZnO. Chemistry of Materials, 2015, 27, 4229-4236.	6.7	548
22	Controlled Humidity Study on the Formation of Higher Efficiency Formamidinium Lead Triiodide-Based Solar Cells. Chemistry of Materials, 2015, 27, 4814-4820.	6.7	133
23	Spray PEDOT:PSS coated perovskite with a transparent conducting electrode for low cost scalable photovoltaic devices. Materials Research Innovations, 2015, 19, 482-487.	2.3	9
24	Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation. Chemistry of Materials, 2015, 27, 1720-1731.	6.7	388

#	Article		CITATIONS
25	Investigation of CH ₃ NH ₃ PbI ₃ Degradation Rates and Mechanisms in Controlled Humidity Environments Using <i>in Situ</i> Techniques. ACS Nano, 2015, 9, 1955-1963.	14.6	1,171
26	Molecular dynamics simulations of organohalide perovskite precursors: solvent effects in the formation of perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 22770-22777.	2.8	32
27	Uncovering the Veil of the Degradation in Perovskite CH ₃ NH ₃ PbI ₃ upon Humidity Exposure: A First-Principles Study. Journal of Physical Chemistry Letters, 2015, 6, 3289-3295.	4.6	171
28	The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. ACS Nano, 2015, 9, 9380-9393.	14.6	451
29	Exploring Thermochromic Behavior of Hydrated Hybrid Perovskites in Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 3180-3184.	4.6	95
30	Evolution of Organic–Inorganic Lead Halide Perovskite from Solid-State Iodoplumbate Complexes. Journal of Physical Chemistry C, 2015, 119, 17065-17073.	3.1	70
31	Thin-Film Preparation and Characterization of Cs ₃ Sb ₂ I ₉ : A Lead-Free Layered Perovskite Semiconductor. Chemistry of Materials, 2015, 27, 5622-5632.	6.7	653
32	Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells. Energy and Environmental Science, 2015, 8, 2946-2953.	30.8	163
33	<i>Ab Initio</i> Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water. Chemistry of Materials, 2015, 27, 4885-4892.	6.7	414
34	Multifaceted Excited State of CH ₃ NH ₃ PbI ₃ . Charge Separation, Recombination, and Trapping. Journal of Physical Chemistry Letters, 2015, 6, 2086-2095.	4.6	107
35	Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of <i>Making Bad Cells Look Good</i> . Journal of Physical Chemistry Letters, 2015, 6, 852-857.	4.6	294
36	Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole-Injecting Layer. Journal of Physical Chemistry Letters, 2015, 6, 1883-1890.	4.6	233
37	Reversible Hydration of CH ₃ NH ₃ PbI ₃ in Films, Single Crystals, and Solar Cells. Chemistry of Materials, 2015, 27, 3397-3407.	6.7	1,133
38	Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 1543-1547.	4.6	428
39	Polarization Dependence of Water Adsorption to CH ₃ NH ₃ PbI ₃ (001) Surfaces. Journal of Physical Chemistry Letters, 2015, 6, 4371-4378.	4.6	111
40	Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. Journal of the American Chemical Society, 2015, 137, 13130-13137.	13.7	394
41	A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite. Nano Energy, 2015, 18, 165-175.	16.0	92
42	Flexible and Semitransparent Organolead Triiodide Perovskite Network Photodetector Arrays with High Stability. Nano Letters, 2015, 15, 7963-7969.	9.1	293

#	Article	IF	CITATIONS
43	Mechanisms of Electron-Beam-Induced Damage in Perovskite Thin Films Revealed by Cathodoluminescence Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 26904-26911.	3.1	153
44	Investigation of the Interaction between Perovskite Films with Moisture via in Situ Electrical Resistance Measurement. ACS Applied Materials & Interfaces, 2015, 7, 25113-25120.	8.0	70
45	Intrinsic femtosecond charge generation dynamics in single crystal CH ₃ NH ₃ PbI ₃ . Energy and Environmental Science, 2015, 8, 3700-3707.	30.8	203
46	Synthesis, Optical Properties, and Exciton Dynamics of Organolead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2015, 119, 26672-26682.	3.1	96
47	Frontiers of photovoltaic technology: A review. , 2015, , .		11
48	Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials, 2015, 5, 1500477.	19.5	1,788
49	Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nature Materials, 2015, 14, 1032-1039.	27.5	807
50	Photodecomposition and Morphology Evolution of Organometal Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2015, 119, 20810-20816.	3.1	88
51	Effects of Porosity and Amount of Surface Hydroxyl Groups of a Porous TiO ₂ Layer on the Performance of a CH ₃ NH ₃ PbI ₃ Perovskite Photovoltaic Cell. Journal of Physical Chemistry C, 2015, 119, 22304-22309.		18
52	Synergistic enhancement and mechanism study of mechanical and moisture stability of perovskite solar cells introducing polyethylene-imine into the CH ₃ NH ₃ PbI ₃ /HTM interface. Journal of Materials Chemistry A,		80
53	Ab Initio Study of Interaction of Water, Hydroxyl Radicals, and Hydroxide lons with CH ₃ NH ₃ PbI ₃ and CH ₃ NH ₃ PbBI ₃ Surfaces. Journal of Physical Chemistry C, 2015, 119, 22270, 22378		122
54	Artifacts in Absorption Measurements of Organometal Halide Perovskite Materials: What Are the Real Spectra?. Journal of Physical Chemistry Letters, 2015, 6, 3466-3470.	4.6	92
55	CH ₃ NH ₃ PbI ₃ perovskite single crystals: surface photophysics and their interaction with the environment. Chemical Science, 2015, 6, 7305-7310.	7.4	192
56	Material Innovation in Advancing Organometal Halide Perovskite Functionality. Journal of Physical Chemistry Letters, 2015, 6, 4862-4872.	4.6	37
57	Water Infiltration in Methylammonium Lead Iodide Perovskite: Fast and Inconspicuous. Chemistry of Materials, 2015, 27, 7835-7841.	6.7	194
58	Using Low Temperature Photoluminescence Spectroscopy to Investigate CH3NH3PbI3 Hybrid Perovskite Degradation. Molecules, 2016, 21, 885.	3.8	17
59	Humidity versus photo-stability of metal halide perovskite films in a polymer matrix. Physical Chemistry Chemical Physics, 2016, 18, 21629-21639.	2.8	75
60	Pyriteâ€Based Biâ€Functional Layer for Longâ€Term Stability and Highâ€Performance of Organoâ€Lead Halide Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 5400-5407	14.9	46

#	Article		CITATIONS
61	The Progress of Interface Design in Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2016, 6, 1600460.		139
62	Stabilization of Organic–Inorganic Perovskite Layers by Partial Substitution of Iodide by Bromide in Methylammonium Lead Iodide. ChemPhysChem, 2016, 17, 1505-1511.	2.1	49
63	Humidity controlled crystallization of thin CH ₃ NH ₃ PbI ₃ films for high performance perovskite solar cell. Physica Status Solidi - Rapid Research Letters, 2016, 10, 381-387.	2.4	39
64	Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design. Journal of Materials Chemistry A, 2016, 4, 11604-11610.	10.3	49
65	Highly Reproducible and Efficient Perovskite Solar Cells with Extraordinary Stability from Robust CH ₃ NH ₃ PbI ₃ : Towards Largeâ€Area Devices. Energy Technology, 2016, 4, 449-457.	3.8	28
66	Degradation Mechanisms of Solutionâ€Processed Planar Perovskite Solar Cells: Thermally Stimulated Current Measurement for Analysis of Carrier Traps. Advanced Materials, 2016, 28, 466-471.	21.0	107
67	Copperâ€Doped Chromium Oxide Holeâ€Transporting Layer for Perovskite Solar Cells: Interface Engineering and Performance Improvement. Advanced Materials Interfaces, 2016, 3, 1500799.	3.7	72
68	lodine Migration and Degradation of Perovskite Solar Cells Enhanced by Metallic Electrodes. Journal of Physical Chemistry Letters, 2016, 7, 5168-5175.	4.6	225
69	High Performance Perovskite Solar Cells through Surface Modification, Mixed Solvent Engineering and Nanobowl-Assisted Light Harvesting. MRS Advances, 2016, 1, 3175-3184.	0.9	9
70	Thermodynamic origin of instability in hybrid halide perovskites. Scientific Reports, 2016, 6, 37654.	3.3	76
71	Characterization of perovskite solar cells: Towards a reliable measurement protocol. APL Materials, 2016, 4, .		94
72	Degradation of organometallic perovskite solar cells induced by trap states. Applied Physics Letters, 2016, 108, .	3.3	37
73	Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air. Journal of Applied Physics, 2016, 119, .	2.5	168
74	Research Update: Strategies for improving the stability of perovskite solar cells. APL Materials, 2016, 4,	5.1	126
75	Phosphor coated NiO-based planar inverted organometallic halide perovskite solar cells with enhanced efficiency and stability. Applied Physics Letters, 2016, 109, .	3.3	27
76	Roomâ€Temperature Atomic Layer Deposition of Al ₂ O ₃ : Impact on Efficiency, Stability and Surface Properties in Perovskite Solar Cells. ChemSusChem, 2016, 9, 3401-3406.	6.8	76
77	Solution-processed Bii <inf>3</inf> solar cells. , 2016, , .		0
78	Oxygen influencing the photocarriers lifetime of CH3NH3PbI3â^'xClx film grown by two-step interdiffusion method and its photovoltaic performance. Applied Physics Letters, 2016, 108, .	3.3	26

#	Article	IF	CITATIONS
79	Preliminary Study on Synthesis of Organolead Halide with Lead Derived from Solder Wire. Journal of Physics: Conference Series, 2016, 739, 012098.	0.4	0
80	Voltage-Induced Transients in Methylammonium Lead Triiodide Probed by Dynamic Photoluminescence Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 7893-7902.	3.1	24
81	Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process. ACS Applied Materials & Interfaces, 2016, 8, 14301-14306.	8.0	23
82	Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network. Nano Energy, 2016, 26, 139-147.	16.0	97
83	Stability of solution-processed MAPbI ₃ and FAPbI ₃ layers. Physical Chemistry Chemical Physics, 2016, 18, 13413-13422.	2.8	208
84	Degradation of Co-Evaporated Perovskite Thin Films. MRS Advances, 2016, 1, 923-929.	0.9	4
85	In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells. Energy and Environmental Science, 2016, 9, 2372-2382.	30.8	79
86	Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chemical Reviews, 2016, 116, 4558-4596.	47.7	2,147
87	Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Advances, 2016, 6, 38079-38091.	3.6	154
88	Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy and Environmental Science, 2016, 9, 1655-1660.	30.8	783
89	The interaction between hybrid organic–inorganic halide perovskite and selective contacts in perovskite solar cells: an infrared spectroscopy study. Physical Chemistry Chemical Physics, 2016, 18, 13583-13590.	2.8	55
90	Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable Large-Area Solar Cell. Chemistry of Materials, 2016, 28, 3131-3138.	6.7	174
91	Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoO _{<i>x</i>} /Al for Hole Collection. ACS Energy Letters, 2016, 1, 38-45.	17.4	237
92	Optical characterization of voltage-accelerated degradation in CH_3NH_3PbI_3 perovskite solar cells. Optics Express, 2016, 24, A917.	3.4	26
93	Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution. Energy and Environmental Science, 2016, 9, 2072-2082.	30.8	188
94	Effect of Water Vapor, Temperature, and Rapid Annealing on Formamidinium Lead Triiodide Perovskite Crystallization. ACS Energy Letters, 2016, 1, 155-161.	17.4	27
95	Film-through large perovskite grains formation via a combination of sequential thermal and solvent treatment. Journal of Materials Chemistry A, 2016, 4, 8554-8561.	10.3	80
96	One-dimensional (1D) [6,6]-phenyl-C ₆₁ -butyric acid methyl ester (PCBM) nanorods as an efficient additive for improving the efficiency and stability of perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 8566-8572.	10.3	30

#	Article		CITATIONS
97	Photostability and Moisture Stability of CH ₃ NH ₃ PbI ₃ â€based Solar Cells by Ethyl Cellulose. ChemPlusChem, 2016, 81, 1292-1298.	2.8	23
98	Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications. ACS Applied Materials & Interfaces, 2016, 8, 25489-25495.	8.0	38
99	Hydrophobic hole-transporting layer induced porous PbI2 film for stable and efficient perovskite solar cells in 50% humidity. Solar Energy Materials and Solar Cells, 2016, 157, 989-995.	6.2	17
100	Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Advances, 2016, 6, 89356-89366.	3.6	69
101	Hybrid Perovskite Thin Films as Highly Efficient Luminescent Solar Concentrators. Advanced Optical Materials, 2016, 4, 2126-2132.	7.3	62
102	Influence of halide composition on the structural, electronic, and optical properties of mixed <mml:math< td=""><td></td><td></td></mml:math<>		

#	Article		CITATIONS
116	APbI3 (AÂ=ÂCH3NH3 and HC(NH2)2) Perovskite Solar Cells: From Sensitization to Planar Heterojunction. , 2016, , 223-253.		3
117	Solution-Processed Bil ₃ Thin Films for Photovoltaic Applications: Improved Carrier Collection via Solvent Annealing. Chemistry of Materials, 2016, 28, 6567-6574.	6.7	132
118	Effects of water molecules on the chemical stability of MAGel ₃ perovskite explored from a theoretical viewpoint. Physical Chemistry Chemical Physics, 2016, 18, 24526-24536.	2.8	22
119	Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy, 2016, 28, 151-157.	16.0	200
120	Nonradiative Relaxation in Real-Time Electronic Dynamics OSCF2: Organolead Triiodide Perovskite. Journal of Physical Chemistry A, 2016, 120, 6880-6887.	2.5	13
121	Redox Chemistry Dominates the Degradation and Decomposition of Metal Halide Perovskite Optoelectronic Devices. ACS Energy Letters, 2016, 1, 595-602.	17.4	196
122	HONH3Cl optimized CH3NH3PbI3 films for improving performance of planar heterojunction perovskite solar cells via a one-step route. Physical Chemistry Chemical Physics, 2016, 18, 26254-26261.	2.8	9
123	The Luminescence of CH ₃ NH ₃ PbBr ₃ Perovskite Nanoparticles Crests the Summit and Their Photostability under Wet Conditions is Enhanced. Small, 2016, 12, 5245-5250.	10.0	116
124	Material and Device Stability in Perovskite Solar Cells. ChemSusChem, 2016, 9, 2528-2540.		256
125	Impact of Selective Contacts on Long-Term Stability of CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Journal of Physical Chemistry C, 2016, 120, 27840-27848.	3.1	47
126	Direct Observation of Reversible Transformation of CH ₃ NH ₃ PbI ₃ and NH ₄ PbI ₃ Induced by Polar Gaseous Molecules. Journal of Physical Chemistry Letters, 2016, 7, 5068-5073.	4.6	62
127	100 °C Thermal Stability of Printable Perovskite Solar Cells Using Porous Carbon Counter Electrodes. ChemSusChem, 2016, 9, 2604-2608.	6.8	103
128	Graphene–Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem, 2016, 9, 2609-2619.	6.8	163
129	The Influence of Water Vapor on the Stability and Processing of Hybrid Perovskite Solar Cells Made from Non‣toichiometric Precursor Mixtures. ChemSusChem, 2016, 9, 2699-2707.	6.8	77
130	Elemental Mapping of Perovskite Solar Cells by Using Multivariate Analysis: An Insight into Degradation Processes. ChemSusChem, 2016, 9, 2673-2678.	6.8	21
131	Multidimensional Perovskites: A Mixed Cation Approach Towards Ambient Stable and Tunable Perovskite Photovoltaics. ChemSusChem, 2016, 9, 2541-2558.	6.8	88
132	Interaction of Organic Cation with Water Molecule in Perovskite MAPbI ₃ : From Dynamic Orientational Disorder to Hydrogen Bonding. Chemistry of Materials, 2016, 28, 7385-7393.	6.7	169
133	Band structure engineering in a MoS ₂ /PbI ₂ van der Waals heterostructure via an external electric field. Physical Chemistry Chemical Physics, 2016, 18, 28466-28473.	2.8	37

#	Article	IF	CITATIONS
134	Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Physical Chemistry Chemical Physics, 2016, 18, 27026-27050.	2.8	134
135	The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation. Physical Chemistry Chemical Physics, 2016, 18, 23174-23183.	2.8	89
136	Rejuvenation of perovskite solar cells. Journal of Materials Chemistry C, 2016, 4, 7595-7600.	5.5	19
137	Broadband transient absorption study of photoexcitations in lead halide perovskites: Towards a multiband picture. Physical Review B, 2016, 93, .	3.2	47
138	Organic-Inorganic Halide Perovskite Photovoltaics. , 2016, , .		115
139	Multiple Charge Transfer Dynamics in Colloidal CsPbBr ₃ Perovskite Quantum Dots Sensitized Molecular Adsorbate. Journal of Physical Chemistry C, 2016, 120, 18348-18354.	3.1	51
140	Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI ₂ H ₃ NH ₃ Iâ€H ₂ O System. Advanced Energy Materials, 2016, 6, 1600846.	19.5	355
141	Mesoscale Growth and Assembly of Bright Luminescent Organolead Halide Perovskite Quantum Wires. Chemistry of Materials, 2016, 28, 5043-5054.	6.7	63
142	Lowâ€Energy Electronâ€Induced Transformations in Organolead Halide Perovskite. Angewandte Chemie - International Edition, 2016, 55, 10083-10087.	13.8	49
143	Optical Transitions in Hybrid Perovskite Solar Cells: Ellipsometry, Density Functional Theory, and Quantum Efficiency Analyses for <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>CH</mml:mi></mml:mrow><mml:mn>3Physical Paview Applied 2016.5</mml:mn></mml:msub></mml:mrow></mml:math>		າl:msub><ຕ
144	High Performance of Perovskite Solar Cells via Catalytic Treatment in Two-Step Process: The Case of Solvent Engineering. ACS Applied Materials & Interfaces, 2016, 8, 30107-30115.	8.0	28
145	Room-temperature water-vapor annealing for high-performance planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 17267-17273.	10.3	58
146	Optoelectronic modelling of perovskite solar cells under humid conditions and their correlation with power losses to quantify material degradation. Organic Electronics, 2016, 39, 258-266.	2.6	11
147	Monitoring a Silent Phase Transition in CH ₃ NH ₃ PbI ₃ Solar Cells via <i>Operando</i> X-ray Diffraction. ACS Energy Letters, 2016, 1, 1007-1012.	17.4	52
148	Functionalization of perovskite thin films with moisture-tolerant molecules. Nature Energy, 2016, 1, .	39.5	439
149	Nonstoichiometric acid–base reaction as reliable synthetic route to highly stable CH3NH3PbI3 perovskite film. Nature Communications, 2016, 7, 13503.	12.8	94
150	Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Materials, 2016, 8, e328-e328.	7.9	385
151	Trapped charge-driven degradation of perovskite solar cells. Nature Communications, 2016, 7, 13422.	12.8	464

#	Article		CITATIONS
152	Lowâ€Energy Electronâ€Induced Transformations in Organolead Halide Perovskite. Angewandte Chemie, 2016, 128, 10237-10241.		9
153	Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. ChemSusChem, 2016, 9, 3288-3297.	6.8	178
154	Exciton Relaxation Dynamics in Photo-Excited CsPbI3 Perovskite Nanocrystals. Scientific Reports, 2016, 6, 29442.	3.3	69
155	Observation of Nanoscale Morphological and Structural Degradation in Perovskite Solar Cells by in Situ TEM. ACS Applied Materials & Interfaces, 2016, 8, 32333-32340.	8.0	54
156	Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Scientific Reports, 2016, 6, 18721.	3.3	396
157	Enhancing performance and uniformity of CH3NH3PbI3â^'xClx perovskite solar cells by air-heated-oven assisted annealing under various humidities. Scientific Reports, 2016, 6, 21257.	3.3	26
158	Investigation of the Hydrolysis of Perovskite Organometallic Halide CH3NH3PbI3 in Humidity Environment. Scientific Reports, 2016, 6, 21976.	3.3	100
159	Photoluminescence Enhancement in Formamidinium Lead Iodide Thin Films. Advanced Functional Materials, 2016, 26, 4653-4659.	14.9	61
160	Microwave Induced Crystallization of the Hybrid Perovskite CH ₃ NH ₃ PbI ₃ from a Supramolecular Single-Source Precursor. Chemistry of Materials, 2016, 28, 4134-4138.		11
161	Transformation of Sintered CsPbBr ₃ Nanocrystals to Cubic CsPbI ₃ and Gradient CsPbBr _{<i>x</i>} I _{3–<i>x</i>} through Halide Exchange. Journal of the American Chemical Society, 2016, 138, 8603-8611.	13.7	327
162	Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 2016, 116, 12956-13008.	47.7	1,343
163	Systematic study on the impact of water on the performance and stability of perovskite solar cells. RSC Advances, 2016, 6, 52448-52458.		29
164	Room temperature, air crystallized perovskite film for high performance solar cells. Journal of Materials Chemistry A, 2016, 4, 10231-10240.	10.3	60
165	A new layered nano hybrid perovskite film with enhanced resistance to moisture-induced degradation. Chemical Physics Letters, 2016, 658, 71-75.	2.6	23
166	Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7717-7721.	7.1	331
167	Thermal and Environmental Stability of Semiâ€Transparent Perovskite Solar Cells for Tandems Enabled by a Solutionâ€Processed Nanoparticle Buffer Layer and Sputtered ITO Electrode. Advanced Materials, 2016, 28, 3937-3943.	21.0	419
168	Is Excess PbI ₂ Beneficial for Perovskite Solar Cell Performance?. Advanced Energy Materials, 2016, 6, 1502206.	19.5	322
169	Oxygen Degradation in Mesoporous Al ₂ O ₃ /CH ₃ NH ₃ Pbl _{3â€} <i>_x</i> CH ₃ Alyanced Energy Materials 2016 6 1600014	l <i>1/100000000000000000000000000000000000</i>	

#	Article	IF	CITATIONS
170	A Long-Term View on Perovskite Optoelectronics. Accounts of Chemical Research, 2016, 49, 339-346.	15.6	189
171	Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration. Journal of Physical Chemistry Letters, 2016, 7, 561-566.	4.6	234
172	Making and Breaking of Lead Halide Perovskites. Accounts of Chemical Research, 2016, 49, 330-338.	15.6	571
173	Recent progress and challenges of organometal halide perovskite solar cells. Reports on Progress in Physics, 2016, 79, 026501.	20.1	107
174	Lewis Acid–Base Adduct Approach for High Efficiency Perovskite Solar Cells. Accounts of Chemical Research, 2016, 49, 311-319.	15.6	878
175	Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application. Chemistry of Materials, 2016, 28, 821-829.	6.7	175
176	Fast Photoconductive Responses in Organometal Halide Perovskite Photodetectors. ACS Applied Materials & Interfaces, 2016, 8, 2840-2846.	8.0	103
177	Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films. Nanoscale, 2016, 8, 1627-1634.	5.6	69
178	Formation Dynamics of CH ₃ NH ₃ PbI ₃ Perovskite Following Two-Step Layer Deposition. Journal of Physical Chemistry Letters, 2016, 7, 96-102.	4.6	100
179	Epitaxial Electrodeposition of Methylammonium Lead Iodide Perovskites. Chemistry of Materials, 2016, 28, 399-405.	6.7	70
180	Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH ₃ NH ₃ Pbl ₃ Perovskite under Ambient Conditions. Chemistry of Materials, 2016, 28, 303-311.	6.7	173
181	Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 2016, 45, 655-689.	38.1	1,285
182	Structural Phase- and Degradation-Dependent Thermal Conductivity of CH ₃ NH ₃ Pbl ₃ Perovskite Thin Films. Journal of Physical Chemistry C, 2016, 120, 6394-6401.	3.1	53
183	How Lead Halide Complex Chemistry Dictates the Composition of Mixed Halide Perovskites. Journal of Physical Chemistry Letters, 2016, 7, 1368-1373.	4.6	160
184	Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite. Journal of Physical Chemistry C, 2016, 120, 5724-5731.	3.1	154
185	Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 5981-5989.	8.0	184
186	Parameters responsible for the degradation of CH 3 NH 3 PbI 3 -based solar cells on polymer substrates. Nano Energy, 2016, 22, 211-222.	16.0	18
187	An innovative design of perovskite solar cells with Al 2 O 3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy, 2016, 22, 223-231.	16.0	157

		CITATION REPORT		
#	Article		IF	CITATIONS
188	Debuting in Research: The Vision of Two ENI Award Winners. Chemistry of Materials, 2016	5, 28, 409-410.	6.7	0
189	Ligand-Stabilized Reduced-Dimensionality Perovskites. Journal of the American Chemical S 138, 2649-2655.	iociety, 2016,	13.7	1,157
190	Approaching Bulk Carrier Dynamics in Organo-Halide Perovskite Nanocrystalline Films by S Passivation. Journal of Physical Chemistry Letters, 2016, 7, 1148-1153.	Surface	4.6	83
191	Intrinsic charge carrier dynamics and device stability of perovskite/ZnO mesostructured sc moisture. Journal of Materials Chemistry A, 2016, 4, 5474-5481.	blar cells in	10.3	65
192	Carrier injection and recombination processes in perovskite CH ₃ NH ₃ PbI ₃ solar cells studied by electroluminesc spectroscopy. Proceedings of SPIE, 2016, , .	ence	0.8	1
193	Humidity-Induced Grain Boundaries in MAPbI ₃ Perovskite Films. Journal of Ph Chemistry C, 2016, 120, 6363-6368.	ysical	3.1	103
194	Viability of Lead-Free Perovskites with Mixed Chalcogen and Halogen Anions for Photovolt Applications. Journal of Physical Chemistry C, 2016, 120, 6435-6441.	taic	3.1	72
195	Degradation of co-evaporated perovskite thin film in air. Chemical Physics Letters, 2016, 6	549, 151-155.	2.6	39
196	Fully Printed Halide Perovskite Light-Emitting Diodes with Silver Nanowire Electrodes. ACS 10, 1795-1801.	; Nano, 2016,	14.6	261
197	Stability of perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 147, 255-2	75.	6.2	726
198	Photo-induced degradation of lead halide perovskite solar cells caused by the hole transpo layer/metal electrode interface. Journal of Materials Chemistry A, 2016, 4, 1991-1998.	ort	10.3	90
199	Impedance Spectroscopic Indication for Solid State Electrochemical Reaction in (CH ₃ NH ₃)PbI ₃ Films. Journal of Physical Chemistry 191-197.	/ Letters, 2016, 7,	4.6	81
200	Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution. Nanoscale, 2016, 8, 2693-2	2703.	5.6	100
201	Photoluminescence characterisations of a dynamic aging process of organic–inorganic CH ₃ NH ₃ PbBr ₃ perovskite. Nanoscale, 2016, 8, 192	26-1931.	5.6	61
202	Progress in research on the stability of organometal perovskite solar cells. Solar Energy, 20 74-87.	016, 123,	6.1	117
203	Relationships between Lead Halide Perovskite Thin-Film Fabrication, Morphology, and Perf Solar Cells. Journal of the American Chemical Society, 2016, 138, 463-470.	ormance in	13.7	221
204	Effect of relative humidity on crystal growth, device performance and hysteresis in planar heterojunction perovskite solar cells. Nanoscale, 2016, 8, 6300-6307.		5.6	113
205	Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. and Environmental Science, 2016, 9, 12-30.	Energy	30.8	449

#	Article		CITATIONS
206	Organometal halide perovskite solar cells: degradation and stability. Energy and Environmental Science, 2016, 9, 323-356.	30.8	1,457
207	Exploring stability of formamidinium lead trihalide for solar cell application. Science Bulletin, 2017, 62, 249-255.	9.0	30
208	Formation, location and beneficial role of PbI ₂ in lead halide perovskite solar cells. Sustainable Energy and Fuels, 2017, 1, 119-126.	4.9	99
209	Anisotropic moisture erosion of CH ₃ NH ₃ PbI ₃ single crystals. CrystEngComm, 2017, 19, 901-904.	2.6	28
210	Identification and characterization of a new intermediate to obtain high quality perovskite films with hydrogen halides as additives. Inorganic Chemistry Frontiers, 2017, 4, 473-480.	6.0	23
211	In Situ Identification of Photo- and Moisture-Dependent Phase Evolution of Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 342-348.	17.4	62
212	Moving into the domain of perovskite sensitized solar cell. Renewable and Sustainable Energy Reviews, 2017, 72, 907-915.	16.4	20
213	Electronic and Morphological Inhomogeneities in Pristine and Deteriorated Perovskite Photovoltaic Films. Nano Letters, 2017, 17, 1796-1801.	9.1	25
214	Depth profile by Total IBA in perovskite active layers for solar cells. Nuclear Instruments & Methods in Physics Research B, 2017, 404, 211-218.		4
215	Textured CH3NH3PbI3 thin film with enhanced stability for high performance perovskite solar cells. Nano Energy, 2017, 33, 485-496.	16.0	74
216	Perovskite CH 3 NH 3 PbI 3 crystals and films. Synthesis and characterization. Journal of Crystal Growth, 2017, 462, 45-49.		21
217	Probe Decomposition of Methylammonium Lead Iodide Perovskite in N ₂ and O ₂ by in Situ Infrared Spectroscopy. Journal of Physical Chemistry A, 2017, 121, 1169-1174.	2.5	35
218	Photocurrent Spectroscopy of Perovskite Layers and Solar Cells: A Sensitive Probe of Material Degradation. Journal of Physical Chemistry Letters, 2017, 8, 838-843.	4.6	18
219	Towards high efficiency thin film solar cells. Progress in Materials Science, 2017, 87, 246-291.	32.8	85
220	Effect of hole-transporting materials on the photovoltaic performance and stability of all-ambient-processed perovskite solar cells. Journal of Energy Chemistry, 2017, 26, 584-591.	12.9	19
221	CH ₃ NH ₃ PbI ₃ films prepared by combining 1- and 2-step deposition: how crystal growth conditions affect properties. Physical Chemistry Chemical Physics, 2017, 19, 7204-7214.	2.8	16
222	Inorganic Rubidium Cation as an Enhancer for Photovoltaic Performance and Moisture Stability of HC(NH ₂) ₂ PbI ₃ Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1605988.	14.9	194
223	Benign Interfacial Iodine Vacancies in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 5905-5913.	3.1	36

		CITATION REPORT	
#	Article	IF	CITATIONS
224	Unbalanced Hole and Electron Diffusion in Lead Bromide Perovskites. Nano Letters, 2017, 17, 1727-1732.	9.1	100
225	Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nature Communications, 2017, 8, 14555.	12.8	270
226	Recent progress in stability of perovskite solar cells. Journal of Semiconductors, 2017, 38, 011002.	3.7	89
227	Water Stability Studies of Hybrid Iodoargentates Containing N-Alkylated or N-Protonated Structure Directing Agents: Exploring Noncentrosymmetric Hybrid Structures. Inorganic Chemistry, 2017, 56, 1906-1918.	4.0	30
228	Probing the degradation and homogeneity of embedded perovskite semiconducting layers in photovoltaic devices by Raman spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 5246-5253.	2.8	23
229	TiO ₂ Nanoparticles Incorporated Peptide Appended Perylene Bisimide-Based Nanohybrid System: Enhancement of Photo-Switching Behavior. Journal of Physical Chemistry C, 2017, 121, 5428-5435.	3.1	17
230	CH ₃ NH ₂ gas induced (110) preferred cesium-containing perovskite films with reduced PbI ₆ octahedron distortion and enhanced moisture stability. Journal of Materials Chemistry A, 2017, 5, 4803-4808.	10.3	33
231	The Surface of Hybrid Perovskite Crystals: A Boon or Bane. ACS Energy Letters, 2017, 2, 846-856.	17.4	91
232	Calculation studies on point defects in perovskite solar cells. Journal of Semiconductors, 2017, 38, 011006.	3.7	20
233	Room temperature atomic layer deposited Al2O3 on CH3NH3PbI3 characterized by synchrotron-based X-ray photoelectron spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2017, 411, 49-52.	1.4	13
234	Device stability of perovskite solar cells – A review. Renewable and Sustainable Energy Reviews, 2017, 77, 131-146.	16.4	345
235	Thermoresponsive Emission Switching via Lower Critical Solution Temperature Behavior of Organic–Inorganic Perovskite Nanoparticles. Advanced Materials, 2017, 29, 1700047.	21.0	11
236	Improved Charge Collection in Highly Efficient CsPbBrl ₂ Solar Cells with Light-Induced Dealloying. ACS Energy Letters, 2017, 2, 1043-1049.	17.4	103
237	Recent progress in stabilizing hybrid perovskites for solar cell applications. Journal of Power Sources, 2017, 355, 98-133.	7.8	96
238	Stable ultra-fast broad-bandwidth photodetectors based on α-CsPbI ₃ perovskite and NaYF ₄ :Yb,Er quantum dots. Nanoscale, 2017, 9, 6278-6285.	5.6	93
239	Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance. Journal of the American Chemical Society, 2017, 139, 6693-6699.	13.7	723
240	Dual function of a high-contrast hydrophobic–hydrophilic coating for enhanced stability of perovskite solar cells in extremely humid environments. Nano Research, 2017, 10, 3885-3895.	10.4	23
241	Ionization Energy as a Stability Criterion for Halide Perovskites. Journal of Physical Chemistry C, 2017, 121, 11977-11984.	3.1	42

#	Article	IF	CITATIONS
242	Air and thermally stable perovskite solar cells with CVD-graphene as the blocking layer. Nanoscale, 2017, 9, 8274-8280.	5.6	58
243	Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications, 2017, 8, 15218.	12.8	917
244	Concentration dependent carriers dynamics in CsPbBr3 perovskite nanocrystals film with transient grating. Applied Physics Letters, 2017, 110, .	3.3	10
246	Tuning the crystal growth of perovskite thin-films by adding the 2-pyridylthiourea additive for highly efficient and stable solar cells prepared in ambient air. Journal of Materials Chemistry A, 2017, 5, 13448-13456.	10.3	96
247	New Insight into the Formation of Hybrid Perovskite Nanowires via Structure Directing Adducts. Chemistry of Materials, 2017, 29, 587-594.	6.7	68
248	Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nature Energy, 2017, 2, .	39.5	438
249	Photon-generated carriers excite superoxide species inducing long-term photoluminescence enhancement of MAPbI ₃ perovskite single crystals. Journal of Materials Chemistry A, 2017, 5, 12048-12053.	10.3	34
250	Radiative Thermal Annealing/in Situ X-ray Diffraction Study of Methylammonium Lead Triiodide: Effect of Antisolvent, Humidity, Annealing Temperature Profile, and Film Substrates. Chemistry of Materials, 2017, 29, 5931-5941.	6.7	35
251	Organic–Inorganic Halide Perovskite Formation: In Situ Dissociation of Cation Halide and Metal Halide Complexes during Crystal Formation. Journal of Physical Chemistry C, 2017, 121, 13532-13538.	3.1	16
252	Critical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CH ₃ NH ₃ PbI ₃) Perovskite Photochemistry. Nano Letters, 2017, 17, 4151-4157.	9.1	55
253	Quantum Dynamics of Photogenerated Charge Carriers in Hybrid Perovskites: Dopants, Grain Boundaries, Electric Order, and Other Realistic Aspects. ACS Energy Letters, 2017, 2, 1588-1597.	17.4	31
254	Sequential Dip-spin Coating Method: Fully Infiltration of MAPbI3-xClx into Mesoporous TiO2 for Stable Hybrid Perovskite Solar Cells. Electrochimica Acta, 2017, 245, 734-741.	5.2	14
255	Aqueous self-assembled perovskite microfibers for sensitive photodetectors. Organic Electronics, 2017, 48, 106-111.	2.6	13
256	Perovskite solar cells - An overview of critical issues. Progress in Quantum Electronics, 2017, 53, 1-37.	7.0	132
257	Recent efficient strategies for improving the moisture stability of perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 15447-15459.	10.3	125
258	Enhanced Efficiency and Stability of an Aqueous Lead-Nitrate-Based Organometallic Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2017, 9, 14023-14030.	8.0	30
259	Nonadiabatic charge dynamics in novel solar cell materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1305.	14.6	71
260	Revealing the stability and efficiency enhancement in mixed halide perovskites MAPb(I 1–x Cl x) 3 with ab initio calculations. Journal of Power Sources, 2017, 350, 65-72.	7.8	53

#	Article	IF	CITATIONS
261	Exploring the Photovoltaic Performance of All-Inorganic Ag ₂ PbI ₄ /PbI ₂ Blends. Journal of Physical Chemistry Letters, 2017, 8, 1651-1656.	4.6	25
262	Mechanical signatures of degradation of the photovoltaic perovskite CH3NH3PbI3 upon water vapor exposure. Applied Physics Letters, 2017, 110, .	3.3	38
263	Hybrid Organic-Inorganic Perovskite Memory with Long-Term Stability in Air. Scientific Reports, 2017, 7, 673.	3.3	82
264	Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. Journal of Materials Chemistry A, 2017, 5, 11483-11500.	10.3	319
265	Surface passivation of mixed-halide perovskite CsPb(Br _x I _{1a^x}) ₃ nanocrystals by selective etching for improved stability. Nanoscale, 2017, 9, 7391-7396.	5.6	73
266	Ligand Mediated Transformation of Cesium Lead Bromide Perovskite Nanocrystals to Lead Depleted Cs ₄ PbBr ₆ Nanocrystals. Journal of the American Chemical Society, 2017, 139, 5309-5312.	13.7	389
267	Transition metal oxides as hole-transporting materials in organic semiconductor and hybrid perovskite based solar cells. Science China Chemistry, 2017, 60, 472-489.	8.2	52
268	TiO 2 colloid-based compact layers for hybrid lead halide perovskite solar cells. Applied Materials Today, 2017, 7, 112-119.	4.3	24
269	3D In Situ ToFâ€6IMS Imaging of Perovskite Films under Controlled Humidity Environmental Conditions. Advanced Materials Interfaces, 2017, 4, 1600673.	3.7	32
270	Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules. Journal Physics D: Applied Physics, 2017, 50, 033001.	2.8	42
271	Hybrid Perovskite Photovoltaic Devices: Properties, Architecture, and Fabrication Methods. Energy Technology, 2017, 5, 373-401.	3.8	26
272	Highly Efficient All-Inorganic Planar Heterojunction Perovskite Solar Cells Produced by Thermal Coevaporation of CsI and PbI ₂ . Journal of Physical Chemistry Letters, 2017, 8, 67-72.	4.6	269
273	Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 2066-2072.	10.3	198
274	A TiO ₂ embedded structure for perovskite solar cells with anomalous grain growth and effective electron extraction. Journal of Materials Chemistry A, 2017, 5, 1406-1414.	10.3	59
275	Multinuclear Magnetic Resonance Tracking of Hydro, Thermal, and Hydrothermal Decomposition of CH ₃ NH ₃ Pbl ₃ . Journal of Physical Chemistry C, 2017, 121, 1013-1024.	3.1	77
276	Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy and Environmental Science, 2017, 10, 516-522.	30.8	720
277	Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nature Communications, 2017, 8, 1138.	12.8	374
278	Searching of new, cheap, air- and thermally stable hole transporting materials for perovskite solar cells. Opto-electronics Review, 2017, 25, 274-284.	2.4	22

#	Article	IF	CITATIONS
279	Nanorod Suprastructures from a Ternary Graphene Oxide–Polymer–CsPbX ₃ Perovskite Nanocrystal Composite That Display High Environmental Stability. Nano Letters, 2017, 17, 6759-6765.	9.1	118
280	Higher efficiency perovskite solar cells using additives of Lil, LiTFSI and BMImI in the PbI ₂ precursor. Sustainable Energy and Fuels, 2017, 1, 2162-2171.	4.9	53
281	Solvent-mediated purification of hexa-molybdenum cluster halide, Cs ₂ [Mo ₆ Cl ₁₄] for enhanced optical properties. CrystEngComm, 2017, 19, 6028-6038.	2.6	8
282	Improving Efficiency and Stability of Perovskite Solar Cells by Modifying Mesoporous TiO ₂ –Perovskite Interfaces with Both Aminocaproic and Caproic acids. Advanced Materials Interfaces, 2017, 4, 1700897.	3.7	41
283	High-Performance Flexible Perovskite Solar Cells on Ultrathin Glass: Implications of the TCO. Journal of Physical Chemistry Letters, 2017, 8, 4960-4966.	4.6	111
284	Panchromatic thin perovskite solar cells with broadband plasmonic absorption enhancement and efficient light scattering management by Au@Ag core-shell nanocuboids. Nano Energy, 2017, 41, 654-664.	16.0	68
285	Development of Dopant-Free Donor–Acceptor-type Hole Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 39511-39518.	8.0	42
286	Effects of water on the forward and backward conversions of lead(<scp>ii</scp>) iodide to methylammonium lead perovskite. Journal of Materials Chemistry A, 2017, 5, 23815-23821.	10.3	15
287	Regulated Film Quality with Methylammonium Bromide Addition in a Two‣tep Sequential Deposition to Improve the Performance of Perovskite Solar Cells. Energy Technology, 2017, 5, 1873-1879.	3.8	5
288	Heat- and Gas-Induced Transformation in CH ₃ NH ₃ Pbl ₃ Perovskites and Its Effect on the Efficiency of Solar Cells. Chemistry of Materials, 2017, 29, 8478-8485.	6.7	50
289	Bismuth Incorporation Stabilized α-CsPbI ₃ for Fully Inorganic Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2219-2227.	17.4	468
290	Enhanced efficiency and stability of inverted perovskite solar cells by interfacial engineering with alkyl bisphosphonic molecules. RSC Advances, 2017, 7, 42105-42112.	3.6	13
291	Effects of TiCl ₄ treatment on the structural and electrochemical properties of a porous TiO ₂ layer in CH ₃ NH ₃ Pbl ₃ perovskite solar cells. Physical Chemistry Chemical Physics, 2017, 19, 26898-26905.	2.8	20
292	CH ₃ NH ₃ Br Additive for Enhanced Photovoltaic Performance and Air Stability of Planar Perovskite Solar Cells prepared by Twoâ€Step Dipping Method. Energy Technology, 2017, 5, 1887-1894.	3.8	18
293	Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction. ACS Applied Materials & Interfaces, 2017, 9, 35018-35029.	8.0	62
294	Highly Efficient and Stable Planar Perovskite Solar Cells With Large cale Manufacture of Eâ€Beam Evaporated SnO ₂ Toward Commercialization. Solar Rrl, 2017, 1, 1700118.	5.8	75
295	Stability Issues of Inorganic/Organic Hybrid Lead Perovskite Solar Cells. Series on Chemistry, Energy and the Environment, 2017, , 147-178.	0.3	1
296	Impact of H ₂ O on organic–inorganic hybrid perovskite solar cells. Energy and Environmental Science, 2017, 10, 2284-2311.	30.8	345

#	Article	IF	CITATIONS
297	Slow Electron–Hole Recombination in Lead Iodide Perovskites Does Not Require a Molecular Dipole. ACS Energy Letters, 2017, 2, 2239-2244.	17.4	93
298	Effect of Formamidinium/Cesium Substitution and PbI ₂ on the Longâ€Term Stability of Tripleâ€Cation Perovskites. ChemSusChem, 2017, 10, 3804-3809.	6.8	28
299	Minute-Scale Degradation and Shift of Valence-Band Maxima of (CH ₃ NH ₃)SnI ₃ and HC(NH ₂) ₂ SnI ₃ Perovskites upon Air Exposure. Journal of Physical Chemistry C, 2017, 121, 19650-19656.	3.1	44
300	Engineered Directional Charge Flow in Mixed Two-Dimensional Perovskites Enabled by Facile Cation-Exchange. Journal of Physical Chemistry C, 2017, 121, 21281-21289.	3.1	38
301	Investigation of Thermally Induced Degradation in CH3NH3PbI3 Perovskite Solar Cells using In-situ Synchrotron Radiation Analysis. Scientific Reports, 2017, 7, 4645.	3.3	177
302	Trapping charges at grain boundaries and degradation of CH ₃ NH ₃ Pb(I _{1â~'<i>x</i>} Br <i>_x</i>) ₃ perovskite solar cells. Nanotechnology, 2017, 28, 315402.	2.6	23
303	In situ investigation of halide incorporation into perovskite solar cells. MRS Communications, 2017, 7, 575-582.	1.8	7
304	Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films. Advanced Energy Materials, 2017, 7, 1700977.	19.5	183
305	120 mm single-crystalline perovskite and wafers: towards viable applications. Science China Chemistry, 2017, 60, 1367-1376.	8.2	107
306	Enhanced planar heterojunction perovskite solar cell performance and stability using PDDA polyelectrolyte capping agent. Solar Energy Materials and Solar Cells, 2017, 172, 133-139.	6.2	22
307	Collective Molecular Mechanisms in the CH ₃ NH ₃ Pbl ₃ Dissolution by Liquid Water. ACS Nano, 2017, 11, 9183-9190.	14.6	73
308	Highly Stable Cesium Lead Halide Perovskite Nanocrystals through in Situ Lead Halide Inorganic Passivation. Chemistry of Materials, 2017, 29, 7088-7092.	6.7	292
309	Efficient and Stable Perovskite Solar Cells Using Molybdenum Tris(dithiolene)s as p-Dopants for Spiro-OMeTAD. ACS Energy Letters, 2017, 2, 2044-2050.	17.4	79
310	High Stability Bilayered Perovskites through Crystallization Driven Self-Assembly. ACS Applied Materials & Interfaces, 2017, 9, 28743-28749.	8.0	20
311	Enhanced efficiency and stability of carbon based perovskite solar cells using terephthalic acid additive. Electrochimica Acta, 2017, 258, 1262-1272.	5.2	30
312	Insights into the increased degradation rate of CH ₃ NH ₃ PbI ₃ solar cells in combined water and O ₂ environments. Journal of Materials Chemistry A, 2017, 5, 25469-25475.	10.3	52
313	Spatial Inhomogeneity of Methylammonium Lead-Mixed Halide Perovskite Examined by Space- and Time-Resolved Microwave Conductivity. ACS Omega, 2017, 2, 8020-8026.	3.5	4
314	Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Science Advances, 2017, 3, eaao5616.	10.3	635

C1-		. D-	DODT
UI.	αποι	N KE	PORT

#	Article	IF	CITATIONS
315	Millisecond-pulsed photonically-annealed tin oxide electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 24110-24115.	10.3	41
316	Enhancing moisture-tolerance and photovoltaic performances of FAPbI ₃ by bismuth incorporation. Journal of Materials Chemistry A, 2017, 5, 25258-25265.	10.3	50
317	Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates. Joule, 2017, 1, 548-562.	24.0	199
318	Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700264.	19.5	295
319	Accelerated Lifetime Testing of Organic–Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene. ACS Applied Materials & Interfaces, 2017, 9, 25073-25081.	8.0	165
320	Mechanisms of Lithium Intercalation and Conversion Processes in Organic–Inorganic Halide Perovskites. ACS Energy Letters, 2017, 2, 1818-1824.	17.4	111
321	Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging. Journal of Physical Chemistry Letters, 2017, 8, 3299-3305.	4.6	20
322	Polar rotor scattering as atomic-level origin of low mobility and thermal conductivity of perovskite CH3NH3PbI3. Nature Communications, 2017, 8, 16086.	12.8	95
323	Conducting Polymers as Anode Buffer Materials in Organic and Perovskite Optoelectronics. Advanced Optical Materials, 2017, 5, 1600512.	7.3	63
324	Investigation on the high pressure annealing induced re-crystallization mechanism of CH3NH3PbI3 film. Journal of Alloys and Compounds, 2017, 694, 1365-1370.	5.5	7
325	Catalytic role of H ₂ O in degradation of inorganic-organic perovskite (CH ₃) Tj ETQqO O	0 ₄ gBT /O	verlock 10 T
326	Transamidation of dimethylformamide during alkylammonium lead triiodide film formation for perovskite solar cells. Journal of Materials Research, 2017, 32, 45-55.	2.6	37
327	Decomposition and Cell Failure Mechanisms in Lead Halide Perovskite Solar Cells. Inorganic Chemistry, 2017, 56, 92-101.	4.0	117
328	Aquointermediate Assisted Highly Orientated Perovskite Thin Films toward Thermally Stable and Efficient Solar Cells. Advanced Energy Materials, 2017, 7, 1601433.	19.5	34
329	Beyond methylammonium lead iodide: prospects for the emergent field of ns ² containing solar absorbers. Chemical Communications, 2017, 53, 20-44.	4.1	357
330	Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide. Nature Communications, 2017, 8, 1722.	12.8	107
332	Lewis Base Passivation of Hybrid Halide Perovskites Slows Electron–Hole Recombination: Time-Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2018, 9, 1164-1171.	4.6	90
333	Tin oxide as an emerging electron transport medium in perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 179, 102-117.	6.2	43

#	Article	IF	CITATIONS
334	Self-powered pressure and light sensitive bimodal sensors based on long-term stable piezo-photoelectric MAPbI ₃ thin films. Journal of Materials Chemistry C, 2018, 6, 2786-2792.	5.5	27
335	Progress in fullerene-based hybrid perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 2635-2651.	5.5	114
336	Concurrent Ultrafast Electron- and Hole-Transfer Dynamics in CsPbBr ₃ Perovskite and Quantum Dots. ACS Omega, 2018, 3, 2706-2714.	3.5	32
337	Recent Progress on the Longâ€Term Stability of Perovskite Solar Cells. Advanced Science, 2018, 5, 1700387.	11.2	348
338	Fast Postmoisture Treatment of Luminescent Perovskite Films for Efficient Lightâ€Emitting Diodes. Small, 2018, 14, e1703410.	10.0	35
339	Growth of Compact CH ₃ NH ₃ Pbl ₃ Thin Films Governed by the Crystallization in Pbl ₂ Matrix for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 8649-8658.	8.0	17
340	Mixed halide hybrid perovskites: a paradigm shift in photovoltaics. Journal of Materials Chemistry A, 2018, 6, 5507-5537.	10.3	104
341	Composite Nature of Layered Hybrid Perovskites: Assessment on Quantum and Dielectric Confinements and Band Alignment. ACS Nano, 2018, 12, 3321-3332.	14.6	146
342	Enhanced performance <i>via</i> partial lead replacement with calcium for a CsPbI ₃ perovskite solar cell exceeding 13% power conversion efficiency. Journal of Materials Chemistry A, 2018, 6, 5580-5586.	10.3	202
343	Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH ₃ NH ₃ Pbl ₃ [*] . Chinese Physics Letters, 2018, 35, 036104.	3.3	154
344	Evolution of organometal halide solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 74-107.	11.6	32
345	Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy. Nano Energy, 2018, 47, 243-256.	16.0	67
346	Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chemical Society Reviews, 2018, 47, 4581-4610.	38.1	455
347	Temperature Variation-Induced Performance Decline of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 16390-16399.	8.0	89
348	In Situ Monitoring the Uptake of Moisture into Hybrid Perovskite Thin Films. Journal of Physical Chemistry Letters, 2018, 9, 2015-2021.	4.6	58
349	Photovoltaic performances of mono- and mixed-halide structures for perovskite solar cell: A review. Renewable and Sustainable Energy Reviews, 2018, 90, 248-274.	16.4	50
350	Tunable Crystallization and Nucleation of Planar CH ₃ NH ₃ PbI ₃ through Solvent-Modified Interdiffusion. ACS Applied Materials & Interfaces, 2018, 10, 14673-14683.	8.0	14
351	Critical Role of Water in Defect Aggregation and Chemical Degradation of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 2196-2201.	4.6	104

#	Article	IF	CITATIONS
352	Waterâ€Assisted Size and Shape Control of CsPbBr ₃ Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 3337-3342.	13.8	223
353	Waterâ€Assisted Size and Shape Control of CsPbBr ₃ Perovskite Nanocrystals. Angewandte Chemie, 2018, 130, 3395-3400.	2.0	37
354	Aromatic Alkylammonium Spacer Cations for Efficient Twoâ€Dimensional Perovskite Solar Cells with Enhanced Moisture and Thermal Stability. Solar Rrl, 2018, 2, 1700215.	5.8	55
355	Suppressed Ion Migration along the In-Plane Direction in Layered Perovskites. ACS Energy Letters, 2018, 3, 684-688.	17.4	240
356	Dark electrical bias effects on moisture-induced degradation in inverted lead halide perovskite solar cells measured by using advanced chemical probes. Sustainable Energy and Fuels, 2018, 2, 905-914.	4.9	32
357	Aziridinium Lead Iodide: A Stable, Low-Band-Gap Hybrid Halide Perovskite for Photovoltaics. Journal of Physical Chemistry Letters, 2018, 9, 874-880.	4.6	27
358	Investigating the Role of the Organic Cation in Formamidinium Lead Iodide Perovskite Using Ultrafast Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 895-901.	4.6	72
359	Sequentially Vapor-Grown Hybrid Perovskite for Planar Heterojunction Solar Cells. Nanoscale Research Letters, 2018, 13, 9.	5.7	18
360	In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature. Japanese Journal of Applied Physics, 2018, 57, 028001.	1.5	8
361	Humidityâ€Induced Degradation via Grain Boundaries of HC(NH ₂) ₂ PbI ₃ Planar Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1705363.	14.9	260
362	Stability and Performance of CsPbI ₂ Br Thin Films and Solar Cell Devices. ACS Applied Materials & Interfaces, 2018, 10, 3750-3760.	8.0	123
363	First-principles study of Cs/Rb co-doped FAPbI ₃ stability and degradation in the presence of water and oxygen. Materials Research Express, 2018, 5, 026203.	1.6	4
364	First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Physical Chemistry Chemical Physics, 2018, 20, 6800-6804.	2.8	170
365	Allâ€Inorganic CsPbI ₃ Perovskite Phaseâ€Stabilized by Poly(ethylene oxide) for Redâ€Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1706401.	14.9	156
366	Thermochromic halide perovskite solar cells. Nature Materials, 2018, 17, 261-267.	27.5	630
367	Criticality of Symmetry in Rational Design of Chalcogenide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 248-257.	4.6	43
368	Doping of [In ₂ (phen) ₃ Cl ₆]·CH ₃ CN·2H ₂ O Indiumâ€Based Metal–Organic Framework into Hole Transport Layer for Enhancing Perovskite Solar Cell Efficiencies. Advanced Energy Materials, 2018, 8, 1702052.	19.5	55
369	Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nature Energy, 2018, 3, 61-67.	39.5	544

#	Article	IF	CITATIONS
370	Lowâ€Dimensional Perovskites: From Synthesis to Stability in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702073.	19.5	74
371	Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces. Journal of Materials Chemistry A, 2018, 6, 1423-1442.	10.3	26
372	Light-Induced Anion Phase Segregation in Mixed Halide Perovskites. ACS Energy Letters, 2018, 3, 204-213.	17.4	444
373	Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nature Energy, 2018, 3, 68-74.	39.5	722
374	Perovskite-quantum dots interface: Deciphering its ultrafast charge carrier dynamics. Nano Energy, 2018, 49, 471-480.	16.0	23
375	Composition-Dependent Degradation of Hybrid and Inorganic Lead Perovskites in Ambient Conditions. Topics in Catalysis, 2018, 61, 1201-1208.	2.8	21
376	Light-current-induced acceleration of degradation of methylammonium lead iodide perovskite solar cells. Journal of Power Sources, 2018, 384, 303-311.	7.8	9
377	Highly Efficient and Stable Solar Cells with 2D MA ₃ Bi ₂ I ₉ /3D MAPbl ₃ Heterostructured Perovskites. Advanced Energy Materials, 2018, 8, 1703620.	19.5	94
378	Revealing the Selfâ€Ðegradation Mechanisms in Methylammonium Lead Iodide Perovskites in Dark and Vacuum. ChemPhysChem, 2018, 19, 1507-1513.	2.1	56
379	Enhancing Moisture and Water Resistance in Perovskite Solar Cells by Encapsulation with Ultrathin Plasma Polymers. ACS Applied Materials & Interfaces, 2018, 10, 11587-11594.	8.0	125
380	Vapor assisted deposition of alkaline doped perovskites: Pure phase formation of CsxMA1â^'xPbI3. Electrochimica Acta, 2018, 259, 485-491.	5.2	16
381	Extended investigation of sol aging effect on TiO2 electron transporting layer and performances of perovskite solar cells. Materials Research Bulletin, 2018, 99, 136-143.	5.2	13
382	Improving the moisture stability of perovskite solar cells by using PMMA/P3HT based hole-transport layers. Materials Chemistry Frontiers, 2018, 2, 81-89.	5.9	43
383	Recent theoretical progress in the development of perovskite photovoltaic materials. Journal of Energy Chemistry, 2018, 27, 637-649.	12.9	48
384	Multi-functional organic molecules for surface passivation of perovskite. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 42-47.	3.9	12
385	Novel method for dry etching CH3NH3PbI3 perovskite films utilizing atmospheric-hydrogen-plasma. Materials Science in Semiconductor Processing, 2018, 75, 1-9.	4.0	9
386	Metal ions diffusion at heterojunction chromium Oxide/CH 3 NH 3 PbI 3 interface on the stability of perovskite solar cells. Surfaces and Interfaces, 2018, 10, 93-99.	3.0	31
387	Three in situ-synthesized novel inorganic–organic hybrid materials based on metal (M = Bi, Pb) iodide and organoamine using one-pot reactions: structures, band gaps and optoelectronic properties. New Journal of Chemistry, 2018, 42, 699-707.	2.8	7

#	Article	IF	CITATIONS
388	Influence of water intercalation and hydration on chemical decomposition and ion transport in methylammonium lead halide perovskites. Journal of Materials Chemistry A, 2018, 6, 1067-1074.	10.3	94
389	Interactions between molecules and perovskites in halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 175, 1-19.	6.2	66
390	Flexible Perovskite Solar Cells onto Plastic Substrate Exceeding 13% Efficiency Owing to the Optimization of CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} Film via H ₂ O Additive. ACS Sustainable Chemistry and Engineering, 2018, 6, 1083-1090.	6.7	21
391	Influence of Radiation on the Properties and the Stability of Hybrid Perovskites. Advanced Materials, 2018, 30, 1702905.	21.0	162
392	The role of PbI ₂ in CH ₃ NH ₃ PbI ₃ perovskite stability, solar cell parameters and device degradation. Physical Chemistry Chemical Physics, 2018, 20, 605-614.	2.8	135
393	General Nondestructive Passivation by 4â€Fluoroaniline for Perovskite Solar Cells with Improved Performance and Stability. Small, 2018, 14, e1803350.	10.0	82
394	First-Principles Insight into the Degradation Mechanism of CH ₃ NH ₃ PbI ₃ Perovskite: Light-Induced Defect Formation and Water Dissociation. Journal of Physical Chemistry C, 2018, 122, 27340-27349.	3.1	28
395	Improving Charge Carrier Delocalization in Perovskite Quantum Dots by Surface Passivation with Conductive Aromatic Ligands. ACS Energy Letters, 2018, 3, 2931-2939.	17.4	116
396	Sprayâ€Assisted Coil–Globule Transition for Scalable Preparation of Waterâ€Resistant CsPbBr ₃ @PMMA Perovskite Nanospheres with Application in Live Cell Imaging. Small, 2018, 14, e1803156.	10.0	85
397	Pressure effects on the inductive loop, mixed conduction, and photoresponsivity in formamidinium lead bromide perovskite. Applied Physics Letters, 2018, 113, .	3.3	13
398	Single crystal hybrid perovskite field-effect transistors. Nature Communications, 2018, 9, 5354.	12.8	255
400	Co-Sublimated Polycrystalline Cd <inf>1-x</inf> Zn <inf>x</inf> Te Films for Multi-junction Solar Cells. , 2018, , .		0
401	Improving the stability of methylammonium lead iodide perovskite solar cells by cesium doping. Thin Solid Films, 2018, 667, 40-47.	1.8	24
402	The Impact of Nano―and Microstructure on the Stability of Perovskite Solar Cells. Small, 2018, 14, e1802573.	10.0	42
403	Dye Sensitization of Titania Compact Layer for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 6161-6171.	5.1	41
404	Interfacial Charge Transfer between Excited CsPbBr ₃ Nanocrystals and TiO ₂ : Charge Injection versus Photodegradation. Journal of Physical Chemistry Letters, 2018, 9, 5962-5969.	4.6	47
405	Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics. Nano-Micro Letters, 2018, 10, 68.	27.0	50
406	High-performance mixed-dimensional perovskite solar cells with enhanced stability against humidity, heat and UV light. Journal of Materials Chemistry A, 2018, 6, 20233-20241.	10.3	21

#	Article	IF	CITATIONS
407	Recovering MAPbI ₃ -Based Perovskite Films From Water-Caused Permanent Degradations by Dipping in MAI Solution. IEEE Journal of Photovoltaics, 2018, 8, 1692-1700.	2.5	2
408	Emissions at Perovskite Quantum Dot/Film Interface with Halide Anion Exchange. ACS Photonics, 2018, 5, 4504-4512.	6.6	17

Ultrafast Interfacial Charge Transfer of Cesium Lead Halide Perovskite Films CsPbX < sub > 3 < /sub > (X =) Tj ETQq0 0 0 grgBT / Overlock 10 T = 24

410	Cu(II)-Doped Cs ₂ SbAgCl ₆ Double Perovskite: A Lead-Free, Low-Bandgap Material. Chemistry of Materials, 2018, 30, 8280-8290.	6.7	156
411	Efficient composition tuning via cation exchange and improved reproducibility of photovoltaic performance in FA MA1-Pbl3 planar heterojunction solar cells fabricated by a two-step dynamic spin-coating process. Nano Energy, 2018, 54, 251-263.	16.0	32
412	Impact of Moisture on Photoexcited Charge Carrier Dynamics in Methylammonium Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 6312-6320.	4.6	56
413	Effect of Water, Oxygen, and Air Exposure on CH ₃ NH ₃ PbI _{3–} <i>_x</i> Cl <i>_x</i> Perovskite Surface Electronic Properties. Advanced Electronic Materials, 2018, 4, 1800307.	5.1	36
414	Chemical interaction dictated energy level alignment at the N,N′-dipentyl-3,4,9,10-perylenedicarboximide/CH3NH3Pbl3 interface. Applied Physics Letters, 2018, 113, .	3.3	11
415	Rich Chemistry in Inorganic Halide Perovskite Nanostructures. Advanced Materials, 2018, 30, e1802856.	21.0	106
416	Longâ€Term Stable and Tunable Highâ€Performance Photodetectors Based on Perovskite Microwires. Advanced Optical Materials, 2018, 6, 1800469.	7.3	19
417	Metal halide perovskites: stability and sensing-ability. Journal of Materials Chemistry C, 2018, 6, 10121-10137.	5.5	131
418	A highly hydrophobic fluorographene-based system as an interlayer for electron transport in organic–inorganic perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 18635-18640.	10.3	20
419	Effect of Light Illumination on Mixed Halide Lead Perovskites: Reversible or Irreversible Transformation. ACS Applied Energy Materials, 2018, 1, 2859-2865.	5.1	27
420	<i>In situ</i> XPS study of the surface chemistry of MAPI solar cells under operating conditions in vacuum. Physical Chemistry Chemical Physics, 2018, 20, 17180-17187.	2.8	59
421	Rapid route to efficient, scalable, and robust perovskite photovoltaics in air. Energy and Environmental Science, 2018, 11, 2102-2113.	30.8	43
422	Elucidating Surface and Bulk Emission in 3D Hybrid Organic–Inorganic Lead Bromide Perovskites. Advanced Optical Materials, 2018, 6, 1800470.	7.3	28
423	A 1300 mm ² Ultrahighâ€Performance Digital Imaging Assembly using Highâ€Quality Perovskite Single Crystals. Advanced Materials, 2018, 30, e1707314.	21.0	246
424	Improving the stability and performance of perovskite solar cells <i>via</i> off-the-shelf post-device ligand treatment. Energy and Environmental Science, 2018, 11, 2253-2262.	30.8	181

#	Article	IF	CITATIONS
425	Investigation on Enhanced Moisture Resistance of Two-Dimensional Layered Hybrid Organic–Inorganic Perovskites (C ₄ H ₉ NH ₃) ₂ PbI ₄ . Journal of Physical Chemistry C, 2018, 122, 11862-11869.	3.1	13
426	<i>In situ</i> identification of cation-exchange-induced reversible transformations of 3D and 2D perovskites. Chemical Communications, 2018, 54, 5879-5882.	4.1	12
427	Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy and Environmental Science, 2018, 11, 2609-2619.	30.8	276
428	Publications of Prashant V. Kamat. Journal of Physical Chemistry C, 2018, 122, 13214-13232.	3.1	2
429	Organometal Lead Halide Perovskite. , 2018, , 25-42.		7
430	Reset Voltage-Dependent Multilevel Resistive Switching Behavior in CsPb _{1–<i>x</i>} Bi <i>_x</i> ₃ Perovskite-Based Memory Device. ACS Applied Materials & Interfaces, 2018, 10, 24620-24626.	8.0	78
431	Less-Lead Control toward Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 24242-24248.	8.0	21
432	Stability of Perovskites at the Surface Analytic Level. Journal of Physical Chemistry Letters, 2018, 9, 4657-4666.	4.6	17
433	Improved air-stability of an organic–inorganic perovskite with anhydrously transferred graphene. Journal of Materials Chemistry C, 2018, 6, 8663-8669.	5.5	9
434	Compact TiO ₂ /Anatase TiO ₂ Single-Crystalline Nanoparticle Electron-Transport Bilayer for Efficient Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 12070-12078.	6.7	39
435	Enhancing the stability of CsPbBr3 nanocrystals by sequential surface adsorption of S2â^ and metal ions. Chemical Communications, 2018, 54, 9345-9348.	4.1	33
436	First-Principles Investigation on the Electronic and Mechanical Properties of Cs-Doped CH3NH3PbI3. Materials, 2018, 11, 1141.	2.9	18
437	Progress in tailoring perovskite based solar cells through compositional engineering: Materials properties, photovoltaic performance and critical issues. Materials Today Energy, 2018, 9, 440-486.	4.7	58
438	Anomalous effect of UV light on the humidity dependence of photocurrent in perovskite solar cells. Nanotechnology, 2018, 29, 405701.	2.6	3
439	Emerging Characterizing Techniques in the Fine Structure Observation of Metal Halide Perovskite Crystal. Crystals, 2018, 8, 232.	2.2	8
440	Towards large-area perovskite solar cells: the influence of compact and mesoporous TiO ₂ electron transport layers. Materials Research Express, 2018, 5, 085506.	1.6	14
441	Enhanced stability and optoelectronic properties of MAPbI ₃ films by a cationic surface-active agent for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 10825-10834.	10.3	81
442	Evolution of Photoluminescence, Raman, and Structure of CH3NH3PbI3 Perovskite Microwires Under Humidity Exposure. Nanoscale Research Letters, 2018, 13, 79.	5.7	37

#	Article	IF	CITATIONS
443	Ambient-air-stable inorganic Cs ₂ Snl ₆ double perovskite thin films <i>via</i> aerosol-assisted chemical vapour deposition. Journal of Materials Chemistry A, 2018, 6, 11205-11214.	10.3	85
444	Impact of cesium on the phase and device stability of triple cation Pb–Sn double halide perovskite films and solar cells. Journal of Materials Chemistry A, 2018, 6, 17426-17436.	10.3	33
445	Solution-processed resistive switching memory devices based on hybrid organic–inorganic materials and composites. Physical Chemistry Chemical Physics, 2018, 20, 23837-23846.	2.8	68
446	Defects engineering for high-performance perovskite solar cells. Npj Flexible Electronics, 2018, 2, .	10.7	334
447	Achieving Fully Blade-Coated Ambient-Processed Perovskite Solar Cells by Controlling the Blade-Coater Temperature. IEEE Journal of Photovoltaics, 2018, 8, 1662-1669.	2.5	14
448	Elucidating the Failure Mechanisms of Perovskite Solar Cells in Humid Environments Using In Situ Grazing-Incidence Wide-Angle X-ray Scattering. ACS Energy Letters, 2018, 3, 2127-2133.	17.4	32
449	Low-Temperature Plasma-Assisted Atomic-Layer-Deposited SnO ₂ as an Electron Transport Layer in Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 30367-30378.	8.0	88
450	High-performance metal oxide-free inverted perovskite solar cells using poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) as the hole transport layer. Journal of Materials Chemistry C, 2018, 6, 6975-6981.	5.5	51
451	Enhancing Organolead Halide Perovskite Solar Cells Performance Through Interfacial Engineering Using Agâ€doped TiO ₂ Hole Blocking Layer. Solar Rrl, 2018, 2, 1800072.	5.8	22
452	Influence of Polymer Additives on the Efficiency and Stability of Ambientâ€Air Solutionâ€Processed Planar Perovskite Solar Cells. Energy Technology, 2018, 6, 2380-2386.	3.8	42
453	Humidity-Induced Photoluminescence Hysteresis in Variable Cs/Br Ratio Hybrid Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 3463-3469.	4.6	50
454	Photophysical Properties and Improved Stability of Organic–Inorganic Perovskite by Surface Passivation. Journal of Physical Chemistry C, 2018, 122, 15799-15818.	3.1	70
455	Triazine-Substituted Zinc Porphyrin as an Electron Transport Interfacial Material for Efficiency Enhancement and Degradation Retardation in Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 3216-3229.	5.1	33
456	4-tert-Butylpyridine Free Hole Transport Materials for Efficient Perovskite Solar Cells: A New Strategy to Enhance the Environmental and Thermal Stability. ACS Energy Letters, 2018, 3, 1677-1682.	17.4	92
457	Enhanced moisture stability of metal halide perovskite solar cells based on sulfur–oleylamine surface modification. Nanoscale Horizons, 2019, 4, 208-213.	8.0	45
458	Improving the stability of metal halide perovskite solar cells from material to structure. Journal of Energy Chemistry, 2019, 33, 90-99.	12.9	33
459	Efficient and stable CsPbI ₃ perovskite quantum dots enabled by <i>in situ</i> ytterbium doping for photovoltaic applications. Journal of Materials Chemistry A, 2019, 7, 20936-20944.	10.3	121
460	Stable Lead-Free (CH ₃ NH ₃) ₃ Bi ₂ I ₉ Perovskite for Photocatalytic Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2019, 7, 15080-15085.	6.7	93

#	Article	IF	CITATIONS
461	Quantifying Performance of Permeation Barrier—Encapsulation Systems for Flexible and Glassâ€Based Electronics and Their Application to Perovskite Solar Cells. Advanced Electronic Materials, 2019, 5, 1800978.	5.1	42
462	Highly Efficient and Stable Planar Perovskite Solar Cells with Modulated Diffusion Passivation Toward High Power Conversion Efficiency and Ultrahigh Fill Factor. Solar Rrl, 2019, 3, 1900293.	5.8	87
463	Atomic-scale view of stability and degradation of single-crystal MAPbBr ₃ surfaces. Journal of Materials Chemistry A, 2019, 7, 20760-20766.	10.3	46
464	Variation of Interfacial Interactions in PC ₆₁ BM-like Electron-Transporting Compounds for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 34408-34415.	8.0	29
465	Recycling of Perovskite Films: Route toward Cost-Efficient and Environment-Friendly Perovskite Technology. ACS Omega, 2019, 4, 11880-11887.	3.5	54
466	Probing the energy transfer process by controlling the morphology of CH3NH3PbBr3 nanocrystals with rhodamine B dye. Journal of Luminescence, 2019, 215, 116609.	3.1	8
467	Tunable thiocyanate-doped perovskite microstructure via water-ethanol additives for stable solar cells at ambient conditions. Solar Energy Materials and Solar Cells, 2019, 200, 110029.	6.2	11
468	Electromodulation and Transient Absorption Spectroscopy Suggest Conduction Band Electron Lifetime, Electron Trapping Parameters, and CH ₃ NH ₃ Pbl ₃ Solar Cell Fill Factor Are Correlated. Journal of Physical Chemistry C, 2019, 123, 18160-18170.	3.1	9
469	Addition of Monovalent Silver Cations to CH ₃ NH ₃ PbBr ₃ Produces Crystallographically Oriented Perovskite Thin Films. ACS Applied Energy Materials, 2019, 2, 6087-6096.	5.1	10
470	Doping and Anisotropy–Dependent Electronic Transport in Chalcogenide Perovskite CaZrSe ₃ for High Thermoelectric Efficiency. Advanced Theory and Simulations, 2019, 2, 1900060.	2.8	14
471	Synthetic Variation and Structural Trends in Layered Two-Dimensional Alkylammonium Lead Halide Perovskites. Chemistry of Materials, 2019, 31, 5592-5607.	6.7	80
472	Giant Humidity Effect on Hybrid Halide Perovskite Microstripes: Reversibility and Sensing Mechanism. ACS Applied Materials & Interfaces, 2019, 11, 29821-29829.	8.0	71
473	Thermal unequilibrium of strained black CsPbI ₃ thin films. Science, 2019, 365, 679-684.	12.6	444
474	Additive Engineering to Grow Micronâ€5ized Grains for Stable High Efficiency Perovskite Solar Cells. Advanced Science, 2019, 6, 1901241.	11.2	93
475	Ascorbic Acidâ€Assisted Stabilization of αâ€Phase CsPbl ₃ Perovskite for Efficient and Stable Photovoltaic Devices. Solar Rrl, 2019, 3, 1900287.	5.8	25
476	Ultrafast carrier dynamics in high-performance α-bis-PCBM doped organic-inorganic hybrid perovskite solar cell. Organic Electronics, 2019, 75, 105384.	2.6	4
477	Effect of interfacial recombination, bulk recombination and carrier mobility on the <i>J</i> – <i>V</i> hysteresis behaviors of perovskite solar cells: a drift-diffusion simulation study. Physical Chemistry Chemical Physics, 2019, 21, 17836-17845.	2.8	37
478	Impact of charge transport layers on the photochemical stability of MAPbI ₃ in thin films and perovskite solar cells. Sustainable Energy and Fuels, 2019, 3, 2705-2716.	4.9	22

#	Article	IF	CITATIONS
479	Thermochemical Stability of Hybrid Halide Perovskites. ACS Energy Letters, 2019, 4, 2859-2870.	17.4	91
480	Application of Perovskiteâ€Structured Materials in Fieldâ€Effect Transistors. Advanced Electronic Materials, 2019, 5, 1900444.	5.1	43
481	Biomimetic Synchronized Motion of Two Interacting Macrocycles in [3]Rotaxaneâ€Based Molecular Shuttles. Angewandte Chemie, 2019, 131, 15280-15285.	2.0	16
482	Remarkable dielectric breakdown strength enhancement of a PVDF terpolymer using a 2D hybrid organic inorganic perovskite as a functional additive. Journal of Materials Chemistry C, 2019, 7, 13390-13395.	5.5	3
483	Reversing Organic–Inorganic Hybrid Perovskite Degradation in Water via pH and Hydrogen Bonds. Journal of Physical Chemistry Letters, 2019, 10, 7245-7250.	4.6	34
484	Lead Halide Residue as a Source of Light-Induced Reversible Defects in Hybrid Perovskite Layers and Solar Cells. ACS Energy Letters, 2019, 4, 3011-3017.	17.4	57
485	Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules. ACS Applied Materials & amp; Interfaces, 2019, 11, 44233-44240.	8.0	68
486	Nanosecond, Time-Resolved Shift of the Photoluminescence Spectra of Organic, Lead-Halide Perovskites Reveals Structural Features Resulting from Excess Organic Ammonium Halide. Journal of Physical Chemistry C, 2019, 123, 29964-29971.	3.1	1
487	Probing the Degradation Chemistry and Enhanced Stability of 2D Organolead Halide Perovskites. Journal of the American Chemical Society, 2019, 141, 18170-18181.	13.7	50
488	Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature. Sensors, 2019, 19, 4563.	3.8	34
489	Thermally Stable Perovskite Solar Cells by Systematic Molecular Design of the Hole-Transport Layer. ACS Energy Letters, 2019, 4, 473-482.	17.4	66
490	The Role of Grain Boundaries in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901489.	19.5	202
491	Improved Moisture Stability of Perovskite Solar Cells Using N719 Dye Molecules. Solar Rrl, 2019, 3, 1900345.	5.8	30
492	Enhanced moisture stability of MAPbI3 perovskite solar cells through Barium doping. Solar Energy, 2019, 190, 396-404.	6.1	35
493	CsBr interface modification to improve the performance of perovskite solar cells prepared in ambient air. Solar Energy Materials and Solar Cells, 2019, 201, 110110.	6.2	23
494	Enhanced Switching Ratio and Long-Term Stability of Flexible RRAM by Anchoring Polyvinylammonium on Perovskite Grains. ACS Applied Materials & amp; Interfaces, 2019, 11, 35914-35923.	8.0	65
495	Compositional and Morphological Changes in Water-Induced Early-Stage Degradation in Lead Halide Perovskites. Coatings, 2019, 9, 535.	2.6	23
496	Long-term stable perovskite solar cells with room temperature processed metal oxide carrier transporters. Journal of Materials Chemistry A, 2019, 7, 21085-21095.	10.3	16

#	Article	IF	CITATIONS
497	Role of Ligand–Ligand Interactions in the Stabilization of Thin Layers of Tin Bromide Perovskite: An Ab Initio Study of the Atomic and Electronic Structure, and Optical Properties. Journal of Physical Chemistry C, 2019, 123, 25176-25184.	3.1	14
498	Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications. Journal of Materials Chemistry A, 2019, 7, 24661-24690.	10.3	27
499	Deconstruction-assisted perovskite formation for sequential solution processing of Cs0.15(MA0.7FA0.3)0.85PbI3 solar cells. Solar Energy Materials and Solar Cells, 2019, 203, 110200.	6.2	8
500	Boosting Photovoltaic Properties and Intrinsic Stability for MA-Based Perovskite Solar Cells by Incorporating 1,1,1-Trimethylhydrazinium Cation. ACS Applied Materials & Interfaces, 2019, 11, 38779-38788.	8.0	6
501	Design of High-Performance Mixed-Dimensional Perovskite by Incorporating Different Halogenated Cesium Sources. ACS Sustainable Chemistry and Engineering, 2019, 7, 17507-17514.	6.7	6
502	Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection. Journal of Materials Chemistry A, 2019, 7, 2275-2282.	10.3	105
503	Encapsulation of Organic and Perovskite Solar Cells: A Review. Coatings, 2019, 9, 65.	2.6	197
504	Emerging Perovskite Nanocrystals-Enhanced Solid-State Lighting and Liquid-Crystal Displays. Crystals, 2019, 9, 59.	2.2	51
505	Effect of Water on the Structural, Optical, and Hot-Carrier Cooling Properties of the Perovskite Material MASnI ₃ . Journal of Physical Chemistry C, 2019, 123, 4056-4063.	3.1	13
506	Hybrid Organic-Inorganic Perovskites as Promising Substrates for Pt Single-Atom Catalysts. Physical Review Letters, 2019, 122, 046101.	7.8	25
507	An inorganic hole-transport material of CuInSe2 for stable and efficient perovskite solar cells. Organic Electronics, 2019, 67, 168-174.	2.6	39
508	Development of wide bandgap perovskites for next-generation low-cost CdTe tandem solar cells. Chemical Engineering Science, 2019, 199, 388-397.	3.8	28
509	Insight into the reaction mechanism of water, oxygen and nitrogen molecules on a tin iodine perovskite surface. Journal of Materials Chemistry A, 2019, 7, 5779-5793.	10.3	40
510	Enhancement in lifespan of halide perovskite solar cells. Energy and Environmental Science, 2019, 12, 865-886.	30.8	143
511	Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability. Chemical Science, 2019, 10, 1904-1935.	7.4	279
512	(INVITED) Stability: A desiderated problem for the lead halide perovskites. Optical Materials: X, 2019, 1, 100023.	0.8	35
513	Epitaxial Stabilization of Tetragonal Cesium Tin Iodide. ACS Applied Materials & amp; Interfaces, 2019, 11, 32076-32083.	8.0	28
514	Role of Water in Suppressing Recombination Pathways in CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 25474-25482.	8.0	33

#	Article	IF	CITATIONS
515	Unraveling the Effect of Crystal Structure on Degradation of Methylammonium Lead Halide Perovskite. ACS Applied Materials & Interfaces, 2019, 11, 22228-22239.	8.0	23
516	Improving the Stability and Monodispersity of Layered Cesium Lead Iodide Perovskite Thin Films by Tuning Crystallization Dynamics. Chemistry of Materials, 2019, 31, 4990-4998.	6.7	19
517	Constructing moisture-stable hybrid lead iodine semiconductors based on hydrogen-bond-free and dual-iodine strategies. Journal of Materials Chemistry C, 2019, 7, 7700-7707.	5.5	11
518	Dual-sized TiO2 nanoparticles as scaffold layers in carbon-based mesoscopic perovskite solar cells with enhanced performance. Journal of Power Sources, 2019, 430, 12-19.	7.8	16
519	Heterogeneous Photon Recycling and Charge Diffusion Enhance Charge Transport in Quasi-2D Lead-Halide Perovskite Films. Nano Letters, 2019, 19, 3953-3960.	9.1	67
520	Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 1231-1240.	17.4	111
521	Degradation of CH ₃ NH ₃ PbI ₃ perovskite materials by localized charges and its polarity dependency. Journal of Materials Chemistry A, 2019, 7, 12075-12085.	10.3	23
522	An atomistic mechanism for the degradation of perovskite solar cells by trapped charge. Nanoscale, 2019, 11, 11369-11378.	5.6	45
523	Family of Highly Luminescent Pure Ionic Copper(I) Bromide Based Hybrid Materials. ACS Applied Materials & Interfaces, 2019, 11, 17513-17520.	8.0	54
524	Role of Water and Defects in Photoâ€Oxidative Degradation of Methylammonium Lead Iodide Perovskite. Small Methods, 2019, 3, 1900154.	8.6	49
525	An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites. Renewable and Sustainable Energy Reviews, 2019, 109, 160-186.	16.4	42
526	NH3-induced morphological evolution of organohalide perovskites from three-dimensional microcubes to one-dimensional nanorod aggregates and their electrochemical performance. Materials Today Chemistry, 2019, 12, 343-352.	3.5	11
527	Corrosive Behavior of Silver Electrode in Inverted Perovskite Solar Cells Based on Cu:NiO _x . IEEE Journal of Photovoltaics, 2019, 9, 1081-1085.	2.5	17
528	Prediction of the Role of Bismuth Dopants in Organic–Inorganic Lead Halide Perovskites on Photoelectric Properties and Photovoltaic Performance. Journal of Physical Chemistry C, 2019, 123, 12684-12693.	3.1	24
529	Hydrogen Passivated Silicon Grain Boundaries Greatly Reduce Charge Recombination for Improved Silicon/Perovskite Tandem Solar Cell Performance: Time Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2019, 10, 2445-2452.	4.6	14
530	Directly imaging the structure–property correlation of perovskites in crystalline microwires. Journal of Materials Chemistry A, 2019, 7, 13305-13314.	10.3	9
531	Bismuth ferrite: an abnormal perovskite with electrochemical extraction of ions from A site. Journal of Materials Chemistry A, 2019, 7, 12176-12190.	10.3	25
532	Perovskites for Next-Generation Optical Sources. Chemical Reviews, 2019, 119, 7444-7477.	47.7	640

#	Article	IF	CITATIONS
533	Red-Shifted Photoluminescence from Crystal Edges Due to Carrier Redistribution and Reabsorption in Lead Triiodide Perovskites. Journal of Physical Chemistry C, 2019, 123, 12521-12526.	3.1	23
534	Efficient and stable all-inorganic perovskite solar cells based on nonstoichiometric Cs _x Pbl ₂ Br _x (<i>x</i> > 1) alloys. Journal of Materials Chemistry C, 2019, 7, 5314-5323.	5.5	30
535	Uncovering the Mechanism Behind the Improved Stability of 2D Organic–Inorganic Hybrid Perovskites. Small, 2019, 15, e1900462.	10.0	27
536	Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy, 2019, 60, 476-484.	16.0	66
537	Anti-solvent assisted multi-step deposition for efficient and stable carbon-based CsPbI2Br all-inorganic perovskite solar cell. Nano Energy, 2019, 59, 553-559.	16.0	113
538	Deprotonation and vacancies at the CH3NH3PbI3/ZnO and CH3NH3PbI3/GaN interfaces, detected in their theoretical XANES. Journal of Materials Chemistry C, 2019, 7, 5307-5313.	5.5	2
539	A C ₆₀ /TiO _x bilayer for conformal growth of perovskite films for UV stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 11086-11094.	10.3	64
540	Simultaneously boost diffusion length and stability of perovskite for high performance solar cells. Nano Energy, 2019, 59, 721-729.	16.0	33
541	Silver Iodide Induced Resistive Switching in CsPbI ₃ Perovskiteâ€Based Memory Device. Advanced Materials Interfaces, 2019, 6, 1802071.	3.7	65
542	Reversible Dimensionality Tuning of Hybrid Perovskites with Humidity: Visualization and Application to Stable Solar Cells. Chemistry of Materials, 2019, 31, 3111-3117.	6.7	35
543	Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%. Nano Energy, 2019, 60, 583-590.	16.0	135
544	High thermoelectric efficiency in monolayer Pbl ₂ from 300 K to 900 K. Inorganic Chemistry Frontiers, 2019, 6, 920-928.	6.0	29
545	Recent Advances in Halide Perovskite Singleâ€Crystal Thin Films: Fabrication Methods and Optoelectronic Applications. Solar Rrl, 2019, 3, 1800294.	5.8	94
546	Review of Novel Passivation Techniques for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800302.	5.8	139
547	Constructing CsPbBr ₃ Cluster Passivatedâ€Triple Cation Perovskite for Highly Efficient and Operationally Stable Solar Cells. Advanced Functional Materials, 2019, 29, 1809180.	14.9	64
548	Deciphering the degradation mechanism of the lead-free all inorganic perovskite Cs2SnI6. Npj Materials Degradation, 2019, 3, .	5.8	25
549	Theoretical study on halide and mixed halide Perovskite solar cells: Effects of halide atoms on the stability and electronic properties. Journal of the Chinese Chemical Society, 2019, 66, 575-582.	1.4	10
550	A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 2019, 29, 1808843.	14.9	835

ARTICLE IF CITATIONS Negligibleâ€Pbâ€Waste and Upscalable Perovskite Deposition Technology for Highâ€Operationalâ€Stability 551 19.5 68 Perovskite Solar Modules. Advanced Energy Materials, 2019, 9, 1803047. Efficient and Stable Chemical Passivation on Perovskite Surface via Bidentate Anchoring. Advanced 19.5 Energy Materials, 2019, 9, 1803573. Influence of a lecithin additive on the performance of all-inorganic perovskite light-emitting diodes. 553 5.5 21 Journal of Materials Chemistry C, 2019, 7, 2905-2910. Improvement of open-circuit voltage of poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) \hat{l} ±-CsPbI3 based device by mixing different concentrations of hydrochloric acid and hydroiodic acid additives. Materials Letters, 2019, 257, 126667. 554 A visible light detector based on a heterojunction phototransistor with a highly stable inorganic CsPbl_xBr_{3â^'x} perovskite and Inâ€"Gaâ€"Znâ€"Ŏ semiconductor double-layer. Journal of Materials Chemistry C, 2019, 7, 14223-14231. 555 5.5 37 2.6 Light enhanced moisture degradation of perovskite solar cell material 557 10.3 37 CH₃NH₃Pbl₃. Journal of Materials Chemistry A, 2019, 7, 27469-27474. Ultralow lattice thermal conductivity of chalcogenide perovskite CaZrSe3 contributes to high 558 8.7 thermoelectric figure of merit. Npj Computational Materials, 2019, 5, . Self-Healing of Photocurrent Degradation in Perovskite Solar Cells: The Role of Defect-Trapped 559 23 4.6 Excitons. Journal of Physical Chemistry Letters, 2019, 10, 7774-7780. Amplified Spontaneous Emission Threshold Reduction and Operational Stability Improvement in CsPbBr3 Nanocrystals Films by Hydrophobic Functionalization of the Substrate. Scientific Reports, 3.3 2019, 9, 17964. Improved Moisture Stability of Perovskite Solar Cells Using N719 Dye Molecules. Solar Rrl, 2019, 3, 561 5.81 1970115. Dopant-free molecular hole transport material that mediates a 20% power conversion efficiency in a 30.8 perovskite solar cell. Energy and Environmental Science, 2019, 12, 3502-3507. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energy 563 30.8 223 and Environmental Science, 2019, 12, 3437-3472. Strategies to Improve Luminescence Efficiency of Metalâ€Halide Perovskites and Lightâ€Emitting Diodes. 564 21.0 Advanced Materials, 2019, 31, e1804595. Bismuth Enhances the Stability of CH₃NH₃PbI₃ (MAPI) Perovskite 565 3.1 20 under High Humidity. Journal of Physical Chemistry C, 2019, 123, 963-970. Surface Passivation of Perovskite Films via Iodide Salt Coatings for Enhanced Stability of Organic Lead 5.8 34 Halide Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800282. Consecutive Interfacial Transformation of Cesium Lead Halide Nanocubes to Ultrathin Nanowires 567 8.0 27 with Improved Stability. ACS Applied Materials & amp; Interfaces, 2019, 11, 3351-3359. Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells?. Advanced 14.9 Functional Materials, 2019, 29, 1806482.

#	Article	IF	CITATIONS
569	Two-dimensional lead-free hybrid halide perovskite using superatom anions with tunable electronic properties. Solar Energy Materials and Solar Cells, 2019, 191, 33-38.	6.2	90
570	Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews, 2019, 119, 3418-3451.	47.7	1,131
571	Fullerene-Anchored Core-Shell ZnO Nanoparticles for Efficient and Stable Dual-Sensitized Perovskite Solar Cells. Joule, 2019, 3, 417-431.	24.0	61
572	Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Lightâ€Emitting Diodes for Display Applications. Advanced Materials, 2019, 31, e1804294.	21.0	445
573	Machine Learning for Understanding Compatibility of Organic–Inorganic Hybrid Perovskites with Post-Treatment Amines. ACS Energy Letters, 2019, 4, 397-404.	17.4	78
574	A Review: Thermal Stability of Methylammonium Lead Halide Based Perovskite Solar Cells. Applied Sciences (Switzerland), 2019, 9, 188.	2.5	173
575	From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy and Environmental Science, 2019, 12, 518-549.	30.8	269
576	An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews, 2019, 48, 310-350.	38.1	845
577	Hydrophobic polythiophene hole-transport layers to address the moisture-induced decomposition problem of perovskite solar cells. Canadian Journal of Chemistry, 2019, 97, 435-441.	1.1	8
578	An ionic compensation strategy for high-performance mesoporous perovskite solar cells: healing defects with tri-iodide ions in a solvent vapor annealing process. Journal of Materials Chemistry A, 2019, 7, 353-362.	10.3	28
579	Effect of Environmental Humidity on the Electrical Properties of Lead Halide Perovskites. Journal of Physical Chemistry C, 2019, 123, 2011-2018.	3.1	20
580	Machine Learning for Perovskites' Reap-Rest-Recovery Cycle. Joule, 2019, 3, 325-337.	24.0	62
581	Recent Advances in Energetics and Stability of Metal Halide Perovskites for Optoelectronic Applications. Advanced Materials Interfaces, 2019, 6, 1801351.	3.7	29
582	Stability Challenges for Perovskite Solar Cells. ChemNanoMat, 2019, 5, 253-265.	2.8	39
583	Rapid evaluation of different perovskite absorber layers through the application of depth profile analysis using glow discharge – Time of flight mass spectrometry. Talanta, 2019, 192, 317-324.	5.5	3
584	Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition. Materials Today Energy, 2019, 14, 100125.	4.7	15
585	Investigating the role of reduced graphene oxide as a universal additive in planar perovskite solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112141.	3.9	47
586	Stabilizing CsPbBr3 perovskite quantum dots on zirconium phosphate nanosheets through an ion exchange/surface adsorption strategy. Chemical Engineering Journal, 2020, 381, 122735.	12.7	26

ARTICLE IF CITATIONS # Advances in metal halide perovskite nanocrystals: Synthetic strategies, growth mechanisms, and 587 14.2 114 optoelectronic applications. Materials Today, 2020, 32, 204-221. Conformal perovskite films on 100Âcm2 textured silicon surface using two-step vacuum process. Thin 588 1.8 Solid Films, 2020, 693, 137694. 1D Pyrrolidinium Lead Iodide for Efficient and Stable Perovskite Solar Cells. Energy Technology, 2020, 589 3.8 21 8, 1900918. The Effect of Constituent Ratios and Varisized Ammonium Salts on the Performance of 6.8 Twoâ€Dimensional Perovskite Materials. ChemSusChem, 2020, 13, 252-259. Impact of Temperatureâ€Dependent Hydration Water on Perovskite Solar Cells. Solar Rrl, 2020, 4, 591 5.8 9 1900370. Orientationally engineered 2D/3D perovskite for high efficiency solar cells. Sustainable Energy and Fuels, 2020, 4, 324-330. Ethanol induced structure reorganization of 2D layered perovskites (OA)2(MA)n-1PbnI3n+1. Journal of 593 3.1 6 Luminescence, 2020, 220, 116981. Water, a Green Solvent for Fabrication of High-Quality CsPbBr₃ Films for Efficient Solar 594 8.0 67 Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 5925-5931. 595 Single Crystals: The Next Big Wave of Perovskite Optoelectronics. , 2020, 2, 184-214. 89 Chemical Approaches for Stabilizing Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 132 1903249. Enhancing acid, base and UV light resistance of halide perovskite CH3NH3PbBr3 quantum dots by 597 5.514 encapsulation with ZrO2 sol. Journal of Alloys and Compounds, 2020, 816, 152558. Machine learning analysis on stability of perovskite solar cells. Solar Energy Materials and Solar 6.2 Cells, 2020, 205, 110284. Facile solution synthesis, morphology control, and anisotropic optical performance of 599 2.6 5 CsPbCl₃ microcrystals. CrystEngComm, 2020, 22, 178-183. Understanding the Enhanced Stability of Bromide Substitution in Lead Iodide Perovskites. Chemistry of Materials, 2020, 32, 400-409. 6.7 Distinguish the Quenching and Degradation of CH₃NH₃Pbl₃ 601 Perovskite by Simultaneous Absorption and Photoluminescence Measurements. Journal of Physical 3.16 Chemistry C, 2020, 124, 1207-1213. Modulable hysteresis behavior controlled by water-promoted decomposition in a single CH3NH3PbI3 6.1 micro/nanowire. Applied Surface Science, 2020, 507, 145048. Enhanced Organic and Perovskite Solar Cell Performance through Modification of the Electron-Selective Contact with a Bodipyâ€"Porphyrin Dyad. ACS Applied Materials & amp; Interfaces, 603 8.0 27 2020, 12, 1120-1131. Understanding the Extremely Poor Lattice Thermal Transport in Chalcogenide Perovskite 604 5.1 BaZrS₃. ACS Applied Energy Materials, 2020, 3, 1139-1144.

#	Article	IF	CITATIONS
605	Degradation Studies of Cs ₃ Sb ₂ I ₉ : A Lead-Free Perovskite. ACS Applied Energy Materials, 2020, 3, 47-55.	5.1	39
606	Stability of materials and complete devices. , 2020, , 197-215.		1
607	Nanoscale control of grain boundary potential barrier, dopant density and filled trap state density for higher efficiency perovskite solar cells. InformaÄnÄ-Materiály, 2020, 2, 409-423.	17.3	25
608	Effect of tertiary butylpyridine in stability of methylammonium lead iodide perovskite thin films. Bulletin of Materials Science, 2020, 43, 1.	1.7	11
609	Carbon Encapsulation of Organic–Inorganic Hybrid Perovskite toward Efficient and Stable Photoâ€Electrochemical Carbon Dioxide Reduction. Advanced Energy Materials, 2020, 10, 2002105.	19.5	44
610	An Interlocking Fibrillar Polymer Layer for Mechanical Stability of Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 2001425.	3.7	9
611	Surface electronic structure and dynamics of lead halide perovskites. APL Materials, 2020, 8, .	5.1	18
612	Zwitterionic-Surfactant-Assisted Room-Temperature Coating of Efficient Perovskite Solar Cells. Joule, 2020, 4, 2404-2425.	24.0	137
613	Hysteresis and Instability Predicted in Moisture Degradation of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 48882-48889.	8.0	23
614	Improving the stability of MAPbI3 films by using a new synthesis route. Journal of Materials Research and Technology, 2020, 9, 13759-13769.	5.8	8
615	Efficient and Stable MAPbI ₃ -Based Perovskite Solar Cells Using Polyvinylcarbazole Passivation. Journal of Physical Chemistry Letters, 2020, 11, 6772-6778.	4.6	48
616	Perovskite Solar Cells for BIPV Application: A Review. Buildings, 2020, 10, 129.	3.1	60
617	The Stability of Metal Halide Perovskite Nanocrystals—A Key Issue for the Application on Quantum-Dot-Based Micro Light-Emitting Diodes Display. Nanomaterials, 2020, 10, 1375.	4.1	36
618	A Ladderâ€like Dopantâ€free Holeâ€Transporting Polymer for Hysteresisâ€less Highâ€Efficiency Perovskite Solar Cells with High Ambient Stability. ChemSusChem, 2020, 13, 5058-5066.	6.8	12
619	Review of fabrication methods of large-area transparent graphene electrodes for industry. Frontiers of Optoelectronics, 2020, 13, 91-113.	3.7	31
620	Lowâ€Dimensional Hybrid Perovskites for Fieldâ€Effect Transistors with Improved Stability: Progress and Challenges. Advanced Electronic Materials, 2020, 6, 2000137.	5.1	45
621	Recent Progress on the Stability of Perovskite Solar Cells in a Humid Environment. Journal of Physical Chemistry C, 2020, 124, 27251-27266.	3.1	43
622	<i>Operando</i> Surface Characterization on Catalytic and Energy Materials from Single Crystals to Nanoparticles. ACS Nano, 2020, 14, 16392-16413.	14.6	24

#	Article	IF	CITATIONS
623	Advances in piezoelectric halide perovskites for energy harvesting applications. Journal of Materials Chemistry A, 2020, 8, 24353-24367.	10.3	45
624	Conjugated polyelectrolytes as promising hole transport materials for inverted perovskite solar cells: effect of ionic groups. Journal of Materials Chemistry A, 2020, 8, 25173-25177.	10.3	14
625	p-Phenylenediaminium iodide capping agent enabled self-healing perovskite solar cell. Scientific Reports, 2020, 10, 20011.	3.3	20
626	Overall photocatalytic water splitting by an organolead iodide crystalline material. Nature Catalysis, 2020, 3, 1027-1033.	34.4	113
627	Voltage bias stress effects in metal halide perovskites are strongly dependent on morphology and ion migration pathways. Journal of Materials Chemistry A, 2020, 8, 25109-25119.	10.3	11
628	A comprehensive review on synthesis and applications of single crystal perovskite halides. Progress in Solid State Chemistry, 2020, 60, 100286.	7.2	77
629	Understanding the Stability of MAPbBr ₃ versus MAPbI ₃ : Suppression of Methylammonium Migration and Reduction of Halide Migration. Journal of Physical Chemistry Letters, 2020, 11, 7127-7132.	4.6	101
630	First-Principles Calculations of Graphene-Coated CH ₃ NH ₃ PbI ₃ toward Stable Perovskite Solar Cells in Humid Environments. ACS Applied Nano Materials, 2020, 3, 7704-7712.	5.0	11
631	Barrier Designs in Perovskite Solar Cells for Longâ€Term Stability. Advanced Energy Materials, 2020, 10, 2001610.	19.5	84
632	Hot-Casting Large-Grain Perovskite Film for Efficient Solar Cells: Film Formation and Device Performance. Nano-Micro Letters, 2020, 12, 156.	27.0	47
633	Revealing Stability of Inverted Planar MA-Free Perovskite Solar Cells and Electric Field-Induced Phase Instability. Journal of Physical Chemistry C, 2020, 124, 18805-18815.	3.1	11
634	Roll-transferred graphene encapsulant for robust perovskite solar cells. Nano Energy, 2020, 77, 105182.	16.0	24
635	Surface Ligand Engineering for CsPbBr ₃ Quantum Dots Aiming at Aggregation Suppression and Amplified Spontaneous Emission Improvement. Advanced Optical Materials, 2020, 8, 2000977.	7.3	32
636	Improving the performance of inverted two-dimensional perovskite solar cells by adding an anti-solvent into the perovskite precursor. Journal of Materials Chemistry C, 2020, 8, 11882-11889.	5.5	16
637	Toward Greener Solution Processing of Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 13126-13138.	6.7	41
638	Defects chemistry in high-efficiency and stable perovskite solar cells. Journal of Applied Physics, 2020, 128, .	2.5	91
639	Investigating the effect of solvent vapours on crystallinity, phase, and optical, morphological and structural properties of organolead halide perovskite films. RSC Advances, 2020, 10, 39995-40004.	3.6	12
640	A Type I Heterointerface between Amorphous Pbl ₂ Overlayers on Crystalline CsPbl ₃ . ACS Applied Energy Materials, 2020, 3, 10328-10332.	5.1	4

ARTICLE

Emerging piezochromism in lead free alkaline earth chalcogenide perovskite AZrS₃ (A =) Tj ETQq0 0 0.5 BT /Overlock 10 Tf

642	Metal Halide Perovskite@Metalâ€Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. Small, 2020, 16, e2004891.	10.0	46
643	Novel laser-assisted glass frit encapsulation for long-lifetime perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20037-20046.	10.3	26
644	Beyond Strain: Controlling the Surface Chemistry of CsPbl ₃ Nanocrystal Films for Improved Stability against Ambient Reactive Oxygen Species. Chemistry of Materials, 2020, 32, 7850-7860.	6.7	23
645	In situ Nearâ€Ambient Pressure Xâ€ray Photoelectron Spectroscopy Reveals the Influence of Photon Flux and Water on the Stability of Halide Perovskite. ChemSusChem, 2020, 13, 5722-5730.	6.8	15
646	Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20122-20132.	10.3	27
647	In Situ Ligand Bonding Management of CsPbI ₃ Perovskite Quantum Dots Enables Highâ€Performance Photovoltaics and Red Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2020, 59, 22230-22237.	13.8	117
648	In Situ Ligand Bonding Management of CsPbl ₃ Perovskite Quantum Dots Enables Highâ€Performance Photovoltaics and Red Lightâ€Emitting Diodes. Angewandte Chemie, 2020, 132, 22414-22421.	2.0	28
649	Perovskite Quantum Dots. Springer Series in Materials Science, 2020, , .	0.6	4
651	Phase Transitions and Anion Exchange in All-Inorganic Halide Perovskites. Accounts of Materials Research, 2020, 1, 3-15.	11.7	67
652	How Humidity and Light Exposure Change the Photophysics of Metal Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000382.	5.8	23
653	Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy and Environmental Science, 2020, 13, 4017-4056.	30.8	235
654	Unraveling the Photogenerated Electron Localization on the Defect-Free CH3NH3PbI3(001) Surfaces: Understanding and Implications from a First-Principles Study. Journal of Physical Chemistry Letters, 2020, 11, 8041-8047.	4.6	6
655	Low-temperature carbon-based electrodes in perovskite solar cells. Energy and Environmental Science, 2020, 13, 3880-3916.	30.8	149
656	Airâ€Processed Perovskite Films with Innerâ€ŧoâ€Outside Passivation for Highâ€Efficiency Solar Cells. Solar Rrl, 2020, 4, 2000410.	5.8	5
657	Perovskite Quantum Dot-Reduced Graphene Oxide Superstructure for Efficient Photodetection. ACS Applied Materials & Interfaces, 2020, 12, 45165-45173.	8.0	11
658	A bilayer TiO ₂ /Al ₂ O ₃ as the mesoporous scaffold for enhanced air stability of ambient-processed perovskite solar cells. Materials Advances, 2020, 1, 2057-2067.	5.4	18
659	Moisture-Induced Structural Degradation in Methylammonium Lead Iodide Perovskite Thin Films. ACS Applied Energy Materials, 2020, 3, 8240-8248.	5.1	34

ARTICLE IF CITATIONS # Octahedron rotation evolution in 2D perovskites and its impact on optoelectronic properties: the 660 12.2 11 case of Baâ€"Zrâ€"S chalcogenides. Materials Horizons, 2020, 7, 2985-2993. Photocorrosion at Irradiated Perovskite/Electrolyte Interfaces. Journal of the American Chemical 13.7 Society, 2020, 142, 21595-21614. Long-Term Stability Analysis of 3D and 2D/3D Hybrid Perovskite Solar Cells Using Electrochemical 662 3.8 13 Impedance Spectroscopy. Molecules, 2020, 25, 5794. Fast and low temperature processed CsPbI3 perovskite solar cells with ZnO as electron transport layer. Journal of Power Sources, 2020, 480, 229134. Effects of Oxygen and Water on the Formation and Degradation Processes of (CH₃NH₃PbI₃Thin Films. ACS Applied Energy Materials, 2020, 3, 664 5.1 4 11269-11274. Shapeâ€Designable and Sizeâ€Tunable Organicâ€"Inorganic Hybrid Perovskite Microâ€Ring Resonator Arrays. Advanced Materials Technologies, 2020, 5, 2000051. 5.8 [NH₃(CH₂)₆NH₃]PbI₄ as Dionâ€"Jacobson 666 phase bifunctional capping layer for 2D/3D perovskite solar cells with high efficiency and excellent 10.3 26 UV stability. Journal of Materials Chemistry A, 2020, 8, 10283-10290. Cs₂Ptl₆ Halide Perovskite is Stable to Air, Moisture, and Extreme pH: Application to Photoelectrochemical Solar Water Oxidation. Angewandte Chemie - International Edition, 2020, 59, 16033-16038. 13.8 34 Quantum Dynamics Simulations on the Adsorption Mechanism of Reducing and Oxidizing Gases on the 668 2.8 5 CH 3 NH 3 Pbl 3 Surface. Advanced Theory and Simulations, 2020, 3, 2000024. Identifying, understanding and controlling defects and traps in halide perovskites for optoelectronic 2.8 devices: a review. Journal Physics D: Applied Physics, 2020, 53, 373001. Epitaxial growth of highly stable perovskite CsPbBr₃/nZnS/Al core/multi-shell quantum 670 2.6 8 dots with aluminium self-passivation. Nanotechnology, 2020, 31, 375703. Lead-free perovskite solar cells enabled by hetero-valent substitutes. Energy and Environmental 671 30.8 109 Science, 2020, 13, 2363-2385. In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat, 2020, 2, e12025. 672 11.9 123 Cs₂PtI₆ Halide Perovskite is Stable to Air, Moisture, and Extreme pH: Application to Photoelectrochemical Solar Water Oxidation. Angewandte Chemie, 2020, 132, 16167-16172. Atomic-Scale Insights into the Dynamics of Growth and Degradation of All-Inorganic Perovskite 674 20 4.6 Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 4618-4624. \hat{l} +-CsPbBr₃ Perovskite Quantum Dots for Application in Semitransparent Photovoltaics. ACS Applied Materials & amp; Interfaces, 2020, 12, 27307-27315. Nonâ€Uniform Chemical Corrosion of Metal Electrode of p–i–n Type of Perovskite Solar Cells Caused 676 3.8 13 by the Diffusion of CH₃NH₃I. Energy Technology, 2020, 8, 2000250. Elastic and electronic origins of strain stabilized photovoltaic Î³-CsPbI₃. Physical 2.8 Chemistry Chemical Physics, 2020, 22, 12706-12712.

#	Article	IF	CITATIONS
678	Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science, 2020, 368, .	12.6	306
679	Double Barriers for Moisture Degradation: Assembly of Hydrolysable Hydrophobic Molecules for Stable Perovskite Solar Cells with High Openâ€Circuit Voltage. Advanced Functional Materials, 2020, 30, 2002639.	14.9	61
680	High-Performance Photovoltaic Materials Based on the Superlattice Structures of Organic–Inorganic Halide Perovskite and Superhalogen Hybrid Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 5282-5294.	4.6	17
681	The use of nickel oxide as a hole transport material in perovskite solar cell configuration: Achieving a high performance and stable device. International Journal of Energy Research, 2020, 44, 9839-9863.	4.5	28
682	Interface Engineering Driven Stabilization of Halide Perovskites against Moisture, Heat, and Light for Optoelectronic Applications. Advanced Energy Materials, 2020, 10, 2000768.	19.5	62
683	Low Temperature (<40 °C) Atmospheric-Pressure Dielectric-Barrier-Discharge-jet (DBDjet) Plasma Treatment on Jet-Sprayed Silver Nanowires (AgNWs) Electrodes for Fully Solution-Processed n-i-p Structure Perovskite Solar Cells. ECS Journal of Solid State Science and Technology, 2020, 9, 055016.	1.8	6
684	Perovskite Singleâ€Crystal Microwireâ€Array Photodetectors with Performance Stability beyond 1 Year. Advanced Materials, 2020, 32, e2001998.	21.0	130
685	Interaction engineering in organic–inorganic hybrid perovskite solar cells. Materials Horizons, 2020, 7, 2208-2236.	12.2	35
686	Recovering Quadruple-cation Perovskite Films from Water Caused Permanent Degradations. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 57-64.	1.0	3
687	Tin–Lead Alloying for Efficient and Stable All-Inorganic Perovskite Solar Cells. Chemistry of Materials, 2020, 32, 2782-2794.	6.7	58
688	Toward perovskite nanocrystalline solar cells: progress and potential. Journal of Materials Chemistry C, 2020, 8, 5321-5334.	5.5	22
689	First-principles study on photovoltaic properties of 2D Cs ₂ PbI ₄ -black phosphorus heterojunctions. Journal of Physics Condensed Matter, 2020, 32, 195501.	1.8	10
690	Improved Chemical Stability of Organometal Halide Perovskite Solar Cells Against Moisture and Heat by Ag Doping. ChemSusChem, 2020, 13, 3261-3268.	6.8	11
691	Multi-component engineering to enable long-term operational stability of perovskite solar cells. JPhys Energy, 2020, 2, 024008.	5.3	13
692	Macroscopic and Microscopic Structures of Cesium Lead Iodide Perovskite from Atomistic Simulations. Advanced Functional Materials, 2020, 30, 1909496.	14.9	11
693	Interfacial engineering for organic and perovskite solar cells using molecular materials. Journal Physics D: Applied Physics, 2020, 53, 263001.	2.8	6
694	Directed self-assembly of viologen-based 2D semiconductors with intrinsic UV–SWIR photoresponse after photo/thermo activation. Nature Communications, 2020, 11, 1179.	12.8	88
695	Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Letters, 2020, 5, 1107-1123.	17.4	400

#	Article	IF	CITATIONS
696	Deepâ€Ultraviolet Photoactivationâ€Assisted Contact Engineering Toward Highâ€Efficiency and Stable Allâ€Inorganic CsPbI ₂ Br Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000001.	5.8	29
697	Investigating the Superoxide Formation and Stability in Mesoporous Carbon Perovskite Solar Cells with an Aminovaleric Acid Additive. Advanced Functional Materials, 2020, 30, 1909839.	14.9	30
698	High performance two-dimensional perovskite solar cells based on solvent induced morphology control of perovskite layers. Chemical Physics Letters, 2020, 743, 137186.	2.6	10
699	The strain effects in 2D hybrid organic–inorganic perovskite microplates: bandgap, anisotropy and stability. Nanoscale, 2020, 12, 6644-6650.	5.6	15
700	Passivation effect of halogenated benzylammonium as a second spacer cation for improved photovoltaic performance of quasi-2D perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5900-5906.	10.3	26
701	Forecasting the Decay of Hybrid Perovskite Performance Using Optical Transmittance or Reflected Dark-Field Imaging. ACS Energy Letters, 2020, 5, 946-954.	17.4	22
702	Excellent Moisture Stability and Efficiency of Inverted All-Inorganic CsPbIBr ₂ Perovskite Solar Cells through Molecule Interface Engineering. ACS Applied Materials & Interfaces, 2020, 12, 13931-13940.	8.0	52
703	A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Solar Energy, 2020, 198, 665-688.	6.1	321
704	Highly Efficient CsPbBr ₃ Planar Perovskite Solar Cells via Additive Engineering with NH ₄ SCN. ACS Applied Materials & Interfaces, 2020, 12, 10579-10587.	8.0	80
705	Structural stability and optoelectronic properties of tetragonal MAPbI ₃ under strain. Nanotechnology, 2020, 31, 225204.	2.6	19
706	A highly stable hole-conductor-free Cs MA1-PbI3 perovskite solar cell based on carbon counter electrode. Electrochimica Acta, 2020, 335, 135686.	5.2	16
707	Molecular modeling and photovoltaic applications of porphyrin-based dyes: A review. Journal of Saudi Chemical Society, 2020, 24, 303-320.	5.2	41
708	Effective Management of Nucleation and Crystallization Processes in Perovskite Formation via Facile Control of Antisolvent Temperature. ACS Applied Energy Materials, 2020, 3, 1506-1514.	5.1	34
709	Recent advances in defect passivation of perovskite active layer via additive engineering: a review. Journal Physics D: Applied Physics, 2020, 53, 183002.	2.8	15
710	Formation Thermodynamics, Stability, and Decomposition Pathways of CsPbX ₃ (X = Cl, Br,) Tj ETQc	10 9 0 rgB ⁻	T/Qyerlock 1
711	Dimensionality-Controlled Surface Passivation for Enhancing Performance and Stability of Perovskite Solar Cells via Triethylenetetramine Vapor. ACS Applied Materials & Interfaces, 2020, 12, 6651-6661.	8.0	29
712	Photoelectrochemical Water Splitting Reaction System Based on Metal-Organic Halide Perovskites. Materials, 2020, 13, 210.	2.9	23
713	Effect of chemical nature of atoms on the electronic, dielectric, and dynamical properties of ABX 3	2.0	11

#	Article	IF	CITATIONS
714	In Situ Analysis Reveals the Role of 2D Perovskite in Preventing Thermal-Induced Degradation in 2D/3D Perovskite Interfaces. Nano Letters, 2020, 20, 3992-3998.	9.1	95
715	Degradation induced lattice anchoring self-passivation in CsPbI _{3â^'x} Br _x . Journal of Materials Chemistry A, 2020, 8, 9963-9969.	10.3	7
716	4-Tert-butylpyridine-assisted low-cost and soluble copper phthalocyanine as dopant-free hole transport layer for efficient Pb- and Sn-based perovskite solar cells. Science China Chemistry, 2020, 63, 1053-1058.	8.2	13
717	Perovskite solar cells based on the synergy between carbon electrodes and polyethylene glycol additive with excellent stability. Organic Electronics, 2020, 83, 105734.	2.6	16
718	Carbon Nitride Hollow Theranostic Nanoregulators Executing Laser-Activatable Water Splitting for Enhanced Ultrasound/Fluorescence Imaging and Cooperative Phototherapy. ACS Nano, 2020, 14, 4045-4060.	14.6	128
719	Recent advances in synthesis and application of perovskite quantum dot based composites for photonics, electronics and sensors. Science and Technology of Advanced Materials, 2020, 21, 278-302.	6.1	34
720	Investigation of the Role of the Environment on the Photoluminescence and the Exciton Relaxation of CsPbBr3 Nanocrystals Thin Films. Applied Sciences (Switzerland), 2020, 10, 2148.	2.5	7
721	Coexistence of light-induced photoluminescence enhancement and quenching in CH ₃ NH ₃ PbBr ₃ perovskite films. RSC Advances, 2020, 10, 11054-11059.	3.6	5
722	Recent Progress on Interface Engineering for Highâ€Performance, Stable Perovskites Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000118.	3.7	34
723	The Interplay Between Lead Vacancy and Water Rationalizes the Puzzle of Charge Carrier Lifetimes in CH ₃ NH ₃ Pbl ₃ : Timeâ€Domain Ab Initio Analysis. Angewandte Chemie - International Edition, 2020, 59, 13347-13353.	13.8	24
724	Lowâ€Dimensional Leadâ€Free Inorganic Perovskites for Resistive Switching with Ultralow Bias. Advanced Functional Materials, 2020, 30, 2002110.	14.9	78
725	The Interplay Between Lead Vacancy and Water Rationalizes the Puzzle of Charge Carrier Lifetimes in CH 3 NH 3 PbI 3 : Timeâ€Domain Ab Initio Analysis. Angewandte Chemie, 2020, 132, 13449-13455.	2.0	0
726	The effect of ethylene-amine ligands enhancing performance and stability of perovskite solar cells. Journal of Power Sources, 2020, 463, 228210.	7.8	19
727	Origin of Amplified Spontaneous Emission Degradation in MAPbBr ₃ Thin Films under Nanosecond-UV Laser Irradiation. Journal of Physical Chemistry C, 2020, 124, 10696-10704.	3.1	14
728	MoS ₂ -Stratified CdS-Cu _{2–<i>x</i>} S Core–Shell Nanorods for Highly Efficient Photocatalytic Hydrogen Production. ACS Nano, 2020, 14, 5468-5479.	14.6	109
729	Improvement of the stability of perovskite solar cells in terms of humidity/heat via compositional engineering. Journal Physics D: Applied Physics, 2020, 53, 285501.	2.8	12
730	Effect of temperature on the performance of perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 12784-12792.	2.2	44
731	All Electrospray Printing of Carbonâ€Based Costâ€Effective Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2006803.	14.9	26

#	Article	IF	CITATIONS
732	Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2005776.	14.9	273
733	Natural passivation of the perovskite layer by oxygen in ambient air to improve the efficiency and stability of perovskite solar cells simultaneously. Organic Electronics, 2021, 88, 106007.	2.6	11
734	Construction of ultraâ€stable perovskite–polymer fibre membranes by electrospinning technology and its application to lightâ€emitting diodes. Polymer International, 2021, 70, 90-95.	3.1	6
735	Compositional effect on water adsorption on metal halide perovskites. Applied Surface Science, 2021, 538, 148058.	6.1	30
736	Superior photovoltaics/optoelectronics of two-dimensional halide perovskites. Journal of Energy Chemistry, 2021, 57, 69-82.	12.9	20
737	A Coplanar Ï€â€Extended Quinoxaline Based Holeâ€Transporting Material Enabling over 21 % Efficiency for Dopantâ€Free Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 2706-2711.	2.0	17
738	Waterâ€Stable DMASnBr ₃ Leadâ€Free Perovskite for Effective Solarâ€Driven Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 3611-3618.	13.8	72
739	Space-confined growth of metal halide perovskite crystal films. Nano Research, 2021, 14, 1609-1624.	10.4	23
740	A Coplanar Ï€â€Extended Quinoxaline Based Holeâ€Transporting Material Enabling over 21 % Efficiency for Dopantâ€Free Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 2674-2679.	13.8	140
741	Environmental risks and strategies for the long-term stability of carbon-based perovskite solar cells. Materials Today Energy, 2021, 19, 100590.	4.7	14
742	In CH ₃ NH ₃ PbI ₃ Perovskite Film, the Surface Termination Layer Dominates the Moisture Degradation Pathway. Chemistry - A European Journal, 2021, 27, 3729-3736.	3.3	10
743	Direct Observation of Photoinduced Ion Migration in Lead Halide Perovskites. Advanced Functional Materials, 2021, 31, 2008777.	14.9	41
744	Efficient designing of triphenylamine-based hole transport materials with outstanding photovoltaic characteristics for organic solar cells. Journal of Materials Science, 2021, 56, 5113-5131.	3.7	86
745	Novel photoelectric material of perovskite-like (CH3)3SPbI3 nanorod arrays with high stability. Journal of Energy Chemistry, 2021, 59, 581-588.	12.9	21
746	Thiazoleâ€Modified C ₃ N ₄ Interfacial Layer for Defect Passivation and Charge Transport Promotion in Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000720.	5.8	16
747	Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells. ACS Energy Letters, 2021, 6, 232-248.	17.4	89
748	Anchoring of CsPbBr ₃ perovskite quantum dots on BN nanostructures for enhanced efficiency and stability: a comparative study. Journal of Materials Chemistry C, 2021, 9, 842-850.	5.5	14
749	A review on power conversion efficiency of lead iodide perovskite-based solar cells. Materials Today: Proceedings, 2021, 46, 5570-5574.	1.8	14

#	Article	IF	CITATIONS
750	Progress in efficiency and stability of hybrid perovskite photovoltaic devices in high reactive environments. , 2021, , 239-257.		3
751	Water‧table DMASnBr ₃ Leadâ€Free Perovskite for Effective Solarâ€Driven Photocatalysis. Angewandte Chemie, 2021, 133, 3655-3662.	2.0	12
752	Ambient Fabrication of Organic–Inorganic Hybrid Perovskite Solar Cells. Small Methods, 2021, 5, e2000744.	8.6	63
753	Low-Dimensional Hybrid Lead Iodide Perovskites Single Crystals via Bifunctional Amino Acid Cross-Linkage: Structural Diversity and Properties Controllability. ACS Applied Materials & Interfaces, 2021, 13, 3325-3335.	8.0	6
754	Nanometer-thick [(FPEA) ₂ PbX ₄ ; X = I and Br] 2D halide perovskite based thin films for pollutant detection and nonconventional photocatalytic degradation. Materials Advances, 2021, 2, 5712-5722.	5.4	5
755	Stability of the CsPbI ₃ perovskite: from fundamentals to improvements. Journal of Materials Chemistry A, 2021, 9, 11124-11144.	10.3	78
756	Preparation and Properties of Films of Organic-Inorganic Perovskites MAPbX3 (MA = CH3NH3; X = Cl,) Tj ETQq0 (0 rgBT /C	verlock 10 T
757	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	38.1	96
758	Role of the spacer cation in the growth and crystal orientation of two-dimensional perovskites. Sustainable Energy and Fuels, 2021, 5, 1255-1279.	4.9	14
759	The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. Chemical Reviews, 2021, 121, 2230-2291.	47.7	506
760	Room-temperature synthesis, growth mechanisms and opto-electronic properties of organic–inorganic halide perovskite CH ₃ NH ₃ PbX ₃ (X = I, Br, and) Tj ETC	ହୁ ପ୍ରଥାର 0 rg	BÐ/Overlock
761	An organometal halide perovskite photocathode integrated with a MoS ₂ catalyst for efficient and stable photoelectrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 22291-22300.	10.3	14
762	A new perspective for evaluating the photoelectric performance of organic–inorganic hybrid perovskites based on the DFT calculations of excited states. Physical Chemistry Chemical Physics, 2021, 23, 11548-11556.	2.8	23
763	Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. Nanoscale, 2021, 13, 12394-12422.	5.6	38
764	Suppressed Degradation and Enhanced Performance of CsPbI ₃ Perovskite Quantum Dot Solar Cells via Engineering of Electron Transport Layers. ACS Applied Materials & Interfaces, 2021, 13, 6119-6129.	8.0	31
765	Lowâ€Dimensionalâ€Networked Perovskites with Aâ€Siteâ€Cation Engineering for Optoelectronic Devices. Small Methods, 2021, 5, e2001147.	8.6	27
766	Nucleation management for the ambient fabrication of high-performance perovskite photodetectors with the eco-friendly <i>tert</i> -butanol anti-solvent. Journal of Materials Chemistry C, 2021, 9, 8650-8658.	5.5	4
767	Influence of Deposition and Annealing Parameters on the Degradation of Spray-Deposited Perovskite Films. Materials Research, 2021, 24, .	1.3	1

#	Article	IF	CITATIONS
768	Nondestructive passivation of the TiO ₂ electron transport layer in perovskite solar cells by the PEIE-2D MOF interfacial modified layer. Journal of Materials Chemistry C, 2021, 9, 7057-7064.	5.5	25
769	Tetrathiafulvalene-based double metal lead iodides: structures and electrical properties. Dalton Transactions, 2021, 50, 8120-8126.	3.3	1
770	Raman spectroscopy insights into the α- and δ-phases of formamidinium lead iodide (FAPbI ₃). Dalton Transactions, 2021, 50, 3315-3323.	3.3	12
771	Water and oxygen co-induced microstructure relaxation and evolution in CH ₃ NH ₃ PbI ₃ . Physical Chemistry Chemical Physics, 2021, 23, 17242-17247.	2.8	5
772	Low photoactive phase temperature all-inorganic, tin–lead mixed perovskite solar cell. RSC Advances, 2021, 11, 3264-3271.	3.6	6
773	Metal halide perovskite nanocrystals: application in high-performance photodetectors. Materials Advances, 2021, 2, 856-879.	5.4	18
774	Highly stable and efficient perovskite solar cells passivated by a functional amorphous layer. Journal of Materials Chemistry A, 2021, 9, 21708-21715.	10.3	13
775	How to apply metal halide perovskites to photocatalysis: challenges and development. Nanoscale, 2021, 13, 10281-10304.	5.6	47
776	Performance and stability improvements in metal halide perovskite with intralayer incorporation of organic additives. Journal of Materials Chemistry A, 2021, 9, 16281-16338.	10.3	28
777	Effect of film structure on CH3NH3PbI3 perovskite thin films' degradation. AIP Advances, 2021, 11, .	1.3	4
778	Perovskite Nanocrystals: Synthesis, Stability, and Optoelectronic Applications. Small Structures, 2021, 2, 2000124.	12.0	53
779	Two-dimensional halide perovskite single crystals: principles and promises. Emergent Materials, 2021, 4, 865-880.	5.7	14
780	Humidity and Moisture Degradation of Perovskite Material in Solar Cells: Effects on Efficiency. IOP Conference Series: Earth and Environmental Science, 2021, 655, 012049.	0.3	5
781	Terahertz Analysis of CH ₃ NH ₃ PbI ₃ Perovskites Associated with Graphene and Silver Nanowire Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 9224-9231.	8.0	3
782	Effect of Monovalent Metal Iodide Additives on the Optoelectric Properties of Two-Dimensional Sn-Based Perovskite Films. Chemistry of Materials, 2021, 33, 2498-2505.	6.7	28
783	A Review on Encapsulation Technology from Organic Light Emitting Diodes to Organic and Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2100151.	14.9	114
784	A review of stability and progress in tin halide perovskite solar cell. Solar Energy, 2021, 216, 26-47.	6.1	67
785	<i>N</i> Bromosuccinimide as an Interfacial Alleviator for Br/I Exchange in Perovskite for Solar Cell Fabrication. ACS Applied Energy Materials, 2021, 4, 3130-3140.	5.1	4

# 786	ARTICLE Multifunctional Two-Dimensional Conjugated Materials for Dopant-Free Perovskite Solar Cells with Efficiency Exceeding 22%. ACS Energy Letters, 0, , 1521-1532.	IF 17.4	Citations
787	Efficient and Stable Perovskite Solar Cells with a Superhydrophobic Two-Dimensional Capping Layer. Journal of Physical Chemistry Letters, 2021, 12, 4052-4058.	4.6	16
788	Ambient Air-Stable CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Using Dibutylethanolamine as a Morphology Controller. ACS Applied Energy Materials, 2021, 4, 4395-4407.	5.1	6
789	Polymer strategies for high-efficiency and stable perovskite solar cells. Nano Energy, 2021, 82, 105712.	16.0	64
790	Flip hip Packaged Perovskite Solar Cells. Energy Technology, 2021, 9, 2001129.	3.8	2
791	Structural Stability of Formamidinium- and Cesium-Based Halide Perovskites. ACS Energy Letters, 2021, 6, 1942-1969.	17.4	76
792	Structural, electronic, and charge transfer features for two kinds of MoS2/Cs2PbI4 interfaces with optoelectronic applicability: Insights from first-principles. Applied Physics Letters, 2021, 118, .	3.3	4
793	Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI3 Thin Films and MAPbBr3 Single Crystals. Energies, 2021, 14, 2005.	3.1	3
794	Perovskite random lasers: a tunable coherent light source for emerging applications. Nanotechnology, 2021, 32, 282001.	2.6	26
795	Strain Engineering in Electrochemical Activity and Stability of BiFeO ₃ Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 4104-4111.	4.6	5
796	Role of Decomposition Product Ions in Hysteretic Behavior of Metal Halide Perovskite. ACS Nano, 2021, 15, 9017-9026.	14.6	13
797	Shining Light on the Structure of Lead Halide Perovskite Nanocrystals. , 2021, 3, 845-861.		23
798	Exploring inorganic and nontoxic double perovskites Cs2AgInBr6(1â^'x)Cl6x from material selection to device design in material genome approach. Journal of Alloys and Compounds, 2021, 862, 158575.	5.5	7
799	Halide Perovskites: A New Era of Solutionâ€Processed Electronics. Advanced Materials, 2021, 33, e2005000.	21.0	138
800	Perovskit Güneş Pilleri ve Kararsızlık Problemleri Üzerine Bir Araştırma. Düzce Üniversitesi Bilim V Teknoloji Dergisi, 0, , 158-171.	/е 0.7	0
801	Scalable Production of Ambient Stable Hybrid Bismuthâ€Based Materials: AACVD of Phenethylammonium Bismuth Iodide Films**. Chemistry - A European Journal, 2021, 27, 9406-9413.	3.3	4
802	Creation and investigation of electronic defects on methylammonium lead iodide (CH\$\$_3\$\$NH\$\$_3\$\$PbI\$\$_3\$\$) films depending on atmospheric conditions. European Physical Journal D, 2021, 75, 1.	1.3	3
803	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€Stabilized αâ€CsPbI 3 Perovskite. Angewandte Chemie, 2021, 133, 16300-16306.	2.0	1

ARTICLE IF CITATIONS # Enhanced Efficiency and Stability of Allâ€Inorganic CsPbI₂Br Perovskite Solar Cells by 804 11.2 66 Organic and Ionic Mixed Passivation. Advanced Science, 2021, 8, e2101367. Stability of Perovskite Thin Films under Working Condition: Biasâ€Dependent Degradation and Grain 14.9 28 Boundary Effects. Advanced Functional Materials, 2021, 31, 2103894. Contactless and Spatially Resolved Determination of Currentâ[^]Voltage Curves in Perovskite Solar 806 5.8 7 Cells via Photoluminescence. Solar Rrl, 2021, 5, 2100348. Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory. 38 Nature Communications, 2021, 12, 3527. Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€Stabilized αâ€CsPbI₃ Perovskite. Angewandte₃₈ 808 210 Chemie - International Edition, 2021, 60, 16164-16170. Advancement in CsPbBr3 inorganic perovskite solar cells: Fabrication, efficiency and stability. Solar Energy, 2021, 221, 197-205. 809 6.1 37 Current Development toward Commercialization of Metalâ€Halide Perovskite Photovoltaics. Advanced 810 7.3 15 Optical Materials, 2021, 9, 2100390. Single-crystal halide perovskites: Opportunities and challenges. Matter, 2021, 4, 2266-2308. 10.0 Advances in cesium lead iodide perovskite solar cells: Processing science matters. Materials Today, 812 14.2 25 2021, 47, 156-169. How the Copper Dopant Alters the Geometric and Photoelectronic Properties of the Leadâ€Free Cs 2 2.8 AgSbCl 6 Double Perovskite. Advanced Theory and Simulations, 2021, 4, 2100142. Impact of Humidity and Temperature on the Stability of the Optical Properties and Structure of 814 2.9 10 MAPbI3, MA0.7FAÓ.3PbI3 and (FAPbI3)0.95(MAPbBr3)0.05 Perovskite Thin Films. Materials, 2021, 14, 4054. Influence of Atmospheric Constituents on Spectral Instability and Defect-Mediated Carrier Recombination in Hybrid Perovskite Nanoplatelets. Journal of Physical Chemistry C, 2021, 125, 3.1 17133-17143. Formation and Near-Infrared Emission of CsPbI₃ Nanoparticles Embedded in 816 8.0 8 Cs₄Pbl₆ Crystals. ACS Applied Materials & amp; Interfaces, 2021, 13, 34742-34751. Flexible Perovskite Solar Cells with High Power-Per-Weight: Progress, Application, and Perspectives. 17.4 ACS Energy Letters, 2021, 6, 2917-2943. Layered metal halide perovskite solar cells: A review from structureâ€properties perspective towards 818 11.9 27 maximization of their performance and stability. EcoMat, 2021, 3, e12124. Charge Transport in 2D Layered Mixed Sn–Pb Perovskite Thin Films for Fieldâ€Effect Transistors. 5.1 Advanced Electronic Materials, 2021, 7, 2100384. Newfangled progressions in the charge transport layers impacting the stability and efficiency of 820 4.1 8 perovskite solar cells. Reviews in Inorganic Chemistry, 2022, 42, 137-159. Using 4â€Chlorobenzoic Acid Layer Toward Stable and Lowâ€Cost CsPbl 2 Br Perovskite Solar Cells. Solar 5.8 Rrl, 2021, 5, 2100347.

#	Article	IF	CITATIONS
822	Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies. Frontiers in Electronics, 2021, 2, .	3.2	75
823	Waterâ€Induced and Wavelengthâ€Dependent Light Absorption and Emission Dynamics in Tripleâ€Cation Halide Perovskites. Advanced Optical Materials, 2021, 9, 2100710.	7.3	0
824	A review on perovskite materials with solar cell prospective. International Journal of Energy Research, 2021, 45, 19729-19745.	4.5	28
825	Recent Progress on Metal Halide Perovskite Solar Minimodules. Solar Rrl, 2022, 6, 2100458.	5.8	21
826	Hydrophobic compressed carbon/graphite based long-term stable perovskite solar cells. Materials Chemistry and Physics, 2021, 268, 124709.	4.0	7
827	Molecular Insights into Water Vapor Adsorption and Interfacial Moisture Stability of Hybrid Perovskites for Robust Optoelectronics. International Journal of Heat and Mass Transfer, 2021, 175, 121334.	4.8	3
828	Toward a Scalable Fabrication of Perovskite Solar Cells under Fully Ambient Air Atmosphere: From Spin-Coating to Inkjet-Printing of Perovskite Absorbent Layer. Electronics (Switzerland), 2021, 10, 1904.	3.1	10
829	Machine Learning Roadmap for Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2021, 12, 7866-7877.	4.6	51
830	Manipulating crystallization dynamics through chelating molecules for bright perovskite emitters. Nature Communications, 2021, 12, 4831.	12.8	56
831	Defect passivation grain boundaries using 3-aminopropyltrimethoxysilane for highly efficient and stable perovskite solar cells. Solar Energy, 2021, 224, 472-479.	6.1	14
832	Efficient defect passivation for high performance perovskite solar cell by adding alizarin red S. Journal of Materials Science, 2021, 56, 19552-19563.	3.7	2
833	Material, Phase, and Interface Stability of Photovoltaic Perovskite: A Perspective. Journal of Physical Chemistry C, 2021, 125, 19088-19096.	3.1	7
834	A Special Additive Enables All Cations and Anions Passivation for Stable Perovskite Solar Cells with Efficiency over 23%. Nano-Micro Letters, 2021, 13, 169.	27.0	86
835	Upscaling perovskite solar cells via the ambient deposition of perovskite thin films. Trends in Chemistry, 2021, 3, 747-764.	8.5	12
836	Hole-Transport-Underlayer-Induced Crystallization Management of Two-Dimensional Perovskites for High-Performance Inverted Solar Cells. ACS Applied Energy Materials, 2021, 4, 10574-10583.	5.1	9
837	High-Stability and High-Efficiency Photovoltaic Materials Based on Functional Diamino Organic Cation Halide Hybrid Perovskite Superlattice Structures. ACS Applied Energy Materials, 2021, 4, 8774-8790.	5.1	3
838	Synthesis, characterization and optoelectronic properties of 2D hybrid RPbX4 semiconductors based on an isomer mixture of hexanediamine-based dications. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, .	0.7	0
839	Air fabrication of SnO2 based planar perovskite solar cells with an efficiency approaching 20%: Synergistic passivation of multi-defects by choline chloride. Ceramics International, 2022, 48, 212-223.	4.8	6

#	Article	IF	CITATIONS
840	Two-dimensional hybrid perovskite solar cells: a review. Environmental Chemistry Letters, 2022, 20, 189-210.	16.2	10
841	Thiamine additive engineering enables improved film formation towards high efficiency and moisture stability in perovskite solar cells. Science China Materials, 2022, 65, 321-327.	6.3	14
842	A critical review on the moisture stability of halide perovskite films and solar cells. Chemical Engineering Journal, 2022, 430, 132701.	12.7	31
843	Mixed 2D-3D Halide Perovskite Solar Cells. , 0, , .		0
844	Interfacial engineering designed on CuSCN for highly efficient and stable carbon-based perovskite solar cells. Materials Today Energy, 2021, 21, 100801.	4.7	5
845	A critical review of materials innovation and interface stabilization for efficient and stable perovskite photovoltaics. Nano Energy, 2021, 87, 106141.	16.0	28
846	Development and Challenges of Metal Halide Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100545.	5.8	34
847	Advances in perovskite solar cells: Film morphology control and interface engineering. Journal of Cleaner Production, 2021, 317, 128368.	9.3	10
848	The effect of defects in tin-based perovskites and their photovoltaic devices. Materials Today Physics, 2021, 21, 100513.	6.0	17
849	Investigation of CH3NH3PbI3 and CH3NH3SnI3 based perovskite solar cells with CuInSe2 nanocrystals. Optik, 2021, 246, 167839.	2.9	7
850	Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present. Renewable and Sustainable Energy Reviews, 2021, 151, 111608.	16.4	45
851	Exploring CsPbI3 – FAI alloys: Introducing low-dimensional Cs2FAPb2I7 absorber for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2021, 426, 131754.	12.7	8
852	Recent strategies to improve moisture stability in metal halide perovskites materials and devices. Journal of Energy Chemistry, 2022, 65, 219-235.	12.9	23
853	Defect passivation and interface modification by tetra-n-octadecyl ammonium bromide for efficient and stable inverted perovskite solar cells. Chemical Engineering Journal, 2022, 429, 132426.	12.7	24
854	A design strategy of additive molecule for PSCs: Anchoring intrinsic properties of functional groups by suppressing long-range conjugation effect. Chemical Engineering Journal, 2022, 427, 131676.	12.7	8
855	Dynamic temperature effects in perovskite solar cells and energy yield. Sustainable Energy and Fuels, 0, , .	4.9	5
856	Performance improvement of inverted two-dimensional perovskite solar cells using a non-fullerene acceptor as the trap passivator. Sustainable Energy and Fuels, 2021, 5, 2354-2361.	4.9	3
857	Perovskite-based material for sensor applications. , 2021, , 135-145.		4

#	Article	IF	CITATIONS
858	Photoelectric Properties of Composite Films Based on Organometallic Perovskite CH3NH3PbBr3 Modified with Mixed Cellulose Ester. Physics of the Solid State, 2021, 63, 160-164.	0.6	1
859	Electron-transport-layer-free two-dimensional perovskite solar cells based on a flexible poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) cathode. Sustainable Energy and Fuels, 2021, 5, 2595-2601.	4.9	2
860	Environment-Induced Reversible Modulation of Optical and Electronic Properties of Lead Halide Perovskites and Possible Applications to Sensor Development: A Review. Molecules, 2021, 26, 705.	3.8	8
861	Growth of hopper-shaped CsPbCl ₃ crystals and their exciton polariton emission. RSC Advances, 2021, 11, 25653-25657.	3.6	3
862	The structural stability and defect-tolerance of ionic spinel semiconductors for high-efficiency solar cells. Journal of Materials Chemistry A, 2021, 9, 14566-14575.	10.3	6
863	Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions. Journal of Materials Chemistry C, 2021, 9, 14065-14092.	5.5	24
864	Highly Mobile Large Polarons in Black Phase CsPbI ₃ . ACS Energy Letters, 2021, 6, 568-573.	17.4	40
865	A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy and Environmental Science, 2021, 14, 2090-2113.	30.8	193
866	Metal Halide Perovskite Arrays: From Construction to Optoelectronic Applications. Advanced Functional Materials, 2021, 31, 2005230.	14.9	40
867	Steric Impediment of Ion Migration Contributes to Improved Operational Stability of Perovskite Solar Cells. Advanced Materials, 2020, 32, e1906995.	21.0	142
868	Synergistic Benefits of Cesiumâ€Doped Aqueous Precursor in Airâ€Processed Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900406.	5.8	10
869	Discerning the Role of an A-Site Cation and X-Site Anion for Ion Conductivity Tuning in Hybrid Perovskites by Photoelectrochemical Impedance Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 211-222.	3.1	30
870	Halide Perovskites With Ambipolar Transport Properties for Transistor Applications. RSC Smart Materials, 2020, , 41-82.	0.1	2
871	A stable, efficient textile-based flexible perovskite solar cell with improved washable and deployable capabilities for wearable device applications. RSC Advances, 2017, 7, 54361-54368.	3.6	51
872	Investigation of air-stable Cs ₂ SnI ₆ films prepared by the modified two-step process for lead-free perovskite solar cells. Semiconductor Science and Technology, 2020, 35, 125027.	2.0	10
873	Role of fluoride and fluorocarbons in enhanced stability and performance of halide perovskites for photovoltaics. Physical Review Materials, 2020, 4, .	2.4	20
874	Review on methods for improving the thermal and ambient stability of perovskite solar cells. Journal of Photonics for Energy, 2019, 9, 1.	1.3	32
875	Photoluminescence characterizations of highly ambient-air-stable CH ₃ NH ₃ Pbl ₃ /Pbl ₂ heterostructure. Optical Materials Express, 2019, 9, 1882.	3.0	24

#	Article	IF	CITATIONS
876	Progress and Prospect on Stability of Perovskite Photovoltaics. Journal of Modern Materials, 2017, 4, 16-30.	0.4	9
877	Recent Progress in Long-term Stability of Perovskite Solar Cells. U Porto Journal of Engineering, 2015, 1, 52-62.	0.4	11
878	Conjugated polymers as functional hole selective layers in efficient metal halide perovskite solar cells. AIMS Materials Science, 2017, 4, 956-969.	1.4	3
879	A Synergy Effect of Coadditives for Vertical Orientation of Two-Dimensional Perovskite Solar Cells Based on Butylammonium lodide with Improved Efficiency. ACS Applied Energy Materials, 2021, 4, 13216-13225.	5.1	7
880	Upscaling Solutionâ€₽rocessed Perovskite Photovoltaics. Advanced Energy Materials, 2021, 11, 2101973.	19.5	46
881	Electrical properties of perovskite solar cells by illumination intensity and temperatureâ€dependent photoluminescence imaging. Progress in Photovoltaics: Research and Applications, 2022, 30, 1038-1044.	8.1	7
882	Hybrid perovskite thin films as highly efficient luminescent solar concentrators. , 2016, , .		0
883	Stable and Efficient Perovskite Solar Cells Fabricated Using Aqueous Lead Nitrate Precursor: Interpretation of the Conversion Mechanism and Renovation of the Sequential Deposition. SSRN Electronic Journal, 0, , .	0.4	0
885	Perovskite Solar Cells and Instability Problems. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2018, 9, 297-304.	0.3	1
886	Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics. SSRN Electronic Journal, 0, , .	0.4	1
887	Recent advances in photo-stability of lead halide perovskites. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 157102.	0.5	4
888	Intrinsic stability of organic-inorganic hybrid perovskite. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158804.	0.5	8
889	Synthesis of Perovskite Nanocrystals. Springer Series in Materials Science, 2020, , 1-18.	0.6	2
890	Structural Damage of Two-Dimensional Organic–Inorganic Halide Perovskites. Inorganics, 2020, 8, 13.	2.7	5
891	Probing the Role of Local Structure in Driving the Stability of Halide Perovskites CH ₃ NH ₃ PbX ₃ . Journal of Physical Chemistry C, 2021, 125, 24655-24662.	3.1	7
892	PTB7 as additive in Anti-solvent to enhance perovskite film surface crystallinity for solar cells with efficiency over 21%. Applied Surface Science, 2022, 575, 151737.	6.1	5
893	Small Molecule Approach to Passivate Undercoordinated Ions in Perovskite Light Emitting Diodes: Progress and Challenges. Advanced Optical Materials, 2022, 10, 2101361.	7.3	34
894	Environmental Assessment of Perovskite Solar Cells. Green Energy and Technology, 2022, , 279-289.	0.6	1

#	Article	IF	CITATIONS
895	Review: Perovskite Photovoltaics. Springer Theses, 2020, , 53-63.	0.1	0
896	A mechanistic investigation of moisture-induced degradation of methylammonium lead iodide. Applied Physics Letters, 2020, 117, .	3.3	3
897	Stability study of organometal halide perovskite and its enhanced X-ray scintillation from the incorporation of anodic TiO ₂ nanotubes. RSC Advances, 2020, 10, 43773-43782.	3.6	2
898	Perovskite Quantum Dots for Photovoltaic Applications. Springer Series in Materials Science, 2020, , 243-254.	0.6	1
900	Residual Film Stresses in Perovskite Solar Cells: Origins, Effects, and Mitigation Strategies. ACS Omega, 2021, 6, 30214-30223.	3.5	32
901	Twoâ€Dimensional Halide Perovskites: Approaches to Improve Optoelectronic Properties. Chemistry - an Asian Journal, 2022, 17, .	3.3	15
902	Growth and Degradation Kinetics of Organic–Inorganic Hybrid Perovskite Films Determined by In Situ Grazingâ€Incidence Xâ€Ray Scattering Techniques. Small Methods, 2021, 5, e2100829.	8.6	8
905	Flexible and Wearable Optoelectronic Devices Based on Perovskites. Advanced Materials Technologies, 2022, 7, .	5.8	26
906	Environmentâ€Dependent Metastable Nonradiative Recombination Centers in Perovskites Revealed by Photoluminescence Blinking. Advanced Photonics Research, 2022, 3, 2100271.	3.6	8
907	Recent progress in inorganic tin perovskite solar cells. Materials Today Energy, 2022, 23, 100891.	4.7	16
908	Defect Behaviors in Perovskite Light-Emitting Diodes. , 2021, 3, 1702-1728.		27
909	High-Throughput Study of Antisolvents on the Stability of Multicomponent Metal Halide Perovskites through Robotics-Based Synthesis and Machine Learning Approaches. Journal of the American Chemical Society, 2021, 143, 19945-19955.	13.7	35
910	On the Shape-Selected, Ligand-Free Preparation of Hybrid Perovskite (CH3NH3PbBr3) Microcrystals and Their Suitability as Model-System for Single-Crystal Studies of Optoelectronic Properties. Nanomaterials, 2021, 11, 3057.	4.1	3
911	Recent Progress of Organic–Inorganic Hybrid Perovskites in RRAM, Artificial Synapse, and Logic Operation. Small Science, 2022, 2, 2100086.	9.9	79
912	The roles of black phosphorus in performance enhancement of halide perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 672-683.	12.9	6
913	Enhanced Stability of MAPbI 3 Perovskite Films with Zirconium Phosphateâ€Phosphonomethylglycine Nanosheets as Additive. Advanced Materials Interfaces, 0, , 2101888.	3.7	0
914	Microstructuring of 2D perovskites via ion-exchange fabrication. Applied Physics Letters, 2021, 119, 223102.	3.3	3
916	Resonant Degenerate Four-Wave Mixing at the Defect Energy Levels of 2D Organic–Inorganic Hybrid Perovskite Crystals. ACS Applied Materials & Interfaces, 2021, 13, 57075-5708 <u>3.</u>	8.0	4

#	Article	IF	CITATIONS
917	Stable Bismuthâ€Doped Lead Halide Perovskite Coreâ€Shell Nanocrystals by Surface Segregation Effect. Small, 2022, 18, e2104399.	10.0	12
918	Degradation mechanism and addressing techniques of thermal instability in halide perovskite solar cells. Solar Energy, 2021, 230, 954-978.	6.1	19
919	Interfacial engineering of mp-TiO2/CH3NH3PbI3 with Al2O3: Effect of different phases of alumina on performance and stability of perovskite solar cells. Journal of Materials Research, 2021, 36, 4938-4950.	2.6	3
920	Surface Defect Formation and Passivation in Formamidinium Lead Triiodide (FAPbI ₃) Perovskite Solar Cell Absorbers. Journal of Physical Chemistry Letters, 2022, 13, 324-330.	4.6	33
921	Cross-linkable molecule in spatial dimension boosting water-stable and high-efficiency perovskite solar cells. Nano Energy, 2022, 93, 106846.	16.0	29
922	Inverse opal photonic crystal stabilized CsPbX3 perovskite quantum dots and their application in white LED. Chemical Engineering Journal, 2022, 432, 134409.	12.7	20
923	Recent progress in perovskite solar cells: challenges from efficiency to stability. Materials Today Chemistry, 2022, 23, 100686.	3.5	26
924	Optimizing the Lifespan of Perovskite Solar Cells with Polycarbonate Polymer Encapsulation. International Journal of Optics and Photonics, 2021, 15, 55-64.	0.3	0
925	Formamidinium-based Ruddlesden–Popper perovskite films fabricated <i>via</i> two-step sequential deposition: quantum well formation, physical properties and film-based solar cells. Energy and Environmental Science, 2022, 15, 1144-1155.	30.8	27
926	Flexible, High Scintillation Yield Cu ₃ Cu ₂ I ₅ Film Made of Ballâ€Milled Powder for High Spatial Resolution Xâ€Ray Imaging. Advanced Optical Materials, 2022, 10, .	7.3	37
927	Anion Exchange in Lead Halide Perovskites: An Overview. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	12
928	4-tert-butyl pyridine additive for moisture-resistant wide bandgap perovskite solar cells. Optical Materials, 2022, 123, 111876.	3.6	12
929	Orientation Control of 2D Perovskite in 2D/3D Heterostructure by Templated Growth on 3D Perovskite. , 2022, 4, 378-384.		15
930	Dimethylamine Exchanging of a New Hole Transport Material for Highly efficient CsPbI2Br solar cells. Journal of Physics: Conference Series, 2022, 2174, 012027.	0.4	1
931	Investigation of emission behaviour of perovskite nanocrystals using nano to microspheres of TiO ₂ . New Journal of Chemistry, 2022, 46, 844-850.	2.8	9
932	Defects and passivation in perovskite solar cells. Surface Innovations, 2022, 10, 3-20.	2.3	18
933	Highly luminescent broadband phosphors based on acid solvent coordinated two-dimensional layered tin-based perovskites. Journal of Materials Chemistry C, 2022, 10, 3856-3862.	5.5	12
934	Influence of Lead Source on the Film Morphology of Perovskites Spin-Coated on Planar and Mesoporous Architectures under Ambient Conditions. Journal of Electronic Materials, 2022, 51, 1623.	2.2	0

#	Article	IF	CITATIONS
935	In-situ fabrication of Cu doped dual-phase CsPbBr3–Cs4PbBr6 inorganic perovskite nanocomposites for efficient and selective photocatalytic CO2 reduction. Chemical Engineering Journal, 2022, 434, 134811.	12.7	22
936	Surface reconstruction strategy improves the all-inorganic CsPbIBr2 based perovskite solar cells and photodetectors performance. Nano Energy, 2022, 94, 106960.	16.0	35
937	Dopant-free, hole-transporting polymers containing benzotriazole acceptor unit for perovskite solar cells. Dyes and Pigments, 2022, 200, 110170.	3.7	6
938	Multifunctional Heterocyclic-Based Spacer Cation for Efficient and Stable 2D/3D Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 9183-9191.	8.0	12
939	Inverted Perovskite Solar Cells: The Emergence of a Highly Stable and Efficient Architecture. Energy Technology, 2022, 10, .	3.8	11
940	Ultraâ€Stable CsPbX ₃ @Pyrophosphate Nanoparticles in Water over One Year. Small, 2022, 18, e2107548.	10.0	20
941	Inclusion of triphenylamine unit in dopant-free hole transport material for enhanced interfacial interfacial interaction in perovskite photovoltaics. Dyes and Pigments, 2022, 200, 110162.	3.7	10
942	Method for studying the photostability of solar cells based on organic-inorganic perovskites using a confocal spectrometer. Journal of the Belarusian State University Physics, 2022, , 88-97.	0.2	Ο
943	Charge transfer excitons in unfunctionalized graphite-wrapped MAPbBr ₃ nanocrystal composites with different morphologies. New Journal of Chemistry, 2022, 46, 8583-8591.	2.8	3
944	A small-molecule-templated nanostructure back electrode for enhanced light absorption and photocurrent in perovskite quantum dot photovoltaics. Journal of Materials Chemistry A, 2022, 10, 8966-8974.	10.3	3
945	Recent developments of lead-free halide double perovskites: a new superstar in the optoelectronic field. Materials Advances, 2022, 3, 3742-3765.	5.4	43
946	Instability Issues and Stabilization Strategies of Lead Halide Perovskites for Photo(electro)catalytic Solar Fuel Production. Journal of Physical Chemistry Letters, 2022, 13, 1806-1824.	4.6	7
947	Effect of Chlorine Addition on the Performance and Stability of Electrodeposited Mixed Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 2218-2230.	6.7	10
948	Efficient Enhancement of Stability and Luminescence of Three-Dimensional CsPbBr ₃ Nanoparticles via Ligand-Triggered Transformation into Zero-Dimensional Cs ₄ PbBr ₆ Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 4172-4181.	3.1	4
949	Polycrystalline Formamidinium Lead Bromide X-ray Detectors. Applied Sciences (Switzerland), 2022, 12, 2013.	2.5	7
950	Optical Characterization and Prediction with Neural Network Modeling of Various Stoichiometries of Perovskite Materials Using a Hyperregression Method. Nanomaterials, 2022, 12, 932.	4.1	3
951	Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning. Journal of Physical Chemistry Letters, 2022, 13, 2254-2263.	4.6	13
952	MAPbBr ₃ nanocrystals from aqueous solution for poly(methyl) Tj ETQq1 1 0.784314 rgBT /Overlock photoluminescence. Nanotechnology, 2022, 33, 235605.	10 Tf 50 6 2.6	57 Td (met 7

#	Article	IF	CITATIONS
953	Application of Halide Perovskite Nanocrystals in Solarâ€Driven Photo(electro)Catalysis. Solar Rrl, 2022, 6, .	5.8	5
954	Imaging the Moisture-Induced Degradation Process of 2D Organolead Halide Perovskites. ACS Omega, 2022, 7, 10365-10371.	3.5	10
955	Stability of Tin- versus Lead-Halide Perovskites: Ab Initio Molecular Dynamics Simulations of Perovskite/Water Interfaces. Journal of Physical Chemistry Letters, 2022, 13, 2321-2329.	4.6	29
956	What Happens When Halide Perovskites Meet with Water?. Journal of Physical Chemistry Letters, 2022, 13, 2281-2290.	4.6	70
957	A descriptor for the structural stability of organic–inorganic hybrid perovskites based on binding mechanism in electronic structure. Journal of Molecular Modeling, 2022, 28, 80.	1.8	8
958	Efficient and stable TiO2 nanorod array structured perovskite solar cells in air: Co-passivation and synergistic mechanism. Ceramics International, 2022, 48, 17950-17959.	4.8	9
959	Highly efficient CsPbI3/Cs1-xDMAxPbI3 bulk heterojunction perovskite solar cell. Joule, 2022, 6, 850-860.	24.0	70
960	Sensitive direct x-ray detectors based on the In–Ga–Zn–O/perovskite heterojunction phototransistor. Flexible and Printed Electronics, 2022, 7, 014013.	2.7	5
961	Water-Accelerated Photooxidation of CH ₃ NH ₃ PbI ₃ Perovskite. Journal of the American Chemical Society, 2022, 144, 5552-5561.	13.7	40
962	Progress on the stability and encapsulation techniques of perovskite solar cells. Organic Electronics, 2022, 106, 106515.	2.6	22
963	Aiming at the industrialization of perovskite solar cells: Coping with stability challenge. Applied Physics Letters, 2021, 119, .	3.3	3
964	Monolayer CVD Graphene Barrier Enhances the Stability of Planar p–i–n Organic–Inorganic Metal Halide Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 52-60.	5.1	5
965	Bandgap Correction and Spin-Orbit Coupling Induced Absorption Spectra of Dimethylammonium Lead Iodide for Solar Cell Absorber. Frontiers in Energy Research, 2021, 9, .	2.3	1
966	Ultralow Lightâ€Power Consuming Photonic Synapses Based on Ultrasensitive Perovskite/Indiumâ€Galliumâ€Zincâ€Oxide Heterojunction Phototransistors. Advanced Electronic Materials, 2022, 8, .	5.1	18
967	Improving the Efficiency, Stability, and Adhesion of Perovskite Solar Cells Using Nanogel Additive Engineering. ACS Applied Materials & Interfaces, 2021, 13, 58640-58651.	8.0	2
968	Perovskites: weaving a network of knowledge beyond photovoltaics. Journal of Materials Chemistry A, 2022, 10, 19046-19066.	10.3	5
969	Modulation of Perovskite Grain Boundaries by Electron Donor–Acceptor Zwitterions <i>R</i> , <i>R</i> -Diphenylamino-phenyl-pyridinium-(CH ₂) _{<i>n</i>} -sulfonates: All-Round Improvement on the Solar Cell Performance. Jacs Au, 2022, 2, 1189-1199.	7.9	8
970	In Situ Polymer Network in Perovskite Solar Cells Enabled Superior Moisture and Thermal Resistance. Journal of Physical Chemistry Letters, 2022, 13, 3754-3762.	4.6	14

#	Article	IF	CITATIONS
971	Achieving Air/Water Stable and Photocatalytically Active Ge-Containing 2D Halide Perovskites by Organic Spacer Engineering. SSRN Electronic Journal, 0, , .	0.4	2
972	Efficient and Stable FAâ€Rich Perovskite Photovoltaics: From Material Properties to Device Optimization. Advanced Energy Materials, 2022, 12, .	19.5	16
973	Effect of Stability of Two-Dimensional (2D) Aminoethyl Methacrylate Perovskite Using Lead-Based Materials for Ammonia Gas Sensor Application. Polymers, 2022, 14, 1853.	4.5	5
974	Recent Progress in Ionic Liquids for Stability Engineering of Perovskite Solar Cells. Small Structures, 2022, 3, .	12.0	30
975	Reversible Degradation in Hole Transport Layerâ€Free Carbonâ€Based Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	4
976	Study of step annealing method and the effect on optical, structural, morphological and transport properties of CH3NH3PbI3. Synthetic Metals, 2022, 287, 117081.	3.9	1
977	A D–Ĩ€â€"A Organic Dye as a Passivator to Effectively Regulate the Performance of Perovskite Solar Cells. Energy Technology, 2022, 10, .	3.8	2
978	Suppression of Coffeeâ€Ring Effect in Airâ€Processed Inkjetâ€Printed Perovskite Layer toward the Fabrication of Efficient Largeâ€Sized Allâ€Printed Photovoltaics: A Perovskite Precursor Ink Concentration Regulation Strategy. Solar Rrl, 2022, 6, .	5.8	9
979	Perovskite modifiers with porphyrin/phthalocyanine complexes for efficient photovoltaics. Journal of Coordination Chemistry, 2022, 75, 1494-1519.	2.2	2
980	Damla Döküm Yöntemi ile Üretilen Perovskit Filmlerin Yaşlanma Süreçlerinin Elektriksel Karakterizasyon Teknikleri ile Belirlenmesi. SDU Journal of Science, 2022, 17, 44-54.	0.3	0
982	Electrospun perovskite nano-network for flexible, near-room temperature, environmentally friendly and ultrastable light regulation. Journal of Materials Science and Technology, 2022, 130, 35-43.	10.7	3
983	Resolve deep-rooted challenges of halide perovskite for sustainable energy development and environmental remediation. Nano Energy, 2022, 99, 107401.	16.0	14
985	High-performance Ruddlesden–Popper two-dimensional perovskite solar cells <i>via</i> solution processed inorganic charge transport layers. Physical Chemistry Chemical Physics, 2022, 24, 15912-15919.	2.8	6
986	Ice Assisted Electron-Beam Lithography for Halide Perovskite Optoelectronic Nanodevices. SSRN Electronic Journal, 0, , .	0.4	0
987	Fabrication of Highâ€Quality CsBi ₃ 1 ₁₀ Films via a Gasâ€Assisted Approach for Efficient Leadâ€Free Perovskite Solar Cells. Energy Technology, 2022, 10, .	3.8	4
989	Investigating the Morphology, Optical, and Thermal Properties of Multiphase-TiO2/MAPbI3 Heterogeneous Thin-Films for Solar Cell Applications. Condensed Matter, 2022, 7, 39.	1.8	0
990	Key Factors Affecting the Stability of CsPbI ₃ Perovskite Quantum Dot Solar Cells: A Comprehensive Review. Advanced Materials, 2023, 35, .	21.0	19
991	Degradation mechanism and stability improvement of formamidine-based perovskite solar cells under high humidity conditions. Nano Research, 2022, 15, 8955-8961.	10.4	8

#	Article	IF	CITATIONS
992	Review of technology specific degradation in crystalline silicon, cadmium telluride, copper indium gallium selenide, dye sensitised, organic and perovskite solar cells in photovoltaic modules: Understanding how reliability improvements in mature technologies can enhance emerging technologies. Progress in Photovoltaics: Research and Applications, 2022, 30, 1365-1392.	8.1	26
994	Structural, Electronic, and Optical Properties of Ga-Based Lead-Free Mixed-Halide Perovskites Cs3Gal6-xBrx (0 वै‰ऋ वे‰छ) for Solar Cell Applications: A DFT Study. Physica B: Condensed Matter, 2022, 640, 414085.	2.7	1
995	Simple double-chopping method for scattering reduction in transient absorption spectroscopy. Chemical Physics Letters, 2022, 802, 139766.	2.6	1
996	Exploring the air stability of all-inorganic halide perovskites in the presence of photogenerated electrons by DFT and AIMD studies. Sustainable Energy and Fuels, 2022, 6, 3778-3787.	4.9	3
997	Ultrahigh Fluorescence Enhancement Towards Water in Flexible Polymer-Encapsulated Methylammonium Halide Perovskites Films. SSRN Electronic Journal, 0, , .	0.4	0
998	Fabrication and amplified spontaneous emission behavior of FAPbBr ₃ perovskite quantum dots in solid polymer rods. Materials Science-Poland, 2022, 40, 84-100.	1.0	1
999	Sustainable Pb Management in Perovskite Solar Cells toward Ecoâ€Friendly Development. Advanced Energy Materials, 2022, 12, .	19.5	38
1000	Dopant compensation in p-type doped MAPb _{1â^'} _{<i>x</i>} Cu _{<i>x</i>} I ₃ alloyed perovskite crystals. Applied Physics Letters, 2022, 121, 012102.	3.3	0
1001	Roles of Organic Ligands in Ambient Stability of Layered Halide Perovskites. ACS Applied Materials & Interfaces, 2022, 14, 33085-33093.	8.0	2
1002	Aerosol-Prepared Microcrystals as Amplifiers to Learn about the Facet and Point Defect-Dependent Lability and Stabilization of Hybrid Perovskite Semiconductors against Humidity and Light. Crystal Growth and Design, 0, , .	3.0	1
1003	High efficiency stable planar perovskite solar cells via heavy water additive. Solar Energy Materials and Solar Cells, 2022, 245, 111861.	6.2	2
1004	Visualization of Ion Migration in an Inorganic Mixed Halide Perovskite by One-Photon and Multiphoton Absorption: Effect of Guanidinium A-Site Cation Incorporation. Journal of Physical Chemistry Letters, 2022, 13, 6944-6955.	4.6	2
1005	Stability assessment of carbon-based hole-transport-layer-free perovskite solar cells under accelerated ageing: A combined experimental and predictive modelling analysis. Electrochimica Acta, 2022, 427, 140905.	5.2	5
1006	Electronic Disorder Dominates the Charge-Carrier Dynamics in Two-Dimensional/Three-Dimensional Organic–Inorganic Perovskite Heterostructure. Journal of Physical Chemistry C, 2022, 126, 12689-12695.	3.1	7
1007	Stabilization and Performance Enhancement Strategies for Halide Perovskite Photocatalysts. Advanced Materials, 2023, 35, .	21.0	31
1008	Printable Lowâ€Temperature Carbon for Highly Efficient and Stable Mesoscopic Perovskite Solar Cells. Energy Technology, 2022, 10, .	3.8	2
1009	Ion-Assisted Ligand Exchange for Efficient and Stable Inverted FAPbI ₃ Quantum Dot Solar Cells. ACS Applied Energy Materials, 2022, 5, 9858-9869.	5.1	9
1010	Stabilized perovskite photovoltaics via Supramolecules composed of carbon/graphene quantum dots and Triisoâ€Propylsilylethynyl agents. International Journal of Energy Research, 2022, 46, 22832-22844.	4.5	0

#	Article	IF	CITATIONS
1011	Electron Transport Layer-Free Ruddlesden–Popper Two-Dimensional Perovskite Solar Cells Enabled by Tuning the Work Function of Fluorine-Doped Tin Oxide Electrodes. Crystals, 2022, 12, 1090.	2.2	0
1012	Thermally induced failure mechanisms in double and triple cations perovskite solar cells. AIP Advances, 2022, 12, .	1.3	2
1013	Stability of Perovskite Lightâ€Emitting Diodes: Existing Issues and Mitigation Strategies Related to Both Material and Device Aspects. Advanced Materials, 2022, 34, .	21.0	65
1014	Blueâ€Lightâ€Excited Leadâ€Free Double Perovskite Cs ₂ Ag _{0.6} Na _{0.4} In _{0.8} Bi _{0.2} Cl _{Cl_{/<i>x< at Room Temperature and Photovoltaic Applications. Advanced Optical Materials, 2022, 10, .</i>}}	/tr≫KBr(KI)	9
1015	lce-assisted electron-beam lithography for halide perovskite optoelectronic nanodevices. Nano Energy, 2022, 102, 107692.	16.0	1
1016	Ultra-stable self-crystallized CsPbBr3 perovskite quantum dots glass for high power remote LED encapsulated. Optik, 2022, 269, 169940.	2.9	0
1017	Water-assistant ultrahigh fluorescence enhancement in perovskite polymer-encapsulated film for flexible X-ray scintillators. Chemical Engineering Journal, 2023, 452, 139132.	12.7	5
1018	Environmental impact of quantum dots. , 2022, , 837-867.		1
1019	Accurately Determining the Phase Transition Temperature of CsPbl ₃ via Random-Phase Approximation Calculations and Phase-Transferable Machine Learning Potentials. Chemistry of Materials, 2022, 34, 8561-8576.	6.7	8
1020	Configurable Organic Charge Carriers toward Stable Perovskite Photovoltaics. Chemical Reviews, 2022, 122, 14954-14986.	47.7	26
1021	Single-Crystal Hybrid Lead Halide Perovskites: Growth, Properties, and Device Integration for Solar Cell Application. Crystal Growth and Design, 2022, 22, 6338-6362.	3.0	7
1022	A Way to Reach 10% Efficiency with Carbonâ€Based Electrodeposited Mixed Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	7
1023	Switchable Color Semiconductors: Methylamine Intercalation, Deintercalation, and Retention in Two-Dimensional Halide Perovskites. ACS Applied Energy Materials, 2022, 5, 12029-12038.	5.1	2
1024	Electric Power and Current Collection in Semiconductor Devices with Suppressed Electron–Hole Recombination. ACS Energy Letters, 2022, 7, 3557-3563.	17.4	3
1025	Addressing the stability challenge of metal halide perovskite based photocatalysts for solar fuel production. JPhys Energy, 2022, 4, 042005.	5.3	2
1026	Intrinsic Halide Immiscibility in 2D Mixed-Halide Ruddlesden–Popper Perovskites. ACS Energy Letters, 2022, 7, 3423-3431.	17.4	13
1027	Challenges, Opportunities, and Prospects in Metal Halide Perovskites from Theoretical and Machine Learning Perspectives. Advanced Energy Materials, 2022, 12, .	19.5	19
1028	Low-cost perovskite materials for decentralized energy generation and Department of Defense environmental impact reduction. , 2022, , .		0

		CITATION REPORT		
#	Article		IF	CITATIONS
1029	Ecotoxicity and Sustainability of Emerging Pbâ€Based Photovoltaics. Solar Rrl, 2022, 6	, .	5.8	6
1030	Diseño de nuevos materiales para mejorar la estabilidad de celdas solares Tao A OT 02 Una oportunidad para el aprovechamiento de la radiación solar en México QuÃmic Sciences \$b, 2022, 11, 20-25.	2 de perovskita: a Hoy Chemistry	0.1	2
1031	Nanomechanical signatures of degradation-free influence of water on halide perovskite Communications Materials, 2022, 3, .	mechanics.	6.9	7
1032	Layer-number tailoring and template-induced orientation control of 2D perovskites on by adopting the Dion–Jacobson phase. Applied Physics Express, 2022, 15, 111002.	3D perovskites	2.4	2
1033	Dopantâ€Free Bithiopheneâ€Imideâ€Based Polymeric Holeâ€Transporting Materials fo Perovskite Solar Cells. Advanced Materials, 2022, 34, .	r Efficient and Stable	21.0	37
1034	NH4Ac boosts the efficiency of carbon-based all-inorganic perovskite solar cells fabrica ambient air to 15.43%. Applied Surface Science, 2023, 610, 155175.	ted in the full	6.1	6
1035	Quantumâ€Confined Dodecahedron CsPbBr ₃ Quantum Dots by A Sequer Strategy for Efficient Blue PeLEDs. Advanced Functional Materials, 2022, 32, .	ntial Postâ€Treatment	14.9	6
1036	Pressure-Induced Tunable Charge Carrier Dynamics in Mn-Doped CsPbBr3 Perovskite. N 15, 6984.	Naterials, 2022,	2.9	2
1037	Nondestructive Post-Treatment Enabled by <i>In Situ</i> Generated 2D Perovskites De Multi-ammonium Molecule Vapor for High-Performance 2D/3D Bilayer Perovskite Solar Applied Materials & Interfaces, 2022, 14, 51053-51065.	rived from Cells. ACS	8.0	3
1038	Study on the long time aging behavior of MAPbl ₃ : from experiment to firs simulation. RSC Advances, 2022, 12, 32979-32985.	t-principles	3.6	0
1039	Cuttingâ€Edge Studies Toward Commercialization of Large Area Solutionâ€Processed Cells. Advanced Materials Technologies, 2023, 8, .	Perovskite Solar	5.8	4
1040	Moisture-Dependent Blinking of Individual CsPbBr ₃ Nanocrystals Revealed Single-Particle Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 10751-10	1 by 0758.	4.6	6
1041	Solvent Engineering of Ionic Liquids for Stable and Efficient Perovskite Solar Cells. Adva and Sustainability Research, 2023, 4, .	anced Energy	5.8	4
1042	Molecular engineering of contact interfaces for high-performance perovskite solar cells Reviews Materials, 2023, 8, 89-108.	. Nature	48.7	125
1043	Recent review of interfacial engineering for perovskite solar cells: effect of functional g the stability and efficiency. Materials Today Chemistry, 2022, 26, 101224.	roups on	3.5	8
1044	A detailed review of perovskite solar cells: Introduction, working principle, modelling, fa techniques, future challenges. , 2022, 172, 207450.	brication		18
1045	Perovskite solar cells: Thermal and chemical stability improvement, and economic analy Today Chemistry, 2023, 27, 101284.	vsis. Materials	3.5	5
1046	The progress and efficiency of CsPbl ₂ Br perovskite solar cells. Journal of N Chemistry C, 2023, 11, 426-455.	1aterials	5.5	9

~			~	
Сіт	'ATI	ON	12 E D C	DT
\sim	A11		NLFU	1.1.1

#	Article	IF	CITATIONS
1047	Vitamin needed: Lanthanides in optoelectronic applications of metal halide perovskites. Materials Science and Engineering Reports, 2023, 152, 100710.	31.8	12
1048	Cutting-edge stability in perovskite solar cells through quantum dot-covered P3HT nanofibers. Polymer-Plastics Technology and Materials, 2023, 62, 162-176.	1.3	1
1049	Recent Progress in Transparent Conductive Materials for Photovoltaics. Energies, 2022, 15, 8698.	3.1	4
1050	Enhanced Photon Harvesting in Wedge Tandem Solar Cell. Advanced Theory and Simulations, 0, , 2200632.	2.8	0
1051	Thin Film Solution Processable Perovskite Solar Cell. , 0, , .		1
1052	Dark And Photoconductivity Behavior of CH3NH3PbI3 Thin Films Depending On Atmospheric Conditions. Journal of the Institute of Science and Technology, 0, , 2140-2152.	0.9	1
1053	The current state of the art in internal additive materials and quantum dots for improving efficiency and stability against humidity in perovskite solar cells. Heliyon, 2022, 8, e11878.	3.2	2
1054	Metal Halide Perovskite Alloy: Fundamental, Optoelectronic Properties and Applications. Advanced Photonics Research, 2023, 4, .	3.6	4
1055	Optimal Parameter Identification of Perovskite Solar Cells Using Modified Bald Eagle Search Optimization Algorithm. Energies, 2023, 16, 471.	3.1	4
1056	Study of bias-induced degradation mechanism in perovskite CH3NH3PbI3-xClx solar cells by electroluminescence spectroscopy. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	0
1057	Open-circuit voltage loss in perovskite quantum dot solar cells. Nanoscale, 2023, 15, 3713-3729.	5.6	6
1058	Air- and water-stable and photocatalytically active germanium-based 2D perovskites by organic spacer engineering. Cell Reports Physical Science, 2023, 4, 101214.	5.6	3
1059	Broad-Spectrum Germanium Photodetector Based on the Ytterbium-Doped Perovskite Nanocrystal Downshifting Effect. , 2023, 1, 507-512.		2
1060	Carbon Dots in Perovskite Solar Cells: Properties, Applications, and Perspectives. Energy & Fuels, 2023, 37, 876-901.	5.1	7
1061	Intermolecular Interactions of A-Site Cations Modulate Stability of 2D Metal Halide Perovskites. ACS Energy Letters, 2023, 8, 748-752.	17.4	10
1062	Recycling of halide perovskites. , 2023, , 385-446.		0
1063	A novel parameter identification strategy based on COOT optimizer applied to a three-diode model of triple cation perovskite solar cells. Neural Computing and Applications, 0, , .	5.6	0
1064	Exploring the Evolution of Metal Halide Perovskites via Latent Representations of the Photoluminescent Spectra. Advanced Intelligent Systems, 2023, 5, .	6.1	1

ARTICLE IF CITATIONS Other applications of halide perovskites., 2023,, 301-333. 1065 1 Challenges in the development of metal-halide perovskite single crystal solar cells. Journal of 1066 Materials Chemistry A, 2023, 11, 3822-3848. Highly Stable Perovskite Solar Cells by Reducing Residual <scp>Waterâ€Induced</scp> Decomposition of 1067 4.9 1 Perovskite. Chinese Journal of Chemistry, 2023, 41, 1594-1602. Structure stability and optical properties of spatial confined all-inorganic perovskites nanocrystals 1068 3.1 under gamma-ray irradiation. Journal of Luminescence, 2023, 258, 119784. Enhanced moisture-resistant and highly efficient perovskite solar cells via surface treatment with 1069 6.1 2 long-chain alkylammonium iodide. Applied Surface Science, 2023, 623, 157003. Building optimistic perovskite-polymer composite solar cells: Feasible involvement of a BLP inclusion to efficiently stable perovskite films. Materials Science in Semiconductor Processing, 2023, 160, 4.0 107409. Lead metal halide perovskite solar cells: Fabrication, advancement strategies, alternatives, and future 1071 1.9 7 perspectives. Materials Today Communications, 2023, 35, 105686. Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. Environmental Pollution, 2023, 7.5 24 326, 121474. Structure stabilized with robust molecular cation N(CH3)4+ in high efficiency perovskite solar cells. 1073 3.5 1 Materials Today Chemistry, 2023, 30, 101511. 1074 Shedding Light on the Moisture Stability of Halide Perovskite Thin Films. Energy Technology, 2023, 11, . 3.8 Surfaceâ€stabilized CsPbl₃ Nanocrystals with Tailored Organic Polymer Ligand Binding. 1075 0 3.3 Chemistry - A European Journal, 2023, 29, . An ultra-thin chemical vapor deposited polymer interlayer to achieve highly improved stability of perovskite solar cell. Chemical Engineering Journal, 2023, 461, 141914 Review on Enhancement of Stability and Efficiency of Perovskite Solar Cell. Journal of Physics: 1077 0.4 0 Conference Series, 2023, 2426, 012015. Halide perovskite quantum dots for photocatalytic CO₂reduction. Journal of Materials 10.3 Chemistry A, 2023, 11, 12482-12498. Recent advances in carbon-based materials for high-performance perovskite solar cells: gaps, 1079 7 4.6 challenges and fulfillment. Nanoscale Advances, 2023, 5, 1492-1526. Various approaches to synthesize water-stable halide PeNCs. Journal of Materials Chemistry A, 2023, 11, 6796-6813. The Effect of Redox Reactions on the Stability of Perovskite Solar Cells. ChemPhotoChem, 2023, 7, . 1081 3.01 Recent Progress on Synthesis, Intrinsic Properties and Optoelectronic Applications of Perovskite 14.9

CITATION REPORT

Single Crystals. Advanced Functional Materials, 2023, 33, .

		REPORT	
# 1083	ARTICLE Stable self-trapped broadband emission from an organolead halide coordination polymer with strong layer corrugation and high chemical robustness. Inorganic Chemistry Frontiers, 2023, 10, 2645-2652.	IF 6.0	CITATIONS
1084	Examining a Year-Long Chemical Degradation Process and Reaction Kinetics in Pristine and Defect-Passivated Lead Halide Perovskites. Chemistry of Materials, 2023, 35, 2904-2917.	6.7	3
1085	Giant Humidity Effect of 2D Perovskite on Paper Substrate: Optoelectronic Performance and Mechanical Flexibility. Advanced Optical Materials, 2023, 11, .	7.3	1
1086	Review on Chemical Stability of Lead Halide Perovskite Solar Cells. Nano-Micro Letters, 2023, 15, .	27.0	29
1087	Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines, 2023, 14, 806.	2.9	8
1088	Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nature Communications, 2023, 14, .	12.8	15
1089	The role of different dopants of Spiro-OMeTAD hole transport material on the stability of perovskite solar cells: A mini review. Vacuum, 2023, 214, 112076.	3.5	9
1090	Self-healing perovskite solar cells based on copolymer-templated TiO2 electron transport layer. Scientific Reports, 2023, 13, .	3.3	5
1091	Role of surface terminations in the chemical stability of CH3NH3PbI3 perovskite in combined light, H2O, and O2 environments: DFT/AIMD calculations and experimental validation. Materials Today Advances, 2023, 18, 100370.	5.2	1
1092	Hydrochromic Perovskite System with Reversible Blueâ€Green Color for Advanced Antiâ€Counterfeiting. Small, 2023, 19, .	10.0	10
1093	Phase Transition Induced Thermal Reversible Luminescent of Perovskite Quantum Dots Fibers. Advanced Functional Materials, 2023, 33, .	14.9	6
1094	Stability and Performance Enhancement of Perovskite Solar Cells: A Review. Energies, 2023, 16, 4031.	3.1	8
1095	Cellulose acetate-derived ternary-doped hierarchically porous carbons blended perovskite active layers for solar cells and X-ray detectors. Surfaces and Interfaces, 2023, 39, 102945.	3.0	2
1096	Hydrophobic–Hydrophilic Block Copolymer Mediated Tuning of Halide Perovskite Photosensitive Device Stability and Efficiency. ACS Applied Materials & Interfaces, 2023, 15, 25932-25941.	8.0	4
1097	Water-Regulated Lead Halide Perovskites Precursor Solution: Perovskite Structure Making and Breaking. Journal of Physical Chemistry Letters, 2023, 14, 4876-4885.	4.6	1
1098	Advances on the Application of Wide Bandâ€Gap Insulating Materials in Perovskite Solar Cells. Small Methods, 2023, 7, .	8.6	5
1099	Zero Threshold for Water Adsorption on MAPbBr ₃ . Small, 2023, 19, .	10.0	2
1100	First of Their Kind: Solar Cells with a Dryâ€Processed Perovskite Absorber Layer via Powder Aerosol Deposition and Hotâ€Pressing. Solar Rrl, 2023, 7, .	5.8	1

# 1101	ARTICLE Morphological Insights into the Degradation of Perovskite Solar Cells under Light and Humidity. ACS Applied Materials & amp; Interfaces, 2023, 15, 30342-30349.	IF 8.0	CITATIONS
1102	In Situ Polymerizing Internal Encapsulation Strategy Enables Stable Perovskite Solar Cells toward Lead Leakage Suppression. Advanced Functional Materials, 2023, 33, .	14.9	3
1103	Recent Progress in Perovskite Tandem Solar Cells. Nanomaterials, 2023, 13, 1886.	4.1	8
1104	A review on computational modeling of instability and degradation issues of halide perovskite photovoltaic materials. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	14.6	3
1105	Lead-free double perovskite halide fluorescent oxygen sensor with high stability. Ceramics International, 2023, 49, 30266-30272.	4.8	3
1106	Perovskite-based solar cells. , 2023, , 265-292.		0
1107	Monitoring the stability and degradation mechanisms of perovskite solar cells by <i>in situ</i> and <i>operando</i> characterization. , 2023, 1, .		3
1108	Characterization Tools to Probe Degradation Mechanisms in Organic and Perovskite Solar Cells. Solar Rrl, 2023, 7, .	5.8	1
1109	Progress and Challenges of Chloride–lodide Perovskite Solar Cells: A Critical Review. Nanomanufacturing, 2023, 3, 177-216.	3.6	3
1110	Investigation on the structural, spectral, and optical properties of MAPbI3.H2O and MAPbI3 perovskite crystals for photovoltaic cells. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1
1111	Oxygenâ€Induced Reversible Degradation of Perovskite Solar Cells. Solar Rrl, 2023, 7, .	5.8	0
1112	In Situ and Operando Characterization Techniques in Stability Study of Perovskite-Based Devices. Nanomaterials, 2023, 13, 1983.	4.1	1
1113	Can we make color switchable photovoltaic windows?. Chemical Science, 2023, 14, 7828-7841.	7.4	1
1114	Recycling and Recovery of Deactivated CsPbBr ₃ Perovskite after Photocatalytic CO ₂ Reduction Reaction. ACS Applied Materials & Interfaces, 2023, 15, 33712-33720.	8.0	4
1115	A review on organic hole transport materials for perovskite solar cells: Structure, composition and reliability. Materials Today, 2023, 67, 518-547.	14.2	5
1116	Progress, challenges, and further trends of all perovskites tandem solar cells: A comprehensive review. Materials Today, 2023, 67, 399-423.	14.2	3
1117	Advanced spectroscopic techniques for characterizing defects in perovskite solar cells. Communications Materials, 2023, 4, .	6.9	9
1118	Understanding optical and structural properties of the CH3NH3PbI3 nanocrystal thin films under humidity conditions. Optical Materials, 2023, 142, 114115.	3.6	0

#	Article	IF	CITATIONS
1119	Surface Modification in CsPb _{0.5} Sn _{0.5} I ₂ Br Inorganic Perovskite Solar Cells: Effects of Bifunctional Dipolar Molecules on Photovoltaic Performance. ACS Applied Materials & Interfaces, 2023, 15, 36594-36601.	8.0	1
1120	Solid Electrolyte Interphase Formation in Tellurium Iodide Perovskites during Electrochemistry and Photoelectrochemistry. ACS Applied Materials & Interfaces, 0, , .	8.0	0
1121	Perovskite Smart Windows: The Light Manipulator in Energyâ€Efficient Buildings. Advanced Materials, 0, , .	21.0	6
1122	Stabilizing Metal Halide Perovskites for Solar Fuel Production: Challenges, Solutions, and Future Prospects. Advanced Materials, 2023, 35, .	21.0	6
1123	Metal halide perovskite single crystal growth and application for X-ray detectors. Journal of Materials Chemistry C, 2023, 11, 12105-12127.	5.5	1
1124	CuPc Passivation of a MAPbBr ₃ Single Crystal Surface. Journal of Physical Chemistry C, 2023, 127, 19599-19606.	3.1	1
1125	Understanding the Thermodynamic Stability of the [100] Surface Systems of the Photovoltaic Chalcogenide Perovskite BaZrS ₃ . Journal of Physical Chemistry C, 2023, 127, 17146-17156.	3.1	0
1126	In Situ Crossâ€Linking Strategy to Enable Highly Stable Perovskite Solar Cells. Small, 2023, 19, .	10.0	0
1127	Humidityâ€Induced Degradation Processes of Halide Perovskites Unveiled by Correlative Analytical Electron Microscopy. Small Methods, 2024, 8, .	8.6	0
1128	Moisture Induced Secondary Crystal Growth Boosting the Efficiency of Hole Transport Layerâ€Free Carbonâ€Based Perovskite Solar Cells beyond 19.5%. Advanced Functional Materials, 2024, 34, .	14.9	3
1129	Thermodynamic Band Gap Model for Photoinduced Phase Segregation in Mixed-Halide Perovskites. Journal of Physical Chemistry C, 2023, 127, 18547-18559.	3.1	1
1130	Recent Advances in UV-Cured Encapsulation for Stable and Durable Perovskite Solar Cell Devices. Polymers, 2023, 15, 3911.	4.5	0
1131	Encapsulation: The path to commercialization of stable perovskite solar cells. Matter, 2023, 6, 3838-3863.	10.0	9
1132	Challenges and Strategies Toward Future Stable Perovskite Photovoltaics. Solar Rrl, 2023, 7, .	5.8	1
1133	Enhancing the CsPbBr ₃ PeLEC properties <i>via</i> PDMS/PMHS double-layer polymer encapsulation and high relative humidity stress-aging. Journal of Materials Chemistry C, 0, , .	5.5	0
1134	Quinoxalineâ€Based Materials That Exhibit a Significant Passivation Effect and Lead to the Enhancement in the Power Conversion Efficiency of Perovskite Solar Cells. Solar Rrl, 2023, 7, .	5.8	0
1135	Degradation Evolution of Perovskite Solar Cells via In Situ Realâ€Time Optical Observation. Advanced Functional Materials, 2024, 34, .	14.9	1
1136	Moisturized 2-dimensional halide perovskite generates a power density of 30 mW cm-3. Energy and Environmental Science, 0, , .	30.8	0

#	Article	IF	CITATIONS
1137	Mitigating Intrinsic Interfacial Degradation in Semiâ€Transparent Perovskite Solar Cells for High Efficiency and Longâ€Term Stability. Advanced Energy Materials, 2023, 13, .	19.5	0
1138	Hydrogen bonding in perovskite solar cells. Matter, 2024, 7, 38-58.	10.0	2
1139	ETL/perovskite interface engineering using cadmium and lead chalcogenide quantum dots. Electrochimica Acta, 2024, 473, 143523.	5.2	0
1140	Observation of Negative Photoconductivity in (CH ₃ NH ₃) ₃ Bi ₂ (Br _{<i>x</i>} Cl _{1–<i>x</i> Correlating Ion Migration, Stability, and Efficiency in Mixed Halide Perovskite Solar Cell. Journal of Physical Chemistry C. 2023, 127, 23109-23121.}) <s< td=""><td>ub>9</td></s<>	ub>9
1141	Radiation Tolerance of Lead Halide Perovskite Films: An <i>in Situ</i> X-ray Scattering Study. , 2023, 5, 3222-3228.		0
1142	Role of Surface Features on the Initial Dissolution of CH ₃ NH ₃ PbI ₃ Perovskite in Liquid Water: An Ab Initio Molecular Dynamics Study. ACS Nano, 2023, 17, 22371-22387.	14.6	0
1143	Cross-linking strategies for efficient and highly stable perovskite solar cells. Journal of Materials Chemistry C, 0, , .	5.5	0
1144	How the dynamics of attachment to the substrate influence stress in metal halide perovskites. , 2023, 1, .		0
1145	Improving the Stability of Halide Perovskites for Photoâ€, Electroâ€, Photoelectroâ€Chemical Applications. Advanced Functional Materials, 2024, 34, .	14.9	1
1146	An Overview on Lead Halide Perovskite based Composites and Heterostructures: Synthesis and Applications ChemNanoMat, 0, , .	2.8	0
1148	Hydrophobic Hydrogenâ€Bonded Polymer Network for Efficient and Stable Perovskite/Si Tandem Solar Cells. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1149	Hydrophobic Hydrogenâ€Bonded Polymer Network for Efficient and Stable Perovskite/Si Tandem Solar Cells. Angewandte Chemie, 2024, 136, .	2.0	0
1150	Light-enhanced oxygen degradation of MAPbBr ₃ single crystal. Physical Chemistry Chemical Physics, 2024, 26, 5027-5037.	2.8	0
1151	Enhancing solar cell efficiency: Investigation of high-performance lead-based perovskite-on-silicon (PVK–Si) tandem solar cells through design and numerical analysis. AIP Advances, 2024, 14, .	1.3	1
1152	Anionâ€Stabilized Precursor Inks Toward Efficient and Reproducible Airâ€Processed Perovskite Solar Cells. Advanced Energy Materials, 2024, 14, .	19.5	0
1153	Carbon Electrodes for Perovskite Photovoltaics: Interfacial Properties, Metaâ€analysis, and Prospects. Solar Rrl, 2024, 8, .	5.8	0
1154	Electron–Phonon Coupling-Mediated Ultralong Carrier Lifetime in an All-Inorganic Two-Dimensional Cs ₂ Pbl ₂ Cl ₂ Perovskite: Explanation for the High Antisite Defect Tolerance. Journal of Physical Chemistry Letters, 2024, 15, 1784-1794.	4.6	0
1155	Unveiling the Potential of Ambient Air Annealing for Highly Efficient Inorganic CsPbI ₃ Perovskite Solar Cells. Journal of the American Chemical Society, 2024, 146, 4642-4651.	13.7	0

#	Article	IF	CITATIONS
1156	In situ polymerization of waterâ€induced 1,3â€phenylene diisocyanate for enhanced efficiency and stability of inverted perovskite solar cells. , 2024, 3, 316-325.		0
1157	First-principles study on the stability and degradation of the lead-free double perovskite materials Cs2B'BiCl6 (B' = Li, Na, K) under natural environment. Materials Today Communications, 2024, 39, 108619.	1.9	0
1158	Smart Materials to Empowering Perovskite Solar Cells with Selfâ€Healing Capability. Small Structures, 2024, 5, .	12.0	0
1159	Physiochemical machine learning models predict operational lifetimes of CH ₃ NH ₃ PbI ₃ perovskite solar cells. Journal of Materials Chemistry A, 2024, 12, 9730-9746.	10.3	0
1160	Defect mediated losses and degradation of perovskite solar cells: Origin, impacts and reliable characterization techniques. Journal of Energy Chemistry, 2024, 94, 217-253.	12.9	0