Storage and release of organic carbon from glaciers and

Nature Geoscience 8, 91-96 DOI: 10.1038/ngeo2331

Citation Report

#	Article	IF	CITATIONS
1	A preliminary study of cryosphere service function and value evaluation. Advances in Climate Change Research, 2015, 6, 181-187.	5.1	44
2	Endâ€ofâ€winter snow depth variability on glaciers in Alaska. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1530-1550.	2.8	34
3	Assessing net community production in a glaciated Alaskan fjord. Biogeosciences, 2015, 12, 5185-5198.	3.3	8
4	Cryospheric ecosystems: a synthesis of snowpack and glacial research. Environmental Research Letters, 2015, 10, 110201.	5.2	45
5	A new isolation method for biomass-burning tracers in snow: Measurements of p -hydroxybenzoic, vanillic, and dehydroabietic acids. Atmospheric Environment, 2015, 122, 142-147.	4.1	16
6	Spatial Variation in the Origin of Dissolved Organic Carbon in Snow on the Juneau Icefield, Southeast Alaska. Environmental Science & Technology, 2015, 49, 11492-11499.	10.0	34
7	Dissolved organic matter in newly formed sea ice and surface seawater. Geochimica Et Cosmochimica Acta, 2015, 171, 39-49.	3.9	36
8	Storage of dissolved organic carbon in Chinese glaciers. Journal of Glaciology, 2016, 62, 402-406.	2.2	25
9	Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan Plateau. Cryosphere, 2016, 10, 2611-2621.	3.9	65
10	Use of Multi-Carbon Sources by Zooplankton in an Oligotrophic Lake in the Tibetan Plateau. Water (Switzerland), 2016, 8, 565.	2.7	7
11	A Decadal (2002–2014) Analysis for Dynamics of Heterotrophic Bacteria in an Antarctic Coastal Ecosystem: Variability and Physical and Biogeochemical Forcings. Frontiers in Marine Science, 2016, 3, .	2.5	28
12	Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control?. Frontiers in Microbiology, 2016, 7, 956.	3.5	24
13	Molecular Detection and Environment-Specific Diversity of Glycosyl Hydrolase Family 1 β-Glucosidase in Different Habitats. Frontiers in Microbiology, 2016, 7, 1597.	3.5	22
14	Physiological Ecology of Microorganisms in Subglacial Lake Whillans. Frontiers in Microbiology, 2016, 7, 1705.	3.5	47
15	Real-time monitoring of nutrients and dissolved organic matter in rivers: Capturing event dynamics, technological opportunities and future directions. Science of the Total Environment, 2016, 569-570, 647-660.	8.0	120
16	Highâ€resolution modeling of coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed. Water Resources Research, 2016, 52, 3888-3909.	4.2	65
17	Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap. Molecular Ecology, 2016, 25, 3752-3767.	3.9	67
18	The differing biogeochemical and microbial signatures of glaciers and rock glaciers. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 919-932.	3.0	72

#	Article	IF	CITATIONS
19	Chemical Composition of Microbe-Derived Dissolved Organic Matter in Cryoconite in Tibetan Plateau Glaciers: Insights from Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Analysis. Environmental Science & Technology, 2016, 50, 13215-13223.	10.0	92
20	Testing the validity of productivity proxy indicators in high altitude Tso Moriri Lake, NW Himalaya (India). Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449, 421-430.	2.3	14
21	Light-dependent microbial metabolisms drive carbon fluxes on glacier surfaces. ISME Journal, 2016, 10, 2984-2988.	9.8	47
22	A melting glacier feeds aquatic and terrestrial invertebrates with ancient carbon and supports early succession. Arctic, Antarctic, and Alpine Research, 2016, 48, 551-562.	1.1	16
23	Carbonaceous matter deposition in the high glacial regions of the Tibetan Plateau. Atmospheric Environment, 2016, 141, 203-208.	4.1	31
24	Diurnal dynamics of minor and trace elements in stream water draining Dongkemadi Glacier on the Tibetan Plateau and its environmental implications. Journal of Hydrology, 2016, 541, 1104-1118.	5.4	27
25	Fabrication of TiO ₂ @MIL-53 core–shell composite for exceptionally enhanced adsorption and degradation of nonionic organics. RSC Advances, 2016, 6, 71481-71484.	3.6	15
26	The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic. Global Biogeochemical Cycles, 2016, 30, 191-210.	4.9	137
27	Dissolved black carbon in Antarctic lakes: Chemical signatures of past and present sources. Geophysical Research Letters, 2016, 43, 5750-5757.	4.0	27
28	Microbial communities and primary succession in high altitude mountain environments. Annals of Microbiology, 2016, 66, 43-60.	2.6	46
29	Climate change and alpine stream biology: progress, challenges, and opportunities for the future. Biological Reviews, 2017, 92, 2024-2045.	10.4	118
30	Ice sheets as a missing source of silica to the polar oceans. Nature Communications, 2017, 8, 14198.	12.8	122
31	Soil wettability can be explained by the chemical composition of particle interfaces - An XPS study. Scientific Reports, 2017, 7, 42877.	3.3	51
32	Hypsometric control on glacier mass balance sensitivity in Alaska and northwest Canada. Earth's Future, 2017, 5, 324-336.	6.3	42
33	Monazite chemical weathering, rare earth element behavior, and paleoglaciohydrology since the last glacial maximum for the Loch Vale watershed, Colorado, USA. Quaternary Research, 2017, 87, 191-207.	1.7	6
34	Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environmental Microbiology, 2017, 19, 2935-2948.	3.8	130
35	The microbiome of glaciers and ice sheets. Npj Biofilms and Microbiomes, 2017, 3, 10.	6.4	215
36	Carbon dating reveals a seasonal progression in the source of particulate organic carbon exported from the Greenland Ice Sheet. Geophysical Research Letters, 2017, 44, 6209-6217.	4.0	32

#	Article	IF	CITATIONS
37	Dissolved black carbon in the global cryosphere: Concentrations and chemical signatures. Geophysical Research Letters, 2017, 44, 6226-6234.	4.0	34
38	Microbially driven export of labile organic carbon from the Greenland ice sheet. Nature Geoscience, 2017, 10, 360-365.	12.9	75
39	Microbial formation of labile organic carbon in Antarctic glacial environments. Nature Geoscience, 2017, 10, 356-359.	12.9	70
40	Old before your time: Ancient carbon incorporation in contemporary aquatic foodwebs. Limnology and Oceanography, 2017, 62, 1682-1700.	3.1	45
41	Calculating the balance between atmospheric CO 2 drawdown and organic carbon oxidation in subglacial hydrochemical systems. Global Biogeochemical Cycles, 2017, 31, 709-727.	4.9	25
42	How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems?. Freshwater Biology, 2017, 62, 833-853.	2.4	257
43	Molecular Insights on Dissolved Organic Matter Transformation by Supraglacial Microbial Communities. Environmental Science & Technology, 2017, 51, 4328-4337.	10.0	74
44	Planetary boundaries for a blue planet. Nature Ecology and Evolution, 2017, 1, 1625-1634.	7.8	139
45	Glacier shrinkage driving global changes in downstream systems. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9770-9778.	7.1	381
46	Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophysical Research Letters, 2017, 44, 6876-6885.	4.0	40
47	Nutritional support of inland aquatic food webs by aged carbon and organic matter. Limnology and Oceanography Letters, 2017, 2, 131-149.	3.9	17
48	Effects of increase glacier discharge on phytoplankton bloom dynamics and pelagic geochemistry in a high Arctic fjord. Progress in Oceanography, 2017, 159, 195-210.	3.2	46
49	Legacy organochlorine pollutants in glacial watersheds: a review. Environmental Sciences: Processes and Impacts, 2017, 19, 1474-1483.	3.5	30
50	Linking microbial diversity and functionality of arctic glacial surface habitats. Environmental Microbiology, 2017, 19, 551-565.	3.8	84
51	Spring phytoplankton communities of the Labrador Sea (2005–2014): pigment signatures, photophysiology and elemental ratios. Biogeosciences, 2017, 14, 1235-1259.	3.3	33
52	Microbial and Biogeochemical Dynamics in Glacier Forefields Are Sensitive to Century-Scale Climate and Anthropogenic Change. Frontiers in Earth Science, 2017, 5, .	1.8	11
53	Carbon Bioavailability in a High Arctic Fjord Influenced by Glacial Meltwater, NE Greenland. Frontiers in Marine Science, 2017, 4, .	2.5	49
54	A 21â€ ⁻ 000-year record of fluorescent organic matter markers in the WAIS Divide ice core. Climate of the Past, 2017, 13, 533-544.	3.4	30

#	Article	IF	CITATIONS
55	Dissolved organic carbon fractionation accelerates glacier-melting: A case study in the northern Tibetan Plateau. Science of the Total Environment, 2018, 627, 579-585.	8.0	23
56	Impacts of global changes on the biogeochemistry and environmental effects of dissolved organic matter at the land-ocean interface: a review. Environmental Science and Pollution Research, 2018, 25, 4165-4173.	5.3	15
57	Levels and spatial distributions of levoglucosan and dissolved organic carbon in snowpits over the Tibetan Plateau glaciers. Science of the Total Environment, 2018, 612, 1340-1347.	8.0	20
58	Characteristics and sources of dissolved organic matter in a glacier in the northern Tibetan Plateau: differences between different snow categories. Annals of Glaciology, 2018, 59, 31-40.	1.4	13
59	Photo-biochemical transformation of dissolved organic matter on the surface of the coastal East Antarctic ice sheet. Biogeochemistry, 2018, 141, 229-247.	3.5	21
60	Dissolved organic carbon in glaciers of the southeastern Tibetan Plateau: Insights into concentrations and possible sources. PLoS ONE, 2018, 13, e0205414.	2.5	10
61	Relationship between dissolved organic matter quality and microbial community composition across polar glacial environments. FEMS Microbiology Ecology, 2018, 94, .	2.7	26
62	Fossil Fuel Combustion Emission From South Asia Influences Precipitation Dissolved Organic Carbon Reaching the Remote Tibetan Plateau: Isotopic and Molecular Evidence. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6248-6258.	3.3	34
63	Importance of Mountain Glaciers as a Source of Dissolved Organic Carbon. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2123-2134.	2.8	36
64	Ecological Responses of Lakes to Climate Change. Water (Switzerland), 2018, 10, 917.	2.7	38
65	Distributions and light absorption property of water soluble organic carbon in a typical temperate glacier, southeastern Tibetan Plateau. Tellus, Series B: Chemical and Physical Meteorology, 2022, 70, 1468705.	1.6	13
66	Dynamic processing of DOM: Insight from exometabolomics, fluorescence spectroscopy, and mass spectrometry. Limnology and Oceanography Letters, 2018, 3, 225-235.	3.9	22
67	Dissolved Carbon Dynamics in Meltwaters From the Russell Glacier, Greenland Ice Sheet. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2922-2940.	3.0	17
68	Lakes on the Tibetan Plateau as Conduits of Greenhouse Gases to the Atmosphere. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2091-2103.	3.0	41
69	Dissolved organic carbon in snow cover of the Chinese Altai Mountains, Central Asia: Concentrations, sources and light-absorption properties. Science of the Total Environment, 2019, 647, 1385-1397.	8.0	39
70	Marine Bacterial Diversity in Coastal Sichang Island, the Upper Gulf of Thailand, in 2011 Wet Season. Frontiers in Marine Science, 2019, 6, .	2.5	5
71	Ice sheets matter for the global carbon cycle. Nature Communications, 2019, 10, 3567.	12.8	87
72	Alpine Glacier Shrinkage Drives Shift in Dissolved Organic Carbon Export From Quasiâ€Chemostasis to Transport Limitation. Geophysical Research Letters, 2019, 46, 8872-8881.	4.0	29

#	Article	IF	CITATIONS
73	Intense Chemical Weathering at Glacial Meltwater-Dominated Hailuogou Basin in the Southeastern Tibetan Plateau. Water (Switzerland), 2019, 11, 1209.	2.7	16
74	Seasonal controls of meltwater runoff chemistry and chemical weathering at Urumqi Glacier No.1 in central Asia. Hydrological Processes, 2019, 33, 3258-3281.	2.6	17
75	Arctic Primary Aerosol Production Strongly Influenced by Riverine Organic Matter. Environmental Science & Technology, 2019, 53, 8621-8630.	10.0	21
76	Abiotic Parameters and Pedogenesis as Controlling Factors for Soil C and N Cycling Along an Elevational Gradient in a Subalpine Larch Forest (NW Italy). Forests, 2019, 10, 614.	2.1	3
77	Assessing the Chemistry and Bioavailability of Dissolved Organic Matter From Glaciers and Rock Glaciers. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1988-2004.	3.0	18
78	Recovery of Polyols from Polyurethane Foam Wastes by Solvent Decomposition. IOP Conference Series: Earth and Environmental Science, 2019, 310, 042014.	0.3	3
79	Freshwater microbial community diversity in a rapidly changing High Arctic watershed. FEMS Microbiology Ecology, 2019, 95, .	2.7	32
80	Dissolved Iron Supply from Asian Glaciers: Local Controls and a Regional Perspective. Global Biogeochemical Cycles, 2019, 33, 1223-1237.	4.9	13
81	The deglaciation of Barton Peninsula (King George Island, South Shetland Islands, Antarctica) based on geomorphological evidence and lacustrine records. Polar Record, 2019, 55, 177-188.	0.8	16
82	Variability in Dissolved Organic Matter Composition and Biolability across Gradients of Glacial Coverage and Distance from Glacial Terminus on the Tibetan Plateau. Environmental Science & Technology, 2019, 53, 12207-12217.	10.0	37
83	High export of nitrogen and dissolved organic carbon from an Alpine glacier (Indren Glacier, NW) Tj ETQq0 0 0 rg	BT_/Overlo	ock 10 Tf 50
84	Ecological Stoichiometry of the Mountain Cryosphere. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	51
85	Meltwater hydrochemistry at four glacial catchments in the headwater of Indus River. Environmental Science and Pollution Research, 2019, 26, 23645-23660.	5.3	9
86	Influence of permafrost, rock and ice glaciers on chemistry of high-elevation ponds (NW Italian Alps). Science of the Total Environment, 2019, 685, 886-901.	8.0	39
87	Autotrophic microbial community succession from glacier terminus to downstream waters on the Tibetan Plateau. FEMS Microbiology Ecology, 2019, 95, .	2.7	10
88	Microbial Communities in Coastal Glaciers and Tidewater Tongues of Svalbard Archipelago, Norway. Frontiers in Marine Science, 2019, 5, .	2.5	28
89	Dissolved and Particulate Organic Carbon in Icelandic Proglacial Streams: A First Estimate. Water (Switzerland), 2019, 11, 748.	2.7	8
90	Microbial production and consumption of dissolved organic matter in glacial ecosystems on the Tibetan Plateau. Water Research, 2019, 160, 18-28.	11.3	78

ARTICLE IF CITATIONS # Microbial assemblages reflect environmental heterogeneity in alpine streams. Global Change Biology, 9.5 42 91 2019, 25, 2576-2590. Ecosystem shifts in Alpine streams under glacier retreat and rock glacier thaw: A review. Science of the Total Environment, 2019, 675, 542-559. 8.0 79 Seasonal Patterns of Riverine Carbon Sources and Export in NW Greenland. Journal of Geophysical 93 3.0 15 Research G: Biogeosciences, 2019, 124, 840-856. Contemporary limnology of the rapidly changing glacierized watershed of the world's largest High 94 Arctic lake. Scientific Reports, 2019, 9, 4447. Glacially sourced dust as a potentially significant source of ice nucleating particles. Nature 95 12.9 101 Geosciénce, 2019, 12, 253-258. The optical characteristics and sources of chromophoric dissolved organic matter (CDOM) in seasonal snow of northwestern China. Cryosphere, 2019, 13, 157-175. Carbon Uptake in Surface Water Food Webs Fed by Palaeogroundwater. Journal of Geophysical 97 3.0 3 Research G: Biogeosciences, 2019, 124, 1171-1180. Impact of Land Cover Types on Riverine CO2 Outgassing in the Yellow River Source Region. Water 90 2.7 (Switzerland), 2019, 11, 2243. Modeling Global Riverine DOC Flux Dynamics From 1951 to 2015. Journal of Advances in Modeling Earth 100 3.8 34 Systems, 2019, 11, 514-530. Glacier meltwater and monsoon precipitation drive Upper Ganges Basin dissolved organic matter composition. Geochimica Et Cosmochimica Acta, 2019, 244, 216-228. Organic carbon fluxes of a glacier surface: A case study of Foxfonna, a small Arctic glacier. Earth 102 2.5 16 Surface Processes and Landforms, 2019, 44, 405-416. Sharp contrasts between freshwater and marine microbial enzymatic capabilities, community 3.1 composition, and DOM pools in a NE Greenland fjord. Limnology and Oceanography, 2020, 65, 77-95. In vivo identification of arteries and veins using twoâ€photon excitation elastin autofluorescence. 104 1.5 10 Journal of Anatomy, 2020, 236, 171-179. Chemical components and distributions in glaciers of the Third Pole., 2020, , 71-134. Light-absorbing impurities accelerating glacial melting in southeastern Tibetan Plateau. 106 7.5 24 Environmental Pollution, 2020, 257, 113541. Potential feedback mediated by soil microbiome response to warming in a glacier forefield. Global Change Biology, 2020, 26, 697-708. Differences in the Quantity and Quality of Organic Matter Exported From Greenlandic Glacial and 108 4.9 12 Deglaciated Watersheds. Global Biogeochemical Cycles, 2020, 34, e2020GB006614. Investigation of the spatio-temporal heterogeneity and optical property of water-soluble organic carbon in atmospheric aerosol and snow over the Yulong Snow Mountain, southeastern Tibetan Plateau. Environment International, 2020, 144, 106045.

#	Article	IF	CITATIONS
110	Longâ€Term Temporal Scaleâ€Dependent Warming Effects on the Mass Balance in the Dongkemadi Glacier, Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033105.	3.3	6
111	Biochemical evolution of dissolved organic matter during snow metamorphism across the ablation season for a glacier on the central Tibetan Plateau. Scientific Reports, 2020, 10, 6123.	3.3	7
112	Dissolved organic carbon in Alaskan Arctic snow: concentrations, light-absorption properties, and bioavailability. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1778968.	1.6	13
113	Patterns and Drivers of Extracellular Enzyme Activity in New Zealand Glacier-Fed Streams. Frontiers in Microbiology, 2020, 11, 591465.	3.5	18
114	Distribution and biogeography of <i>Sanguina</i> snow algae: Fineâ€scale sequence analyses reveal previously unknown population structure. Ecology and Evolution, 2020, 10, 11352-11361.	1.9	11
115	Enhanced trace element mobilization by Earth's ice sheets. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31648-31659.	7.1	40
116	Fate of Dissolved Organic Carbon in Antarctic Surface Environments During Summer. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005958.	3.0	5
117	Glacier Loss Impacts Riverine Organic Carbon Transport to the Ocean. Geophysical Research Letters, 2020, 47, e2020GL089804.	4.0	19
118	Sources of solutes and carbon cycling in perennially ice-covered Lake Untersee, Antarctica. Scientific Reports, 2020, 10, 12290.	3.3	12
119	Understanding Regional and Seasonal Variability Is Key to Gaining a Pan-Arctic Perspective on Arctic Ocean Freshening. Frontiers in Marine Science, 2020, 7, .	2.5	31
120	Metabolic activity and bioweathering properties of yeasts isolated from different supraglacial environments of Antarctica and Himalaya. Antonie Van Leeuwenhoek, 2020, 113, 2243-2258.	1.7	7
121	Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?. Cryosphere, 2020, 14, 1347-1383.	3.9	114
122	Soothsaying DOM: A Current Perspective on the Future of Oceanic Dissolved Organic Carbon. Frontiers in Marine Science, 2020, 7, .	2.5	44
123	Glacier Outflow Dissolved Organic Matter as a Window Into Seasonally Changing Carbon Sources: Leverett Glacier, Greenland. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005161.	3.0	26
124	Cross-ecosystem nutrient subsidies in Arctic and alpine lakes: implications of global change for remote lakes. Environmental Sciences: Processes and Impacts, 2020, 22, 1166-1189.	3.5	11
125	Fjords as Aquatic Critical Zones (ACZs). Earth-Science Reviews, 2020, 203, 103145.	9.1	104
126	Impacts of Global Change on Ocean Dissolved Organic Carbon (DOC) Cycling. Frontiers in Marine Science, 2020, 7, .	2.5	91
127	Glaciers and Ancient Carbon. , 2020, , 454-461.		0

#	Article	IF	CITATIONS
128	Strong linkages between dissolved organic matter and the aquatic bacterial community in an urban river. Water Research, 2020, 184, 116089.	11.3	65
129	Biogeochemical Connectivity Between Freshwater Ecosystems beneath the West Antarctic Ice Sheet and the Sub″ce Marine Environment. Global Biogeochemical Cycles, 2020, 34, no.	4.9	29
130	Removal of Refractory Dissolved Organic Carbon in the Amundsen Sea, Antarctica. Scientific Reports, 2020, 10, 1213.	3.3	13
131	Linking bacterial community shifts with changes in the dissolved organic matter pool in a eutrophic lake. Science of the Total Environment, 2020, 719, 137387.	8.0	35
132	Glacier retreat changes diurnal variation intensity and frequency of hydrologic variables in Alpine and Andean streams. Journal of Hydrology, 2020, 583, 124578.	5.4	9
133	Characterization, sources and transport of dissolved organic carbon and nitrogen from a glacier in the Central Asia. Science of the Total Environment, 2020, 725, 138346.	8.0	21
134	Seasonal variations in the optical characteristics of dissolved organic matter in glacial pond water. Science of the Total Environment, 2021, 759, 143464.	8.0	8
135	Headwater stream ecosystem: an important source of greenhouse gases to the atmosphere. Water Research, 2021, 190, 116738.	11.3	43
136	Climatic, land cover, and anthropogenic controls on dissolved organic matter quantity and quality from major alpine rivers across the Himalayan-Tibetan Plateau. Science of the Total Environment, 2021, 754, 142411.	8.0	22
137	Measuring <scp>pH</scp> in low ionic strength glacial meltwaters using ion selective field effect transistor (ISFET) technology. Limnology and Oceanography: Methods, 2021, 19, 222-233.	2.0	10
138	How humans alter dissolved organic matter composition in freshwater: relevance for the Earth's biogeochemistry. Biogeochemistry, 2021, 154, 323-348.	3.5	75
139	Molecular Signatures of Glacial Dissolved Organic Matter From Svalbard and Greenland. Global Biogeochemical Cycles, 2021, 35, e2020GB006709.	4.9	17
141	Major atmospheric particulate matter sources for glaciers in Coquimbo Region, Chile. Environmental Science and Pollution Research, 2021, 28, 36817-36827.	5.3	4
142	Glacier clear ice bands indicate englacial channel microbial distribution. Journal of Glaciology, 2021, 67, 811-823.	2.2	1
143	Seasonal Changes in Dissolved Organic Matter Composition in a Patagonian Fjord Affected by Glacier Melt Inputs. Frontiers in Marine Science, 2021, 8, .	2.5	6
144	Polar ice core organic matter signatures reveal past atmospheric carbon composition and spatial trends across ancient and modern timescales. Journal of Glaciology, 2021, 67, 1028-1042.	2.2	17
145	Sink or source? Methane and carbon dioxide emissions from cryoconite holes, subglacial sediments, and proglacial river runoff during intensive glacier melting on the Tibetan Plateau. Fundamental Research, 2021, 1, 232-239.	3.3	13
146	High-Frequency Monitoring Reveals Multiple Frequencies of Nitrogen and Carbon Mass Balance Dynamics in a Headwater Stream. Frontiers in Water, 2021, 3, .	2.3	7

#	Article	IF	CITATIONS
147	Melting of Himalayan glaciers and planetary health. Current Opinion in Environmental Sustainability, 2021, 50, 98-108.	6.3	11
148	The evolution of stream dissolved organic matter composition following glacier retreat in coastal watersheds of southeast Alaska. Biogeochemistry, 2023, 164, 99-116.	3.5	12
149	Characterization of organic-rich mineral debris revealed by rapid glacier retreat, Indren Glacier, European Alps. Journal of Mountain Science, 2021, 18, 1521-1536.	2.0	4
150	Storage and export of microbial biomass across the western Greenland Ice Sheet. Nature Communications, 2021, 12, 3960.	12.8	17
151	Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China. Atmospheric Chemistry and Physics, 2021, 21, 8531-8555.	4.9	15
152	Characteristics of dissolved organic carbon and nitrogen in precipitation in the northern Tibetan Plateau. Science of the Total Environment, 2021, 776, 145911.	8.0	8
153	Tracing Glacial Meltwater From the Greenland Ice Sheet to the Ocean Using Gliders. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017274.	2.6	3
154	Organic versus Inorganic Carbon Exports from Glacier and Permafrost Watersheds in Qinghai–Tibet Plateau. Aquatic Geochemistry, 0, , 1.	1.3	4
155	Fate of glacier surface snowâ€originating bacteria in the glacierâ€fed hydrologic continuums. Environmental Microbiology, 2021, 23, 6450-6462.	3.8	12
156	Deglaciation controls on sediment yield: Towards capturing spatio-temporal variability. Earth-Science Reviews, 2021, 221, 103809.	9.1	21
157	Photobleaching reduces the contribution of dissolved organic carbon to glacier melting in the Himalayas and the Tibetan Plateau. Science of the Total Environment, 2021, 797, 149178.	8.0	5
158	Dissolved organic matter sources in glacierized watersheds delineated through compositional and carbon isotopic modeling. Limnology and Oceanography, 2021, 66, 438-451.	3.1	16
159	Microbial Life in Supraglacial Environments. , 2017, , 57-81.		9
160	Particles, protists, and zooplankton in glacier-influenced coastal Svalbard waters. Estuarine, Coastal and Shelf Science, 2020, 242, 106842.	2.1	10
162	Carbon flow through the pelagic food web in southern Chilean Patagonia: relevance of Euphausia vallentini as a key species. Marine Ecology - Progress Series, 2016, 557, 91-110.	1.9	26
163	A regional hindcast model simulating ecosystem dynamics, inorganic carbon chemistry, and ocean acidification in the Gulf of Alaska. Biogeosciences, 2020, 17, 3837-3857.	3.3	18
165	Processes controlling carbon cycling in Antarctic glacier surface ecosystems. Geochemical Perspectives Letters, 2016, 2, 44-54.	5.0	19
166	Late Summer Phytoplankton Blooms in the Changing Polar Environment of the Kongsfjorden (Svalbard, Arctic). Cryptogamie, Algologie, 2017, 38, 53-72.	0.9	16

#	Article	IF	CITATIONS
167	Mountainous areas and river systems. , 2021, , 1-50.		1
168	Persistent Nitrate in Alpine Waters with Changing Atmospheric Deposition and Warming Trends. Environmental Science & Technology, 2021, 55, 14946-14956.	10.0	12
169	Seasonal Variations in Dissolved Organic Carbon in the Source Region of the Yellow River on the Tibetan Plateau. Water (Switzerland), 2021, 13, 2901.	2.7	4
170	Seasonality of solute flux and water source chemistry in a coastal glacierized watershed undergoing rapid change: Wolverine Glacier watershed, Alaska. Water Resources Research, 2021, 57, e2020WR028725.	4.2	4
171	Antarctic Seaweeds: Biogeography, Adaptation, and Ecosystem Services. , 2020, , 3-20.		4
173	Understanding how inland lake system environmental gradients on the Qinghai-Tibet Plateau impact the geographical patterns of carbon and water sources or sink. Journal of Hydrology, 2022, 604, 127219.	5.4	6
174	High Contribution of South Asian Biomass Burning to Southeastern Tibetan Plateau Air: New Evidence from Radiocarbon Measurement. Environmental Science and Technology Letters, 2021, 8, 1026-1031.	8.7	5
175	Assessing the Role of Photochemistry in Driving the Composition of Dissolved Organic Matter in Glacier Runoff. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006516.	3.0	7
176	The hydrochemistry and water quality of glacierized catchments in Central Asia: A review of the current status and anticipated change. Journal of Hydrology: Regional Studies, 2021, 38, 100960.	2.4	9
177	Asynchronous responses of aquatic ecosystems to hydroclimatic forcing on the Tibetan Plateau. Communications Earth & Environment, 2022, 3, .	6.8	5
178	Current status and future perspectives of microplastic pollution in typical cryospheric regions. Earth-Science Reviews, 2022, 226, 103924.	9.1	45
179	Permafrost carbon emissions in a changing Arctic. Nature Reviews Earth & Environment, 2022, 3, 55-67.	29.7	124
180	Globally elevated chemical weathering rates beneath glaciers. Nature Communications, 2022, 13, 407.	12.8	20
181	Alpine Streams and Rivers. , 2022, , .		1
182	CH4 and CO2 observations from a melting high mountain glacier, Laohugou Glacier No. 12. Advances in Climate Change Research, 2022, 13, 146-155.	5.1	10
184	Export of Dissolved Organic Carbon from the Source Region of Yangtze River in the Tibetan Plateau. Sustainability, 2022, 14, 2441.	3.2	4
185	Effects of ancient allochthonous and contemporary autochthonous organic carbon on the growth and reproduction of lake zooplankton. Freshwater Biology, 2022, 67, 873-882.	2.4	2
186	Molecular Characterization of Water-Soluble Brown Carbon Chromophores in Snowpack from Northern Xinjiang, China. Environmental Science & Technology, 2022, 56, 4173-4186.	10.0	17

#	Article	IF	CITATIONS
187	Cryosphere Microbiome Biobanks for Mountain Glaciers in China. Sustainability, 2022, 14, 2903.	3.2	3
188	Glacier shrinkage will accelerate downstream decomposition of organic matter and alters microbiome structure and function. Global Change Biology, 2022, 28, 3846-3859.	9.5	15
189	Investigation of water-soluble organic constituents and their spatio-temporal heterogeneity over the Tibetan Plateau. Environmental Pollution, 2022, 302, 119093.	7.5	6
190	Concentrationâ€Discharge Patterns Across the Gulf of Alaska Reveal Geomorphological and Glacierization Controls on Stream Water Solute Generation and Export. Geophysical Research Letters, 2022, 49, .	4.0	9
191	Temporal variation of bacterial community and nutrients in Tibetan glacier snowpack. Cryosphere, 2022, 16, 1265-1280.	3.9	3
192	Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nature Communications, 2022, 13, 2168.	12.8	25
200	Different dissolved organic matter composition between central and southern glaciers on the Tibetan Plateau. Ecological Indicators, 2022, 139, 108888.	6.3	4
201	Molecular compositions, optical properties, and implications of dissolved brown carbon in snow/ice on the Tibetan Plateau glaciers. Environment International, 2022, 164, 107276.	10.0	10
202	Assessing the impact of freshwater discharge on the fluid chemistry in the Svalbard fjords. Science of the Total Environment, 2022, 835, 155516.	8.0	2
203	A comprehensive dataset of microbial abundance, dissolved organic carbon, and nitrogen in Tibetan Plateau glaciers. Earth System Science Data, 2022, 14, 2303-2314.	9.9	4
204	Seasonality of Glacial Snow and Ice Microbial Communities. Frontiers in Microbiology, 2022, 13, .	3.5	11
205	Current knowledge and uncertainties associated with the Arctic greenhouse gas budget. , 2022, , 159-201.		1
206	Ice nucleating properties of airborne dust from an actively retreating glacier in Yukon, Canada. Environmental Science Atmospheres, 2022, 2, 714-726.	2.4	5
207	Source apportionment and elevational gradient of dissolved organic matter over the Tibetan plateau. Catena, 2022, 216, 106372.	5.0	4
208	Effects of climate change and nutrient concentrations on carbon sources for zooplankton in a Tibetan Plateau lake over the past millennium. Journal of Paleolimnology, 2022, 68, 249-263.	1.6	6
209	Organic matter distribution in the icy environments of Taylor Valley, Antarctica. Science of the Total Environment, 2022, 841, 156639.	8.0	6
210	The role of post UK-LGM erosion processes in the long-term storage of buried organic C across Great Britain – A †first order' assessment. Earth-Science Reviews, 2022, 232, 104126.	9.1	1
211	Arctic methylmercury cycling. Science of the Total Environment, 2022, 850, 157445.	8.0	11

#	Article	IF	CITATIONS
212	Unexpected high carbon losses in a continental glacier foreland on the Tibetan Plateau. ISME Communications, 2022, 2, .	4.2	4
213	Contrasting the physical and chemical characteristics of dissolved organic matter between glacier and glacial runoff from a mountain glacier on the Tibetan Plateau. Science of the Total Environment, 2022, 848, 157784.	8.0	5
215	Climate warming-driven changes in the flux of dissolved organic matter and its effects on bacterial communities in the Arctic Ocean: A review. Frontiers in Marine Science, 0, 9, .	2.5	7
216	Glacial Ice Melting Stimulates Heterotrophic Prokaryotes Production on the Getz Ice Shelf in the Amundsen Sea, Antarctica. Geophysical Research Letters, 2022, 49, .	4.0	3
217	Fluorescence characteristics, absorption properties, and radiative effects of water-soluble organic carbon in seasonal snow across northeastern China. Atmospheric Chemistry and Physics, 2022, 22, 14075-14094.	4.9	5
218	Spatially consistent microbial biomass and future cellular carbon release from melting Northern Hemisphere glacier surfaces. Communications Earth & Environment, 2022, 3, .	6.8	6
220	Migration of organic carbon and trace elements in the system glacier-soil in the Central Caucasus alpine environment. Journal of Mountain Science, 2022, 19, 3458-3474.	2.0	2
221	Investigating hydrological transport pathways of dissolved organic carbon in cold region watershed based on a watershed biogeochemical model. Environmental Pollution, 2023, 324, 121390.	7.5	6
222	Ocean-atmosphere interactions: Different organic components across Pacific and Southern Oceans. Science of the Total Environment, 2023, 878, 162969.	8.0	1
223	Air Impurities Affecting the Melting of Icebergs and the Possibility of Airborne Microplastics Influence on Icebergs. , 0, 26, 94-101.		Ο
224	Hydrological Controls on Dissolved Organic Matter Composition throughout the Aquatic Continuum of the Watershed of Selin Co, the Largest Lake on the Tibetan Plateau. Environmental Science & Technology, 2023, 57, 4668-4678.	10.0	7
225	Spatial distribution and stable isotopic composition of invertebrates uncover differences between habitats on the glacier surface in the Alps. Limnology, 2023, 24, 83-93.	1.5	2
226	Radiocarbon Constraints on Carbon Release From the Antarctic Ice Sheet Into the Amundsen Sea Embayment. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	0
228	Carbon emissions from emerging glacier-fed Himalayan lakes. Global and Planetary Change, 2023, 225, 104134.	3.5	1
229	A Tropical Cocktail of Organic Matter Sources: Variability in Supraglacial and Glacier Outflow Dissolved Organic Matter Composition and Age Across the Ecuadorian Andes. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	1
231	Glacial meltwater and seasonality influence community composition of diazotrophs in Arctic coastal and open waters. FEMS Microbiology Ecology, 2023, 99, .	2.7	2
232	Pre-aged terrigenous organic carbon biases ocean ventilation-age reconstructions in the North Atlantic. Nature Communications, 2023, 14, .	12.8	0
233	Glacial Water: A Dynamic Microbial Medium. Microorganisms, 2023, 11, 1153.	3.6	Ο

#	Article	IF	CITATIONS
234	Sediment oxygen consumption in <scp>Antarctic</scp> subglacial environments. Limnology and Oceanography, 2023, 68, 1557-1566.	3.1	1
235	Fossil organic carbon utilization in marine Arctic fjord sediments by subsurface micro-organisms. Nature Geoscience, 2023, 16, 625-630.	12.9	6
237	Contribution of Fresh Submarine Groundwater Discharge to the Gulf of Alaska. Water Resources Research, 2023, 59, .	4.2	0
238	Source, pattern and flux of dissolved carbon in an alpine headwater catchment on the eastern Tibetan Plateau. Hydrological Processes, 2023, 37, .	2.6	0
239	Biogeochemical evolution of ponded meltwater in a High Arctic subglacial tunnel. Cryosphere, 2023, 17, 2993-3012.	3.9	0
240	Influence of land-terminating glacier on primary production in the high Arctic fjord (Blagopoluchiya) Tj ETQq1 1	0.784314 t 2.1	gBT /Overloc
241	化èf½è‡ªå»å¾®ç"Ÿç‰©çš"å᠈ºç¢³åŠŸèf½åŠä≌å·¥è°f控ç–ç•¥. Chinese Science Bulletin, 2023, , .	0.7	0
242	Seasonal Snowpack Microbial Ecology and Biogeochemistry on a High Arctic Ice Cap Reveals Negligible Autotrophic Activity During Spring and Summer Melt. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	0
243	Abundance, Biomass, and Production of Bacterioplankton at the End of the Growing Season in the Western Laptev Sea: Impact of Khatanga River Discharge (Arctic). Journal of Marine Science and Engineering, 2023, 11, 1573.	2.6	0
244	Marine and Not Terrestrial Resources Support Nearshore Food Webs Across a Gradient of Glacial Watersheds in the Northern Gulf of Alaska. Estuaries and Coasts, 2024, 47, 567-587.	2.2	0
245	Spatiotemporal variability of organic carbon in streams and rivers of the Northern Hemisphere cryosphere. Science of the Total Environment, 2024, 906, 167370.	8.0	0
246	Metagenome-assembled genomes from High Arctic glaciers highlight the vulnerability of glacier-associated microbiota and their activities to habitat loss. Microbial Genomics, 2023, 9, .	2.0	0
247	Real-time and dynamic estimation of CO ₂ emissions from China��s lakes and reservoirs. , 2023, 1, 100031.		0
248	Supraglacial Soils and Soil-Like Bodies: Diversity, Genesis, Functioning (Review). Eurasian Soil Science, 2023, 56, 1845-1880.	1.6	0
249	Characterization of suspended particles at different glacial bays at Spitsbergen. Oceanologia, 2023, , .	2.2	0
250	Coupled Changes in the Arctic Carbon Cycle Between the Land, Marine, and Social Domains. Earth's Future, 2023, 11, .	6.3	0
251	A Comprehensive Biogeochemical Assessment of Climateâ€Threatened Glacial River Headwaters on the Eastern Slopes of the Canadian Rocky Mountains. Journal of Geophysical Research G: Biogeosciences, 2024, 129, .	3.0	0
252	A review of physicochemical properties of dissolved organic carbon and its impact over mountain glaciers. Journal of Mountain Science, 2024, 21, 1-19.	2.0	0

#	Article	IF	CITATIONS
253	A preliminary investigation of microbial communities on the Athabasca Glacier within deposited organic matter. Environmental Science Advances, 2024, 3, 355-365.	2.7	0
254	Predictive mapping of glacial sediment properties (Bellingshausen Dome, King George Island,) Tj ETQq1 1 0.7843	14.rgBT /C 2.9	Overlock 10 T
255	Remote sensing of lake chlorophyll-a in Qinghai-Tibet Plateau responding to climate factors: Implications for oligotrophic lakes. Ecological Indicators, 2024, 159, 111674.	6.3	0
256	Carbon dynamics shift in changing cryosphere and hydrosphere of the Third Pole. Earth-Science Reviews, 2024, 250, 104717.	9.1	0
257	Current and future roles of meltwater–groundwater dynamics in a proglacial Alpine outwash plain. Hydrology and Earth System Sciences, 2024, 28, 735-759.	4.9	0
259	Clobal emergent responses of stream microbial metabolism to glacier shrinkage. Nature Geoscience, 2024, 17, 309-315.	12.9	0
260	Hydrologic and Landscape Controls on Rock Weathering Along a Glacial Gradient in South Central Alaska, USA. Journal of Geophysical Research F: Earth Surface, 2024, 129, .	2.8	0
261	Microbial Communities in Glacial Environments: Key Players in Cryosphere Carbon Cycling and the Emergence of CECs. , 2024, , 39-55.		0
262	Potential transformation of organic matter by microbes in cryoconite, Tibetan Plateau. Science China Earth Sciences, 0, , .	5.2	0