Theoretical systems of triboelectric nanogenerators

Nano Energy 14, 161-192 DOI: 10.1016/j.nanoen.2014.11.034

Citation Report

#	Article	IF	CITATIONS
1	Theory of Tribotronics. Advanced Electronic Materials, 2015, 1, 1500124.	2.6	49
2	Triboelectric Nanogenerator Based on Fully Enclosed Rolling Spherical Structure for Harvesting Lowâ€Frequency Water Wave Energy. Advanced Energy Materials, 2015, 5, 1501467.	10.2	373
3	Coupling of Piezoelectric and Triboelectric Effects: from Theoretical Analysis to Experimental Verification. Advanced Electronic Materials, 2015, 1, 1500187.	2.6	50
4	A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nature Communications, 2015, 6, 8975.	5.8	526
5	Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy and Environmental Science, 2015, 8, 2250-2282.	15.6	1,723
6	Asymmetrical Triboelectric Nanogenerator with Controllable Direct Electrostatic Discharge. Advanced Functional Materials, 2016, 26, 5524-5533.	7.8	43
7	Extraordinarily Sensitive and Lowâ€Voltage Operational Clothâ€Based Electronic Skin for Wearable Sensing and Multifunctional Integration Uses: A Tactileâ€Induced Insulatingâ€toâ€Conducting Transition. Advanced Functional Materials, 2016, 26, 1286-1295.	7.8	134
8	Fabrication of stretchable and flexible vertically aligned carbon nanotube film. , 2016, , .		1
9	Theoretical and numerical analysis of triboelectric nanogenerators for self-powered sensors. , 2016, ,		3
10	Nanoporous-Gold-Based Hybrid Cantilevered Actuator Dealloyed and Driven by A Modified Rotary Triboelectric Nanogenerator. Scientific Reports, 2016, 6, 24092.	1.6	19
11	Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator. ACS Nano, 2016, 10, 4797-4805.	7.3	606
12	Triboelectric Nanogenerator: Vertical Contact-Separation Mode. Green Energy and Technology, 2016, , 23-47.	0.4	40
13	Theoretical Modeling of Triboelectric Nanogenerators. Green Energy and Technology, 2016, , 155-183.	0.4	6
14	Design of simulation experiments to predict triboelectric generator output using structural parameters. Simulation Modelling Practice and Theory, 2016, 68, 95-107.	2.2	22
15	High performance triboelectric nanogenerators with aligned carbon nanotubes. Nanoscale, 2016, 8, 18489-18494.	2.8	107
16	Performance-enhanced triboelectric nanogenerator using the glass transition of polystyrene. Nano Energy, 2016, 27, 306-312.	8.2	33
17	All-Elastomer-Based Triboelectric Nanogenerator as a Keyboard Cover To Harvest Typing Energy. ACS Nano, 2016, 10, 7973-7981.	7.3	96
18	Figuresâ€ofâ€Merit for Rollingâ€Frictionâ€Based Triboelectric Nanogenerators. Advanced Materials Technologies, 2016, 1, 1600017.	3.0	34

ION RE

#	Article	IF	Citations
19	Triboelectric Nanogenerators Driven Selfâ€Powered Electrochemical Processes for Energy and Environmental Science. Advanced Energy Materials, 2016, 6, 1600665.	10.2	394
20	Triboelectric Nanogenerator: Lateral Sliding Mode. Green Energy and Technology, 2016, , 49-90.	0.4	20
21	Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage. ACS Applied Materials & amp; Interfaces, 2016, 8, 21398-21406.	4.0	67
22	Wearable Powerâ€Textiles by Integrating Fabric Triboelectric Nanogenerators and Fiberâ€Shaped Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2016, 6, 1601048.	10.2	266
23	Triboelectric driven turbine to generate electricity from the motion of water. Nano Energy, 2016, 30, 379-386.	8.2	58
24	A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Science Advances, 2016, 2, e1501624.	4.7	274
25	Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy, 2016, 1, .	19.8	879
26	Continuous Triboelectric Power Harvesting and Biochemical Sensing Inside Poly(vinylidene fluoride) Hollow Fibers Using Microfluidic Droplet Generation. Advanced Materials Technologies, 2016, 1, 1600190.	3.0	29
27	Triboelectric Nanogenerators Based on Melamine and Selfâ€Powered Highâ€Sensitive Sensors for Melamine Detection. Advanced Functional Materials, 2016, 26, 3029-3035.	7.8	52
28	Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics. Nano Energy, 2016, 25, 18-25.	8.2	91
29	An integrated piezoelectric zinc oxide nanowire micro-energy harvester. Nano Energy, 2016, 26, 456-465.	8.2	17
30	Harvesting Broad Frequency Band Blue Energy by a Triboelectric–Electromagnetic Hybrid Nanogenerator. ACS Nano, 2016, 10, 6526-6534.	7.3	244
31	Efficient Charging of Liâ€lon Batteries with Pulsed Output Current of Triboelectric Nanogenerators. Advanced Science, 2016, 3, 1500255.	5.6	122
32	High-output current density of the triboelectric nanogenerator made from recycling rice husks. Nano Energy, 2016, 19, 39-47.	8.2	81
33	Sustainable Energy Source for Wearable Electronics Based on Multilayer Elastomeric Triboelectric Nanogenerators. Advanced Energy Materials, 2017, 7, 1602832.	10.2	129
34	Multifunctional TENG for Blue Energy Scavenging and Selfâ€Powered Windâ€Speed Sensor. Advanced Energy Materials, 2017, 7, 1602397.	10.2	273
35	High-power triboelectric nanogenerator prepared from electrospun mats with spongy parenchyma-like structure. Nano Energy, 2017, 34, 69-75.	8.2	63
36	Enhanced performance of ZnO microballoon arrays for a triboelectric nanogenerator. Nanotechnology, 2017, 28, 135401.	1.3	31

#	Article	IF	CITATIONS
37	Transfer-printable micropatterned fluoropolymer-based triboelectric nanogenerator. Nano Energy, 2017, 36, 126-133.	8.2	58
38	Triboelectric Nanogenerator Using Microdomeâ€Patterned PDMS as a Wearable Respiratory Energy Harvester. Advanced Materials Technologies, 2017, 2, 1700014.	3.0	38
39	Universal power management strategy for triboelectric nanogenerator. Nano Energy, 2017, 37, 168-176.	8.2	312
40	Maximized Effective Energy Output of Contactâ€Separationâ€Triggered Triboelectric Nanogenerators as Limited by Air Breakdown. Advanced Functional Materials, 2017, 27, 1700049.	7.8	144
41	Energy conversion technologies towards self-powered electrochemical energy storage systems: the state of the art and perspectives. Journal of Materials Chemistry A, 2017, 5, 1873-1894.	5.2	113
42	Portable triboelectric based wind energy harvester for low power applications. European Physical Journal Plus, 2017, 132, 1.	1.2	14
43	Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system. Nano Energy, 2017, 38, 185-192.	8.2	152
44	High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy, 2017, 38, 101-108.	8.2	146
45	Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Science Advances, 2017, 3, e1700015.	4.7	920
46	A multi-dielectric-layered triboelectric nanogenerator as energized by corona discharge. Nanoscale, 2017, 9, 9668-9675.	2.8	73
47	High efficiency power management and charge boosting strategy for a triboelectric nanogenerator. Nano Energy, 2017, 38, 438-446.	8.2	174
48	Hybrid operation of triboelectric nanogenerator for electricity generation by a low-temperature differential heat engine. International Journal of Energy Research, 2017, 41, 1412-1421.	2.2	16
49	A Highly Stretchable Fiberâ€Based Triboelectric Nanogenerator for Selfâ€Powered Wearable Electronics. Advanced Functional Materials, 2017, 27, 1604378.	7.8	296
50	A hybridized electromagnetic-triboelectric self-powered sensor for traffic monitoring: concept, modelling, and optimization. Nano Energy, 2017, 32, 105-116.	8.2	87
51	Hierarchically Nanostructured 1D Conductive Bundle Yarnâ€Based Triboelectric Nanogenerators. Advanced Materials, 2017, 29, 1704434.	11.1	30
52	Freestanding-electret rotary generator at an average conversion efficiency of 56%: Theoretical and experimental studies. Nano Energy, 2017, 41, 434-442.	8.2	54
53	Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator. Joule, 2017, 1, 480-521.	11.7	748
54	A power management circuit with 50% efficiency and large load capacity for triboelectric nanogenerator. Journal of Semiconductors, 2017, 38, 095001.	2.0	18

#	Article	IF	CITATIONS
55	Seesaw-structured triboelectric nanogenerator for scavenging electrical energy from rotational motion of mechanical systems. Sensors and Actuators A: Physical, 2017, 263, 600-609.	2.0	20
56	Modeling and performance analysis of duck-shaped triboelectric and electromagnetic generators for water wave energy harvesting. International Journal of Energy Research, 2017, 41, 2392-2404.	2.2	45
57	Multifunctional power unit by hybridizing contact-separate triboelectric nanogenerator, electromagnetic generator and solar cell for harvesting blue energy. Nano Energy, 2017, 39, 608-615.	8.2	117
58	Optimization principles and the figure of merit for triboelectric generators. Science Advances, 2017, 3, eaap8576.	4.7	133
59	Core–Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths. ACS Nano, 2017, 11, 12764-12771.	7.3	203
60	A Stretchable and Transparent Nanocomposite Nanogenerator for Self-Powered Physiological Monitoring. ACS Applied Materials & Interfaces, 2017, 9, 42200-42209.	4.0	131
61	Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection. Nano Energy, 2017, 42, 300-306.	8.2	126
62	Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators. RSC Advances, 2017, 7, 49368-49373.	1.7	103
63	Triboelectric nanogenerators: providing a fundamental framework. Energy and Environmental Science, 2017, 10, 1801-1811.	15.6	186
64	Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance. Nano Research, 2017, 10, 157-171.	5.8	56
65	Boosting Powerâ€Generating Performance of Triboelectric Nanogenerators via Artificial Control of Ferroelectric Polarization and Dielectric Properties. Advanced Energy Materials, 2017, 7, 1600988.	10.2	282
66	Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy, 2017, 31, 351-358.	8.2	162
67	Computational investigation of material combinations in triboelectric generators. , 2017, , .		2
68	Understanding and modeling of triboelectric-electret nanogenerator. Nano Energy, 2018, 47, 401-409.	8.2	91
69	Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids. ACS Nano, 2018, 12, 2818-2826.	7.3	245
70	Metal-free, flexible triboelectric generator based on MWCNT mesh film and PDMS layers. Applied Surface Science, 2018, 442, 693-699.	3.1	33
71	On-vehicle triboelectric nanogenerator enabled self-powered sensor for tire pressure monitoring. Nano Energy, 2018, 49, 126-136.	8.2	94
72	Characterization of Triboelectric Charge Generation between PTFE and Nylon after Repeated Contacts. Energy Harvesting and Systems, 2018, 4, 165-176.	1.7	7

#	Article	IF	CITATIONS
73	Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors. ACS Nano, 2018, 12, 3964-3974.	7.3	218
74	Vitrimer Elastomerâ€Based Jigsaw Puzzleâ€Like Healable Triboelectric Nanogenerator for Selfâ€Powered Wearable Electronics. Advanced Materials, 2018, 30, e1705918.	11.1	265
75	Core–shell coaxially structured triboelectric nanogenerator for energy harvesting and motion sensing. RSC Advances, 2018, 8, 2950-2957.	1.7	67
76	Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2018, 10, 5880-5891.	4.0	137
77	Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics. ACS Nano, 2018, 12, 2027-2034.	7.3	353
78	Capacitorâ€Integrated Triboelectric Nanogenerator Based on Metal–Metal Contact for Current Amplification. Advanced Energy Materials, 2018, 8, 1703024.	10.2	37
79	Piezoelectric-Induced Triboelectric Hybrid Nanogenerators Based on the ZnO Nanowire Layer Decorated on the Au/polydimethylsiloxane–Al Structure for Enhanced Triboelectric Performance. ACS Applied Materials & Interfaces, 2018, 10, 6433-6440.	4.0	32
80	A Hybrid Electromagnetic–Triboelectric Energy Harvester Using a Dual Halbach Magnet Array Powered by Humanâ€Bodyâ€Induced Motion. Advanced Materials Technologies, 2018, 3, 1700240.	3.0	24
81	Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy, 2018, 45, 380-389.	8.2	178
82	A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Selfâ€Powered Vibration Sensing. Advanced Energy Materials, 2018, 8, 1702432.	10.2	186
83	Selfâ€Powered Vehicle Emission Testing System Based on Coupling of Triboelectric and Chemoresistive Effects. Advanced Functional Materials, 2018, 28, 1703420.	7.8	95
84	Triboelectric nanogenerators as self-powered acceleration sensor under high-g impact. Nano Energy, 2018, 45, 84-93.	8.2	52
85	Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting. ACS Nano, 2018, 12, 1849-1858.	7.3	299
86	High performance human-induced vibration driven hybrid energy harvester for powering portable electronics. Nano Energy, 2018, 45, 236-246.	8.2	71
87	A Stretchable, Flexible Triboelectric Nanogenerator for Selfâ€Powered Realâ€Time Motion Monitoring. Advanced Materials Technologies, 2018, 3, 1800021.	3.0	68
88	Synthesis of ZnO rod arrays on aluminum recyclable paper and effect of the rod size on power density of eco-friendly nanogenerators. Ceramics International, 2018, 44, 12174-12179.	2.3	14
89	A biomimetic nanofiber-based triboelectric nanogenerator with an ultrahigh transfer charge density. Nano Energy, 2018, 48, 464-470.	8.2	63
90	A unified theoretical model for Triboelectric Nanogenerators. Nano Energy, 2018, 48, 391-400.	8.2	96

#	Article	IF	CITATIONS
91	An electret film-based triboelectric nanogenerator with largely improved performance via a tape-peeling charging method. Nano Energy, 2018, 48, 256-265.	8.2	23
92	TriboMotion: A Self-Powered Triboelectric Motion Sensor in Wearable Internet of Things for Human Activity Recognition and Energy Harvesting. IEEE Internet of Things Journal, 2018, 5, 4441-4453.	5.5	40
93	Frictionâ€induced electroactive β polymorph of poly(vinylidene fluoride). Journal of Applied Polymer Science, 2018, 135, 46395.	1.3	2
94	Nonlinear dynamics and triboelectric energy harvesting from a three-degree-of-freedom vibro-impact oscillator. Nonlinear Dynamics, 2018, 92, 1985-2004.	2.7	56
95	Triboelectric energy harvesting with surface-charge-fixed polymer based on ionic liquid. Science and Technology of Advanced Materials, 2018, 19, 317-323.	2.8	24
96	Toward Wearable Selfâ€Charging Power Systems: The Integration of Energyâ€Harvesting and Storage Devices. Small, 2018, 14, 1702817.	5.2	274
97	Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range. Nano Energy, 2018, 44, 388-398.	8.2	91
98	Compressible hexagonal-structured triboelectric nanogenerators for harvesting tire rotation energy. Extreme Mechanics Letters, 2018, 18, 1-8.	2.0	96
99	Highâ€Performance Triboelectric Nanogenerators Based on Electrospun Polyvinylidene Fluoride–Silver Nanowire Composite Nanofibers. Advanced Functional Materials, 2018, 28, 1703778.	7.8	291
100	Using a synchronous switch to enhance output performance of triboelectric nanogenerators. Nano Energy, 2018, 43, 210-218.	8.2	26
101	Impact of Rough Surface Morphology of Diluted Poly-DiMethyl-Siloxane (PDMS) Polymer Film on Triboelectric Energy Harvester Performance. , 2018, , .		3
102	In-Out Cylindrical Triboelectric Nanogenerators Based Energy Harvester. , 2018, , .		1
106	Dynamic Modeling and Electrical Characterization of a Heaving Hybrid Triboelectric-Electromagnetic Energy Harvester. , 2018, , .		1
107	A New CAD Tool for Energy Optimization of Diagonal Motion Mode of Attached Electrode Triboelectric Nanogenerators. , 2018, , .		4
108	Effects of Environmental Atmosphere on the Performance of Contact–Separation Mode TENG. Advanced Materials Technologies, 2019, 4, 1800569.	3.0	23
109	Fabric-based self-powered noncontact smart gloves for gesture recognition. Journal of Materials Chemistry A, 2018, 6, 20277-20288.	5.2	36
110	Power computation for the triboelectric nanogenerator. Nano Energy, 2018, 54, 39-49.	8.2	19
111	Capsule Triboelectric Nanogenerators: Toward Optional 3D Integration for High Output and Efficient Energy Harvesting from Broadband-Amplitude Vibrations. ACS Nano, 2018, 12, 9947-9957.	7.3	26

#	Article	IF	CITATIONS
112	Nature of Power Generation and Output Optimization Criteria for Triboelectric Nanogenerators. Advanced Energy Materials, 2018, 8, 1802190.	10.2	90
113	Energy Conversion at the Cuticle of Living Plants. Advanced Functional Materials, 2018, 28, 1806689.	7.8	49
114	A self-powered radio frequency (RF) transmission system based on the combination of triboelectric nanogenerator (TENG) and piezoelectric element for disaster rescue/relief. Nano Energy, 2018, 54, 331-340.	8.2	23
115	Towards self-powered sensing using nanogenerators for automotive systems. Nano Energy, 2018, 53, 1003-1019.	8.2	68
116	Giant Voltage Enhancement <i>via</i> Triboelectric Charge Supplement Channel for Self-Powered Electroadhesion. ACS Nano, 2018, 12, 10262-10271.	7.3	109
117	Enhanced output power of a freestanding ball-based triboelectric generator through the electrophorus effect. Journal of Materials Chemistry A, 2018, 6, 18518-18524.	5.2	5
118	Atomistic Field Theory for contact electrification of dielectrics. Journal of Electrostatics, 2018, 96, 10-15.	1.0	15
119	Optimization of triboelectric nanogenerator load characteristics considering the air breakdown effect. Nano Energy, 2018, 53, 706-715.	8.2	34
120	A flexible slip sensor using triboelectric nanogenerator approach. Journal of Physics: Conference Series, 2018, 986, 012009.	0.3	7
121	Remarkably enhanced triboelectric nanogenerator based on flexible and transparent monolayer titania nanocomposite. Nano Energy, 2018, 50, 140-147.	8.2	116
122	Self-Healable, Stretchable, Transparent Triboelectric Nanogenerators as Soft Power Sources. ACS Nano, 2018, 12, 6147-6155.	7.3	256
123	Hydrogel ionotronics. Nature Reviews Materials, 2018, 3, 125-142.	23.3	1,119
124	Integrable card-type triboelectric nanogenerators assembled by using less problematic, readily available materials. Nano Energy, 2018, 51, 383-390.	8.2	10
125	A Wrinkled PEDOT:PSS Film Based Stretchable and Transparent Triboelectric Nanogenerator for Wearable Energy Harvesters and Active Motion Sensors. Advanced Functional Materials, 2018, 28, 1803684.	7.8	286
127	Structural figure-of-merits of triboelectric nanogenerators at powering loads. Nano Energy, 2018, 51, 688-697.	8.2	59
128	A self-power-transmission and non-contact-reception keyboard based on a novel resonant triboelectric nanogenerator (R-TENG). Nano Energy, 2018, 50, 16-24.	8.2	44
129	Electron blocking layer-based interfacial design for highly-enhanced triboelectric nanogenerators. Nano Energy, 2018, 50, 9-15.	8.2	105
130	Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy, 2018, 49, 625-633.	8.2	261

#	Article	IF	CITATIONS
131	Triboelectric Nanogenerators Made of Porous Polyamide Nanofiber Mats and Polyimide Aerogel Film: Output Optimization and Performance in Circuits. ACS Applied Materials & Interfaces, 2018, 10, 30596-30606.	4.0	103
132	Facile roughness fabrications and their roughness effects on electrical outputs of the triboelectric nanogenerator. Smart Materials and Structures, 2018, 27, 105026.	1.8	33
133	Transparent and flexible high power triboelectric nanogenerator with metallic nanowire-embedded tribonegative conducting polymer. Nano Energy, 2018, 53, 152-159.	8.2	40
134	Toward self-powered photodetection enabled by triboelectric nanogenerators. Journal of Materials Chemistry C, 2018, 6, 11893-11902.	2.7	45
135	Design parameters impact on output characteristics of flexible hybrid energy harvesting generator: Experimental and theoretical simulation based on a parallel hybrid model. Nano Energy, 2018, 50, 794-806.	8.2	9
136	Versatile Core–Sheath Yarn for Sustainable Biomechanical Energy Harvesting and Realâ€Time Humanâ€Interactive Sensing. Advanced Energy Materials, 2018, 8, 1801114.	10.2	212
137	Fully Elastic and Metalâ€Free Tactile Sensors for Detecting both Normal and Tangential Forces Based on Triboelectric Nanogenerators. Advanced Functional Materials, 2018, 28, 1802989.	7.8	124
138	A sinusoidal alternating output of a triboelectric nanogenerator array with asymmetric-layer-based units. Nanoscale, 2018, 10, 13730-13736.	2.8	5
139	Flexible ZnO-PVDF/PTFE based piezo-tribo hybrid nanogenerator. Nano Energy, 2018, 51, 216-222.	8.2	160
140	Fundamental theories and basic principles of triboelectric effect: A review. Friction, 2019, 7, 2-17.	3.4	267
141	Triboelectric nanogenerators enabled sensing and actuation for robotics. Nano Energy, 2019, 65, 104005.	8.2	62
142	Photo-stimulated charge transfer in contact electrification coupled with plasmonic excitations. Nano Energy, 2019, 65, 104031.	8.2	5
143	Vibrationâ€Energyâ€Harvesting System: Transduction Mechanisms, Frequency Tuning Techniques, and Biomechanical Applications. Advanced Materials Technologies, 2019, 4, 1900177.	3.0	56
144	A flexible single-electrode-based triboelectric nanogenerator based on double-sided nanostructures. AIP Advances, 2019, 9, .	0.6	19
145	Enhanced performance triboelectric nanogenerators based on solid polymer electrolytes with different concentrations of cations. Nano Energy, 2019, 64, 103960.	8.2	59
146	Linear freestanding electret generator for harvesting swinging motion energy: Optimization and experiment. Nano Energy, 2019, 65, 104013.	8.2	24
147	A model for the triboelectric nanogenerator with inductive load and its energy boost potential. Nano Energy, 2019, 63, 103883.	8.2	20
148	A Nonencapsulative Pendulumâ€Like Paper–Based Hybrid Nanogenerator for Energy Harvesting. Advanced Energy Materials, 2019, 9, 1901149.	10.2	88

#	Article	IF	CITATIONS
149	Highly skin-conformal wearable tactile sensor based on piezoelectric-enhanced triboelectric nanogenerator. Nano Energy, 2019, 64, 103923.	8.2	129
150	Seesaw structured triboelectric nanogenerator with enhanced output performance and its applications in self-powered motion sensing. Nano Energy, 2019, 65, 103944.	8.2	57
151	Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics. Nano Energy, 2019, 64, 103948.	8.2	64
152	Shape-Adaptive, Self-Healable Triboelectric Nanogenerator with Enhanced Performances by Soft Solid–Solid Contact Electrification. ACS Nano, 2019, 13, 8936-8945.	7.3	121
153	Boost the Performance of Triboelectric Nanogenerators through Circuit Oscillation. Advanced Energy Materials, 2019, 9, 1900772.	10.2	44
154	High-Output and Bending-Tolerant Triboelectric Nanogenerator Based on an Interlocked Array of Surface-Functionalized Indium Tin Oxide Nanohelixes. ACS Energy Letters, 2019, 4, 1748-1754.	8.8	48
155	Amplitude-variable output characteristics of triboelectric-electret nanogenerators during multiple working cycles. Nano Energy, 2019, 63, 103856.	8.2	12
156	Largely enhancing the output power and charging efficiency of electret generators using position-based auto-switch and passive power management module. Nano Energy, 2019, 66, 104202.	8.2	17
157	Triboelectric nanogenerators with simultaneous outputs in both single-electrode mode and freestanding-triboelectric-layer mode. Nano Energy, 2019, 66, 104169.	8.2	41
158	On the Maximal Output Energy Density of Nanogenerators. ACS Nano, 2019, 13, 13257-13263.	7.3	43
161	A Generalized Geo-Electro-Mechanical Model for Triboelectric NanoGenerators. , 2019, , .		0
162	Tilting‣ensitive Triboelectric Nanogenerators for Energy Harvesting from Unstable/Fluctuating Surfaces. Advanced Functional Materials, 2019, 29, 1905319.	7.8	27
163	Frequency-independent self-powered sensing based on capacitive impedance matching effect of triboelectric nanogenerator. Nano Energy, 2019, 65, 103984.	8.2	44
164	Power-free electrostatic collecting film development for purifying indoor air pollution. Nano Energy, 2019, 65, 104034.	8.2	7
165	Flexible and Wearable PDMS-Based Triboelectric Nanogenerator for Self-Powered Tactile Sensing. Nanomaterials, 2019, 9, 1304.	1.9	44
166	High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy, 2019, 66, 104117.	8.2	127
167	Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy. Nano Energy, 2019, 66, 104108.	8.2	60
168	A universal standardized method for output capability assessment of nanogenerators. Nature Communications, 2019, 10, 4428.	5.8	81

#	Article	IF	CITATIONS
169	Harvesting ultralow frequency (< 1â€Hz) mechanical energy using triboelectric nanogenerator. Nano Energy, 2019, 65, 104011.	8.2	31
170	Textile-based triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Nano Energy, 2019, 66, 104148.	8.2	66
171	A high output magneto-mechano-triboelectric generator enabled by accelerated water-soluble nano-bullets for powering a wireless indoor positioning system. Energy and Environmental Science, 2019, 12, 666-674.	15.6	89
172	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	23.0	822
173	Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator. Nano Energy, 2019, 58, 410-418.	8.2	68
174	A calibration-free self-powered sensor for vital sign monitoring and finger tap communication based on wearable triboelectric nanogenerator. Nano Energy, 2019, 58, 536-542.	8.2	121
175	Nanogenerators as a Sustainable Power Source: State of Art, Applications, and Challenges. Nanomaterials, 2019, 9, 773.	1.9	78
176	Flexible PDMS-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring. Science China Materials, 2019, 62, 1423-1432.	3.5	59
177	A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Research, 2019, 12, 1789-1795.	5.8	75
178	Towards optimized triboelectric nanogenerators. Nano Energy, 2019, 62, 530-549.	8.2	124
179	Power-generating footwear based on a triboelectric-electromagnetic-piezoelectric hybrid nanogenerator. Nano Energy, 2019, 62, 660-666.	8.2	80
180	An integrated flexible self-powered wearable respiration sensor. Nano Energy, 2019, 63, 103829.	8.2	181
181	Compact and high performance wind actuated venturi triboelectric energy harvester. Nano Energy, 2019, 62, 449-457.	8.2	46
182	Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy, 2019, 61, 517-532.	8.2	135
183	High-Performance Hybridized Composited-Based Piezoelectric and Triboelectric Nanogenerators Based on BaTiO ₃ /PDMS Composite Film Modified with Ti _{0.8} O ₂ Nanosheets and Silver Nanopowders Cofillers. ACS Applied Energy Materials, 2019, 2, 3840-3850.	2.5	91
184	Self-powered on-line ion concentration monitor in water transportation driven by triboelectric nanogenerator. Nano Energy, 2019, 62, 442-448.	8.2	63
185	Progress in Triboelectric Materials: Toward High Performance and Widespread Applications. Advanced Functional Materials, 2019, 29, 1900098.	7.8	162
186	Crepe cellulose paper and nitrocellulose membrane-based triboelectric nanogenerators for energy harvesting and self-powered human-machine interaction. Nano Energy, 2019, 61, 69-77.	8.2	142

#	Article	IF	CITATIONS
187	Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy, 2019, 61, 132-140.	8.2	99
188	Chitosan biopolymerâ€derived selfâ€powered triboelectric sensor with optimized performance through molecular surface engineering and dataâ€driven learning. InformaÄnÃ-Materiály, 2019, 1, 116-125.	8.5	47
189	A theoretical approach for optimizing sliding-mode triboelectric nanogenerator based on multi-parameter analysis. Nano Energy, 2019, 61, 442-453.	8.2	51
190	Remarkable merits of triboelectric nanogenerator than electromagnetic generator for harvesting small-amplitude mechanical energy. Nano Energy, 2019, 61, 111-118.	8.2	144
191	Synergistic Effects of BaTiO ₃ /Multiwall Carbon Nanotube as Fillers on the Electrical Performance of Triboelectric Nanogenerator Based on Polydimethylsiloxane Composite Films. Energy Technology, 2019, 7, 1900101.	1.8	37
192	Open-book-like triboelectric nanogenerators based on low-frequency roll–swing oscillators for wave energy harvesting. Nanoscale, 2019, 11, 7199-7208.	2.8	78
193	Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Materials, 2019, 23, 617-628.	9.5	160
194	A liquid PEDOT:PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source. Nanoscale, 2019, 11, 7513-7519.	2.8	55
195	Triboelectric Energy Harvester performance enhanced by modifying the tribo-layer with cost-effective fabrication. Materials Research Express, 2019, 6, 065514.	0.8	6
196	Real-time diagnosis of small energy impacts using a triboelectric nanosensor. Sensors and Actuators A: Physical, 2019, 291, 196-203.	2.0	34
197	3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators. Nano Energy, 2019, 60, 630-640.	8.2	87
198	Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy, 2019, 58, 750-758.	8.2	155
199	On the force and energy conversion in triboelectric nanogenerators. Nano Energy, 2019, 59, 154-161.	8.2	61
200	Nanogenerator for scavenging low frequency vibrations. Journal of Micromechanics and Microengineering, 2019, 29, 053001.	1.5	34
201	Wearable high-dielectric-constant polymers with core–shell liquid metal inclusions for biomechanical energy harvesting and a self-powered user interface. Journal of Materials Chemistry A, 2019, 7, 7109-7117.	5.2	48
202	Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell's displacement current. Nano Energy, 2019, 59, 380-389.	8.2	84
203	Integrated dielectric-electrode layer for triboelectric nanogenerator based on Cu nanowire-Mesh hybrid electrode. Nano Energy, 2019, 59, 120-128.	8.2	37
204	High-voltage applications of the triboelectric nanogenerator—Opportunities brought by the unique energy technology. MRS Energy & Sustainability, 2019, 6, 1.	1.3	22

#	Article	IF	CITATIONS
205	Ultrasensitive Fingertip-Contacted Pressure Sensors To Enable Continuous Measurement of Epidermal Pulse Waves on Ubiquitous Object Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 46399-46407.	4.0	25
206	Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy, 2019, 57, 440-449.	8.2	164
207	Upper limits for output performance of contact-mode triboelectric nanogenerator systems. Nano Energy, 2019, 57, 66-73.	8.2	26
208	Fundamental research on the effective contact area of micro-/nano-textured surface in triboelectric nanogenerator. Nano Energy, 2019, 57, 41-47.	8.2	103
209	Cylindrical Free-Standing Mode Triboelectric Generator for Suspension System in Vehicle. Micromachines, 2019, 10, 17.	1.4	15
210	Structure and Dimension Effects on the Performance of Layered Triboelectric Nanogenerators in Contact-Separation Mode. ACS Nano, 2019, 13, 698-705.	7.3	100
211	Textileâ€Based Triboelectric Nanogenerators for Selfâ€Powered Wearable Electronics. Advanced Functional Materials, 2019, 29, 1804533.	7.8	148
212	Carbon electrodes enable flat surface PDMS and PA6 triboelectric nanogenerators to achieve significantly enhanced triboelectric performance. Nano Energy, 2019, 55, 548-557.	8.2	85
213	Self-powered electronic skin based on the triboelectric generator. Nano Energy, 2019, 56, 252-268.	8.2	205
214	A general optimization approach for contact-separation triboelectric nanogenerator. Nano Energy, 2019, 56, 700-707.	8.2	70
215	Triboelectric Nanogenerator: A Foundation of the Energy for the New Era. Advanced Energy Materials, 2019, 9, 1802906.	10.2	1,086
216	Metal nanowire–polymer matrix hybrid layer for triboelectric nanogenerator. Nano Energy, 2019, 58, 227-233.	8.2	22
217	Self-powered digital-analog hybrid electronic skin for noncontact displacement sensing. Nano Energy, 2019, 58, 121-129.	8.2	48
218	Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring. Nano Energy, 2019, 56, 693-699.	8.2	71
219	Pump drill-integrated triboelectric nanogenerator as a practical substitute for batteries of intermittently used devices. Nano Energy, 2019, 56, 612-618.	8.2	10
219 220	Pump drill-integrated triboelectric nanogenerator as a practical substitute for batteries of	8.2	10 20
	Pump drill-integrated triboelectric nanogenerator as a practical substitute for batteries of intermittently used devices. Nano Energy, 2019, 56, 612-618. Triboelectric nanogenerator as self-powered impact force sensor for falling object. Current Applied		

#	Article	IF	CITATIONS
223	Highly porous polymer cryogel based tribopositive material for high performance triboelectric nanogenerators. Nano Energy, 2020, 68, 104294.	8.2	47
224	A Micropillarâ€Assisted Versatile Strategy for Highly Sensitive and Efficient Triboelectric Energy Generation under Inâ€Plane Stimuli. Advanced Materials, 2020, 32, e1905539.	11.1	48
225	On the first principle theory of nanogenerators from Maxwell's equations. Nano Energy, 2020, 68, 104272.	8.2	431
226	A self-powered and high sensitivity acceleration sensor with V-Q-a model based on triboelectric nanogenerators (TENGs). Nano Energy, 2020, 67, 104228.	8.2	83
227	Self-powered control interface based on Gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy, 2020, 70, 104456.	8.2	110
228	Two voltages in contact-separation triboelectric nanogenerator: From asymmetry to symmetry for maximum output. Nano Energy, 2020, 69, 104452.	8.2	83
229	A triboelectric and pyroelectric hybrid energy harvester for recovering energy from low-grade waste fluids. Nano Energy, 2020, 70, 104459.	8.2	58
230	Self-powered silicon PIN photoelectric detection system based on triboelectric nanogenerator. Nano Energy, 2020, 69, 104461.	8.2	31
231	Solar evaporation for simultaneous steam and power generation. Journal of Materials Chemistry A, 2020, 8, 513-531.	5.2	132
232	Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring. Nano Energy, 2020, 69, 104437.	8.2	108
233	High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy, 2020, 67, 104297.	8.2	64
234	Leadâ€Free Bi _{0.5} (Na _{0.78} K _{0.22})TiO ₃ Nanoparticle Filler–Elastomeric Composite Films for Paperâ€Based Flexible Power Generators. Advanced Electronic Materials, 2020, 6, 1900950.	2.6	35
235	Overview of Power Management for Triboelectric Nanogenerators. Advanced Intelligent Systems, 2020, 2, 1900129.	3.3	40
236	Experimental apparatus for simultaneous measurement of triboelectricity and triboluminescence. Measurement: Journal of the International Measurement Confederation, 2020, 152, 107316.	2.5	6
237	Robust Triboelectric Nanogenerator with Ratchetâ€like Wheelâ€Based Design for Harvesting of Environmental Energy. Advanced Materials Technologies, 2020, 5, 1900801.	3.0	25
238	Progress in <scp>TENG</scp> technology—A journey from energy harvesting to nanoenergy and nanosystem. EcoMat, 2020, 2, e12058.	6.8	194
239	Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy, 2020, 77, 105303.	8.2	206
240	Robust Power Textile Based on Triboelectrification for Self-Powered Smart Textiles. IEEE Open Journal of Nanotechnology, 2020, 1, 95-99.	0.9	2

#	Article	IF	CITATIONS
241	Enhanced Triboelectric Performance of Modified PDMS Nanocomposite Multilayered Nanogenerators. Materials, 2020, 13, 4156.	1.3	29
242	Ultrastretchable, Wearable Triboelectric Nanogenerator Based on Sedimented Liquid Metal Elastomer Composite. Advanced Materials Technologies, 2020, 5, 2000754.	3.0	52
243	Impact-Driven Energy Harvesting: Piezoelectric Versus Triboelectric Energy Harvesters. Sensors, 2020, 20, 5828.	2.1	29
244	Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat, 2020, 2, e12059.	6.8	212
245	Theoretical maximum efficiency and higher power output in triboelectric nanogenerators. Energy Reports, 2020, 6, 2463-2475.	2.5	19
246	Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines. IScience, 2020, 23, 101682.	1.9	70
247	Toward Self-Powered Inertial Sensors Enabled by Triboelectric Effect. ACS Applied Electronic Materials, 2020, 2, 3072-3087.	2.0	23
248	Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy, 2020, 78, 105389.	8.2	186
249	Dripping Channel Based Liquid Triboelectric Nanogenerators for Energy Harvesting and Sensing. ACS Nano, 2020, 14, 10510-10517.	7.3	60
250	Seawater Degradable Triboelectric Nanogenerators for Blue Energy. Advanced Materials Technologies, 2020, 5, 2000455.	3.0	32
251	Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives. Energy and Environmental Science, 2020, 13, 2657-2683.	15.6	195
252	Potassium sodium niobate lead-free piezoelectric nanocomposite generators based on carbon-fiber-reinforced polymer electrodes for energy-harvesting structures. Composites Science and Technology, 2020, 199, 108331.	3.8	38
253	Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators. Frontiers in Chemistry, 2020, 8, 577327.	1.8	45
254	Robust Triboelectric Generators by All-In-One Commercial Rubbers. ACS Applied Electronic Materials, 2020, 2, 4054-4064.	2.0	16
255	Nanogap and Environmentally Stable Triboelectric Nanogenerators Based on Surface Self-Modified Sustainable Films. ACS Applied Materials & Interfaces, 2020, 12, 55444-55452.	4.0	25
256	Performance-Enhanced Triboelectric Nanogenerator Based on the Double-Layered Electrode Effect. Polymers, 2020, 12, 2854.	2.0	12
257	Achieving Ultrahigh Output Energy Density of Triboelectric Nanogenerators in Highâ€Pressure Gas Environment. Advanced Science, 2020, 7, 2001757.	5.6	59
258	Aim high energy conversion efficiency in triboelectric nanogenerators. Science and Technology of Advanced Materials, 2020, 21, 683-688.	2.8	4

#	Article	IF	Citations
259	Microengineering Pressure Sensor Active Layers for Improved Performance. Advanced Functional Materials, 2020, 30, 2003491.	7.8	290
260	Hybrid Allâ€inâ€One Power Source Based on Highâ€Performance Spherical Triboelectric Nanogenerators for Harvesting Environmental Energy. Advanced Energy Materials, 2020, 10, 2001669.	10.2	71
261	Laser-directed synthesis of strain-induced crumpled MoS2 structure for enhanced triboelectrification toward haptic sensors. Nano Energy, 2020, 78, 105266.	8.2	74
262	3D Cu ball-based hybrid triboelectric nanogenerator with non-fullerene organic photovoltaic cells for self-powering indoor electronics. Nano Energy, 2020, 77, 105271.	8.2	33
263	Direct Current Triboelectric Nanogenerators. Advanced Energy Materials, 2020, 10, 2002756.	10.2	64
264	Stretchable Triboelectric Nanogenerators for Energy Harvesting and Motion Monitoring. IEEE Open Journal of Nanotechnology, 2020, 1, 109-116.	0.9	11
265	Recent Advances in Selfâ€Powered Triboâ€∤Piezoelectric Energy Harvesters: Allâ€Inâ€One Package for Future Smart Technologies. Advanced Functional Materials, 2020, 30, 2004446.	7.8	133
266	Recent advances of triboelectric nanogenerator based applications in biomedical systems. EcoMat, 2020, 2, e12049.	6.8	35
267	Dynamical charge transfer for highâ€performance triboelectric nanogenerators. Nano Select, 2020, 1, 461-470.	1.9	13
268	Experimental and Analytical Investigation of the Response of a Triboelectric Generator Under Different Operating Conditions. Energy Technology, 2020, 8, 2000576.	1.8	8
269	Theoretical modeling of triboelectric nanogenerators (TENGs). Journal of Applied Physics, 2020, 128, .	1.1	110
270	Triboelectric nanogenerators based on elastic electrodes. Nanoscale, 2020, 12, 20118-20130.	2.8	32
271	Anisotropic Triboelectric Nanogenerator Based on Ordered Electrospinning. ACS Applied Materials & Interfaces, 2020, 12, 46205-46211.	4.0	47
272	Enhancement of Triboelectric Charge Density by Chemical Functionalization. Advanced Functional Materials, 2020, 30, 2004714.	7.8	171
273	Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nature Communications, 2020, 11, 4203.	5.8	150
274	Integration of a soft dielectric composite into a cantilever beam for mechanical energy harvesting, comparison between capacitive and triboelectric transducers. Scientific Reports, 2020, 10, 20681.	1.6	5
275	Designing Tunable Capacitive Pressure Sensors Based on Material Properties and Microstructure Geometry. ACS Applied Materials & amp; Interfaces, 2020, 12, 58301-58316.	4.0	65
276	Facile Fabrication of Double-Layered Electrodes for a Self-Powered Energy Conversion and Storage System. Nanomaterials, 2020, 10, 2380.	1.9	6

#	Article	IF	CITATIONS
277	Chemically Functionalized Cellulose Nanofibrils for Improving Triboelectric Charge Density of a Triboelectric Nanogenerator. ACS Sustainable Chemistry and Engineering, 2020, 8, 18678-18685.	3.2	77
278	A Review of Solar Energy Harvesting Electronic Textiles. Sensors, 2020, 20, 5938.	2.1	37
279	Microdischargeâ€Based Direct Current Triboelectric Nanogenerator via Accumulation of Triboelectric Charge in Atmospheric Condition. Advanced Energy Materials, 2020, 10, 2000730.	10.2	46
280	Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator. Nano Energy, 2020, 75, 104904.	8.2	105
281	Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer. RSC Advances, 2020, 10, 17752-17759.	1.7	102
282	Ultralow Quiescent Powerâ€Consumption Wakeâ€Up Technology Based on the Bionic Triboelectric Nanogenerator. Advanced Science, 2020, 7, 2000254.	5.6	21
283	Direct current contact-mode triboelectric nanogenerators via systematic phase shifting. Nano Energy, 2020, 75, 104887.	8.2	34
284	Charge-trapping-blocking layer for enhanced triboelectric nanogenerators. Nano Energy, 2020, 75, 105011.	8.2	91
285	Highâ€Performance, Mechanically and Thermally Compliant Silicaâ€Based Solid Polymer Electrolyte for Triboelectric Nanogenerators Application. Advanced Materials Technologies, 2020, 5, 2000303.	3.0	13
286	Hybrid energy cells based on triboelectric nanogenerator: From principle to system. Nano Energy, 2020, 75, 104980.	8.2	71
287	A flexible triboelectric nanogenerator based on a super-stretchable and self-healable hydrogel as the electrode. Nanoscale, 2020, 12, 12753-12759.	2.8	45
288	Exploring the theoretical and experimental optimization of high-performance triboelectric nanogenerators using microarchitectured silk cocoon films. Nano Energy, 2020, 74, 104882.	8.2	58
289	Portland Cement-TiO2 triboelectric nanogenerator for robust large-scale mechanical energy harvesting and instantaneous motion sensor applications. Nano Energy, 2020, 74, 104802.	8.2	43
290	Bulk Pt/CsPbBr ₃ Schottky junctions for charge boosting in robust triboelectric nanogenerators. Journal of Materials Chemistry A, 2020, 8, 11966-11975.	5.2	20
291	Theoretical foundations of triboelectric nanogenerators (TENGs). Science China Technological Sciences, 2020, 63, 1087-1109.	2.0	83
292	Cellulose II Aerogelâ€Based Triboelectric Nanogenerator. Advanced Functional Materials, 2020, 30, 2001763.	7.8	123
293	Biomimetic and porous nanofiber-based hybrid sensor for multifunctional pressure sensing and human gesture identification via deep learning method. Nano Energy, 2020, 76, 105029.	8.2	61
294	Cardiac energy harvesting and sensing based on piezoelectric and triboelectric designs. Nano Energy, 2020, 76, 105076.	8.2	63

#	Article	IF	CITATIONS
295	A coplanarâ€electrode directâ€current triboelectric nanogenerator with facile fabrication and stable output. EcoMat, 2020, 2, e12037.	6.8	25
296	Multilayered Cylindrical Triboelectric Nanogenerator to Harvest Kinetic Energy of Tree Branches for Monitoring Environment Condition and Forest Fire. Advanced Functional Materials, 2020, 30, 2003598.	7.8	39
297	Synergistic enhancement of coaxial nanofiber-based triboelectric nanogenerator through dielectric and dispersity modulation. Nano Energy, 2020, 75, 104894.	8.2	52
298	Bioâ€Derived Natural Materials Based Triboelectric Devices for Selfâ€Powered Ubiquitous Wearable and Implantable Intelligent Devices. Advanced Sustainable Systems, 2020, 4, 2000108.	2.7	42
299	Inherent asymmetry of the current output in a triboelectric nanogenerator. Nano Energy, 2020, 76, 105045.	8.2	29
300	Super Tough and Self-Healable Poly(dimethylsiloxane) Elastomer via Hydrogen Bonding Association and Its Applications as Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2020, 12, 31975-31983.	4.0	47
301	Nanogenerators to Power Implantable Medical Systems. Joule, 2020, 4, 1398-1407.	11.7	61
302	Polymer nanocomposite meshes for flexible electronic devices. Progress in Polymer Science, 2020, 107, 101279.	11.8	119
303	Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators. Energy and Environmental Science, 2020, 13, 2450-2458.	15.6	84
304	Fish Gelatin Based Triboelectric Nanogenerator for Harvesting Biomechanical Energy and Self-Powered Sensing of Human Physiological Signals. ACS Applied Materials & Interfaces, 2020, 12, 16442-16450.	4.0	100
305	Flexible Self-Powered Real-Time Ultraviolet Photodetector by Coupling Triboelectric and Photoelectric Effects. ACS Applied Materials & amp; Interfaces, 2020, 12, 19384-19392.	4.0	80
306	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	23.0	644
307	Multifunctional Nanomaterials Modification of Cellulose Paper for Efficient Triboelectric Nanogenerators. Advanced Materials Technologies, 2020, 5, 2000001.	3.0	63
308	Theoretical investigation of air breakdown direct current triboelectric nanogenerator. Applied Physics Letters, 2020, 116, .	1.5	23
309	A Triboelectric Nanogenerator Consisting of Polytetrafluoroethylene (PTFE) Pellet for Selfâ€₽owered Detection of Mechanical Faults and Inclination in Dynamic Mechanics. Energy Technology, 2020, 8, 2000400.	1.8	9
310	Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators. Nano Letters, 2020, 20, 6404-6411.	4.5	231
311	Anisotropic nanogenerator for anticounterfeiting and information encrypted transmission. Nano Energy, 2020, 71, 104572.	8.2	27
312	Fabrication of silver-doped zinc oxide nanorods piezoelectric nanogenerator on cotton fabric to utilize and optimize the charging system. Nanomaterials and Nanotechnology, 2020, 10, 184798041989574.	1.2	32

ARTICLE IF CITATIONS # Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology, 2020, 31, 313 1.3 103 242001. Monitoring and forecasting the development trends of nanogenerator technology using citation 314 8.2 analysis and text mining. Nano Energy, 2020, 71, 104636. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care 315 18.7 310 testing systems for self-testing. Chemical Society Reviews, 2020, 49, 1812-1866. Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding 316 mode. Applied Physics Reviews, 2020, 7, . Wire-based triboelectric resonator for a self-powered crack monitoring system. Nano Energy, 2020, 71, 317 8.2 6 104615. Polydirectional Microvibration Energy Collection for Self-Powered Multifunctional Systems Based on Hybridized Nanogenerators. ACS Nano, 2020, 14, 3328-3336. 7.3 Stretchable, Transparent, and Thermally Stable Triboelectric Nanogenerators Based on Solventâ EFree 319 7.8 114 Ionâ€Conducting Elastomer Electrodes. Advanced Functional Materials, 2020, 30, 1909252. Normally Transparent Tribo-Induced Smart Window. ACS Nano, 2020, 14, 3630-3639. 320 7.3 321 Self-driven power management system for triboelectric nanogenerators. Nano Energy, 2020, 71, 104642. 8.2 129 Wind-Driven Radial-Engine-Shaped Triboelectric Nanogenerators for Self-Powered Absorption and 7.3 Degradation of NO_X. ACS Nano, 2020, 14, 2751-2759. Inductor-Free Output Multiplier for Power Promotion and Management of Triboelectric Nanogenerators toward Self-Powered Systems. ACS Applied Materials & amp; Interfaces, 2020, 12, 323 4.030 5892-5900. Design and Analysis of a Synchronized Interface Circuit for Triboelectric Energy Harvesting. Journal 324 1.0 of Electronic Materials, 2020, 49, 2491-2501. Fluorinated metal-organic framework as bifunctional filler toward highly improving output 325 8.2 97 performance of triboelectric nanogenerators. Nano Energy, 2020, 70, 104517. Study of vibrational droplet triboelectric nanogenerator on structural and operational parameters. 8.2 Nanó Energy, 2020, 70, 104473. 327 Material aspects of triboelectric energy generation and sensors. NPG Asia Materials, 2020, 12, . 200 3.8 Remarkably enhanced hybrid piezo/triboelectric nanogenerator via rational modulation of piezoelectric and dielectric properties for self-powered electronics. Applied Physics Letters, 2020, 116, 39 Analysis of mechanical deformation effect on the voltage generation of a vertical contact mode 329 1.58 triboelectric generator. Journal of Micromechanics and Microengineering, 2020, 30, 045009. An Autonomous Soft Actuator with Lightâ€Driven Selfâ€Sustained Wavelike Oscillation for Phototactic Selfâ€Locomotion and Power Generation. Advanced Functional Materials, 2020, 30, 1908842.

#	Article	IF	CITATIONS
331	Continuous direct current by charge transportation for next-generation IoT and real-time virtual reality applications. Nano Energy, 2020, 73, 104760.	8.2	61
332	A self-powered and arch-structured triboelectric nanogenerator for portable electronics and human-machine communication. Journal of Materials Chemistry A, 2020, 8, 8997-9005.	5.2	36
333	Sweep-type triboelectric linear motion sensor with staggered electrode. Extreme Mechanics Letters, 2020, 37, 100713.	2.0	21
334	A triboelectric nanogenerator design for harvesting environmental mechanical energy from water mist. Nano Energy, 2020, 73, 104765.	8.2	31
335	An Inâ€Plane Sliding Triboelectric Nanogenerator with a Multielectrode Array for Selfâ€Powered Dynamic Addressing and Trajectory Tracking. Energy Technology, 2020, 8, 2000155.	1.8	6
336	Multifunctional Mechanical Metamaterials with Embedded Triboelectric Nanogenerators. Advanced Functional Materials, 2020, 30, 2001720.	7.8	29
337	Triboelectric Harvesting by a Dualâ€īp Peak Power Multiplier under Airtight Condition. Energy Technology, 2020, 8, 1901265.	1.8	4
338	Triboelectric nanogenerators: Fundamental physics and potential applications. Friction, 2020, 8, 481-506.	3.4	224
339	Nanowrinkle-patterned flexible woven triboelectric nanogenerator toward self-powered wearable electronics. Nano Energy, 2020, 73, 104797.	8.2	66
340	Harsh environment–tolerant and robust triboelectric nanogenerators for mechanical-energy harvesting, sensing, and energy storage in a smart home. Nano Energy, 2021, 80, 105547.	8.2	71
341	Theoretical analysis of sensor properties of contact-separation mode nanogenerator-based sensors. Nano Energy, 2021, 79, 105450.	8.2	6
342	Design of a self-powered triboelectric face mask. Nano Energy, 2021, 79, 105387.	8.2	85
343	Research methodsÂof contact electrification: Theoretical simulation and experiment. Nano Energy, 2021, 79, 105501.	8.2	23
344	Active matching circuit to enhance the generated power of triboelectric nanogenerators. Nano Energy, 2021, 80, 105588.	8.2	4
345	An investigation into the influence of tribological parameters on the operation of sliding triboelectric nanogenerators. Tribology International, 2021, 155, 106778.	3.0	11
346	Polymer chemistry underpinning materials for triboelectric nanogenerators (TENGs): Recent trends. European Polymer Journal, 2021, 142, 110163.	2.6	37
347	Theoretical study of nanogenerator with resistive load and its sensing performance as a motion sensor. Nano Energy, 2021, 81, 105628.	8.2	6
348	Stretchable and Shapeâ€Adaptable Triboelectric Nanogenerator Based on Biocompatible Liquid Electrolyte for Biomechanical Energy Harvesting and Wearable Human–Machine Interaction. Advanced Functional Materials, 2021, 31, 2007221.	7.8	89

#	Article	IF	CITATIONS
349	Investigation on energy efficiency of rolling triboelectric nanogenerator using cylinder-cylindrical shell dynamic model. Nano Energy, 2021, 80, 105583.	8.2	14
350	Performance enhancement of triboelectric nanogenerator through hole and electron blocking layers-based interfacial design. Nano Energy, 2021, 82, 105694.	8.2	20
351	Toward Healthcare Diagnoses by Machine-Learning-Enabled Volatile Organic Compound Identification. ACS Nano, 2021, 15, 894-903.	7.3	81
352	A dual quasi-zero-stiffness sliding-mode triboelectric nanogenerator for harvesting ultralow-low frequency vibration energy. Mechanical Systems and Signal Processing, 2021, 151, 107368.	4.4	58
353	Parametric study of a triboelectric transducer in total knee replacement application. Journal of Intelligent Material Systems and Structures, 2021, 32, 16-28.	1.4	13
354	Multiscale surface modified magneto-mechano-triboelectric nanogenerator enabled by eco-friendly NaCl imprinting stamp for self-powered IoT applications. Nanoscale, 2021, 13, 8418-8424.	2.8	21
355	Sensing of ultraviolet light: a transition from conventional to self-powered photodetector. Nanoscale, 2021, 13, 15526-15551.	2.8	36
356	Triboelectric nanogenerator: from alternating current to direct current. IScience, 2021, 24, 102018.	1.9	66
357	Liquid metal architectures for soft and wearable energy harvesting devices. Multifunctional Materials, 2021, 4, 012001.	2.4	32
358	Recent developments of hybrid piezo–triboelectric nanogenerators for flexible sensors and energy harvesters. Nanoscale Advances, 2021, 3, 5465-5486.	2.2	47
359	Charge trapping with α-Fe ₂ O ₃ nanoparticles accompanied by human hair towards an enriched triboelectric series and a sustainable circular bioeconomy. Materials Horizons, 2021, 8, 3149-3162.	6.4	11
360	Small-Scale Energy Harvesting Devices for Smart Electronics. , 2021, , 391-425.		0
361	Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano, 2021, 15, 258-287.	7.3	343
362	Micro- and nanodevices for wind energy harvesting. , 2021, , 291-374.		3
363	Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems. Micromachines, 2021, 12, 158.	1.4	31
364	High-Performance Triboelectric Devices via Dielectric Polarization: A Review. Nanoscale Research Letters, 2021, 16, 35.	3.1	79
365	Design and optimisation of magnetically-tunable hybrid piezoelectric-triboelectric energy harvester. Scientific Reports, 2021, 11, 4458.	1.6	15
366	Electronic charge transfer during metal/SiO2 contact: Insight from density functional theory. Journal of Applied Physics, 2021, 129, .	1.1	12

#	Article	IF	CITATIONS
367	Ultrahigh Electricity Generation from Low-Frequency Mechanical Energy by Efficient Energy Management. Joule, 2021, 5, 441-455.	11.7	159
368	Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. Research, 2021, 2021, 6849171.	2.8	75
369	Hydrodynamic and Energy Capture Properties of a Cylindrical Triboelectric Nanogenerator for Ocean Buoy. Applied Sciences (Switzerland), 2021, 11, 3076.	1.3	3
370	Designing Rules and Optimization of Triboelectric Nanogenerator Arrays. Advanced Energy Materials, 2021, 11, 2100065.	10.2	38
371	Design and engineering of <scp>highâ€performance</scp> triboelectric nanogenerator for ubiquitous unattended devices. EcoMat, 2021, 3, e12093.	6.8	39
372	A Stretchable, Self-Healable Triboelectric Nanogenerator as Electronic Skin for Energy Harvesting and Tactile Sensing. Materials, 2021, 14, 1689.	1.3	38
373	Evaluation through finite element and numerical simulation of triboelectric polymer pairs in vertical contact mode. Journal of Energy Systems, 2021, 5, 35-45.	0.8	2
374	Dynamic simulation of nanogenerator based on finite element model coupled with lumped parameter elements**. , 2021, , .		0
375	High-Electrification Performance and Mechanism of a Water–Solid Mode Triboelectric Nanogenerator. ACS Nano, 2021, 15, 8706-8714.	7.3	43
376	ZnO nanorods@conductive carbon black nanocomposite based flexible integrated system for energy conversion and storage through triboelectric nanogenerator and supercapacitor. Nano Energy, 2021, 82, 105726.	8.2	32
377	Friction energy harvesting on bismuth tungstate catalyst for tribocatalytic degradation of organic pollutants. Journal of Colloid and Interface Science, 2021, 587, 883-890.	5.0	49
378	Tribo-Induced Smart Reflector for Ultrasensitive Self-Powered Wireless Sensing of Air Flow. ACS Applied Materials & Interfaces, 2021, 13, 21450-21458.	4.0	14
379	Concealed Wireless Warning Sensor Based on Triboelectrification and Human-Plant Interactive Induction. Research, 2021, 2021, 9870936.	2.8	15
380	Demonstration of friction-based triboelectric nanogenerator and integration in a power-balanced fully autonomous system. Nano Energy, 2021, 83, 105796.	8.2	7
381	Advanced designs for output improvement of triboelectric nanogenerator system. Materials Today, 2021, 45, 93-119.	8.3	86
382	High performance of multi-layered triboelectric nanogenerators for mechanical energy harvesting. Energy, 2021, 222, 119949.	4.5	38
383	Nodding Duck Structure Multi-track Directional Freestanding Triboelectric Nanogenerator toward Low-Frequency Ocean Wave Energy Harvesting. ACS Nano, 2021, 15, 9412-9421.	7.3	89
384	Instantaneous Self-Powered Sensing System Based on Planar-Structured Rotary Triboelectric Nanogenerator. Sensors, 2021, 21, 3741.	2.1	8

#	Article	IF	CITATIONS
385	Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications. Nano Research, 2022, 15, 272-279.	5.8	50
386	Solid ion channels gel battery driven by triboelectric effect and its integrated self-powered foreign matter intrusion detecting system. Nano Energy, 2021, 83, 105791.	8.2	5
387	Natural silk-composite enabled versatile robust triboelectric nanogenerators for smart applications. Nano Energy, 2021, 83, 105819.	8.2	40
388	Simulation of gas sensing with a triboelectric nanogenerator. Beilstein Journal of Nanotechnology, 2021, 12, 507-516.	1.5	0
389	Triboâ€Induced Color Tuner toward Smart Lighting and Selfâ€Powered Wireless Sensing. Advanced Science, 2021, 8, 2004970.	5.6	16
390	Rotary disk multi-phase freestanding-electret generator with enhanced power and low ripple output. Nano Energy, 2021, 83, 105787.	8.2	21
391	Recent Progress in Development of Wearable Pressure Sensors Derived from Biological Materials. Advanced Healthcare Materials, 2021, 10, e2100460.	3.9	30
392	Fully self-powered instantaneous wireless humidity sensing system based on triboelectric nanogenerator. Nano Energy, 2021, 83, 105814.	8.2	49
393	Flash-welded ultraflat silver nanowire network for flexible organic light-emitting diode and triboelectric tactile sensor. APL Materials, 2021, 9, .	2.2	16
394	Optimization of Motor-Based Rotational Triboelectric Nanogenerators (RoTENGs) for Neural Stimulation. , 2021, , .		0
395	An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power. Applied Energy, 2021, 291, 116825.	5.1	40
396	Bioinspired designs and biomimetic applications of triboelectric nanogenerators. Nano Energy, 2021, 84, 105865.	8.2	53
397	Multifunctional Selfâ€Charging Electrochromic Supercapacitors Driven by Directâ€Current Triboelectric Nanogenerators. Advanced Functional Materials, 2021, 31, 2104348.	7.8	53
398	Dielectric Modulated Glass Fiber Fabricâ€Based Single Electrode Triboelectric Nanogenerator for Efficient Biomechanical Energy Harvesting. Advanced Functional Materials, 2021, 31, 2102431.	7.8	43
399	Smart textile triboelectric nanogenerators: Current status and perspectives. MRS Bulletin, 2021, 46, 512-521.	1.7	111
400	Integrated study of triboelectric nanogenerator for ocean wave energy harvesting: Performance assessment in realistic sea conditions. Nano Energy, 2021, 84, 105890.	8.2	72
401	Volatile organic compounds sensing based on Bennet doubler-inspired triboelectric nanogenerator and machine learning-assisted ion mobility analysis. Science Bulletin, 2021, 66, 1176-1185.	4.3	50
402	Triboelectric nanogenerator-based wearable electronic devices and systems: Toward informatization and intelligence. , 2021, 113, 103038.		28

#	Article	IF	CITATIONS
403	Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators. Micromachines, 2021, 12, 698.	1.4	33
404	Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators. Nanoscale Research Letters, 2021, 16, 122.	3.1	40
405	Natural Rubber-TiO2 Nanocomposite Film for Triboelectric Nanogenerator Application. Polymers, 2021, 13, 2213.	2.0	29
406	Coupling electrostatic induction and global electron circulation for constant-current triboelectric nanogenerators. Nano Energy, 2021, 85, 105929.	8.2	9
407	Combination of Piezoelectric and Triboelectric Devices for Robotic Self-Powered Sensors. Micromachines, 2021, 12, 813.	1.4	18
408	Selfâ€Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. Advanced Materials, 2021, 33, e2101262.	11.1	217
409	Timing strategy for boosting energy extraction from triboelectric nanogenerators. Nano Energy, 2021, 85, 105956.	8.2	18
410	Selfâ€Powered Gyroscope Angle Sensor Based on Resistive Matching Effect of Triboelectric Nanogenerator. Advanced Materials Technologies, 2021, 6, 2100797.	3.0	9
411	Recent advances in nanogenerators-based flexible electronics for electromechanical biomonitoring. Biosensors and Bioelectronics, 2021, 186, 113290.	5.3	23
412	A Selfâ€Powered Gas Sensor Based on Coupling Triboelectric Screening and Impedance Matching Effects. Advanced Materials Technologies, 2021, 6, 2100310.	3.0	21
413	Modified organic polystyrene microspheres embedded into P(VDF-TrFE) with lotus-leaf microstructure enables high performance triboelectric nanogenerator. Nano Energy, 2021, 86, 106128.	8.2	23
414	Advances of High-Performance Triboelectric Nanogenerators for Blue Energy Harvesting. Nanoenergy Advances, 2021, 1, 32-57.	3.6	40
415	A stretchable, harsh condition-resistant and ambient-stable hydrogel and its applications in triboelectric nanogenerator. Nano Energy, 2021, 86, 106086.	8.2	46
416	Multifunctional Triboelectric Nanogeneratorâ€Enabled Structural Elements for Next Generation Civil Infrastructure Monitoring Systems. Advanced Functional Materials, 2021, 31, 2105825.	7.8	26
417	Tuning the performance of ferroelectric polymer-based triboelectric nanogenerator. Applied Physics Letters, 2021, 119, .	1.5	14
418	Micro rack Assisted Wrinkled PEDOT: PSS to Detect and Distinguish Tensile Strain and Pressure Based on a Triboelectric Nanogenerator. Advanced Materials Technologies, 2022, 7, 2100423.	3.0	14
419	Numerical analysis and structural optimization of cylindrical grating-structured triboelectric nanogenerator. Nano Energy, 2021, 90, 106570.	8.2	13
420	A new Mylar-based triboelectric energy harvester with an innovative design for mechanical energy harvesting applications. Energy Conversion and Management, 2021, 244, 114489.	4.4	29

		REPORT	
#	Article	IF	CITATIONS
421	Towards the Development of Triboelectricity-Based Virus Killer Face Mask for COVID-19: Role of Different Inputs. EAI/Springer Innovations in Communication and Computing, 2022, , 269-283.	0.9	1
422	Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization. Energies, 2021, 14, 5600.	1.6	28
423	Film-Sponge-Coupled Triboelectric Nanogenerator with Enhanced Contact Area Based on Direct Ultraviolet Laser Ablation. ACS Applied Materials & Interfaces, 2021, 13, 48281-48291.	4.0	13
424	A triboelectric nanogenerator based on food packaging Aluminium foil and Parafilm for self-powered electronics. Physica Scripta, 2021, 96, 125005.	1.2	18
425	Hybrid Triboelectric-Electromagnetic Nanogenerators for Mechanical Energy Harvesting: A Review. Nano-Micro Letters, 2021, 13, 199.	14.4	59
426	From contact electrification to triboelectric nanogenerators. Reports on Progress in Physics, 2021, 84, 096502.	8.1	244
427	Flexible Layered-Graphene Charge Modulation for Highly Stable Triboelectric Nanogenerator. Nanomaterials, 2021, 11, 2276.	1.9	13
428	Design Optimization of Softâ€Contact Freestanding Rotary Triboelectric Nanogenerator for Highâ€Output Performance. Advanced Energy Materials, 2021, 11, 2102106.	10.2	45
429	Highly Responsive and Robust Micro-/Nano-Textured Self-Powered Triboelectric Humidity Sensor. ACS Applied Electronic Materials, 0, , .	2.0	5
430	Spring assisted triboelectric nanogenerator based on sepiolite doped polyacrylonitrile nanofibers. Sustainable Energy Technologies and Assessments, 2021, 47, 101492.	1.7	6
431	A study on the design parameters for water–solid triboelectric energy harvesting with a channel device. Sustainable Energy Technologies and Assessments, 2021, 47, 101483.	1.7	0
432	Approaches to deformable physical sensors: Electronic versus iontronic. Materials Science and Engineering Reports, 2021, 146, 100640.	14.8	29
433	A self-powered hydrogen leakage sensor based on impedance adjustable windmill-like triboelectric nanogenerator. Nano Energy, 2021, 89, 106453.	8.2	28
434	A dynamics model of triboelectric nanogenerator transducers. Nano Energy, 2021, 89, 106479.	8.2	6
435	Stretchable polyurethane composite foam triboelectric nanogenerator with tunable microwave absorption properties at elevated temperature. Nano Energy, 2021, 89, 106397.	8.2	37
436	Electromechanical coupling modeling and analysis of contact-separation mode triboelectric nanogenerators. International Journal of Non-Linear Mechanics, 2021, 136, 103773.	1.4	11
437	A capsule-structured triboelectric energy harvester with stick-slip vibration and vibro-impact. Energy, 2021, 235, 121393.	4.5	23
438	Theoretical and experimental investigation into the asymmetric external charging of Triboelectric Nanogenerators. Nano Energy, 2021, 90, 106511.	8.2	11

#	Article	IF	CITATIONS
439	Carbon nanomaterial-based nanogenerators for harvesting energy from environment. Nano Energy, 2021, 90, 106494.	8.2	34
440	Bacterial cellulose nanofiber triboelectric nanogenerator based on dielectric particles hybridized system. Composites Part A: Applied Science and Manufacturing, 2021, 151, 106646.	3.8	30
441	Influence of pore morphologies on the mechanical and tribo-electrical performance of polydimethylsiloxane sponge fabricated via commercial seasoning templates. Radiation Physics and Chemistry, 2021, 189, 109720.	1.4	10
442	An omnidirectional stretchable hyper-elastic dielectric composed triboelectric textile for energy harvesting. Materials Letters, 2022, 306, 130859.	1.3	6
443	A new hybrid piezo/triboelectric SbSeI nanogenerator. Energy, 2022, 238, 122048.	4.5	20
444	Nanomaterials for nanogenerator. , 2021, , 69-87.		2
445	Progress of Inorganic Filler Based Composite Films for Triboelectric Nanogenerators. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 919.	0.6	4
446	Flexible triboelectric nanogenerator based on polyester conductive cloth for biomechanical energy harvesting and self-powered sensors. Nanoscale, 2021, 13, 18363-18373.	2.8	17
447	Wearable Sensorsâ€Enabled Human–Machine Interaction Systems: From Design to Application. Advanced Functional Materials, 2021, 31, 2008936.	7.8	322
448	Tribovoltaic Effect on Metal–Semiconductor Interface for Directâ€Current Lowâ€Impedance Triboelectric Nanogenerators. Advanced Energy Materials, 2020, 10, 1903713.	10.2	115
449	Triboelectric nanogenerator based on degradable materials. EcoMat, 2021, 3, e12072.	6.8	108
450	Monolithic homogeneous integrated miniaturized triboelectric nanogenerator with an inner air cavity for energy harvesting. Science China Technological Sciences, 2021, 64, 662-672.	2.0	6
451	Triboelectric Charge-Driven Enhancement of the Output Voltage of BiSbTe-Based Thermoelectric Generators. ACS Energy Letters, 2021, 6, 1095-1103.	8.8	18
452	An overlapped electron-cloud model for the contact electrification in piezo-assisted triboelectric nanogenerators <i>via</i> control of piezoelectric polarization. Journal of Materials Chemistry A, 2020, 8, 25857-25866.	5.2	16
453			
	A smart Kevlar-based triboelectric nanogenerator with enhanced anti-impact and self-powered sensing properties. Smart Materials and Structures, 2020, 29, 125007.	1.8	16
454		1.8	16 3
454 455	sensing properties. Smart Materials and Structures, 2020, 29, 125007. From nanoenergy harvesting to self-powering of micro- or nano-sensors for measurements on-site or	1.8	

#	Article	IF	CITATIONS
457	Research on efficient power management circuit for triboelectric nanogenerator (TENG). Journal of Physics: Conference Series, 2021, 2033, 012198.	0.3	1
458	Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. Journal of Semiconductors, 2021, 42, 101601.	2.0	76
459	Effective Mechanical Energy Harvesting from PVDF Multilayers by Head-to-Head Parallel Assembly. ACS Applied Energy Materials, 2021, 4, 11133-11143.	2.5	4
460	Green plantâ€based triboelectricity system for green energy harvesting and contact warning. EcoMat, 2021, 3, e12145.	6.8	13
461	Modeling the Triboelectric Behaviors of Elastomeric Nonwoven Fabrics. Advanced Materials, 2022, 34, e2106429.	11.1	9
462	Electromagnetic-triboeletric hybridized generator based on magnetic levitation for scavenging biomechanical energy. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 228401.	0.2	2
463	Modeling and analysis of energy extraction circuits for triboelectric nanogenerator based vibrational energy harvesting. , 2018, , .		7
464	Realistic Circuit Modeling Using Derating Factors for Triboelectric Nanogenerators in Energy Harvesting Applications. , 2019, , .		1
465	Self-Powered Flexible Full-Color Display via Dielectric-Tuned Hybrimer Triboelectric Nanogenerators. ACS Energy Letters, 2021, 6, 4097-4107.	8.8	15
466	Breeze-driven triboelectric nanogenerator for wind energy harvesting and application in smart agriculture. Applied Energy, 2022, 306, 117977.	5.1	104
467	A fully selfâ€powered, naturalâ€lightâ€enabled fiberâ€optic vibration sensing solution. SusMat, 2021, 1, 593-602.	7.8	11
468	Scalable core–spun coating yarn-based triboelectric nanogenerators with hierarchical structure for wearable energy harvesting and sensing via continuous manufacturing. Nano Energy, 2022, 91, 106672.	8.2	49
469	Cost-effective fabrication approaches for improving output performance of triboelectric energy harvesters. Journal of Electrostatics, 2022, 115, 103640.	1.0	6
470	Designable functional polymer nanocomposites via layer-by-layer assembly for highly deformable power-boosted triboelectric nanogenerators. Composites Part B: Engineering, 2022, 230, 109513.	5.9	17
471	Theoretical model and optimal output of a cylindrical triboelectric nanogenerator. Nano Energy, 2022, 92, 106762.	8.2	19
472	Transient physical modeling and comprehensive optimal design of air-breakdown direct-current triboelectric nanogenerators. Nano Energy, 2022, 92, 106742.	8.2	12
473	Engraved pattern spacer triboelectric nanogenerators for mechanical energy harvesting. Nano Energy, 2022, 92, 106782.	8.2	16
474	Effect of the inherent capacitance optimization on the output performance of triboelectric nanogenerators. Nano Energy, 2022, 92, 106740.	8.2	10

#	Article	IF	CITATIONS
475	Layer-by-Layer Self-Assembled Thin Films for Triboelectric Energy Harvesting under Harsh Conditions. ACS Applied Electronic Materials, 2021, 3, 5475-5482.	2.0	8
476	Recent Advances in Plant Nanoscience. Advanced Science, 2022, 9, e2103414.	5.6	45
477	Multi-pulse triboelectric nanogenerator based on micro-gap corona discharge for enhancement of output performance. Energy, 2022, 244, 122588.	4.5	9
478	Dielectric-elastomer-enhanced triboelectric nanogenerator with amplified outputs. Sensors and Actuators A: Physical, 2022, 333, 113270.	2.0	11
479	Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design. Energy and Environmental Science, 2021, 14, 6627-6637.	15.6	51
480	Wearable socks with single electrode triboelectric textile sensors for monitoring footsteps. Sensors and Actuators A: Physical, 2022, 333, 113316.	2.0	16
481	A review on extrusion-based 3D-printed nanogenerators for energy harvesting. Journal of Materials Science, 2022, 57, 140-169.	1.7	9
482	Available Technologies and Commercial Devices to Harvest Energy by Human Trampling in Smart Flooring Systems: A Review. Energies, 2022, 15, 432.	1.6	8
483	Recent trends in 2D materials and their polymer composites for effectively harnessing mechanical energy. IScience, 2022, 25, 103748.	1.9	19
484	A novel triboelectric nanogenerator based on only food packaging aluminium foils. Materials Letters, 2022, 310, 131474.	1.3	17
485	Geometrically versatile triboelectric yarn-based harvesters via carbon nanotubes-elastomer composites. Composites Science and Technology, 2022, 219, 109247.	3.8	10
486	A graphene nanoplatelets-based high-performance, durable triboelectric nanogenerator for harvesting the energy of human motion. Energy Reports, 2022, 8, 1026-1033.	2.5	21
487	A facile method to enhance the flexibility and triboelectric output of PDMS using ionic liquid-coated single-wall carbon nanotubes. Nano Energy, 2022, 94, 106908.	8.2	20
488	A High Performance Triboelectric Nanogenerator Based on Ordered Doping Technique for Driver Fatigue Monitoring. SSRN Electronic Journal, 0, , .	0.4	0
489	All-electrospun performance-enhanced triboelectric nanogenerator based on the charge-storage process. Journal of Materials Science, 2022, 57, 5334-5345.	1.7	16
490	Self-charging supercapacitors for smart electronic devices: a concise review on the recent trends and future sustainability. Journal of Materials Science, 2022, 57, 4399-4440.	1.7	29
491	Scalable Textile Manufacturing Methods for Fabricating Triboelectric Nanogenerators with Balanced Electrical and Wearable Properties. ACS Applied Electronic Materials, 2022, 4, 678-688.	2.0	13
492	Metal-Ion Coupling in Metal–Organic Framework Materials Regulating the Output Performance of a Triboelectric Nanogenerator. Inorganic Chemistry, 2022, 61, 2490-2498.	1.9	19

# 493	ARTICLE Embedding in-plane aligned MOF nanoflakes in silk fibroin for highly enhanced output performance of triboelectric nanogenerators. Journal of Materials Chemistry A, 2022, 10, 799-807.	IF 5.2	Citations 28
494	Energy Optimization of a Mirror ymmetric Spherical Triboelectric Nanogenerator. Advanced Functional Materials, 2022, 32, .	7.8	9
495	Methyl Orange-Doped Polypyrrole Promoting Growth of ZIF-8 on Cellulose Fiber with Tunable Tribopolarity for Triboelectric Nanogenerator. Polymers, 2022, 14, 332.	2.0	17
496	Enhancement of triboelectricity based on fully organic composite films with a conducting polymer. RSC Advances, 2022, 12, 2820-2829.	1.7	10
497	Wearable Pressure Sensors for Pulse Wave Monitoring. Advanced Materials, 2022, 34, e2109357.	11.1	253
498	Ferroelectric polymers for energy harvesting. , 2022, , 503-533.		0
499	Underwater Energy Harvesting and Sensing by Sweeping Out the Charges in an Electric Double Layer using an Oil Droplet. Advanced Functional Materials, 2022, 32, .	7.8	20
500	Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing. Fundamental Research, 2023, 3, 111-117.	1.6	6
501	Dielectric Manipulated Charge Dynamics in Contact Electrification. Research, 2022, 2022, 9862980.	2.8	9
502	Investigation on energy-regenerative shock absorber with adjustable damping and power for freight wagons. Energy Conversion and Management, 2022, 254, 115228.	4.4	21
503	A simple and low-cost triboelectric nanogenerator based on two dimensional ZnO nanosheets and its application in portable electronics. Sensors and Actuators A: Physical, 2022, 335, 113368.	2.0	33
504	Self-powered antifouling UVC pipeline sterilizer driven by the discharge stimuli based on the modified freestanding rotary triboelectric nanogenerator. Nano Energy, 2022, 95, 106969.	8.2	24
505	Study of interfacial design for direct-current tribovoltaic generators. Nano Energy, 2022, 94, 106957.	8.2	25
506	Waste to energy: Facile, low-cost and environment-friendly triboelectric nanogenerators using recycled plastic and electronic wastes for self-powered portable electronics. Energy Reports, 2022, 8, 1687-1695.	2.5	42
507	Electrohydrodynamic jet printed silver-grid electrode for transparent raindrop energy-based triboelectric nanogenerator. Nano Energy, 2022, 95, 107049.	8.2	17
508	Recent Advances on Hybrid Piezo-Triboelectric Bio-Nanogenerators: Materials, Architectures and Circuitry. Nanoenergy Advances, 2022, 2, 64-109.	3.6	22
509	All-polymer waterproof triboelectric nanogenerator towards blue energy harvesting and self-powered human motion detection. Energy, 2022, 247, 123422.	4.5	19
510	Fieldâ€assisted thermionic emission toward quantitative modeling of chargeâ€transfer mechanisms in contact electrification. SmartMat, 2022, 3, 619-631.	6.4	2

#	Article	IF	CITATIONS
511	A high performance triboelectric nanogenerator based on ordered doping technique for human-machine interaction sensing. Nano Energy, 2022, 95, 107025.	8.2	15
512	Self-Powered Antifouling UVC Pipeline Sterilizer Driven by the Discharge Stimuli Based on the Modified Freestanding Rotary Triboelectric Nanogenerator. SSRN Electronic Journal, 0, , .	0.4	Ο
513	Current Progress on Power Management Systems for Triboelectric Nanogenerators. IEEE Transactions on Power Electronics, 2022, 37, 9850-9864.	5.4	24
514	High-Performance Triboelectric Nanogenerator Powered Flexible Electroluminescence Devices Based on Patterned Laser-Induced Copper Electrodes for Visualized Information Interaction. SSRN Electronic Journal, 0, , .	0.4	0
515	Mechanically robust triboelectric nanogenerator with a shear thickening fluid for impact monitoring. Journal of Materials Chemistry A, 2022, 10, 10383-10390.	5.2	12
516	Slug-Inspired Magnetic Soft Millirobot Fully Integrated with Triboelectric Nanogenerator for On-Board Sensing and Self-Powered Charging. SSRN Electronic Journal, 0, , .	0.4	Ο
517	Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 1.	0.2	0
518	Recent Progress of Switching Power Management for Triboelectric Nanogenerators. Sensors, 2022, 22, 1668.	2.1	15
519	An Array of Flag-Type Triboelectric Nanogenerators for Harvesting Wind Energy. Nanomaterials, 2022, 12, 721.	1.9	12
520	Design and Simulation of Singleâ€Electrode Mode Triboelectric Nanogeneratorâ€Based Pulse Sensor for Healthcare Applications Using COMSOL Multiphysics. Energy Technology, 2022, 10, .	1.8	16
521	Elastic and Skin-Contact Triboelectric Nanogenerators and Their Applicability in Energy Harvesting and Tactile Sensing. ACS Applied Electronic Materials, 2022, 4, 1124-1131.	2.0	17
522	Eco-Friendly Triboelectric Material Based on Natural Rubber and Activated Carbon from Human Hair. Polymers, 2022, 14, 1110.	2.0	8
523	TRIBO-SIM: a parametric simulation tool for triboelectric energy generators. International Journal of Ambient Energy, 2022, 43, 7077-7087.	1.4	3
524	Van der Waals force-induced intralayer ferroelectric-to-antiferroelectric transition via interlayer sliding in bilayer group-IV monochalcogenides. Npj Computational Materials, 2022, 8, .	3.5	20
525	3D fully-enclosed triboelectric nanogenerator with bionic fish-like structure for harvesting hydrokinetic energy. Nano Research, 2022, 15, 5098-5104.	5.8	20
526	An Automated Power Evaluation Workbench for Triboelectric Nanogenerators. Micromachines, 2022, 13, 444.	1.4	2
527	A Siloxene/Ecoflex Nanocompositeâ€Based Triboelectric Nanogenerator with Enhanced Charge Retention by MoS ₂ /LIG for Selfâ€Powered Touchless Sensor Applications. Advanced Functional Materials, 2022, 32, .	7.8	36
528	Contact electrification property controlled by amino modification of cellulose fibers. Cellulose, 2022, 29, 3195-3208.	2.4	7

#	Article	IF	CITATIONS
529	MXene/Polylactic Acid Fabric-Based Resonant Cavity for Realizing Simultaneous High-Performance Electromagnetic Interference (EMI) Shielding and Efficient Energy Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 14607-14617.	4.0	17
530	Interface Engineering for Efficient Raindrop Solar Cell. ACS Nano, 2022, 16, 5292-5302.	7.3	47
531	Stomatopod-inspired integrate-and-fire triboelectric nanogenerator for harvesting mechanical energy with ultralow vibration speed. Applied Energy, 2022, 312, 118739.	5.1	6
532	Investigating the Influence of Friction and Material Wear on Triboelectric Charge Transfer in Metal–Polymer Contacts. Tribology Letters, 2022, 70, 1.	1.2	9
533	Harvesting circuits for triboelectric nanogenerators for wearable applications. IScience, 2022, 25, 103977.	1.9	15
534	Novel 3D Printed Vortex-like Flexible Roller-Compacted Triboelectric Nanogenerator for Self-Powered Electrochemical Degradation of Organic Contaminants. ACS Applied Materials & amp; Interfaces, 2022, 14, 17426-17433.	4.0	13
535	Highâ€Performance Dielectric Elastomer Nanogenerator for Efficient Energy Harvesting and Sensing via Alternative Current Method. Advanced Science, 2022, 9, e2201098.	5.6	11
536	Enhancement of Output Performance of Triboelectric Nanogenerator by Switchable Stimuli in Metal–Organic Frameworks for Photocatalysis. ACS Applied Materials & Interfaces, 2022, 14, 16424-16434.	4.0	28
537	A Robust Silicone Rubber Strip-Based Triboelectric Nanogenerator for Vibration Energy Harvesting and Multi-Functional Self-Powered Sensing. Nanomaterials, 2022, 12, 1248.	1.9	20
538	High-performance triboelectric nanogenerator powered flexible electroluminescence devices based on patterned laser-induced copper electrodes for visualized information interaction. Nano Energy, 2022, 96, 107116.	8.2	27
539	Self-suspended shell-based triboelectric nanogenerator for omnidirectional wind-energy harvesting. Nano Energy, 2022, 96, 107062.	8.2	23
540	Triboelectric nanogenerator as next-generation self-powered sensor for cooperative vehicle-infrastructure system. Nano Energy, 2022, 97, 107219.	8.2	54
541	A novel ZnS nanosheets-based triboelectric nanogenerator and its applications in sensing, self-powered electronics, and digital systems. Materials Today Communications, 2022, 31, 103292.	0.9	10
542	Highly sensitive three-dimensional scanning triboelectric sensor for digital twin applications. Nano Energy, 2022, 97, 107198.	8.2	7
543	Ferromagnetic-assisted Maxwell's displacement current based on iron/polymer composite for improving the triboelectric nanogenerator output. Nano Energy, 2022, 96, 107139.	8.2	25
544	Novel electrode design for energy harvesting devices based on liquid–solid contact and enhancement of effective interface area. Nano Energy, 2022, 96, 107095.	8.2	3
545	Electron trapping & blocking effect enabled by MXene/TiO2 intermediate layer for charge regulation of triboelectric nanogenerators. Nano Energy, 2022, 98, 107236.	8.2	36
546	Green and recyclable cellulose based TENG for sustainable energy and human-machine interactive system. Chemical Engineering Journal, 2022, 442, 136150.	6.6	40

#	Article	IF	CITATIONS
547	Enhanced Performance Triboelectric Nanogenerator With Strach Biopolymer Composite Interface Layer. , 2021, , .		0
548	Coupling Mechanism between Electromagnetic Induction Generator and Triboelectric Nanogenerator toward Effective Ocean Energy Harvesting. , 2021, , .		4
549	Design of Polymer Bonding Scheme and its Application for Triboelectronic Nanogenerator Integration. , 2021, , .		0
550	Hydrogelâ€based triboelectric nanogenerators: Properties, performance, and applications. International Journal of Energy Research, 2022, 46, 5603-5624.	2.2	28
551	High Performance Flexible Tribo/Piezoelectric Nanogenerators based on BaTiO ₃ /Chitosan Composites. Integrated Ferroelectrics, 2022, 223, 137-151.	0.3	10
552	Recent Development of Flexible Tactile Sensors and Their Applications. Sensors, 2022, 22, 50.	2.1	39
554	An Efficient Power Management System Using Dynamically Configured Multiple Triboelectric Nanogenerators and Dualâ€Parameter Maximum Power Point Tracking. Advanced Energy Materials, 2022, 12, .	10.2	8
555	Polysomnographic Observation Using Triboelectric Pressure Sensor Composed of Polymer-Pairs Having Coarse Surface. Fibers and Polymers, 2022, 23, 1490-1499.	1.1	9
556	Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives. Journal of Science: Advanced Materials and Devices, 2022, 7, 100461.	1.5	25
557	Recent Progress Regarding Materials and Structures of Triboelectric Nanogenerators for AR and VR. Nanomaterials, 2022, 12, 1385.	1.9	12
558	Asymmetric permittivity enhanced bilayer polycaprolactone nanofiber with superior inner interfacial polarization and charge retention for high-output and humidity-resistant triboelectric nanogenerators. Nano Energy, 2022, 98, 107289.	8.2	15
560	Additive-Manufactured Flexible Triboelectric Sensor Based on Porous PDMS Sponge for Highly Detecting Joint Movements. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 97-107.	2.7	3
561	3D Multiple Triangular Prisms for Highly Sensitive Non-Contact Mode Triboelectric Bending Sensors. Nanomaterials, 2022, 12, 1499.	1.9	2
562	Recent advancements for improving the performance of triboelectric nanogenerator devices. Nano Energy, 2022, 99, 107318.	8.2	76
563	Slug-inspired Magnetic Soft Millirobot Fully Integrated with Triboelectric Nanogenerator for Onâ€board Sensing and Selfâ€powered Charging. Nano Energy, 2022, 99, 107367.	8.2	34
564	Flexible self-charging power sources. Nature Reviews Materials, 2022, 7, 870-886.	23.3	159
565	Design of effective self-powered SnS2/halide perovskite photo-detection system based on triboelectric nanogenerator by regarding circuit impedance. Scientific Reports, 2022, 12, 7227.	1.6	14
566	Surface Potential Tuned Single Active Material Comprised Triboelectric Nanogenerator for a High Performance Voice Recognition Sensor. Small, 2022, 18, e2201331.	5.2	21

#	Article	IF	CITATIONS
567	High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing. Carbohydrate Polymers, 2022, 291, 119586.	5.1	23
568	Structural and electrical dynamics of a grating-patterned triboelectric energy harvester with stick–slip oscillation and magnetic bistability. Nonlinear Dynamics, 2022, 109, 479-506.	2.7	6
569	Reprint of: Triboelectric nanogenerator-based wearable electronic devices and systems: Toward informatization and intelligence. , 2022, 125, 103570.		1
570	A cantilever-type vibro-impact triboelectric energy harvester for wind energy harvesting. Mechanical Systems and Signal Processing, 2022, 177, 109185.	4.4	23
571	Magnets Assisted Triboelectric Nanogenerator for Harvesting Water Wave Energy. Advanced Materials Technologies, 2022, 7, .	3.0	4
572	Effects of metal nanoparticles on the performance of PDMS based triboelectric nanogenerators. Physica B: Condensed Matter, 2022, 639, 413952.	1.3	11
573	Plastic Film Based Lightweight Thruster Driven by Triboelectric Nanogenerator for Multi-Purpose Propulsion Applications. SSRN Electronic Journal, 0, , .	0.4	0
574	Inhalationâ€Driven Vertical Flutter Triboelectric Nanogenerator with Amplified Output as a Gasâ€Maskâ€Integrated Selfâ€Powered Multifunctional System. Advanced Energy Materials, 2022, 12, .	10.2	9
575	Interfacial structure design for triboelectric nanogenerators. , 2022, 1, .		14
576	Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy, 2022, 99, 107442.	8.2	39
577	Design and fabrication of a spiral electrode triboelectric nanogenerator and application as zero power dynamic sensor. FME Transactions, 2022, 50, 294-301.	0.7	0
578	Detailed investigation of sinusoidal vibration on triboelectric energy harvester. International Journal of Green Energy, 2023, 20, 677-690.	2.1	3
579	Nature-derived highly tribopositive ϰ-carrageenan-agar composite-based fully biodegradable triboelectric nanogenerators. Nano Energy, 2022, 100, 107480.	8.2	13
580	Untethered triboelectric patch for wearable smart sensing and energy harvesting. Nano Energy, 2022, 100, 107500.	8.2	14
581	Modeling and optimization of a rotational symmetric spherical triboelectric generator. Nano Energy, 2022, 100, 107491.	8.2	7
582	Theoretical study of the rotary electrostatic generators based on a universal equivalent circuit model. Nano Energy, 2022, 100, 107512.	8.2	7
583	Energy-efficient PM adhesion method using functional electroactive nanofibers. Energy Reports, 2022, 8, 7780-7788.	2.5	7
584	Washable Fabric Triboelectric Nanogenerators for Face Mask Application on Covid-19 Pandemic. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
585	Fibrous triboelectric nanogenerators: fabrication, integration, and application. Journal of Materials Chemistry A, 2022, 10, 15881-15905.	5.2	13
586	A Self-Powered Uv Photodetector Based on Coupling Impedance Matching and Photoresistive Effect by Sensing-Electrode Model. SSRN Electronic Journal, 0, , .	0.4	0
587	Promoting Maturation and Contractile Function of Neonatal Rat Ventricular Myocytes by Self-Powered Implantable Triboelectric Nanogenerator. SSRN Electronic Journal, 0, , .	0.4	0
588	Wireless-Controlled, Self-Powered, and Patterned Information Encryption Display System Based on Flexible Electroluminescence Devices. SSRN Electronic Journal, 0, , .	0.4	0
589	Performance investigation of textile triboelectric generators. Tekstil Ve Konfeksiyon, 0, , .	0.3	0
590	Recent advances on biomechanical motion-driven triboelectric nanogenerators for drug delivery. Nano Today, 2022, 45, 101513.	6.2	19
591	Plastic film based lightweight thruster driven by triboelectric nanogenerator for multi-purpose propulsion applications. Nano Energy, 2022, 101, 107558.	8.2	9
592	Dualâ€Enhanced Effect of Ionic Liquid Incorporation on Improving Hybrid Harvesting Properties of Solar and Raindrop Energy. Advanced Materials Technologies, 0, , 2200664.	3.0	4
593	Performance analysis and application of a hybrid electromagnetic-triboelectric nanogenerator for energy harvesting. Energy Reports, 2022, 8, 9184-9200.	2.5	5
594	Highly Transparent and Water-Repellent Hierarchical-Wrinkled-Architecture Triboelectric Nanogenerator with Ultrathin Plasma-Polymer-Fluorocarbon Film for Artificial Triboelectric Skin. SSRN Electronic Journal, 0, , .	0.4	0
595	Achieving High Power Density and Durability of Sliding Mode Triboelectric Nanogenerator by Double Charge Supplement Strategy. Advanced Energy Materials, 2022, 12, .	10.2	26
596	Honeycomb-Patterned Polyimide-Based Triboelectric Nanogenerator with Excellent Thermal Stability and Enhanced Electrification Performance. ACS Applied Energy Materials, 2022, 5, 9791-9800.	2.5	19
597	Flexible Piezoelectric Nanogenerators Based on One-Dimensional Neutral Coordination Network Composites. ACS Sustainable Chemistry and Engineering, 2022, 10, 9911-9920.	3.2	3
598	Soft-bionic-fishtail structured triboelectric nanogenerator driven by flow-induced vibration for low-velocity water flow energy harvesting. Nano Research, 2023, 16, 466-472.	5.8	8
599	High-Frequency Mechanical Energy Harvester with Direct Current Output from Chemical Potential Difference. ACS Energy Letters, 2022, 7, 3080-3086.	8.8	8
600	Hybrid Triboelectric–Electromagnetic Nanogenerator Based on a Tower Spring for Harvesting Omnidirectional Vibration Energy. ACS Applied Nano Materials, 2022, 5, 11577-11585.	2.4	13
601	Validation of a Textile Material's Electrostatic Characterization Device for Different Parameters and Their Effect on the Electrostatic Charge Generation. Materials, 2022, 15, 5716.	1.3	2
602	Textile-Triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices. Chemical Engineering Journal, 2023, 451, 138741.	6.6	40

#	Article	IF	Citations
603	Emerging Iontronic Sensing: Materials, Mechanisms, and Applications. Research, 2022, 2022, .	2.8	23
604	A computational modelling study of excitation of neuronal cells with triboelectric nanogenerators. Scientific Reports, 2022, 12, .	1.6	3
605	A triboelectric joint sensor imitating soft robot for human joint rehabilitation monitoring. Nano, 0, , ·	0.5	0
606	Integrated Selfâ€Powered Sensors Based on 2D Material Devices. Advanced Functional Materials, 2022, 32, .	7.8	42
607	A novel approach for weak current signal processing of self-powered sensor based on TENG. Nano Energy, 2022, 103, 107728.	8.2	8
608	Rationally Structured Triboelectric Nanogenerator Arrays for Harvesting Water urrent Energy and Selfâ€Powered Sensing. Advanced Materials, 2022, 34, .	11.1	36
609	Recent Progresses in Wearable Triboelectric Nanogenerators. Advanced Functional Materials, 2022, 32, .	7.8	54
610	Calliopsis structure-based triboelectric nanogenerator for harvesting wind energy and self-powerd wind speed/direction sensor. Materials and Design, 2022, 221, 111005.	3.3	26
611	Review on the transformation of biomechanical energy to green energy using triboelectric and piezoelectric based smart materials. Journal of Cleaner Production, 2022, 371, 133702.	4.6	11
612	Application, challenge and perspective of triboelectric nanogenerator as micro-nano energy and self-powered biosystem. Biosensors and Bioelectronics, 2022, 216, 114595.	5.3	36
613	Scalable, stretchable and washable triboelectric fibers for self-powering human-machine interaction and cardiopulmonary resuscitation training. Nano Energy, 2022, 102, 107737.	8.2	11
614	Curved flap array-based triboelectric self-powered sensor for omnidirectional monitoring of wind speed and direction. Nano Energy, 2022, 102, 107717.	8.2	12
615	Wireless-controlled, self-powered, and patterned information encryption display system based on flexible electroluminescence devices. Nano Energy, 2022, 102, 107653.	8.2	15
616	GnPs/PVDF decorated thermoplastic veils to boost the triboelectric nanogenerator output performance toward highly efficient energy harvesting. Energy Conversion and Management, 2022, 270, 116204.	4.4	4
617	Eco-benign nanostructured triboelectric films of onion tunic-SnOx based TENG for sustainable and green energy generation. Materials Chemistry and Physics, 2022, 291, 126736.	2.0	7
618	Copper particles-PTFE tube based triboelectric nanogenerator for wave energy harvesting. Nano Energy, 2022, 102, 107749.	8.2	16
619	Output optimization of biodegradable triboelectric nanogenerators. Nano Energy, 2022, 103, 107811.	8.2	24
620	Chemical structure-based design of triboelectric materials for high-performance TENGs. Nano Energy, 2022, 103, 107847.	8.2	12

#	Article	IF	CITATIONS
621	Artificial synapses enabled neuromorphic computing: From blueprints to reality. Nano Energy, 2022, 103, 107744.	8.2	20
622	Quantitative comparison between the effective energy utilization efficiency of triboelectric nanogenerator and electromagnetic generator post power management. Nano Energy, 2022, 103, 107760.	8.2	10
623	A fully soft, self-powered vibration sensor by laser direct writing. Nano Energy, 2022, 103, 107803.	8.2	20
624	Correlation between frictional heat and triboelectric charge: In operando temperature measurement during metal-polymer physical contact. Nano Energy, 2022, 103, 107813.	8.2	2
625	General analysis and optimization of a two-stage power management circuit for electrostatic/triboelectric nanogenerators. Nano Energy, 2022, 103, 107816.	8.2	6
626	Ultrastrong-polar polyacrylonitrile organic-inorganic architected nanogenerators with synergistic triboelectric behavior for efficient biomechanical energy harvesting and self-powered sensing. Nano Energy, 2022, 103, 107833.	8.2	8
627	Highly transparent and water-repellent hierarchical-wrinkled-architecture triboelectric nanogenerator with ultrathin plasma-polymer-fluorocarbon film for artificial triboelectric skin. Nano Energy, 2022, 103, 107785.	8.2	8
628	Promoting maturation and contractile function of neonatal rat cardiomyocytes by self-powered implantable triboelectric nanogenerator. Nano Energy, 2022, 103, 107798.	8.2	13
629	Wearable five-finger keyboardless input system based on silk fibroin electronic skin. Nano Energy, 2022, 103, 107764.	8.2	8
630	Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chemical Engineering Journal, 2023, 452, 139060.	6.6	78
631	Integrated Real-Time Pneumatic Monitoring System With Triboelectric Linear Displacement Sensor. IEEE Transactions on Industrial Electronics, 2023, 70, 6435-6441.	5.2	8
632	All-Aerosol-Sprayed High-Performance Transparent Triboelectric Nanogenerator with Embedded Charge-Storage Layer for Self-Powered Invisible Security lot System and Raindrop-Solar Hybrid Energy Harvester. SSRN Electronic Journal, 0, , .	0.4	0
633	A Fully Soft, Self-Powered Vibration Sensor by Laser Direct Writing. SSRN Electronic Journal, 0, , .	0.4	0
634	A nonlinear triboelectric nanogenerator with a broadened bandwidth for effective harvesting of vibration energy. , 2022, 1, 236-242.		7
635	Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application. Biosensors, 2022, 12, 697.	2.3	22
636	A Self-Powered Sport Sensor Based on Triboelectric Nanogenerator for Fosbury Flop Training. Journal of Sensors, 2022, 2022, 1-10.	0.6	0
637	Improving the performances of direct-current triboelectric nanogenerators with surface chemistry. Current Opinion in Colloid and Interface Science, 2022, 61, 101627.	3.4	3
638	Classification and utilization of waste electronic components based on triboelectric nanogenerator. Nanotechnology, 2022, 33, 495401.	1.3	5

#	Article	IF	CITATIONS
639	Light-Controlled Triple-Shape-Memory, High-Permittivity Dynamic Elastomer for Wearable Multifunctional Information Encoding Devices. ACS Nano, 2022, 16, 16954-16965.	7.3	17
640	Enhanced Triboelectric Nanogenerator Performance Based on Mechanical Imprinting PDMS Microstructures. Advanced Materials Interfaces, 2022, 9, .	1.9	2
641	Molecular engineeringâ€device efficiency relation: Performance boosting of triboelectric nanogenerator through doping of small molecules. International Journal of Energy Research, 2022, 46, 23517-23529.	2.2	5
642	Waste Biomaterial–SnO Nanoparticles Composite Based Green Triboelectric Nanogenerator for Self-Powered Human Motion Monitoring. ACS Applied Electronic Materials, 2022, 4, 4694-4707.	2.0	9
643	Electromechanical Modeling of Rolling Spherical Triboelectric Nanogenerators Considering Nonlinear Effects. Advanced Theory and Simulations, 2022, 5, .	1.3	1
644	Washable Fabric Triboelectric Nanogenerators for Potential Application in Face Masks. Nanomaterials, 2022, 12, 3152.	1.9	3
645	An ultrasound-driven implantable wireless energy harvesting system using a triboelectric transducer. Matter, 2022, 5, 4315-4331.	5.0	28
646	Recent progress of triboelectric nanogenerators as self-powered sensors in transportation engineering. Measurement: Journal of the International Measurement Confederation, 2022, 203, 112010.	2.5	15
647	Metalâ€Gallium Arsenide Based Tribovoltaic Nanogenerators and its Application for Highâ€Precision Selfâ€Powered Displacement Sensors. Advanced Materials Technologies, 2023, 8, .	3.0	4
648	Magnets-assisted dual-mode triboelectric sensors integrated with an electromagnetic generator for self-sustainable wireless motion monitoring systems. Nano Energy, 2022, 103, 107860.	8.2	6
649	Experimental and theoretical investigations of a novel electret-based wave energy converter. Nano Energy, 2022, 103, 107854.	8.2	2
650	Triboelectric nanogenerator self-heating floor – possibility to achieve intelligence in the architecture. Journal of Materials Chemistry A, 2022, 10, 24353-24361.	5.2	11
651	Measurement of Slips at Contact Interfaces Using a Self-Powered Sensor Based on Triboelectric Nanogenerators. Nanomaterials, 2022, 12, 3510.	1.9	1
652	Cylindrical Shell and Metal Wire-Based Omnidirectional Wind-Driven Triboelectric Nanogenerator. Journal of the Korean Society for Precision Engineering, 2022, 39, 753-758.	0.1	1
653	Enhanced surface charge density of nanogenerators by small molecules: a review. Energy Technology, 0, , .	1.8	0
654	Freshwater Production Towards Microgrid Integration: Physics, Progress, and Prospects of Solar-Thermal Evaporation. , 2022, , 100037.		1
655	Theory and applications of high-voltage triboelectric nanogenerators. Cell Reports Physical Science, 2022, 3, 101108.	2.8	12
656	Triboelectric Nanogenerators: Enhancing Performance by Increasing the Charge-Generating Layer Compressibility. ACS Macro Letters, 2022, 11, 1291-1297.	2.3	3

#	Article	IF	CITATIONS
657	ZIF-67-Metal–Organic-Framework-Based Triboelectric Nanogenerator for Self-Powered Devices. Nanoenergy Advances, 2022, 2, 291-302.	3.6	16
658	Roadmap on nanogenerators and piezotronics. APL Materials, 2022, 10, .	2.2	22
659	All-aerosol-sprayed high-performance transparent triboelectric nanogenerator with embedded charge-storage layer for self-powered invisible security IoT system and raindrop-solar hybrid energy harvester. Nano Energy, 2022, 104, 107878.	8.2	13
660	Triboelectric Nanogenerators in Sustainable Chemical Sensors. Chemosensors, 2022, 10, 484.	1.8	8
661	Recent updates on triboelectric nanogenerator based advanced biomedical technologies: A short review. Results in Engineering, 2022, 16, 100782.	2.2	13
662	Dynamics of triboelectric nanogenerators: A review. International Journal of Mechanical System Dynamics, 2022, 2, 311-324.	1.3	7
663	Multi-output AC/DC triboelectric generator with dual rectification. Nano Energy, 2023, 105, 108004.	8.2	10
664	Wear and triboelectric performance of polymers with non-polar lubricants. Tribology International, 2023, 178, 108088.	3.0	7
665	Bandwidth tunable vibration energy harvester based on hybrid triboelectric-piezoelectric array. Engineering Research Express, 2022, 4, 045022.	0.8	6
666	Theoretical boundary and optimization methodology of contact-separation triboelectric nanogenerator. Applied Materials Today, 2022, 29, 101685.	2.3	2
667	Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth. Advanced Energy Materials, 2023, 13, .	10.2	79
668	Ultra-low frequency vibration energy harvesting: Mechanisms, enhancement techniques, and scaling laws. Energy Conversion and Management, 2023, 276, 116585.	4.4	19
669	A triboelectric nanogenerator attached to a thermoacoustic heat engine for power generation. Energy Conversion and Management, 2023, 276, 116482.	4.4	3
670	Brownian motor inspired monodirectional continuous spinning triboelectric nanogenerators for extracting energy from irregular gentle water waves. Energy and Environmental Science, 2023, 16, 473-483.	15.6	23
671	Smart data processing for energy harvesting systems using artificial intelligence. Nano Energy, 2023, 106, 108084.	8.2	23
672	Triple-MOSFETs switch for adaptive maximum capacitance point tracking of triboelectric nanogenerators. Nano Energy, 2023, 106, 108042.	8.2	3
673	Scalable, flexible, and hierarchical porous conductive nanocomposites for self-powered and pressure sensing dual-mode integration. Composites Science and Technology, 2023, 232, 109884.	3.8	7
674	Dropletâ€Based Electricity Generator toward Practicality: Configuration, Optimization, and Hybrid Integration. Advanced Materials Technologies, 2023, 8, .	3.0	4

#	Article	IF	Citations
675	A Versatile Ionomerâ€Based Soft Actuator with Multiâ€Stimulus Responses, Selfâ€Sustainable Locomotion, and Photoelectric Conversion. Advanced Functional Materials, 2023, 33, .	7.8	17
676	Quantifying Output Power and Dynamic Charge Distribution in Sliding Mode Freestanding Triboelectric Nanogenerator. , 2023, 2, .		5
677	Engineering Triboelectric Charge in Natural Rubber–Ag Nanocomposite for Enhancing Electrical Output of a Triboelectric Nanogenerator. ACS Applied Materials & Interfaces, 2023, 15, 973-983.	4.0	9
678	Power Management for TENG-Generated Power. , 2023, , 1-39.		0
679	A Comprehensive Review on the Novel Principles, Development and Applications of Triboelectric Nanogenerators. Applied Mechanics Reviews, 2024, 76, .	4.5	10
680	Heart Energy Harvesting and Cardiac Bioelectronics: Technologies and Perspectives. Nanoenergy Advances, 2022, 2, 344-385.	3.6	4
681	Recent progress in the fabrication and processing of triboelectric yarns. , 2023, 2, 63-89.		1
682	Unprecedented Triboelectric Effect of Lignin on Enhancing the Electrical Outputs of Natural-Rubber-Based Triboelectric Nanogenerators (TENGs). ACS Sustainable Chemistry and Engineering, 2023, 11, 1311-1323.	3.2	5
683	Humanoid Ionotronic Skin for Smart Object Recognition and Sorting. , 2023, 5, 189-201.		13
684	Enhanced Durability and Robustness of Triboelectric Nanogenerators with Bladeâ€Enclosed Structure for Breeze Energy Harvesting. Advanced Sustainable Systems, 2023, 7, .	2.7	5
685	Printable lightweight polymer-based energy harvesting systems: materials, processes, and applications. Materials Today Sustainability, 2023, 21, 100292.	1.9	4
686	Piezoelectric soft robot driven by mechanical energy. Nano Research, 2023, 16, 4970-4979.	5.8	1
687	Triboelectric Nanogenerators via Electronic Circuit Design. , 2023, , 1-29.		0
688	Boosting the Performance on Scale‣evel of Triboelectric Nanogenerators by Controllable Selfâ€Triggering. Advanced Energy Materials, 2023, 13, .	10.2	5
689	Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration. Nature Communications, 2022, 13, .	5.8	42
690	Triboelectric Energy-Harvesting Floor Tile. Materials, 2022, 15, 8853.	1.3	1
691	Study of Pressure Distribution in Floor Tiles with Printed P(VDF:TrFE) Sensors for Smart Surface Applications. Sensors, 2023, 23, 603.	2.1	1
692	Advances in Triboelectric Nanogenerators for Selfâ€powered Neuromodulation. Advanced Functional Materials, 2023, 33, .	7.8	16

#	Article	IF	Citations
693	Construction of foot-movement monitoring sensor based on triboelectric signals via embroidery technique with PDMS coated conductive cotton yarn. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
694	MoS2-PVDF/PDMS based flexible hybrid piezo-triboelectric nanogenerator for harvesting mechanical energy. Journal of Alloys and Compounds, 2023, 941, 168850.	2.8	20
695	Harsh Environmental-Tolerant and High-Performance Triboelectric Nanogenerator Based on Nanofiber/Microsphere Hybrid Membranes. Materials, 2023, 16, 562.	1.3	6
696	Optimizing the efficiency of triboelectric nanogenerators by surface nanoarchitectonics of graphene-based electrodes: A review. Materials Today Communications, 2023, 34, 105412.	0.9	8
697	Triboelectric nanogenerator module for circuit design and simulation. Nano Energy, 2023, 107, 108139.	8.2	3
698	Intermediate nanofibrous charge trapping layer-based wearable triboelectric self-powered sensor for human activity recognition and user identification. Nano Energy, 2023, 108, 108180.	8.2	16
699	A \$3mathrm{D}\$ Model of Two-degree-of- freedom and Sliding Mode Triboelectric Nanogenerator Coupled with Power Management Circuit. , 2022, , .		0
700	A New Type of Power System Based on the Piezoelectric Induction Effect. , 2022, , .		0
701	A Self-Powered, Highly Embedded and Sensitive Tribo-Label-Sensor for the Fast and Stable Label Printer. Nano-Micro Letters, 2023, 15, .	14.4	10
702	Triboelectric Nanogenerators for Information Security and Identification. , 2023, , 1-40.		0
703	Conversion Electrode and Drive Capacitance for Connecting Microfluidic Devices and Triboelectric Nanogenerator. Electronics (Switzerland), 2023, 12, 522.	1.8	5
704	Harvesting Water Wave Energy by Triboelectric Nanogenerators. , 2023, , 1-36.		0
705	Pursuing the tribovoltaic effect for direct-current triboelectric nanogenerators. Energy and Environmental Science, 2023, 16, 983-1006.	15.6	43
706	Flexible Hybrid Piezoelectricâ€Electrostatic Device for Energy Harvesting and Sensing Applications. Advanced Materials Interfaces, 2023, 10, .	1.9	3
707	Rationally designed micropixelation-free tactile sensors via contour profile of triboelectric field propagation. Nano Energy, 2023, 109, 108255.	8.2	5
708	Drug-screening triboelectric nanogenerator-based strain sensor for cardiomyocyte contractility. Nano Energy, 2023, 109, 108251.	8.2	4
709	Leaf surface-microstructure inspired fabrication of fish gelatin-based triboelectric nanogenerator. Nano Energy, 2023, 109, 108231.	8.2	15
710	Turning trash into treasure: recent advances in triboelectric nanogenerator based on waste-derived carbonized materials. Journal of Materials Chemistry A, 2023, 11, 9194-9215.	5.2	3

#	Article	IF	CITATIONS
711	Comparison of Triboelectric Nanogenerator and Electromagnetic Generator. , 2023, , 1-34.		0
712	Decoupling piezoelectric and triboelectric signals from PENGs using the fast fourier transform. Nano Energy, 2023, 110, 108445.	8.2	8
713	A multi-hole resonator enhanced acoustic energy harvester for ultra-high electrical output and machine-learning-assisted intelligent voice sensing. Nano Energy, 2023, 108, 108237.	8.2	5
714	A self-powered triboelectric UV photodetector based on coupling impedance matching and photoresistive effect by sensing-electrode model. Nano Energy, 2023, 109, 108294.	8.2	3
715	Position sensing of jetting droplets enabled by triboelectric nanogenerators. Nano Energy, 2023, 109, 108289.	8.2	9
716	An internal electrode strategy for enhancing the stability and durability of triboelectric nanogenerator. Composites Science and Technology, 2023, 237, 110014.	3.8	6
717	Quasi-electrostatic three-dimensional charge model for contact-separation triboelectric nanogenerator. Nano Energy, 2023, 111, 108435.	8.2	2
718	Tribovoltaic effect: Fundamental working mechanism and emerging applications. Materials Today Nano, 2023, 22, 100318.	2.3	5
719	Vertically integrated triboelectric nanogenerators using PDMS/LSCO composite. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 292, 116388.	1.7	2
720	The influence of in-plane electrodes on TENG's output and its application in the field of IoT intelligent sensing. Nano Energy, 2023, 110, 108313.	8.2	5
721	Modeling the performance of contact-separation triboelectric nanogenerators. Current Applied Physics, 2023, 50, 100-106.	1.1	2
722	Hybrid vector and pressure sensor for fingertip dynamics sensing using DC-triboelectric/AC-piezoelectric mechanisms. Sensors and Actuators A: Physical, 2023, 355, 114330.	2.0	5
723	Self-powered digital microfluidics driven by rotational triboelectric nanogenerator. Nano Energy, 2023, 110, 108376.	8.2	3
724	Roll to roll triboelectric fiber manufacturing for smart-textile self-powered sensor and harvester. Nano Energy, 2023, 111, 108378.	8.2	7
725	A hybrid nanogenerator for collecting both water wave and steam evaporation energy. Nano Energy, 2023, 110, 108346.	8.2	6
726	Boosting power output of fluttering triboelectric nanogenerator based on charge excitation through multi-utilization of wind. Nano Energy, 2023, 111, 108389.	8.2	4
727	Research on Low-Frequency Vibration Monitoring Sensor Based on a Cantilever-Beam-Structured Triboelectric Nanogenerator. Journal of Marine Science and Engineering, 2023, 11, 838.	1.2	2
728	Circuit representation, experiment and analysis of parallel-cell triboelectric nanogenerator. Energy Conversion and Management, 2023, 278, 116741.	4.4	2

#	Article	IF	CITATIONS
729	Nano-ceria based TENGs: Effect of dopant structure on energy harvesting performance. Surfaces and Interfaces, 2023, 37, 102683.	1.5	4
730	Conjugated Polymer-Based Nanocomposites for Pressure Sensors. Molecules, 2023, 28, 1627.	1.7	10
731	A brushed hemicylindrical pressure sensor based on triboelectricity exhibits high sensitivity, a low detection limit and a wide detection range. Journal of Materials Chemistry C, 2023, 11, 3644-3651.	2.7	6
732	Flexible and Robust Triboelectric Nanogenerators with Chemically Prepared Metal Electrodes and a Plastic Contact Interface Based on Low-Cost Pressure-Sensitive Adhesive. Sensors, 2023, 23, 2021.	2.1	1
733	Flexible and Self-Powered Thermal Sensor Based on Graphene-Modified Intumescent Flame-Retardant Coating with Hybridized Nanogenerators. ACS Applied Nano Materials, 2023, 6, 2429-2437.	2.4	4
734	Chargeâ€Accumulatingâ€Flutterâ€Based Triboelectric Nanogenerator via Discharge Gateway. Advanced Energy Materials, 2023, 13, .	10.2	13
735	Cellulose Gel Mechanoreceptors – Principles, Applications and Prospects. Advanced Functional Materials, 2023, 33, .	7.8	9
736	Wearable sweat biosensors on textiles for health monitoring. Journal of Semiconductors, 2023, 44, 021601.	2.0	10
737	Recent Advances in Mechanical Vibration Energy Harvesters Based on Triboelectric Nanogenerators. Small, 2023, 19, .	5.2	9
738	Analysis and Experiment of Selfâ€Powered, Pulseâ€Based Energy Harvester Using 400ÂV FEPâ€Based Segmented Triboelectric Nanogenerators and 98.2% Tracking Efficient Power Management IC for Multiâ€Functional IoT Applications. Advanced Functional Materials, 2023, 33, .	7.8	5
739	Optical Emission from Triboelectric Gas Discharge toward Selfâ€Powered Gas Sensing. Advanced Optical Materials, 2023, 11, .	3.6	4
740	A Controlled Biodegradable Triboelectric Nanogenerator Based on PEGDA/Laponite Hydrogels. ACS Applied Materials & Interfaces, 2023, 15, 12787-12796.	4.0	17
741	Self-Powered Triboelectric Nanogenerator for Security Applications. Micromachines, 2023, 14, 592.	1.4	11
742	Ag–Cellulose Hybrid Filler for Boosting the Power Output of a Triboelectric Nanogenerator. Polymers, 2023, 15, 1295.	2.0	2
743	Triboelectric Nanogenerators Assembled by Cobalt(II) Coordination Polymer Incorporated Composite Films and their Application for Selfâ€Powered Anticorrosion. Chemistry - A European Journal, 2023, 29, .	1.7	5
744	Ultrasoundâ€Driven Injectable and Fully Biodegradable Triboelectric Nanogenerators. Small Methods, 2023, 7, .	4.6	13
745	Hybrid Nanogenerators for Ocean Energy Harvesting: Mechanisms, Designs, and Applications. Small, 2023, 19, .	5.2	28
746	Opportunities and Challenges in Power Management Systems for Triboelectric Nanogenerators. ACS Applied Electronic Materials, 2023, 5, 1347-1375.	2.0	19

#	Article	IF	CITATIONS
747	Ultrahigh Performance, Serially Stackable, Breeze Driven Triboelectric Generator via Ambient Air Ionizing Channel. Advanced Materials, 2023, 35, .	11.1	12
748	Advances in Ultrathin Soft Sensors, Integrated Materials, and Manufacturing Technologies for Enhanced Monitoring of Human Physiological Signals. Advanced Electronic Materials, 2023, 9, .	2.6	6
749	Fabrication of Advanced Cellulosic TriboelectricÂMaterials via Dielectric Modulation. Advanced Science, 2023, 10, .	5.6	37
750	Engineering plants as sustainable living devices. MRS Bulletin, 0, , .	1.7	1
751	Mechanism and optimum pressure for sliding-mode nanogenerator. Polish Journal of Chemical Technology, 2023, 25, 35-39.	0.3	0
752	Biocompatible Materialâ€Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems. Small, 2023, 19, .	5.2	17
753	Simple Fabrication of Transparent Triboelectric Nanogenerator Based on Coffee-Ring-Free AgNW Electrode via Spray Deposition with Surfactant. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 1417-1431.	2.7	2
754	Anticorrosion by triboelectric cathodic protection. , 2023, , 543-550.		0
755	Amplifying the Output of a Triboelectric Nanogenerator Using an Intermediary Layer of Gallium-Based Liquid Metal Particles. Nanomaterials, 2023, 13, 1290.	1.9	2
756	A Noncontact Constant-Voltage Triboelectric Nanogenerator via Charge Excitation. ACS Energy Letters, 2023, 8, 2066-2076.	8.8	7
757	Power Management Systems for Triboelectric Nanogenerators. , 2023, , 1-34.		0
758	Sustainable charged composites with amphiphobic surfaces for harsh environment–tolerant non-contact mode triboelectric nanogenerators. Nano Energy, 2023, 112, 108428.	8.2	6
759	纳米åʿ电机应ç":æ−°åž‹é«~压电æ⁰技æœ⁻. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica	,@@23,,.	0
760	Electrical stimulation for therapeutic approach. , 2023, 1, .		10
761	Statistical modeling enabled design of high-performance conductive composite fiber materials for energy harvesting and self-powered sensing. Chemical Engineering Journal, 2023, 466, 143052.	6.6	3
762	Eco-Friendly Garlic Tunic–Tin Oxide(II) Nanoparticle Composite-Based Triboelectric Nanogenerator for Self-Powered Human Motion Monitoring. Journal of Physical Chemistry C, 0, , .	1.5	0
776	Displacement Current Theory of Triboelectric Nanogenerators. , 2023, , 1-64.		0

811	Enhancing the powering ability of triboelectric nanogenerator through output signal's management strategies. Nano Research, 2023, 16, 11783-11800.	5.8		6
-----	--	-----	--	---

#	ARTICLE	IF	CITATIONS
832 833	Harvesting Water Wave Energy by Triboelectric Nanogenerators. , 2023, , 1079-1114. Power Management for TENG-Generated Power. , 2023, , 913-950.		0
834	Triboelectric Nanogenerators for Information Security and Identification. , 2023, , 737-776.		0
835	Displacement Current Theory of Triboelectric Nanogenerators. , 2023, , 139-202.		0
838	A comparative study on impregnation of silver and aluminium nanoparticles into PDMS matrix: Dielectric property tailoring for improving the output performance of triboelectric nanogenerators. AIP Conference Proceedings, 2023, , .	0.3	0
857	Energy Harvesting Systems. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2023, , 247-295.	0.5	0
859	Comparison of Triboelectric Nanogenerator and Electromagnetic Generator. , 2023, , 505-538.		0
860	Triboelectric Nanogenerators via Electronic Circuit Design. , 2023, , 319-347.		0
861	Power Management Systems for Triboelectric Nanogenerators. , 2023, , 387-420.		0
867	Boosting the output performance of triboelectric nanogenerators via surface engineering and structure designing. Materials Horizons, 0, , .	6.4	0
870	Material selection and performance optimization strategies for a wearable friction nanogenerator (W-TENG). Journal of Materials Chemistry A, 2023, 11, 24454-24481.	5.2	1
871	A Review on Triboelectric Nanogenerators, Recent Applications, and Challenges. International Journal of Precision Engineering and Manufacturing - Green Technology, 0, , .	2.7	0
892	Triboelectric Nanogenerators for Gait Analysis: Design, Development, and Validation. , 2023, , .		0
896	Enhanced Output Voltages of Tribolectric Nanogenerator Devices by Modification of Dielectric Material with Micro-pits. , 2023, , .		0
897	Proton Beam Writing Fabrication of Micro-Patterns in Dielectric Films for Improving Output Voltage Triboelectric Nanogenerators. , 2023, , .		0
899	Strategy for Improving Cycle of Maximized Energy Output of Triboelectric Nanogenerators. , 2023, , .		0
907	Progress in techniques for improving the output performance of triboelectric nanogenerators. Energy and Environmental Science, 2024, 17, 885-924.	15.6	2
932	Nanomaterials in energy generators. , 2024, , 173-196.		Ο

#	Article	IF	CITATIONS
944	Self-Powered Real-Time Wireless Communication System Using Wearable Fabric Based Triboelectric Nanogenerator and Inductor. , 2024, , .		0
951	High Performance Triboelectric Energy Harvester: Design and Optimization Using GA and Cuttle Fish Algorithm. Advances in Computational Intelligence and Robotics Book Series, 2024, , 228-249.	0.4	0