Identification of six new susceptibility loci for invasive

Nature Genetics 47, 164-171

DOI: 10.1038/ng.3185

Citation Report

#	Article	IF	Citations
1	Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers. Breast Cancer Research, 2014, 16, 3416.	2.2	57
2	The Impact of Age and Sex in DLBCL: Systems Biology Analyses Identify Distinct Molecular Changes and Signaling Networks. Cancer Informatics, 2015, 14, CIN.S34144.	0.9	18
3	The Cancer Cell Map Initiative: Defining the Hallmark Networks of Cancer. Molecular Cell, 2015, 58, 690-698.	4.5	117
4	Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci. Human Molecular Genetics, 2015, 24, 3595-3607.	1.4	40
5	Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 2015, 47, 373-380.	9.4	513
6	Genome-wide significant risk associations for mucinous ovarian carcinoma. Nature Genetics, 2015, 47, 888-897.	9.4	78
7	Network-Based Integration of GWAS and Gene Expression Identifies a <i>HOX</i> -Centric Network Associated with Serous Ovarian Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1574-1584.	1,1	28
8	Why have ovarian cancer mortality rates declined? Part III. Prospects for the future. Gynecologic Oncology, 2015, 138, 757-761.	0.6	32
9	Monoallelic Loss of the Imprinted Gene Grb10 Promotes Tumor Formation in Irradiated Nf1+/- Mice. PLoS Genetics, 2015, 11, e1005235.	1.5	12
10	Genetics of Diabetic Nephropathy: a Long Road of Discovery. Current Diabetes Reports, 2015, 15, 41.	1.7	30
11	Genomic approaches for understanding the genetics of complex disease. Genome Research, 2015, 25, 1432-1441.	2.4	75
12	Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer. Nature Communications, 2015, 6, 8234.	5.8	63
13	Common variants at the <i>CHEK2 </i> gene locus and risk of epithelial ovarian cancer. Carcinogenesis, 2015, 36, 1341-1353.	1.3	24
14	A risk prediction algorithm for ovarian cancer incorporating (i>BRCA1, BRCA2 (i>, common alleles and other familial effects. Journal of Medical Genetics, 2015, 52, 465-475.	1.5	52
15	A model for estimating ovarian cancer risk: Application for preventive oophorectomy. Gynecologic Oncology, 2015, 139, 242-247.	0.6	12
16	Ovarian development and disease: The known and the unexpected. Seminars in Cell and Developmental Biology, 2015, 45, 59-67.	2.3	49
17	Genetik des familiÃÆn Brust- und Eierstockkrebses: Paneldiagnostik – Möglichkeiten und Grenzen. Medizinische Genetik, 2015, 27, 202-210.	0.1	5
18	Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nature Reviews Cancer, 2015, 15, 668-679.	12.8	839

#	Article	IF	CITATIONS
19	Shared genetics underlying epidemiological association between endometriosis and ovarian cancer. Human Molecular Genetics, 2015, 24, 5955-5964.	1.4	68
20	Defining the risk threshold for risk reducing salpingo-oophorectomy for ovarian cancer prevention in low risk postmenopausal women. Gynecologic Oncology, 2015, 139, 487-494.	0.6	39
21	DNA methylation changes in epithelial ovarian cancer histotypes. Genomics, 2015, 106, 311-321.	1.3	48
22	Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. Journal of the National Cancer Institute, 2015, 107, .	3.0	311
23	WWOX CNV-67048 Functions as a Risk Factor for Epithelial Ovarian Cancer in Chinese Women by Negatively Interacting with Oral Contraceptive Use. BioMed Research International, 2016, 2016, 1-7.	0.9	6
24	Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS ONE, 2016, 11, e0158801.	1.1	10
25	Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk. Human Molecular Genetics, 2016, 25, 3600-3612.	1.4	17
26	Specifying the ovarian cancer risk threshold of â€~premenopausal risk-reducing salpingo-oophorectomy' for ovarian cancer prevention: a cost-effectiveness analysis. Journal of Medical Genetics, 2016, 53, 591-599.	1.5	57
27	<i>MYC</i> and <i>PVT1</i> synergize to regulate RSPO1 levels in breast cancer. Cell Cycle, 2016, 15, 881-885.	1.3	27
28	Rare ATAD5 missense variants in breast and ovarian cancer patients. Cancer Letters, 2016, 376, 173-177.	3.2	21
29	Genomic approach to understand association between single nucleotide polymorphisms and risk of Korean serous ovarian cancer at stage Illc. Molecular and Cellular Toxicology, 2016, 12, 21-28.	0.8	0
30	Endometriosis risk alleles at 1 p36. 12 act through inverse regulation of CDC42 and LINC00339. Human Molecular Genetics, 2016 , 25 , ddw320.	1.4	56
31	PCNA Retention on DNA into G2/M Phase Causes Genome Instability in Cells Lacking Elg1. Cell Reports, 2016, 16, 684-695.	2.9	65
32	Risk Prediction for Epithelial Ovarian Cancer in 11 United States–Based Case-Control Studies: Incorporation of Epidemiologic Risk Factors and 17 Confirmed Genetic Loci. American Journal of Epidemiology, 2016, 184, 555-569.	1.6	32
33	Modifiers of breast and ovarian cancer risks for BRCA1 and BRCA2 mutation carriers. Endocrine-Related Cancer, 2016, 23, T69-T84.	1.6	63
34	A splicing variant of <i>TERT</i> identified by GWAS interacts with menopausal estrogen therapy in risk of ovarian cancer. International Journal of Cancer, 2016, 139, 2646-2654.	2.3	7
35	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	7.7	157
36	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	5.8	78

#	ARTICLE	IF	CITATIONS
37	A genome-wide association study on amyotrophic lateral sclerosis in the Taiwanese Han population. Biomarkers in Medicine, 2016, 10, 597-611.	0.6	12
38	Assessment of Multifactor Gene–Environment Interactions and Ovarian Cancer Risk: Candidate Genes, Obesity, and Hormone-Related Risk Factors. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 780-790.	1.1	10
39	Investigation of Exomic Variants Associated with Overall Survival in Ovarian Cancer. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 446-454.	1.1	9
40	Genetic screening for gynecological cancer: where are we heading?. Future Oncology, 2016, 12, 207-220.	1.1	11
41	Evidence of a genetic link between endometriosis and ovarian cancer. Fertility and Sterility, 2016, 105, 35-43.e10.	0.5	37
42	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	0.6	18
43	Amplification of R-spondin1 signaling induces granulosa cell fate defects and cancers in mouse adult ovary. Oncogene, 2017, 36, 208-218.	2.6	20
44	Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci. British Journal of Cancer, 2017, 116, 524-535.	2.9	23
45	Genetics of gynaecological cancers. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2017, 42, 114-124.	1.4	13
46	Moving towards populationâ€based genetic risk prediction for ovarian cancer. BJOG: an International Journal of Obstetrics and Gynaecology, 2017, 124, 855-858.	1.1	5
47	Genetic risk factors for ovarian cancer and their role for endometriosis risk. Gynecologic Oncology, 2017, 145, 142-147.	0.6	24
48	Forging Ahead through Darkness: PCNA, Still the Principal Conductor at the Replication Fork. Molecular Cell, 2017, 65, 380-392.	4.5	256
49	In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nature Nanotechnology, 2017, 12, 813-820.	15.6	504
50	The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway. Oncology Letters, 2017, 13, 4685-4690.	0.8	63
51	Association of a common variant of <i>SYNPO2</i> gene with increased risk of serous epithelial ovarian cancer. Tumor Biology, 2017, 39, 101042831769118.	0.8	4
52	Risks of Breast, Ovarian, and Contralateral Breast Cancer for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. JAMA - Journal of the American Medical Association, 2017, 317, 2402.	3.8	1,898
53	The genetic regulation of transcription in human endometrial tissue. Human Reproduction, 2017, 32, 893-904.	0.4	32
54	Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism. Nature Communications, 2017, 8, 15539.	5.8	230

#	ARTICLE	IF	CITATIONS
55	Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	9.4	356
56	The background puzzle: how identical mutations in the same gene lead to different disease symptoms. FEBS Journal, 2017, 284, 3362-3373.	2.2	80
57	Integration of Population-Level Genotype Data with Functional Annotation Reveals Over-Representation of Long Noncoding RNAs at Ovarian Cancer Susceptibility Loci. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 116-125.	1.1	6
58	Genome-wide association study evaluating single-nucleotide polymorphisms and outcomes in patients with advanced stage serous ovarian or primary peritoneal cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecologic Oncology, 2017, 147, 396-401.	0.6	6
59	Rethinking ovarian cancer genomics: where genome-wide association studies stand?. Pharmacogenomics, 2017, 18, 1611-1625.	0.6	8
60	Genome-wide association studies of cancer: current insights and future perspectives. Nature Reviews Cancer, 2017, 17, 692-704.	12.8	285
61	Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. Gynecologic Oncology, 2017, 147, 705-713.	0.6	69
62	Characterisation of the novel deleterious RAD51C p.Arg312Trp variant and prioritisation criteria for functional analysis of RAD51C missense changes. British Journal of Cancer, 2017, 117, 1048-1062.	2.9	12
63	What has <scp>GWAS</scp> done for <scp>HLA</scp> and disease associations?. International Journal of Immunogenetics, 2017, 44, 195-211.	0.8	68
64	Mutational heterogeneity in non-serous ovarian cancers. Scientific Reports, 2017, 7, 9728.	1.6	35
65	Genetic Associations with Gestational Duration and Spontaneous Preterm Birth. New England Journal of Medicine, 2017, 377, 1156-1167.	13.9	309
66	Big data in cancer genomics. Current Opinion in Systems Biology, 2017, 4, 78-84.	1.3	12
67	Pathology and Molecular Pathology of Uterine and Ovarian Cancers., 2017,, 247-278.		0
68	Genes Linked to Endometriosis by GWAS Are Integral to Cytoskeleton Regulation and Suggests That Mesothelial Barrier Homeostasis Is a Factor in the Pathogenesis of Endometriosis. Reproductive Sciences, 2017, 24, 803-811.	1.1	37
69	Towards an understanding of regulating Cajal body activity by protein modification. RNA Biology, 2017, 14, 761-778.	1.5	29
70	Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers. Journal of the National Cancer Institute, 2017, 109, .	3.0	242
71	How can molecular abnormalities influence our clinical approach. Annals of Oncology, 2017, 28, viii16-viii24.	0.6	37
72	Integrative Pathway Analysis of Genes and Metabolites Reveals Metabolism Abnormal Subpathway Regions and Modules in Esophageal Squamous Cell Carcinoma. Molecules, 2017, 22, 1599.	1.7	9

#	Article	IF	CITATIONS
73	Genetic Risk Factors for Endometriosis. Journal of Endometriosis and Pelvic Pain Disorders, 2017, 9, 69-76.	0.3	3
74	Epidemiology of ovarian cancer: a review. Cancer Biology and Medicine, 2017, 14, 9-32.	1.4	981
75	The Gatekeeping Function in Personalized Medicine Initiatives. Current Pharmacogenomics and Personalized Medicine, 2017, 14, 36-49.	0.2	0
76	Association of interleukin-8 polymorphism (+781 C/T) with the risk of ovarian cancer. Meta Gene, 2018, 16, 165-169.	0.3	1
77	The association between cancer family history and ovarian cancer risk in BRCA1/2 mutation carriers: can it be explained by the mutation position?. European Journal of Human Genetics, 2018, 26, 848-857.	1.4	5
78	Genomic Analysis Using Regularized Regression in High-Grade Serous Ovarian Cancer. Cancer Informatics, 2018, 17, 117693511875534.	0.9	5
79	PTEN loss in the fallopian tube induces hyperplasia and ovarian tumor formation. Oncogene, 2018, 37, 1976-1990.	2.6	54
80	Setting the Threshold for Surgical Prevention in Women at Increased Risk of Ovarian Cancer. International Journal of Gynecological Cancer, 2018, 28, 34-42.	1.2	23
81	An Osteoporosis Risk SNP at 1p36.12 Acts as an Allele-Specific Enhancer to Modulate LINC00339 Expression via Long-Range Loop Formation. American Journal of Human Genetics, 2018, 102, 776-793.	2.6	78
82	Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence. American Journal of Epidemiology, 2018, 187, 366-377.	1.6	8
83	Common Genetic Variation and Susceptibility to Ovarian Cancer: Current Insights and Future Directions. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 395-404.	1.1	33
84	Characterization of a novel germline BRCA1 splice variant, c.5332+4delA. Breast Cancer Research and Treatment, 2018, 168, 543-550.	1.1	5
85	Epigenetics in ovarian cancer. Seminars in Cancer Biology, 2018, 51, 160-169.	4.3	86
86	Geneâ€panel testing of breast and ovarian cancer patients identifies a recurrent <i><scp>RAD51C</scp></i> duplication. Clinical Genetics, 2018, 93, 595-602.	1.0	11
87	[Regular Paper] Identification of Several Core Overexpressed MicroRNAs that Could Predict Survival in Patients with Ovarian Cancer. , 2018, , .		0
88	Ovarian Cancer Genetics: Subtypes and Risk Factors. , 0, , .		17
90	Relationship of WNT4 Gene with the Risk of Epithelial Ovarian Cancer: A Han Chinese Population-Based Association Study. Genetic Testing and Molecular Biomarkers, 2018, 22, 686-692.	0.3	6
91	Genome-wide association study (GWAS) of ovarian cancer in Japanese predicted regulatory variants in 22q13.1. PLoS ONE, 2018, 13, e0209096.	1.1	8

#	Article	IF	Citations
92	Complex genetics of female fertility. Npj Genomic Medicine, 2018, 3, 29.	1.7	43
93	Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits. Nature Communications, 2018, 9, 3636.	5.8	74
94	Early transcriptional response of human ovarian and fallopian tube surface epithelial cells to norepinephrine. Scientific Reports, 2018, 8, 8291.	1.6	11
95	Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study. Journal of Medical Genetics, 2018, 55, 546-554.	1.5	38
96	Transcriptomic Characterization of Endometrioid, Clear Cell, and High-Grade Serous Epithelial Ovarian Carcinoma. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 1101-1109.	1.1	26
97	Genetic Association of Interleukin-31 Gene Polymorphisms with Epithelial Ovarian Cancer in Chinese Population. Disease Markers, 2018, 2018, 1-7.	0.6	8
98	A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Research, 2018, 78, 5419-5430.	0.4	54
99	Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. Medicines (Basel, Switzerland), 2018, 5, 16.	0.7	123
101	Update on Genetic Testing in Gynecologic Cancer. Journal of Clinical Oncology, 2019, 37, 2501-2509.	0.8	26
102	Ruthenium arene complex induces cell cycle arrest and apoptosis through activation of P53-mediated signaling pathways. Journal of Organometallic Chemistry, 2019, 898, 120869.	0.8	10
103	DNA damage tolerance in stem cells, ageing, mutagenesis, disease and cancer therapy. Nucleic Acids Research, 2019, 47, 7163-7181.	6.5	55
104	Factors Associated with Successful Resuscitation after In-Hospital Cardiac Arrest: an prospective observational study performed in a tertiary hospital in south west of China. Resuscitation, 2019, 142, e22.	1.3	0
105	<i>TERT</i> rs10069690 polymorphism and cancers risk: A metaâ€analysis. Molecular Genetics & amp; Genomic Medicine, 2019, 7, e00903.	0.6	11
107	Genome-wide association and epidemiological analyses reveal common genetic origins between uterine leiomyomata and endometriosis. Nature Communications, 2019, 10, 4857.	5.8	90
108	Associations between TAB2 Gene Polymorphisms and Epithelial Ovarian Cancer in a Chinese Population. Disease Markers, 2019, 2019, 1-9.	0.6	3
109	Effective mismatch repair depends on timely control of PCNA retention on DNA by the Elg1 complex. Nucleic Acids Research, 2019, 47, 6826-6841.	6.5	20
110	Prevention of Ovarian Cancer., 2019, , 257-272.		0
111	A transcriptome-wide association study of high-grade serous epithelial ovarian cancer identifies new susceptibility genes and splice variants. Nature Genetics, 2019, 51, 815-823.	9.4	89

#	Article	IF	CITATIONS
112	Cross-Cancer Pleiotropic Associations with Lung Cancer Risk in African Americans. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 715-723.	1.1	11
113	DNA Replication Vulnerabilities Render Ovarian Cancer Cells Sensitive to Poly(ADP-Ribose) Glycohydrolase Inhibitors. Cancer Cell, 2019, 35, 519-533.e8.	7.7	79
114	Genome-wide association studies identify susceptibility loci for epithelial ovarian cancer in east Asian women. Gynecologic Oncology, 2019, 153, 343-355.	0.6	28
115	Influence of obesity on surgical complications of patients with ovarian tumors. Oncology Letters, 2019, 17, 4590-4594.	0.8	3
116	Systematic evaluation of cancerâ€specific genetic risk score for 11 types of cancer in The Cancer Genome Atlas and Electronic Medical Records and Genomics cohorts. Cancer Medicine, 2019, 8, 3196-3205.	1.3	22
117	Association between <i>AXIN1</i> gene polymorphisms and epithelial ovarian cancer in Chinese population. Biomarkers in Medicine, 2019, 13, 445-455.	0.6	3
118	ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress. Nature Communications, 2019, 10, 5718.	5.8	35
119	Detection and genotyping of CMV and HPV in tumors and fallopian tubes from epithelial ovarian cancer patients. Scientific Reports, 2019, 9, 19935.	1.6	26
120	Wnt family member 4 (WNT4) and WNT3A activate cell-autonomous Wnt signaling independent of porcupine O-acyltransferase or Wnt secretion. Journal of Biological Chemistry, 2019, 294, 19950-19966.	1.6	31
121	Wnt/ \hat{l}^2 -catenin signalling in ovarian cancer: Insights into its hyperactivation and function in tumorigenesis. Journal of Ovarian Research, 2019, 12, 122.	1.3	133
122	Molecular signatures of X chromosome inactivation and associations with clinical outcomes in epithelial ovarian cancer. Human Molecular Genetics, 2019, 28, 1331-1342.	1.4	19
123	MiR-1204 promotes ovarian squamous cell carcinoma growth by increasing glucose uptake. Bioscience, Biotechnology and Biochemistry, 2019, 83, 123-128.	0.6	14
124	Functional Analysis and Fine Mapping of the 9p22.2 Ovarian Cancer Susceptibility Locus. Cancer Research, 2019, 79, 467-481.	0.4	22
125	A comprehensive gene–environment interaction analysis in Ovarian Cancer using genomeâ€wide significant common variants. International Journal of Cancer, 2019, 144, 2192-2205.	2.3	12
126	Evaluation of associations between genetically predicted circulating protein biomarkers and breast cancer risk. International Journal of Cancer, 2020, 146, 2130-2138.	2.3	13
127	Wholeâ€exome sequencing of ovarian cancer families uncovers putative predisposition genes. International Journal of Cancer, 2020, 146, 2147-2155.	2.3	12
128	Ovarian Cancer Risk Variants Are Enriched in Histotype-Specific Enhancers and Disrupt Transcription Factor Binding Sites. American Journal of Human Genetics, 2020, 107, 622-635.	2.6	14
129	Estrogen Regulation of mTOR Signaling and Mitochondrial Function in Invasive Lobular Carcinoma Cell Lines Requires WNT4. Cancers, 2020, 12, 2931.	1.7	20

#	Article	IF	Citations
130	Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass. Cancers, 2020, 12, 2848.	1.7	3
131	LY75 Suppression in Mesenchymal Epithelial Ovarian Cancer Cells Generates a Stable Hybrid EOC Cellular Phenotype, Associated with Enhanced Tumor Initiation, Spreading and Resistance to Treatment in Orthotopic Xenograft Mouse Model. International Journal of Molecular Sciences, 2020, 21, 4992.	1.8	2
132	WNT Signaling Driven by R-spondin 1 and LGR6 in High-grade Serous Ovarian Cancer. Anticancer Research, 2020, 40, 6017-6028.	0.5	7
133	Recent Advancements in Biomarkers and Early Detection of Gastrointestinal Cancers. Diagnostics and Therapeutic Advances in Gl Malignancies, 2020, , .	0.2	1
134	Cross-Cancer Genome-Wide Association Study of Endometrial Cancer and Epithelial Ovarian Cancer Identifies Genetic Risk Regions Associated with Risk of Both Cancers. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 217-228.	1.1	12
135	Mechanisms of Long Non-Coding RNAs in Cancers and Their Dynamic Regulations. Cancers, 2020, 12, 1245.	1.7	95
136	ATAD5 suppresses centrosome over-duplication by regulating UAF1 and ID1. Cell Cycle, 2020, 19, 1952-1968.	1.3	10
137	Fallopian tube initiation of high grade serous ovarian cancer and ovarian metastasis: Mechanisms and therapeutic implications. Cancer Letters, 2020, 476, 152-160.	3.2	18
138	Stable expansion of highâ€grade serous ovarian cancer organoids requires a lowâ€Wnt environment. EMBO Journal, 2020, 39, e104013.	3.5	70
139	Applications of Next Generation Sequencing to the Analysis of Familial Breast/Ovarian Cancer. High-Throughput, 2020, 9, 1.	4.4	22
140	Functional Landscape of Common Variants Associated with Susceptibility to Epithelial Ovarian Cancer. Current Epidemiology Reports, 2020, 7, 49-57.	1.1	6
141	Population-based targeted sequencing of 54 candidate genes identifies <i>PALB2 < /i> gene for high-grade serous ovarian cancer. Journal of Medical Genetics, 2021, 58, 305-313.</i>	1.5	26
142	Genetically Defined, Syngeneic Organoid Platform for Developing Combination Therapies for Ovarian Cancer. Cancer Discovery, 2021, 11, 362-383.	7.7	50
143	Genetically predicted circulating protein biomarkers and ovarian cancer risk. Gynecologic Oncology, 2021, 160, 506-513.	0.6	12
144	Recent Advances and Future Directions of Diagnostic and Prognostic Prediction Models in Ovarian Cancer. Journal of Shanghai Jiaotong University (Science), 2021, 26, 10-16.	0.5	0
145	Role of Infections and Tissue Inflammation in the Pathology of the Fallopian Tube and High-Grade Serous Ovarian Cancer. Physiology in Health and Disease, 2021, , 271-312.	0.2	0
146	Genetic risk score for ovarian cancer based on chromosomal-scale length variation. BioData Mining, 2021, 14, 18.	2.2	3
147	Functional Interrogation of Enhancer Connectome Prioritizes Candidate Target Genes at Ovarian Cancer Susceptibility Loci. Frontiers in Genetics, 2021, 12, 646179.	1.1	3

#	Article	IF	Citations
148	Prostate cancer risk variants of the HOXB genetic locus. Scientific Reports, 2021, 11, 11385.	1.6	6
149	WNT4 Balances Development vs Disease in Gynecologic Tissues and Women's Health. Endocrinology, 2021, 162, .	1.4	10
152	Changes in Stem Cell Regulation and Epithelial Organisation during Carcinogenesis and Disease Progression in Gynaecological Malignancies. Cancers, 2021, 13, 3349.	1.7	2
153	Genetic analyses of gynecological disease identify genetic relationships between uterine fibroids and endometrial cancer, and a novel endometrial cancer genetic risk region at the WNT4 1p36.12 locus. Human Genetics, 2021, 140, 1353-1365.	1.8	18
154	Differential gene expression identifies a transcriptional regulatory network involving ER-alpha and PITX1 in invasive epithelial ovarian cancer. BMC Cancer, 2021, 21, 768.	1.1	5
155	Oncogenic viruses and chemoresistance: What do we know?. Pharmacological Research, 2021, 170, 105730.	3.1	14
156	Genetic polymorphisms in gynecologic cancers. , 2021, , 169-193.		0
157	Eukaryotic clamp loaders and unloaders in the maintenance of genome stability. Experimental and Molecular Medicine, 2020, 52, 1948-1958.	3.2	24
158	Performance of Breast Cancer Polygenic Risk Scores in 760 Female <i>CHEK2</i> Germline Mutation Carriers. Journal of the National Cancer Institute, 2021, 113, 893-899.	3.0	21
162	Reanalysis of BRCA1/2 negative high risk ovarian cancer patients reveals novel germline risk loci and insights into missing heritability. PLoS ONE, 2017, 12, e0178450.	1.1	39
163	Cadherin-6 type 2, K-cadherin (CDH6) is regulated by mutant p53 in the fallopian tube but is not expressed in the ovarian surface. Oncotarget, 2016, 7, 69871-69882.	0.8	13
164	Germline whole exome sequencing and large-scale replication identifies FANCM as a likely high grade serous ovarian cancer susceptibility gene. Oncotarget, 2017, 8, 50930-50940.	0.8	43
165	LGR5 and LGR6 in stem cell biology and ovarian cancer. Oncotarget, 2018, 9, 1346-1355.	0.8	27
166	The androgen receptor cytosine-adenine-guanine repeat length contributes to the development of epithelial ovarian cancer. Oncotarget, 2016, 7, 2105-2112.	0.8	9
167	A targeted genetic association study of epithelial ovarian cancer susceptibility. Oncotarget, 2016, 7, 7381-7389.	0.8	7
168	MiR-363 inhibits cisplatin chemoresistance of epithelial ovarian cancer by regulating snail-induced epithelial-mesenchymal transition. BMB Reports, 2018, 51, 456-461.	1.1	37
169	Timely termination of repair DNA synthesis by ATAD5 is important in oxidative DNA damage-induced single-strand break repair. Nucleic Acids Research, 2021, 49, 11746-11764.	6.5	13
170	Hereditary Cancers and Genetics. UNIPA Springer Series, 2021, , 65-98.	0.1	0

#	Article	IF	CITATIONS
171	Association between genetic variants in oxidative stress-related genes and osteoporotic bone fracture. The Hortega follow-up study. Gene, 2022, 809, 146036.	1.0	3
172	The role of R-spondin proteins in cancer biology. Oncogene, 2021, 40, 6469-6478.	2.6	37
173	Frecuencia de las mutaciones en los genes BRCA en mujeres con agregaci \tilde{A}^3 n familiar de c \tilde{A}_i ncer de gl \tilde{A}_i ndula mamaria/ovario. Poblacion Y Salud En Mesoamerica, 2016, 14, .	0.1	1
174	Genetic variations in apoptosis pathway and the risk of ovarian cancer. Oncotarget, 2016, 7, 56737-56745.	0.8	2
175	Genetics of Ovarian Carcinomas., 2017, , 13-31.		0
178	The Association of Single Nucleotide Polymorphisms with Cancer Risk. , 2019, , 87-144.		0
180	The prospect of discovering new biomarkers for ovarian cancer based on current knowledge ofi¿½susceptibility loci and genetic variation (Review). International Journal of Molecular Medicine, 2019, 44, 1599-1608.	1.8	2
184	Genetic Marker Identification for the Detection of Early-Onset Gastric Cancer Through Genome-Wide Association Studies. Diagnostics and Therapeutic Advances in GI Malignancies, 2020, , 191-211.	0.2	0
187	TIGAR-V2: Efficient TWAS tool with nonparametric Bayesian eQTL weights of 49 tissue types from GTEx V8. Human Genetics and Genomics Advances, 2022, 3, 100068.	1.0	12
189	Association between interleukin-32 polymorphisms and ovarian cancer in the Chinese Han population. International Journal of Clinical and Experimental Pathology, 2020, 13, 1733-1738.	0.5	2
190	Comprehensive epithelial tubo-ovarian cancer risk prediction model incorporating genetic and epidemiological risk factors. Journal of Medical Genetics, 2022, 59, 632-643.	1.5	33
191	RSPO2 and RANKL signal through LGR4 to regulate osteoclastic premetastatic niche formation and bone metastasis. Journal of Clinical Investigation, 2022, 132, .	3.9	30
192	Functional analysis of the 1p34.3 risk locus implicates GNL2 in high-grade serous ovarian cancer. American Journal of Human Genetics, 2022, 109, 116-135.	2.6	3
193	New Trends in the Detection of Gynecological Precancerous Lesions and Early-Stage Cancers. Cancers, 2021, 13, 6339.	1.7	9
195	Form of Supplemental Selenium Affects the Expression of mRNA Transcripts Encoding Selenoproteins, and Proteins Regulating Cholesterol Uptake, in the Corpus Luteum of Grazing Beef Cows. Animals, 2022, 12, 313.	1.0	8
196	chromMAGMA: regulatory element-centric interrogation of risk variants. Life Science Alliance, 2022, 5, e202201446.	1.3	1
197	Implementation of individualised polygenic risk score analysis: a test case of a family of four. BMC Medical Genomics, 2022, 15, .	0.7	3
199	Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci. Journal of the National Cancer Institute, 2022, 114, 1533-1544.	3.0	6

CITATION REPORT

#	ARTICLE	IF	CITATIONS
200	SNP-Target Genes Interaction Perturbing the Cancer Risk in the Post-GWAS. Cancers, 2022, 14, 5636.	1.7	8
201	Bioinformatics analysis on the expression of GPX family in gastric cancer and its correlation with the prognosis of gastric cancer. Heliyon, 2022, 8, e12214.	1.4	3
203	Zinc Finger Protein 90 Knockdown Promotes Cisplatin Sensitivity via Nrf2/HO-1 Pathway in Ovarian Cancer Cell. Cancers, 2023, 15, 1586.	1.7	2
204	R-Spondin1 and tumor necrosis factor-alpha in infertile women with polycystic ovary syndrome: relationships with insulin resistance and other parameters. Journal of Health Sciences and Medicine, 2023, 6, 449-455.	0.0	1