Biogenesis of cytosolic and nuclear iron–sulfur proteinstability

Biochimica Et Biophysica Acta - Molecular Cell Research 1853, 1528-1539

DOI: 10.1016/j.bbamcr.2014.12.018

Citation Report

#	Article	IF	CITATIONS
1	Compartmentalization of iron between mitochondria and the cytosol and its regulation. European Journal of Cell Biology, 2015, 94, 292-308.	1.6	76
2	The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. European Journal of Cell Biology, 2015, 94, 280-291.	1.6	158
3	Glutaredoxin-deficiency confers bloodstream Trypanosoma brucei with improved thermotolerance. Molecular and Biochemical Parasitology, 2015, 204, 93-105.	0.5	21
4	The Yeast Nbp35-Cfd1 Cytosolic Iron-Sulfur Cluster Scaffold Is an ATPase. Journal of Biological Chemistry, 2015, 290, 23793-23802.	1.6	24
5	Shu1 Is a Cell-surface Protein Involved in Iron Acquisition from Heme in Schizosaccharomyces pombe. Journal of Biological Chemistry, 2015, 290, 10176-10190.	1.6	32
6	Elucidating the Molecular Function of Human BOLA2 in GRX3-Dependent Anamorsin Maturation Pathway. Journal of the American Chemical Society, 2015, 137, 16133-16143.	6.6	64
7	Impaired mitochondrial Fe-S cluster biogenesis activates the DNA damage response through different signaling mediators. Journal of Cell Science, 2015, 128, 4653-65.	1.2	11
8	Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins. ELife, 2016, 5, .	2.8	96
9	Iron Homeostasis in Health and Disease. International Journal of Molecular Sciences, 2016, 17, 130.	1.8	274
10	Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget, 2016, 7, 44879-44905.	0.8	381
11	Emerging links between iron-sulfur clusters and 5-methylcytosine base excision repair in plants. Genes and Genetic Systems, 2016, 91, 51-62.	0.2	16
12	Role of XPD in cellular functions: To TFIIH and beyond. DNA Repair, 2016, 44, 136-142.	1.3	55
13	Life without Fe–S clusters. Molecular Microbiology, 2016, 99, 821-826.	1.2	20
15	Cytosolic iron–sulfur cluster transfer—a proposed kinetic pathway for reconstitution of glutaredoxin 3. FEBS Letters, 2016, 590, 4531-4540.	1.3	23
16	The conserved protein Dre2 uses essential [2Fe–2S] and [4Fe–4S] clusters for its function in cytosolic iron–sulfur protein assembly. Biochemical Journal, 2016, 473, 2073-2085.	1.7	35
17	Dissecting the Metabolic Role of Mitochondria during Developmental Leaf Senescence. Plant Physiology, 2016, 172, 2132-2153.	2.3	91
18	Iron-sulfur clusters in mitochondrial metabolism: Multifaceted roles of a simple cofactor. Biochemistry (Moscow), 2016, 81, 1066-1080.	0.7	39
19	MetalPredator: a web server to predict iron–sulfur cluster binding proteomes. Bioinformatics, 2016, 32, 2850-2852.	1.8	58

#	Article	IF	CITATIONS
20	POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. Gene, 2016, 590, 128-141.	1.0	98
21	LmABCB3, an atypical mitochondrial ABC transporter essential for Leishmania major virulence, acts in heme and cytosolic iron/sulfur clusters biogenesis. Parasites and Vectors, 2016, 9, 7.	1.0	22
22	Synthesis, delivery and regulation of eukaryotic heme and Fe–S cluster cofactors. Archives of Biochemistry and Biophysics, 2016, 592, 60-75.	1.4	37
23	The Oncogenic Small Tumor Antigen of Merkel Cell Polyomavirus Is an Iron-Sulfur Cluster Protein That Enhances Viral DNA Replication. Journal of Virology, 2016, 90, 1544-1556.	1.5	39
24	Defects in Mitochondrial Iron–Sulfur Cluster Assembly Induce Cysteine S-Polythiolation on Iron–Sulfur Apoproteins. Antioxidants and Redox Signaling, 2016, 25, 28-40.	2.5	4
25	Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions. Molecular and Biochemical Parasitology, 2016, 209, 46-57.	0.5	24
26	Iron-associated biology of Trypanosoma brucei. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 363-370.	1.1	16
27	Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics. Annual Review of Pharmacology and Toxicology, 2017, 57, 437-454.	4.2	120
28	Wobble uridine modifications–a reason to live, a reason to die?!. RNA Biology, 2017, 14, 1209-1222.	1.5	81
29	Using chemical biology to assess and modulate mitochondria: progress and challenges. Interface Focus, 2017, 7, 20160151.	1.5	11
30	Mitochondrial ABC Transporter ATM3 Is Essential for Cytosolic Iron-Sulfur Cluster Assembly. Plant Physiology, 2017, 173, 2096-2109.	2.3	28
31	Loss of Ssq1 leads to mitochondrial dysfunction, activation of autophagy and cell cycle arrest due to iron overload triggered by mitochondrial iron–sulfur cluster assembly defects in Candida albicans. International Journal of Biochemistry and Cell Biology, 2017, 85, 44-55.	1.2	28
32	Heme Assimilation in Schizosaccharomyces pombe Requires Cell-surface-anchored Protein Shu1 and Vacuolar Transporter Abc3. Journal of Biological Chemistry, 2017, 292, 4898-4912.	1.6	27
33	Role of iron in the pathogenesis of respiratory disease. International Journal of Biochemistry and Cell Biology, 2017, 88, 181-195.	1.2	77
34	The mitochondrial outer membrane protein mitoNEET is a redox enzyme catalyzing electron transfer from FMNH2 to oxygen or ubiquinone. Journal of Biological Chemistry, 2017, 292, 10061-10067.	1.6	49
35	The transferrin receptor: the cellular iron gate. Metallomics, 2017, 9, 1367-1375.	1.0	209
36	Cellular requirements for iron–sulfur cluster insertion into the antiviral radical SAM protein viperin. Journal of Biological Chemistry, 2017, 292, 13879-13889.	1.6	35
37	Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli. Applied and Environmental Microbiology, 2017, 83, .	1.4	47

#	Article	IF	CITATIONS
38	Recycling of iron via autophagy is critical for the transition from glycolytic to respiratory growth. Journal of Biological Chemistry, 2017, 292, 8533-8543.	1.6	25
39	The Upsides and Downsides of Organelle Interconnectivity. Cell, 2017, 169, 24-34.	13.5	82
40	Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 399-430.	1.9	199
41	Flavin nucleotides act as electron shuttles mediating reduction of the [2Fe-2S] clusters in mitochondrial outer membrane protein mitoNEET. Free Radical Biology and Medicine, 2017, 102, 240-247.	1.3	21
42	Evolutionary conservation and in vitro reconstitution of microsporidian iron–sulfur cluster biosynthesis. Nature Communications, 2017, 8, 13932.	5.8	67
44	Iron-Sulfur Protein Assembly in Human Cells. Reviews of Physiology, Biochemistry and Pharmacology, 2017, 174, 25-65.	0.9	16
45	Defining the domains of Cia2 required for its essential function in vivo and in vitro. Metallomics, 2017, 9, 1645-1654.	1.0	6
46	The elemental role of iron in DNA synthesis and repair. Metallomics, 2017, 9, 1483-1500.	1.0	209
47	The diferric-tyrosyl radical cluster of ribonucleotide reductase and cytosolic iron-sulfur clusters have distinct and similar biogenesis requirements. Journal of Biological Chemistry, 2017, 292, 11445-11451.	1.6	19
48	A synergistic role of IRP1 and FBXL5 proteins in coordinating iron metabolism during cell proliferation. Journal of Biological Chemistry, 2017, 292, 15976-15989.	1.6	29
49	NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature, 2017, 551, 639-643.	13.7	478
50	Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex. Nature Communications, 2017, 8, 1287.	5.8	144
51	Mutual Cross Talk Between Iron Homeostasis and Erythropoiesis. Vitamins and Hormones, 2017, 105, 143-160.	0.7	13
52	Sulfur Modifications of the Wobble U34 in tRNAs and their Intracellular Localization in Eukaryotic Cells. Biomolecules, 2017, 7, 17.	1.8	18
53	<i>MET18</i> Deficiency Increases the Sensitivity of Yeast to Oxidative Stress and Shortens Replicative Lifespan by Inhibiting Catalase Activity. BioMed Research International, 2017, 2017, 1-8.	0.9	7
54	Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget, 2017, 8, 6376-6398.	0.8	72
55	Biological and Immunological Aspects of Iron Deficiency Anemia in Cancer Development: A Narrative Review. Nutrition and Cancer, 2018, 70, 546-556.	0.9	29
56	Clinical and genetic aspects of defects in the mitochondrial iron–sulfur cluster synthesis pathway. Journal of Biological Inorganic Chemistry, 2018, 23, 495-506.	1.1	21

#	Article	IF	CITATIONS
57	Fe–S cluster assembly in the supergroup Excavata. Journal of Biological Inorganic Chemistry, 2018, 23, 521-541.	1.1	17
58	Protein networks in the maturation of human iron–sulfur proteins. Metallomics, 2018, 10, 49-72.	1.0	79
59	Identifying the Protein Interactions of the Cytosolic Iron–Sulfur Cluster Targeting Complex Essential for Its Assembly and Recognition of Apo-Targets. Biochemistry, 2018, 57, 2349-2358.	1.2	13
60	Iron–sulfur cluster biosynthesis and trafficking – impact on human disease conditions. Metallomics, 2018, 10, 9-29.	1.0	79
61	Biochemical Analyses of Human Iron–Sulfur Protein Biogenesis and of Related Diseases. Methods in Enzymology, 2018, 599, 227-263.	0.4	16
62	Cytosolic Iron-Sulfur Assembly Is Evolutionarily Tuned by a Cancer-Amplified Ubiquitin Ligase. Molecular Cell, 2018, 69, 113-125.e6.	4.5	38
63	Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich's ataxia. Neurochemistry International, 2018, 117, 35-48.	1.9	38
64	Iron-sensing is governed by mitochondrial, not by cytosolic iron–sulfur cluster biogenesis inAspergillus fumigatus. Metallomics, 2018, 10, 1687-1700.	1.0	33
65	Biallelic mutations in FDXR cause neurodegeneration associated with inflammation. Journal of Human Genetics, 2018, 63, 1211-1222.	1.1	23
66	Branched late-steps of the cytosolic iron-sulphur cluster assembly machinery of Trypanosoma brucei. PLoS Pathogens, 2018, 14, e1007326.	2.1	2
67	NMR as a Tool to Investigate the Processes of Mitochondrial and Cytosolic Iron-Sulfur Cluster Biosynthesis. Molecules, 2018, 23, 2213.	1.7	8
68	Function and crystal structure of the dimeric P-loop ATPase CFD1 coordinating an exposed [4Fe-4S] cluster for transfer to apoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9085-E9094.	3.3	26
69	Fe–S Cluster Assembly in Oxymonads and Related Protists. Molecular Biology and Evolution, 2018, 35, 2712-2718.	3.5	19
70	Mitochondrial ABC Transporters and Iron Metabolism. , 2018, 08, .		6
71	TLR-activated repression of Fe-S cluster biogenesis drives a metabolic shift and alters histone and tubulin acetylation. Blood Advances, 2018, 2, 1146-1156.	2.5	32
72	Steps Toward Understanding Mitochondrial Fe/S Cluster Biogenesis. Methods in Enzymology, 2018, 599, 265-292.	0.4	18
73	Approaches to Interrogate the Role of Nucleotide Hydrolysis by Metal Trafficking NTPases: The Nbp35–Cfd1 Iron–Sulfur Cluster Scaffold as a Case Study. Methods in Enzymology, 2018, 599, 293-325.	0.4	7
74	Robust Production, Crystallization, Structure Determination, and Analysis of [Fe–S] Proteins: Uncovering Control of Electron Shuttling and Gating in the Respiratory Metabolism of Molybdopterin Guanine Dinucleotide Enzymes. Methods in Enzymology, 2018, 599, 157-196.	0.4	11

#	Article	IF	CITATIONS
75	Biochemical Reconstitution and Spectroscopic Analysis of Iron–Sulfur Proteins. Methods in Enzymology, 2018, 599, 197-226.	0.4	61
76	Fe-S cluster coordination of the chromokinesin KIF4A alters its sub-cellular localization during mitosis. Journal of Cell Science, 2018, 131, .	1.2	11
77	Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Frontiers in Physiology, 2018, 9, 50.	1.3	33
78	A novel complex neurological phenotype due to a homozygous mutation in FDX2. Brain, 2018, 141, 2289-2298.	3.7	29
79	Iron–Sulfur Cluster Biosynthesis in Algae with Complex Plastids. Genome Biology and Evolution, 2018, 10, 2061-2071.	1.1	9
80	Iron and Alzheimer's Disease: An Update on Emerging Mechanisms. Journal of Alzheimer's Disease, 2018, 64, S379-S395.	1.2	205
81	Sulfur from Within: Cytosolic tRNA Thiouridinylation. Cell Chemical Biology, 2018, 25, 645-647.	2.5	2
82	Biological Ligands for Metal Ions. , 2019, , 81-118.		Ο
83	Metabolism of Trichomonad Hydrogenosomes. Microbiology Monographs, 2019, , 127-158.	0.3	0
84	Understanding the Mechanism of [4Fe-4S] Cluster Assembly on Eukaryotic Mitochondrial and Cytosolic Aconitase. Inorganic Chemistry, 2019, 58, 13686-13695.	1.9	7
85	Iron–sulfur clusters in nucleic acid metabolism: Varying roles of ancient cofactors. The Enzymes, 2019, 45, 225-256.	0.7	25
86	Redox Chemistry in the Genome: Emergence of the [4Fe4S] Cofactor in Repair and Replication. Annual Review of Biochemistry, 2019, 88, 163-190.	5.0	50
87	Molybdenum and tungsten enzymes redox properties – A brief overview. Coordination Chemistry Reviews, 2019, 394, 53-64.	9.5	30
88	Mechanisms Through Which Some Mitochondria-Generated Metabolites Act as Second Messengers That Are Essential Contributors to the Aging Process in Eukaryotes Across Phyla. Frontiers in Physiology, 2019, 10, 461.	1.3	8
89	Ironing Out the Roles of Macrophages in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 127-129.	2.5	2
90	Yeast expression of mammalian Onzin and fungal FCR1 suggests ancestral functions of PLAC8 proteins in mitochondrial metabolism and DNA repair. Scientific Reports, 2019, 9, 6629.	1.6	17
91	The Transferrin Receptor CD71 Delineates Functionally Distinct Airway Macrophage Subsets during Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 209-219.	2.5	82
92	Coupling Nucleotide Binding and Hydrolysis to Iron–Sulfur Cluster Acquisition and Transfer Revealed through Genetic Dissection of the Nbp35 ATPase Site. Biochemistry, 2019, 58, 2017-2027.	1.2	20

#	Article	IF	CITATIONS
93	A comprehensive mechanistic model of iron metabolism in <i>Saccharomyces cerevisiae</i> . Metallomics, 2019, 11, 1779-1799.	1.0	17
94	Sideroflexin 4 affects Fe-S cluster biogenesis, iron metabolism, mitochondrial respiration and heme biosynthetic enzymes. Scientific Reports, 2019, 9, 19634.	1.6	30
95	Depletion of thiol reducing capacity impairs cytosolic but not mitochondrial iron-sulfur protein assembly machineries. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 240-251.	1.9	10
96	Metal cofactors trafficking and assembly in the cell: a molecular view. Pure and Applied Chemistry, 2019, 91, 231-245.	0.9	15
97	Mitochondrial membrane transporters and metabolic switch in heart failure. Heart Failure Reviews, 2019, 24, 255-267.	1.7	39
98	Cysteine reactivity across the subcellular universe. Current Opinion in Chemical Biology, 2019, 48, 96-105.	2.8	84
99	Role of Human Xeroderma Pigmentosum Group D (XPD) Helicase in Various Cellular Pathways. , 2019, , 125-139.		2
100	Iron bioavailability from food fortification to precision nutrition. A review. Innovative Food Science and Emerging Technologies, 2019, 51, 126-138.	2.7	102
101	Convergent Evolution of Hydrogenosomes from Mitochondria by Gene Transfer and Loss. Molecular Biology and Evolution, 2020, 37, 524-539.	3.5	38
102	ABCB7 simultaneously regulates apoptotic and non-apoptotic cell death by modulating mitochondrial ROS and HIF11±-driven NFI®B signaling. Oncogene, 2020, 39, 1969-1982.	2.6	23
103	Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence. Cells, 2020, 9, 2229.	1.8	9
104	Cellular Dynamics of Transition Metal Exchange on Proteins: A Challenge but a Bonanza for Coordination Chemistry. Biomolecules, 2020, 10, 1584.	1.8	13
105	Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1–ISCA2 by electron flow from ferredoxin FDX2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20555-20565.	3.3	59
106	The Requirement of Inorganic Fe-S Clusters for the Biosynthesis of the Organometallic Molybdenum Cofactor. Inorganics, 2020, 8, 43.	1.2	6
107	Iron depletion with deferoxamine protects bone marrow-derived mesenchymal stem cells against oxidative stress-induced apoptosis. Cell Stress and Chaperones, 2020, 25, 1059-1069.	1.2	15
109	Emerging roles of the MAGE protein family in stress response pathways. Journal of Biological Chemistry, 2020, 295, 16121-16155.	1.6	42
110	Iron: An Essential Element of Cancer Metabolism. Cells, 2020, 9, 2591.	1.8	56
111	Hyperactive CDK2 Activity in Basal-like Breast Cancer Imposes a Genome Integrity Liability that Can Be Exploited by Targeting DNA Polymerase ε. Molecular Cell, 2020, 80, 682-698.e7.	4.5	25

C	 	Rep	
	ON	14 F D	กษ
\sim		IVEL	

#	Article	IF	CITATIONS
112	Mechanism of Iron–Sulfur Cluster Assembly: In the Intimacy of Iron and Sulfur Encounter. Inorganics, 2020, 8, 55.	1.2	29
113	GLRX3 Acts as a [2Fe–2S] Cluster Chaperone in the Cytosolic Iron–Sulfur Assembly Machinery Transferring [2Fe–2S] Clusters to NUBP1. Journal of the American Chemical Society, 2020, 142, 10794-10805.	6.6	17
114	Proteomic profiling of the monothiol glutaredoxin Grx3 reveals its global role in the regulation of iron dependent processes. PLoS Genetics, 2020, 16, e1008881.	1.5	9
115	From Rust to Quantum Biology: The Role of Iron in Retina Physiopathology. Cells, 2020, 9, 705.	1.8	32
116	CIAO3 protein forms a stable ternary complex with two key players of the human cytosolic iron–sulfur cluster assembly machinery. Journal of Biological Inorganic Chemistry, 2020, 25, 501-508.	1.1	9
118	The iron–sulphur cluster in human DNA2 is required for all biochemical activities of DNA2. Communications Biology, 2020, 3, 322.	2.0	13
119	Structural insights into Fe–S protein biogenesis by the CIA targeting complex. Nature Structural and Molecular Biology, 2020, 27, 735-742.	3.6	22
120	Mechanisms of Mitochondrial Iron-Sulfur Protein Biogenesis. Annual Review of Biochemistry, 2020, 89, 471-499.	5.0	220
121	Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118863.	1.9	113
122	Iron–sulfur proteins in plant mitochondria: roles and maturation. Journal of Experimental Botany, 2021, 72, 2014-2044.	2.4	28
123	Overcoming Challenges in Expressing Iron–Sulfur Enzymes in Yeast. Trends in Biotechnology, 2021, 39, 665-677.	4.9	11
124	Glutaredoxins with iron-sulphur clusters in eukaryotes - Structure, function and impact on disease. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148317.	0.5	16
125	Fe-S Protein Synthesis in Green Algae Mitochondria. Plants, 2021, 10, 200.	1.6	4
126	Iron-Sulfur Clusters: Biochemical Aspects. , 2021, , 103-123.		0
127	Enzymatic and Chemical In Vitro Reconstitution of Iron-Sulfur Cluster Proteins. Methods in Molecular Biology, 2021, 2353, 79-95.	0.4	4
128	Iron Deficiency in Pulmonary Arterial Hypertension: A Deep Dive into the Mechanisms. Cells, 2021, 10, 477.	1.8	16
129	Targeting Mitochondrial Iron Metabolism Suppresses Tumor Growth and Metastasis by Inducing Mitochondrial Dysfunction and Mitophagy. Cancer Research, 2021, 81, 2289-2303.	0.4	51
130	Flipside of the Coin: Iron Deficiency and Colorectal Cancer. Frontiers in Immunology, 2021, 12, 635899.	2.2	33

#	Article	IF	CITATIONS
131	Gene atlas of iron ontaining proteins in <i>Arabidopsis thaliana</i> . Plant Journal, 2021, 106, 258-274.	2.8	25
132	A recurring NFS1 pathogenic variant causes a mitochondrial disorder with variable intra-familial patient outcomes. Molecular Genetics and Metabolism Reports, 2021, 26, 100699.	0.4	5
133	Iron at the Interface of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2021, 22, 4097.	1.8	27
134	The DnaJ proteins DJA6 and DJA5 are essential for chloroplast iron–sulfur cluster biogenesis. EMBO Journal, 2021, 40, e106742.	3.5	17
135	Frataxin deficiency promotes endothelial senescence in pulmonary hypertension. Journal of Clinical Investigation, 2021, 131, .	3.9	38
136	Structural Mechanisms for Replicating DNA in Eukaryotes. Annual Review of Biochemistry, 2021, 90, 77-106.	5.0	29
137	Expression, purification and microscopic characterization of human ATP-binding cassette sub-family B member 7 protein. Protein Expression and Purification, 2021, 183, 105860.	0.6	2
138	Down the Iron Path: Mitochondrial Iron Homeostasis and Beyond. Cells, 2021, 10, 2198.	1.8	28
139	Biogenesis of Iron–Sulfur Clusters and Their Role in DNA Metabolism. Frontiers in Cell and Developmental Biology, 2021, 9, 735678.	1.8	31
140	Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioactive Materials, 2021, 6, 4470-4490.	8.6	290
141	Cancer-Related NEET Proteins Transfer 2Fe-2S Clusters to Anamorsin, a Protein Required for Cytosolic Iron-Sulfur Cluster Biogenesis. PLoS ONE, 2015, 10, e0139699.	1.1	59
142	From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis. Biological Chemistry, 2020, 401, 855-876.	1.2	43
143	Glutaredoxins and iron-sulfur protein biogenesis at the interface of redox biology and iron metabolism. Biological Chemistry, 2020, 401, 1407-1428.	1.2	29
144	The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion. ELife, 2015, 4, e08231.	2.8	62
145	Bridging a gap in iron-sulfur cluster assembly. ELife, 2015, 4, .	2.8	0
146	鉄硫黄ã,⁻ラã,¹ã,¿ãƒ¼ã,°ã,,ãŸã³ã,生物ã®ä½œå‡º. Kagaku To Seibutsu, 2017, 55, 382-384.	0.0	0
148	Mitosomes in Parasitic Protists. Microbiology Monographs, 2019, , 205-242.	0.3	1
151	Sulfur Administration in Fe–S Cluster Homeostasis. Antioxidants, 2021, 10, 1738.	2.2	17

#	ARTICLE Molecular characteristics of proteins within the mitochondrial Fe-S cluster assembly complex.	IF	CITATIONS
153	Micron, 2022, 153, 103181.	1.1	10
154	Revisiting the Potential Functionality of the MagR Protein. Magnetochemistry, 2021, 7, 147.	1.0	0
155	N-terminal tyrosine of ISCU2 triggers [2Fe-2S] cluster synthesis by ISCU2 dimerization. Nature Communications, 2021, 12, 6902.	5.8	15
156	Iron Sulfur Clusters and ROS in Cancer. , 2021, , 1-16.		Ο
157	Iron Sulfur Clusters and ROS in Cancer. , 2022, , 291-306.		0
158	The synthesis and properties of mitochondrial targeted iron chelators. BioMetals, 2023, 36, 321-337.	1.8	7
159	The Intriguing Role of Iron-Sulfur Clusters in the CIAPIN1 Protein Family. Inorganics, 2022, 10, 52.	1.2	1
160	Iron Mining for Erythropoiesis. International Journal of Molecular Sciences, 2022, 23, 5341.	1.8	6
161	The hydrogenosome of <i>Trichomonas vaginalis</i> . Journal of Eukaryotic Microbiology, 2022, 69, e12922.	0.8	7
162	TFR1 expression in induced sputum is associated with asthma severity. PeerJ, 0, 10, e13474.	0.9	1
163	Prime Real Estate: Metals, Cofactors and MICOS. Frontiers in Cell and Developmental Biology, 2022, 10,	1.8	5
165	Taurine Ameliorates Iron Overload-Induced Hepatocyte Injury via the Bcl-2/VDAC1-Mediated Mitochondrial Apoptosis Pathway. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-14.	1.9	5
166	The multi-faced role of FUNDC1 in mitochondrial events and human diseases. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
167	Structures of Atm1 provide insight into [2Fe-2S] cluster export from mitochondria. Nature Communications, 2022, 13, .	5.8	9
168	ISCA2 inhibition decreases HIF and induces ferroptosis in clear cell renal carcinoma. Oncogene, 2022, 41, 4709-4723.	2.6	20
170	The iron–sulfur cluster assembly (ISC) protein Iba57 executes a tetrahydrofolate-independent function in mitochondrial [4Fe–4S] protein maturation. Journal of Biological Chemistry, 2022, 298, 102465.	1.6	1
171	Mössbauer-based molecular-level decomposition of the <i>Saccharomyces cerevisiae</i> ironome, and preliminary characterization of isolated nuclei. Metallomics, 2022, 14, .	1.0	3
172	The Role of Iron in DNA and Genomic Instability in Cancer, a Target for Iron Chelators That Can Induce ROS. Applied Sciences (Switzerland), 2022, 12, 10161.	1.3	6

IF CITATIONS ARTICLE # Iron as a therapeutic target in chronic liver disease. World Journal of Gastroenterology, 0, 29, 173 1.4 4 616-655. Aging, genomic mitochondrial, and regulatory changes., 2023, , 243-272. 174 Mitoferrin-1 Promotes Proliferation and Abrogates Protein Oxidation via the Glutathione Pathway in 175 2.2 1 Glioblastoma. Antioxidants, 2023, 12, 349. Stimulation of Hepatic Ferritinophagy Mitigates Irp2 Depletion-Induced Anemia. Antioxidants, 2023, 12, The mitochondrion: from genome to proteome., 2022, , 369-412. 177 0 Hsp90 and metalâ€binding Jâ€protein family chaperones are not critically involved in cellular iron–sulfur protein assembly and iron regulation in yeast. FEBS Letters, 2023, 597, 1718-1732. 1.3 Sulfur transferases in the pathways of molybdenum cofactor biosynthesis and tRNA thiolation in humans. , 2023, , 207-236. 179 0