A method for high-throughput, sensitive analysis of IgG capillary electrophoresis

Journal of Immunological Methods 417, 34-44 DOI: 10.1016/j.jim.2014.12.004

Citation Report

#	Article	IF	CITATIONS
1	Microscale purification of antigen-specific antibodies. Journal of Immunological Methods, 2015, 425, 27-36.	1.4	19
2	Isotypeâ€specific glycosylation analysis of mouse IgG by LCâ€MS. Proteomics, 2016, 16, 1321-1330.	2.2	23
3	Stateâ€ofâ€ŧheâ€art technologies for rapid and highâ€ŧhroughput sample preparation and analysis of <i>N</i> â€glycans from antibodies. Electrophoresis, 2016, 37, 1468-1488.	2.4	25
4	SpeB proteolysis with imaged capillary isoelectric focusing for the characterization of domain-specific charge heterogeneities of reference and biosimilar Rituximab. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1020, 148-157.	2.3	22
5	High-throughput analysis of immunoglobulin G glycosylation. Expert Review of Proteomics, 2016, 13, 523-534.	3.0	32
6	Systems Vaccinology: Applications, Trends, and Perspectives. Methods in Molecular Biology, 2016, 1403, 107-130.	0.9	2
7	Rapid and improved characterization of therapeutic antibodies and antibody related products using IdeS digestion and subunit analysis. Analyst, The, 2016, 141, 3114-3125.	3.5	85
8	IgG Binding Characteristics of Rhesus Macaque Fc ^î ³R. Journal of Immunology, 2016, 197, 2936-2947.	0.8	43
9	Data Independent Analysis of IgG Glycoforms in Samples of Unfractionated Human Plasma. Analytical Chemistry, 2016, 88, 10118-10125	6.5	46
	Chemistry, 2010, 00, 10110 10125.		
10	A Functional Role for Antibodies in Tuberculosis. Cell, 2016, 167, 433-443.e14.	28.9	461
10	A Functional Role for Antibodies in Tuberculosis. Cell, 2016, 167, 433-443.e14. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics. Scientific Reports, 2016, 6, 23589.	28.9 3.3	461 62
10 11 12	A Functional Role for Antibodies in Tuberculosis. Cell, 2016, 167, 433-443.e14. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics. Scientific Reports, 2016, 6, 23589. Sweet but dangerous – the role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus, 2016, 25, 934-942.	28.9 3.3 1.6	461 62 69
10 11 12 13	A Functional Role for Antibodies in Tuberculosis. Cell, 2016, 167, 433-443.e14. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics. Scientific Reports, 2016, 6, 23589. Sweet but dangerous – the role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus, 2016, 25, 934-942. Recent Advances in Clinical Glycoproteomics of Immunoglobulins (Igs). Molecular and Cellular Proteomics, 2016, 15, 2217-2228.	28.9 3.3 1.6 3.8	461 62 69 54
10 11 12 13 14	A Functional Role for Antibodies in Tuberculosis. Cell, 2016, 167, 433-443.e14. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics. Scientific Reports, 2016, 6, 23589. Sweet but dangerous – the role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus, 2016, 25, 934-942. Recent Advances in Clinical Glycoproteomics of Immunoglobulins (Igs). Molecular and Cellular Proteomics, 2016, 15, 2217-2228. Enhanced binding of antibodies generated during chronic HIV infection to mucus component MUC16. Mucosal Immunology, 2016, 9, 1549-1558.	28.9 3.3 1.6 3.8 6.0	 461 62 69 54 47
10 11 12 13 14 15	A Functional Role for Antibodies in Tuberculosis. Cell, 2016, 167, 433-443.e14. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics. Scientific Reports, 2016, 6, 23589. Sweet but dangerous – the role of immunoglobulin C glycosylation in autoimmunity and inflammation. Lupus, 2016, 25, 934-942. Recent Advances in Clinical Glycoproteomics of Immunoglobulins (Igs). Molecular and Cellular Proteomics, 2016, 15, 2217-2228. Enhanced binding of antibodies generated during chronic HIV infection to mucus component MUC16. Mucosal Immunology, 2016, 9, 1549-1558. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses. Journal of Virology, 2016, 90, 266-278.	28.9 3.3 1.6 3.8 6.0 3.4	 461 62 69 54 47 92
10 11 12 13 14 15	 A Functional Role for Antibodies in Tuberculosis. Cell, 2016, 167, 433-443.e14. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics. Scientific Reports, 2016, 6, 23589. Sweet but dangerous â6" the role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus, 2016, 25, 934-942. Recent Advances in Clinical Glycoproteomics of Immunoglobulins (Igs). Molecular and Cellular Proteomics, 2016, 15, 2217-2228. Enhanced binding of antibodies generated during chronic HIV infection to mucus component MUC16. Mucosal Immunology, 2016, 9, 1549-1558. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses. Journal of Virology, 2016, 90, 266-278. Multiplexed Fc array for evaluation of antigen-specific antibody effector profiles. Journal of Immunological Methods, 2017, 443, 33-44. 	28.9 3.3 1.6 3.8 6.0 3.4 1.4	 461 62 69 54 47 92 158
10 11 12 13 14 15 16 17	A Functional Role for Antibodies in Tuberculosis. Cell, 2016, 167, 433-443.e14. Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics. Scientific Reports, 2016, 6, 23589. Sweet but dangerous &C ^e the role of immunoglobulin C glycosylation in autoimmunity and inflammation. Lupus, 2016, 25, 934-942. Recent Advances in Clinical Glycoproteomics of Immunoglobulins (Igs). Molecular and Cellular Proteomics, 2016, 15, 2217-2228. Enhanced binding of antibodies generated during chronic HIV infection to mucus component MUC16. Mucosal Immunology, 2016, 9, 1549-1558. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses. Journal of Virology, 2016, 90, 266-278. Multiplexed Fc array for evaluation of antigen-specific antibody effector profiles. Journal of Immunological Methods, 2017, 443, 33-44. Low doses of IgG from atopic individuals can modulate <i>in vitro </i> in Virol /i>IFNÅ ³ production by human intra-thymic TCD4 and TCD8 cells: An IVig comparative approach. Human Vaccines and Immunotherapeutics, 2017, 13, 1563-1572.	28.9 3.3 1.6 3.8 6.0 3.4 1.4 3.3	 461 62 69 54 47 92 158 19

CITATION REPORT

#	Article	IF	CITATIONS
19	Polyclonal Immunoglobulin G <i>N</i> -Glycosylation in the Pathogenesis of Plasma Cell Disorders. Journal of Proteome Research, 2017, 16, 748-762.	3.7	30
20	The N-Glycosylation of Mouse Immunoglobulin G (IgG)-Fragment Crystallizable Differs Between IgG Subclasses and Strains. Frontiers in Immunology, 2017, 8, 608.	4.8	58
21	Highâ€resolution definition of humoral immune response correlates of effective immunity against HIV. Molecular Systems Biology, 2018, 14, e7881.	7.2	37
22	Profiling and genetic control of the murine immunoglobulin G glycome. Nature Chemical Biology, 2018, 14, 516-524.	8.0	59
23	Enrichment of high affinity subclasses and glycoforms from serumâ€derived IgG using FcγRs as affinity ligands. Biotechnology and Bioengineering, 2018, 115, 1265-1278.	3.3	9
24	Capillary Electrophoresis Separations of Glycans. Chemical Reviews, 2018, 118, 7867-7885.	47.7	122
25	Building a PGC-LC-MS N-glycan retention library and elution mapping resource. Glycoconjugate Journal, 2018, 35, 15-29.	2.7	93
26	The sweet spot for biologics: recent advances in characterization of biotherapeutic glycoproteins. Expert Review of Proteomics, 2018, 15, 13-29.	3.0	51
27	MIgGGly (mouse IgG glycosylation analysis) - a high-throughput method for studying Fc-linked IgG N-glycosylation in mice with nanoUPLC-ESI-MS. Scientific Reports, 2018, 8, 13688.	3.3	19
28	Route of immunization defines multiple mechanisms of vaccine-mediated protection against SIV. Nature Medicine, 2018, 24, 1590-1598.	30.7	129
29	Immunoglobulin G glycosylation in aging and diseases. Cellular Immunology, 2018, 333, 65-79.	3.0	301
30	Antigen-specific antibody Fc glycosylation enhances humoral immunity via the recruitment of complement. Science Immunology, 2018, 3, .	11.9	78
31	A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host and Microbe, 2018, 24, 221-233.e5.	11.0	182
32	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	28.9	173
33	Neutralizing antibodies against Mayaro virus require Fc effector functions for protective activity. Journal of Experimental Medicine, 2019, 216, 2282-2301.	8.5	51
34	Fc Characteristics Mediate Selective Placental Transfer of IgG in HIV-Infected Women. Cell, 2019, 178, 190-201.e11.	28.9	93
35	Fc Mediated Activity of Antibodies. Current Topics in Microbiology and Immunology, 2019, , .	1.1	4
36	IgG from Non-atopic Individuals Induces In Vitro IFN-γ and IL-10 Production by Human Intra-thymic γÎT Cells: A Comparison with Atopic IgG and IVIg. Archivum Immunologiae Et Therapiae Experimentalis, 2019, 67. 263-270.	2.3	13

CITATION REPORT

#	Article	IF	CITATIONS
37	From Rhesus macaque to human: structural evolutionary pathways for immunoglobulin G subclasses. MAbs, 2019, 11, 709-724.	5.2	14
38	IgG Fc Glycosylation in Human Immunity. Current Topics in Microbiology and Immunology, 2019, 423, 63-75.	1.1	38
39	Systems vaccinology and big data in the vaccine development chain. Immunology, 2019, 156, 33-46.	4.4	57
40	A novel glycosidase plate-based assay for the quantification of galactosylation and sialylation on human IgG. Glycoconjugate Journal, 2020, 37, 691-702.	2.7	4
41	Mining for humoral correlates of HIV control and latent reservoir size. PLoS Pathogens, 2020, 16, e1008868.	4.7	19
42	Tracking the Trajectory of Functional Humoral Immune Responses Following Acute HIV Infection. Frontiers in Immunology, 2020, 11, 1744.	4.8	4
43	Mapping functional humoral correlates of protection against malaria challenge following RTS,S/AS01 vaccination. Science Translational Medicine, 2020, 12, .	12.4	100
44	HIV Antibody Fc N-Linked Glycosylation Is Associated with Viral Rebound. Cell Reports, 2020, 33, 108502.	6.4	19
45	Antibody Fc Glycosylation Discriminates Between Latent and Active Tuberculosis. Journal of Infectious Diseases, 2020, 222, 2093-2102.	4.0	47
46	Identification of glycan branching patterns using multistage mass spectrometry with spectra tree analysis. Journal of Proteomics, 2020, 217, 103649.	2.4	5
47	Systems Glycobiology: Immunoglobulin G Glycans as Biomarkers and Functional Effectors in Aging and Diseases. , 2021, , 439-478.		10
48	OUP accepted manuscript. journal of applied laboratory medicine, The, 2022, 7, 99-113.	1.3	1
49	Antibody mediated activation of natural killer cells in malaria exposed pregnant women. Scientific Reports, 2021, 11, 4130.	3.3	11
50	Humoral signatures of protective and pathological SARS-CoV-2 infection in children. Nature Medicine, 2021, 27, 454-462.	30.7	137
51	Viral Rebound Kinetics Correlate with Distinct HIV Antibody Features. MBio, 2021, 12, .	4.1	10
52	Glycosylation Biomarkers Associated with Age-Related Diseases and Current Methods for Glycan Analysis. International Journal of Molecular Sciences, 2021, 22, 5788.	4.1	24
53	Reduced blood-stage malaria growth and immune correlates in humans following RH5 vaccination. Med, 2021, 2, 701-719.e19.	4.4	73
54	The host glycomic response to pathogens. Current Opinion in Structural Biology, 2021, 68, 149-156.	5.7	11

#	Article	IF	CITATIONS
56	Tensorâ€ s tructured decomposition improves systems serology analysis. Molecular Systems Biology, 2021, 17, e10243.	7.2	12
57	Immunoaffinity Capillary Electrophoresis in the Era of Proteoforms, Liquid Biopsy and Preventive Medicine: A Potential Impact in the Diagnosis and Monitoring of Disease Progression. Biomolecules, 2021, 11, 1443.	4.0	12
58	Desalting paper spray mass spectrometry (DPS-MS) for rapid detection of glycans and glycoconjugates. International Journal of Mass Spectrometry, 2021, 469, 116688.	1.5	9
59	Distinct Immunoglobulin Fc Glycosylation Patterns Are Associated with Disease Nonprogression and Broadly Neutralizing Antibody Responses in Children with HIV Infection. MSphere, 2020, 5, .	2.9	7
60	Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination. PLoS Pathogens, 2016, 12, e1005456.	4.7	124
61	Fractionation of Fab glycosylated immunoglobulin G with concanavalin A chromatography unveils new structural properties of the molecule. Oncotarget, 2016, 7, 31166-31176.	1.8	5
62	Characterization of Pharmaceutical IgG and Biosimilars Using Miniaturized Platforms and LC-MS/MS. Current Pharmaceutical Biotechnology, 2016, 17, 788-801.	1.6	31
63	Capillary (Gel) Electrophoresis-Based Methods for Immunoglobulin (G) Glycosylation Analysis. Experientia Supplementum (2012), 2021, 112, 137-172.	0.9	8
64	Biophysical Evaluation of Rhesus Macaque Fc Gamma Receptors Reveals Similar IgG Fc Glycoform Preferences to Human Receptors. Frontiers in Immunology, 2021, 12, 754710.	4.8	8
69	Targeting BMI-1 in B cells restores effective humoral immune responses and controls chronic viral infection. Nature Immunology, 2022, 23, 86-98.	14.5	17
70	Delayed fractional dosing with RTS,S/AS01 improves humoral immunity to malaria via a balance of polyfunctional NANP6- and Pf16-specific antibodies. Med, 2021, 2, 1269-1286.e9.	4.4	17
71	Antibody glycosylation directs innate and adaptive immune collaboration. Current Opinion in Immunology, 2022, 74, 125-132.	5.5	3
72	IgG3 donor–specific antibodies with a proinflammatory glycosylation profile may be associated with the risk of antibody-mediated rejection after kidney transplantation. American Journal of Transplantation, 2022, 22, 865-875.	4.7	6
73	A Role for Nucleocapsid-Specific Antibody Function in COVID-19 Convalescent Plasma Therapy. SSRN Electronic Journal, 0, , .	0.4	0
78	HIV-Associated Alterations of the Biophysical Features of Maternal Antibodies Correlate With Their Reduced Transfer Across the Placenta. Journal of Infectious Diseases, 2022, 226, 1441-1450.	4.0	9
79	IgG from Adult Atopic Dermatitis (AD) Patients Induces Nonatopic Neonatal Thymic Gamma–Delta T Cells (γÎ⊤) to Acquire IL-22/IL-17 Secretion Profile with Skin-Homing Properties and Epigenetic Implications Mediated by miRNA. International Journal of Molecular Sciences, 2022, 23, 6872.	4.1	7
80	Heterogeneity in lgG D16 signaling in infectious disease outcomes*. Immunological Reviews, 2022, 309, 64-74.	6.0	9
81	A clade C HIV-1 vaccine protects against heterologous SHIV infection by modulating IgG glycosylation and T helper response in macaques. Science Immunology, 2022, 7, .	11.9	7

CITATION REPORT

#	Article	IF	CITATIONS
82	Acute Lyme disease IgG N-linked glycans contrast the canonical inflammatory signature. Frontiers in Immunology, 0, 13, .	4.8	4
84	Alteration of rhesus macaque serum N-glycome during infection with the human parasitic filarial nematode Brugia malayi. Scientific Reports, 2022, 12, .	3.3	0
85	Self-assembling peptide nanofiber HIV vaccine elicits robust vaccine-induced antibody functions and modulates Fc glycosylation. Science Advances, 2022, 8, .	10.3	6
86	BNT162b2-induced neutralizing and non-neutralizing antibody functions against SARS-CoV-2 diminish with age. Cell Reports, 2022, 41, 111544.	6.4	17
87	Nucleocapsid-specific antibody function is associated with therapeutic benefits from COVID-19 convalescent plasma therapy. Cell Reports Medicine, 2022, 3, 100811.	6.5	11
88	Synthetic nanobodies as tools to distinguish IgG Fc glycoforms. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
89	Antibody effector functions are associated with protection from respiratory syncytial virus. Cell, 2022, 185, 4873-4886.e10.	28.9	17
90	Explore how immobilization strategies affected immunosensor performance by comparing four methods for antibody immobilization on electrode surfaces. Scientific Reports, 2022, 12, .	3.3	5
91	Robust induction of functional humoral response by a plant-derived Coronavirus-like particle vaccine candidate for COVID-19. Npj Vaccines, 2023, 8, .	6.0	2
92	Immune profiling of SARS-CoV-2 infection during pregnancy reveals NK cell and γδT cell perturbations. JCI Insight, 2023, 8, .	5.0	4
94	Enhancing the therapeutic activity of hyperimmune IgG against chikungunya virus using Fcl ³ RIIIa affinity chromatography. Frontiers in Immunology, 0, 14, .	4.8	1
95	Diverging Maternal and Cord Antibody Functions From SARS-CoV-2 Infection and Vaccination in Pregnancy, Journal of Infectious Diseases, 2024, 229, 462-472,	4.0	2