Probabilistic reanalysis of twentieth-century sea-level

Nature 517, 481-484 DOI: 10.1038/nature14093

Citation Report

#	Article	IF	CITATIONS
1	Meteorological Modeling on High-Ozone Days in Perth, Western Australia. Journal of Applied Meteorology and Climatology, 1995, 34, 1643-1652.	1.7	9
2	Longâ€ŧerm variations in global sea level extremes. Journal of Geophysical Research: Oceans, 2015, 120, 8115-8134.	1.0	94
3	Considerations for estimating the 20th century trend in global mean sea level. Geophysical Research Letters, 2015, 42, 4102-4109.	1.5	37
4	Modeling sea-level change using errors-in-variables integrated Gaussian processes. Annals of Applied Statistics, 2015, 9, .	0.5	52
5	Nonlinear subsidence at Fremantle, a longâ€recording tide gauge in the Southern Hemisphere. Journal of Geophysical Research: Oceans, 2015, 120, 7004-7014.	1.0	24
6	Paleo Constraints on Future Sea-Level Rise. Current Climate Change Reports, 2015, 1, 205-215.	2.8	22
7	The Balancing of the Sea-Level Budget. Current Climate Change Reports, 2015, 1, 185-191.	2.8	23
8	An increase in the rate of global mean sea level rise since 2010. Geophysical Research Letters, 2015, 42, 3998-4006.	1.5	77
9	A heuristic evaluation of longâ€ŧerm global sea level acceleration. Geophysical Research Letters, 2015, 42, 4166-4172.	1.5	11
10	Environmental Security is Homeland Security: Climate Disruption as the Ultimate Disaster Risk Multiplier. Risk, Hazards and Crisis in Public Policy, 2015, 6, 183-222.	1.4	14
11	Sea level trend and variability around Peninsular Malaysia. Ocean Science, 2015, 11, 617-628.	1.3	39
12	A three-dimensional surface velocity field for the Mississippi Delta: Implications for coastal restoration and flood potential. Geology, 2015, 43, 519-522.	2.0	51
13	A review of trend models applied to sea level data with reference to the "accelerationâ€deceleration debateâ€, Journal of Geophysical Research: Oceans, 2015, 120, 3873-3895.	1.0	61
14	Benthic diatoms in a Mediterranean delta: ecological indicators and a conductivity transfer function for paleoenvironmental studies. Journal of Paleolimnology, 2015, 54, 171-188.	0.8	17
15	The dynamic effects of sea level rise on lowâ€gradient coastal landscapes: A review. Earth's Future, 2015, 3, 159-181.	2.4	236
16	Reconciling past changes in Earth's rotation with 20th century global sea-level rise: Resolving Munk's enigma. Science Advances, 2015, 1, e1500679.	4.7	45
17	Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature, 2015, 528, 396-400.	13.7	210
18	Decadal Sea Level Variations in the Indian Ocean Investigated with HYCOM: Roles of Climate Modes, Ocean Internal Variability, and Stochastic Wind Forcing*. Journal of Climate, 2015, 28, 9143-9165.	1.2	54

#	Article	IF	CITATIONS
19	Sea-level responses to erosion and deposition of sediment in the Indus River basin and the Arabian Sea. Earth and Planetary Science Letters, 2015, 416, 12-20.	1.8	34
20	How climate influences sea-floor topography. Science, 2015, 347, 1204-1205.	6.0	5
21	Past and future sea-level rise along the coast of North Carolina, USA. Climatic Change, 2015, 132, 693-707.	1.7	88
22	Some Pitfalls of the Semiempirical Method Used to Project Sea Level. Journal of Climate, 2015, 28, 3779-3785.	1.2	4
23	Unabated global mean sea-level rise over the satellite altimeter era. Nature Climate Change, 2015, 5, 565-568.	8.1	227
24	Genetic divergence and diversity in the Mona and Virgin Islands Boas, Chilabothrus monensis (Epicrates monensis) (Serpentes: Boidae), West Indian snakes of special conservation concern. Molecular Phylogenetics and Evolution, 2015, 88, 144-153.	1.2	9
25	Geographic Variability of Sea-Level Change. Current Climate Change Reports, 2015, 1, 192-204.	2.8	104
26	Joint projections of US East Coast sea level and storm surge. Nature Climate Change, 2015, 5, 1114-1120.	8.1	97
27	Relative sea-level change in Connecticut (USA) during the last 2200 yrs. Earth and Planetary Science Letters, 2015, 428, 217-229.	1.8	70
28	New York City Panel on Climate Change 2015 ReportChapter 1: Climate Observations and Projections. Annals of the New York Academy of Sciences, 2015, 1336, 18-35.	1.8	48
29	New York City Panel on Climate Change 2015 Report Chapter 2: Sea Level Rise and Coastal Storms. Annals of the New York Academy of Sciences, 2015, 1336, 36-44.	1.8	91
30	Recent Progress in Understanding and Projecting Regional and Global Mean Sea Level Change. Current Climate Change Reports, 2015, 1, 224-246.	2.8	42
31	The multi-millennial Antarctic commitment to future sea-level rise. Nature, 2015, 526, 421-425.	13.7	322
32	Vertical ground motion and historical sea-level records in Dakar (Senegal). Environmental Research Letters, 2015, 10, 084016.	2.2	13
33	Detecting anthropogenic footprints in sea level rise. Nature Communications, 2015, 6, 7849.	5.8	61
34	Climate Change and the Delta. San Francisco Estuary and Watershed Science, 2016, 14, .	0.2	24
35	Rising Sea Levels. , 2016, , 241-252.		0
36	ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change. Geoscientific Model Development, 2016, 9, 1087-1109.	1.3	43

#	Article	IF	CITATIONS
37	Land Ice. , 2016, , 63-77.		0
38	How to improve estimates of real-time acceleration in the mean sea level signal. Journal of Coastal Research, 2016, 75, 780-784.	0.1	4
39	Statistical Analysis of the Acceleration of Baltic Mean Sea-Level Rise, 1900–2012. Frontiers in Marine Science, 0, 3, .	1.2	15
40	Benthic foraminifera as indicators of habitat in a Mediterranean delta: implications for ecological and palaeoenvironmental studies. Estuarine, Coastal and Shelf Science, 2016, 180, 97-113.	0.9	21
41	Using <i>inÂsitu</i> management to conserve biodiversity under climate change. Journal of Applied Ecology, 2016, 53, 885-894.	1.9	71
42	Apparent dynamic stability of the southeast African coast despite sea level rise. Earth Surface Processes and Landforms, 2016, 41, 1494-1503.	1.2	10
43	Vertical land motion as a key to understanding sea level change and variability. Reviews of Geophysics, 2016, 54, 64-92.	9.0	252
44	A multi-dimensional integrated approach to assess flood risks on a coastal city, induced by sea-level rise and storm tides. Environmental Research Letters, 2016, 11, 014001.	2.2	18
45	Anthropogenic and geologic influences on subsidence in the vicinity of New Orleans, Louisiana. Journal of Geophysical Research: Solid Earth, 2016, 121, 3867-3887.	1.4	81
46	Is the detection of accelerated sea level rise imminent?. Scientific Reports, 2016, 6, 31245.	1.6	50
47	The Copernicus Marine Environment Monitoring Service Ocean State Report. Journal of Operational Oceanography, 2016, 9, s235-s320.	0.6	86
48	The actual measurements at the tide gauges do not support strongly accelerating twentieth-century sea-level rise reconstructions. Nonlinear Engineering, 2016, 5, .	1.4	4
49	Eustatic and Relative Sea Level Changes. Current Climate Change Reports, 2016, 2, 221-231.	2.8	122
50	CaseStudy: The Carbon Cycle. , 0, , 539-584.		0
51	Human impacts and changes in the coastal waters of south China. Science of the Total Environment, 2016, 562, 108-114.	3.9	21
52	Climate Intervention: Possible Impacts on Global Security and Resilience. Engineering, 2016, 2, 50-51.	3.2	20
53	Anthropogenic forcing dominates global mean sea-level rise since 1970. Nature Climate Change, 2016, 6, 701-705.	8.1	105
54	Introduction to the Political Economy of Climate Change Adaptation. , 2016, , 1-32.		1

#	Article	IF	CITATIONS
55	Assessing the impact of vertical land motion on twentieth century global mean sea level estimates. Journal of Geophysical Research: Oceans, 2016, 121, 4980-4993.	1.0	28
56	Past, Present and Future Perspectives of Sediment Compaction as a Driver of Relative Sea Level and Coastal Change. Current Climate Change Reports, 2016, 2, 75-85.	2.8	18
57	Are long tide gauge records in the wrong place to measure global mean sea level rise?. Geophysical Research Letters, 2016, 43, 10,403.	1.5	40
58	Stochastic secular trends in sea level rise. Journal of Geophysical Research: Oceans, 2016, 121, 2183-2202.	1.0	7
59	Sedimentary architecture of the Bohai Sea China over the last 1 Ma and implications for sea-level changes. Earth and Planetary Science Letters, 2016, 451, 10-21.	1.8	40
60	Testing for supplyâ€limited and kineticâ€limited chemical erosion in field measurements of regolith production and chemical depletion. Geochemistry, Geophysics, Geosystems, 2016, 17, 2270-2285.	1.0	44
61	Closing the sea level budget on a regional scale: Trends and variability on the Northwestern European continental shelf. Geophysical Research Letters, 2016, 43, 10864-10872.	1.5	61
62	Acceleration in U.S. Mean Sea Level? A New Insight using Improved Tools. Journal of Coastal Research, 2016, 322, 1247-1261.	0.1	27
63	Identifying future sea turtle conservation areas under climate change. Biological Conservation, 2016, 204, 189-196.	1.9	38
64	Projecting nuisance flooding in a warming climate using generalized linear models and Gaussian processes. Journal of Geophysical Research: Oceans, 2016, 121, 8008-8020.	1.0	29
65	Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 ŰC global warming could be dangerous. Atmospheric Chemistry and Physics, 2016, 16, 3761-3812.	1.9	421
66	Delivering 21st century Antarctic and Southern Ocean science. Antarctic Science, 2016, 28, 407-423.	0.5	51
67	A new perspective on global mean sea level (GMSL) acceleration. Geophysical Research Letters, 2016, 43, 6478-6484.	1.5	11
68	Global sea-level rise: weighing country responsibility and risk. Climatic Change, 2016, 137, 333-345.	1.7	16
69	Low-Regrets Incrementalism. Journal of Planning Education and Research, 2016, 36, 319-332.	1.5	58
70	Hydrographic Vertical Separation Surfaces (HyVSEPs) for the Tidal Waters of Canada. Marine Geodesy, 2016, 39, 195-222.	0.9	12
71	Salinity and hydrological barriers have little influence on genetic structure of the mosquitofish in a coastal landscape shaped by climate change. Hydrobiologia, 2016, 777, 209-223.	1.0	5
72	Spectral analysis of sea level during the altimetry era, and evidence for GIA and glacial melting fingerprints. Global and Planetary Change, 2016, 143, 34-49.	1.6	16

#	Article	IF	CITATIONS
73	Accretion rates in coastal wetlands of the southeastern Gulf of California and their relationship with sea-level rise. Holocene, 2016, 26, 1126-1137.	0.9	30
74	The impact of groundwater depletion on spatial variations in sea level change during the past century. Geophysical Research Letters, 2016, 43, 3351-3359.	1.5	21
75	Revisiting the contemporary sea-level budget on global and regional scales. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1504-1509.	3.3	181
76	Tidal saline wetland regeneration of sentinel vegetation types in the Northern Gulf of Mexico: An overview. Estuarine, Coastal and Shelf Science, 2016, 174, A1-A10.	0.9	16
77	Temperature-driven global sea-level variability in the Common Era. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1434-41.	3.3	334
78	Future sea level rise constrained by observations and long-term commitment. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2597-2602.	3.3	174
79	Evolution of coastal landforms during the Holocene Epoch along the west and southeast coasts of Sri Lanka. Interdisciplinary Environmental Review, 2016, 17, 60.	0.1	9
80	Review: Short-term sea-level changes in a greenhouse world — A view from the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441, 393-411.	1.0	139
81	Internal Variability Versus Anthropogenic Forcing on Sea Level and Its Components. Surveys in Geophysics, 2017, 38, 329-348.	2.1	35
82	The new eddy-permitting ORAP5 ocean reanalysis: description, evaluation and uncertainties in climate signals. Climate Dynamics, 2017, 49, 791-811.	1.7	112
83	The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sensing of Environment, 2017, 190, 260-273.	4.6	600
84	On the Robustness of Bayesian Fingerprinting Estimates of Global Sea Level Change. Journal of Climate, 2017, 30, 3025-3038.	1.2	14
85	Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges. Surveys in Geophysics, 2017, 38, 33-57.	2.1	108
86	Shoreline changes in reef islands of the Central Pacific: Takapoto Atoll, Northern Tuamotu, French Polynesia. Geomorphology, 2017, 282, 96-118.	1.1	65
87	Sea-level rise impacts on the tides of the European Shelf. Continental Shelf Research, 2017, 137, 56-71.	0.9	105
88	Sea-level change in the Northern Mediterranean Sea from long-period tide gauge time series. Earth-Science Reviews, 2017, 167, 72-87.	4.0	42
89	Comparison of full and empirical <scp>B</scp> ayes approaches for inferring seaâ€level changes from tideâ€gauge data. Journal of Geophysical Research: Oceans, 2017, 122, 2243-2258.	1.0	19
90	Sea Level Variability around Japan during the Twentieth Century Simulated by a Regional Ocean Model. Journal of Climate, 2017, 30, 5585-5595.	1.2	16

#	Article	IF	CITATIONS
91	Changes in the US hurricane disaster landscape: the relationship between risk and exposure. Natural Hazards, 2017, 88, 659-682.	1.6	34
92	Coastline Changes of the Baltic Sea from South to East. Coastal Research Library, 2017, , .	0.2	13
93	Internal Variability Versus Anthropogenic Forcing on Sea Level and Its Components. Space Sciences Series of ISSI, 2017, , 337-356.	0.0	4
94	Causes of accelerating sea level on the East Coast of North America. Geophysical Research Letters, 2017, 44, 5133-5141.	1.5	33
95	Uncertainty of the 20th century sea-level rise due to vertical land motion errors. Earth and Planetary Science Letters, 2017, 473, 24-32.	1.8	92
96	Reassessment of 20th century global mean sea level rise. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5946-5951.	3.3	261
97	Rapid escalation of coastal flood exposure in US municipalities from sea level rise. Climatic Change, 2017, 142, 477-489.	1.7	51
98	Regional influences on reconstructed global mean sea level. Geophysical Research Letters, 2017, 44, 3274-3282.	1.5	3
99	Relative sea-level trends in New York City during the past 1500 years. Holocene, 2017, 27, 1169-1186.	0.9	36
100	Shortening the recurrence periods of extreme water levels under future sea-level rise. Stochastic Environmental Research and Risk Assessment, 2017, 31, 2573-2584.	1.9	20
101	Mangroves as a protection from storm surges in a changing climate. Ambio, 2017, 46, 478-491.	2.8	66
102	An <i>Earth's Future</i> Special Collection: Impacts of the coastal dynamics of sea level rise on lowâ€gradient coastal landscapes. Earth's Future, 2017, 5, 2-9.	2.4	24
103	The Twentieth-Century Sea Level Budget: Recent Progress and Challenges. Surveys in Geophysics, 2017, 38, 295-307.	2.1	13
104	International Space Science Institute (ISSI) Workshop on Integrative Study of the Mean Sea Level and its Components. Surveys in Geophysics, 2017, 38, 1-5.	2.1	7
105	Regional Sea Level Variability and Trends, 1960–2007: A Comparison of Sea Level Reconstructions and Ocean Syntheses. Journal of Geophysical Research: Oceans, 2017, 122, 9068-9091.	1.0	12
106	Evaluating the cascading impacts of sea level rise and coastal flooding on emergency response spatial accessibility in Lower Manhattan, New York City. Journal of Hydrology, 2017, 555, 648-658.	2.3	51
107	Drivers of shoreline change in atoll reef islands of the Tuamotu Archipelago, French Polynesia. Global and Planetary Change, 2017, 158, 134-154.	1.6	49
109	Evaluating Model Simulations of Twentieth-Century Sea-Level Rise. Part II: Regional Sea-Level Changes. Journal of Climate, 2017, 30, 8565-8593.	1.2	57

#	Article	IF	CITATIONS
110	Historical Sea Level in the South Pacific from Rescued Archives, Geodetic Measurements, and Satellite Altimetry. Pure and Applied Geophysics, 2017, 174, 3813-3823.	0.8	9
111	Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion. Scientific Reports, 2017, 7, 11197.	1.6	64
112	Enhanced Decadal Warming of the Southeast Indian Ocean During the Recent Global Surface Warming Slowdown. Geophysical Research Letters, 2017, 44, 9876-9884.	1.5	79
113	Proxy records of Holocene storm events in coastal barrier systems: Storm-wave induced markers. Quaternary Science Reviews, 2017, 174, 80-119.	1.4	65
114	Evaluating Model Simulations of Twentieth-Century Sea Level Rise. Part I: Global Mean Sea Level Change. Journal of Climate, 2017, 30, 8539-8563.	1.2	64
115	Localized rapid warming of West Antarctic subsurface waters by remote winds. Nature Climate Change, 2017, 7, 595-603.	8.1	91
116	Incorporating sediment compaction into a gravitationally self-consistent model for ice age sea-level change. Geophysical Journal International, 2017, 211, 663-672.	1.0	16
117	Human Impacts. , 2017, , 26-67.		0
119	Ocean Bottom Deformation Due To Presentâ€Day Mass Redistribution and Its Impact on Sea Level Observations. Geophysical Research Letters, 2017, 44, 12,306.	1.5	43
120	Mapping the coastal risk for the next century, including sea level rise and changes in the coastline: application to Charlestown RI, USA. Natural Hazards, 2017, 88, 389-414.	1.6	25
121	Satellite Altimetry-Based Sea Level at Global and Regional Scales. Surveys in Geophysics, 2017, 38, 7-31.	2.1	115
122	Clacial Isostatic Adjustment and Contemporary Sea Level Rise: An Overview. Surveys in Geophysics, 2017, 38, 153-185.	2.1	67
123	Investigating the biochar effects on Câ€mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (<i>δ</i> ¹³ C) approach. GCB Bioenergy, 2017, 9, 1085-1099.	2.5	80
124	Spaceborne Synthetic Aperture Radar Survey of Subsidence in Hampton Roads, Virginia (USA). Scientific Reports, 2017, 7, 14752.	1.6	59
125	Effective inundation of continental United States communities with 21st century sea level rise. Elementa, 2017, 5, .	1.1	22
126	City-Strata of the Anthropocene. Annales Histoire Sciences Sociales (English Edition), 2017, 72, 225-245.	0.1	2
127	Observed Sea-Level Changes along the Norwegian Coast. Journal of Marine Science and Engineering, 2017, 5, 29.	1.2	13
128	Synthesizing long-term sea level rise projections – the MAGICC sea level model v2.0. Geoscientific Model Development, 2017, 10, 2495-2524.	1.3	70

#	Article	IF	CITATIONS
129	Global mean sea-level rise in a world agreed upon in Paris. Environmental Research Letters, 2017, 12, 124010.	2.2	27
131	Living in the Landscape. , 2017, , 405-453.		0
132	Future probabilities of coastal floods in Finland. Continental Shelf Research, 2018, 157, 32-42.	0.9	15
133	Bias in Estimates of Global Mean Sea Level Change Inferred from Satellite Altimetry. Journal of Climate, 2018, 31, 5263-5271.	1.2	15
134	Interdisciplinary knowledge exchange across scales in a globally changing marine environment. Global Change Biology, 2018, 24, 3039-3054.	4.2	18
135	Urban Climate Science. , 0, , 27-60.		14
136	Restored saltmarshes lack the topographic diversity found in natural habitat. Ecological Engineering, 2018, 115, 58-66.	1.6	48
137	Relative sea level in the Western Mediterranean basin: A regional test of the ICE-7G_NA (VM7) model and a constraint on late Holocene Antarctic deglaciation. Quaternary Science Reviews, 2018, 183, 76-87.	1.4	76
138	Contributions of a Strengthened Early Holocene Monsoon and Sediment Loading to Presentâ€Day Subsidence of the Gangesâ€Brahmaputra Delta. Geophysical Research Letters, 2018, 45, 1433-1442.	1.5	24
139	Analysis of Variance of Flood Events on the U.S. East Coast: The Impact of Sea-Level Rise on Flood Event Severity and Frequency. Journal of Coastal Research, 2018, 341, 50-57.	0.1	2
140	GPS Vertical Land Motion Corrections to Sea‣evel Rise Estimates in the Pacific Northwest. Journal of Geophysical Research: Oceans, 2018, 123, 1196-1212.	1.0	36
141	Reconstruction of Local Sea Levels at South West Pacific Islands—A Multiple Linear Regression Approach (1988–2014). Journal of Geophysical Research: Oceans, 2018, 123, 1502-1518.	1.0	9
142	The role of sediment compaction and groundwater withdrawal in local sea-level rise, Sandy Hook, New Jersey, USA. Quaternary Science Reviews, 2018, 181, 30-42.	1.4	16
143	All sea level is local. Bulletin of the Atomic Scientists, 2018, 74, 142-147.	0.2	2
144	Mapping Sea Level Rise Behavior in an Estuarine Delta System: A Case Study along the Shanghai Coast. Engineering, 2018, 4, 156-163.	3.2	20
145	Assessment of sea level variability derived by EOF reconstruction. Geophysical Journal International, 2018, 214, 79-87.	1.0	7
146	Observationâ€Driven Estimation of the Spatial Variability of 20 th Century Sea Level Rise. Journal of Geophysical Research: Oceans, 2018, 123, 2129-2140.	1.0	8
147	Laboratory investigation of the Bruun Rule and beach response to sea level rise. Coastal Engineering, 2018, 136, 183-202.	1.7	53

#	Article	IF	CITATIONS
148	Internal climate variability and projected future regional steric and dynamic sea level rise. Nature Communications, 2018, 9, 1068.	5.8	40
149	Carbon burial and storage in tropical salt marshes under the influence of sea level rise. Science of the Total Environment, 2018, 630, 1628-1640.	3.9	46
150	An improved empirical dynamic control system model of global meanÂsea level rise and surface temperature change. Theoretical and Applied Climatology, 2018, 132, 375-385.	1.3	5
151	Sea-Level Rise Tipping Point of Delta Survival. Journal of Coastal Research, 2018, 342, 470-474.	0.1	20
152	Quantifying the Sensitivity of Sea Level Change in Coastal Localities to the Geometry of Polar Ice Mass Flux. Journal of Climate, 2018, 31, 3701-3709.	1.2	23
153	Mean relative sea level rise along the coasts of the China Seas from mid-20th to 21st centuries. Continental Shelf Research, 2018, 152, 27-34.	0.9	19
154	A Consistent Sea-Level Reconstruction and Its Budget on Basin and Global Scales over 1958–2014. Journal of Climate, 2018, 31, 1267-1280.	1.2	54
155	Spatial-temporal dynamics of soil chloride distribution in a coastal saline plain: implication for ocean and climate influences. Journal of Soils and Sediments, 2018, 18, 586-598.	1.5	2
156	Sea-Level Rise and Species Conservation in Bangladesh's Sundarbans Region. Journal of Management and Sustainability, 2018, 8, 1.	0.2	4
157	Rising Oceans Guaranteed: Arctic Land Ice Loss and Sea Level Rise. Current Climate Change Reports, 2018, 4, 211-222.	2.8	29
158	The Severe 2013–14 Winter Storms in the Historical Evolution of Cantabrian (Northern Spain) Beach-Dune Systems. Geosciences (Switzerland), 2018, 8, 459.	1.0	10
159	Uncertainty in Sea Level Rise Projections Due to the Dependence Between Contributors. Earth's Future, 2018, 6, 1275-1291.	2.4	33
160	Failure to protect beaches under slowly rising sea level. Climatic Change, 2018, 151, 427-443.	1.7	10
161	Twentieth-century contribution to sea-level rise from uncharted glaciers. Nature, 2018, 563, 551-554.	13.7	38
164	Sea-level change in the Dutch Wadden Sea. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2018, 97, 79-127.	0.6	19
166	Origin of spatial variation in US East Coast sea-level trends during 1900–2017. Nature, 2018, 564, 400-404.	13.7	42
167	Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering. Earth's Future, 2018, 6, 230-251.	2.4	49
168	Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial. Nature Communications, 2018, 9, 4235.	5.8	94

		CITATION R	EPORT	
#	Article		IF	CITATIONS
170	An Economist's Guide to Climate Change Science. Journal of Economic Perspective	s, 2018, 32, 3-32.	2.7	80
171	Sea level rise impacts on rural coastal social-ecological systems and the implications fo making. Environmental Science and Policy, 2018, 90, 122-134.	r decision	2.4	52
172	Copernicus Marine Service Ocean State Report. Journal of Operational Oceanography,	2018, 11, S1-S142.	0.6	96
173	Relative sea-level change in Newfoundland, Canada during the past â^1⁄43000 years. Qu Reviews, 2018, 201, 89-110.	laternary Science	1.4	54
175	Sea Level Rise and Future Earth. , 0, , 144-158.			1
176	Capturing 50ÂYears of Postseismic Mantle Flow at Nankai Subduction Zone. Journal of Research: Solid Earth, 2018, 123, 10,091.	Geophysical	1.4	14
177	Where is global waste management heading? An analysis of solid waste sector commit nationally-determined contributions. Waste Management, 2018, 80, 137-143.	ments from	3.7	25
178	Big Data Approaches for coastal flood risk assessment and emergency response. Wiley Interdisciplinary Reviews: Climate Change, 2018, 9, e543.		3.6	23
180	Modeling and Predicting the Shortâ€Term Evolution of the Geomagnetic Field. Journal Research: Solid Earth, 2018, 123, 4539-4560.	of Geophysical	1.4	33
181	Multitechnique Assessment of the Interannual to Multidecadal Variability in Steric Sea Comparative Analysis of Climate Mode Fingerprints. Journal of Climate, 2018, 31, 7583	Levels: A 3-7597.	1.2	6
182	Signal detection in global mean temperatures after "Paris― an uncertainty and ser Climate of the Past, 2018, 14, 139-155.	ısitivity analysis.	1.3	7
183	Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Geoscience, 2018, 11, 474-485.	Nature	5.4	166
184	Problems of Formation Area of the High-Capacity Accumulation of Electricity. , 2018, ,			0
185	Glacial isostatic adjustment modelling: historical perspectives, recent advances, and fu directions. Earth Surface Dynamics, 2018, 6, 401-429.	ture	1.0	115
186	Contemporary sea level changes from satellite altimetry: What have we learned? What challenges?. Advances in Space Research, 2018, 62, 1639-1653.	are the new	1.2	141
187	Mapping Sea-Level Change in Time, Space, and Probability. Annual Review of Environm Resources, 2018, 43, 481-521.	ent and	5.6	140
188	Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales. Oc 2018, 14, 205-223.	ean Science,	1.3	9
189	The land ice contribution to sea level during the satellite era. Environmental Research L 13, 063008.	etters, 2018,	2.2	177

#	Article	IF	CITATIONS
190	A modest 0.5-m rise in sea level will double the tsunami hazard in Macau. Science Advances, 2018, 4, eaat1180.	4.7	75
191	Relative Sea Level, Tides, and Extreme Water Levels in Boston Harbor From 1825 to 2018. Journal of Geophysical Research: Oceans, 2018, 123, 3895-3914.	1.0	63
192	Characterizing uncertain sea-level rise projections to support investment decisions. PLoS ONE, 2018, 13, e0190641.	1.1	43
193	A New Centennial Seaâ€Level Record for Antalya, Eastern Mediterranean. Journal of Geophysical Research: Oceans, 2018, 123, 4503-4517.	1.0	6
194	Can We Model the Effect of Observed Sea Level Rise on Tides?. Journal of Geophysical Research: Oceans, 2018, 123, 4593-4609.	1.0	62
195	Impact of and adaptation strategies for sea-level rise on Yangtze River Delta. Advances in Climate Change Research, 2018, 9, 154-160.	2.1	8
196	Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nature Communications, 2018, 9, 2360.	5.8	397
197	The interactive relationship between coastal erosion and flood risk. Progress in Physical Geography, 2019, 43, 574-585.	1.4	38
198	Persistent acceleration in global sea-level rise since the 1960s. Nature Climate Change, 2019, 9, 705-710.	8.1	206
199	West African sea level variability under a changing climate –what can we learn from the	07	5
	observational period?. Journal of Coastal Conservation, 2019, 23, 759-771.	0.7	
200	Risk measures and the distribution of damage curves for 600 European coastal cities. Environmental Research Letters, 2019, 14, 064021.	2.2	10
200	observational period?. Journal of Coastal Conservation, 2019, 23, 759-771. Risk measures and the distribution of damage curves for 600 European coastal cities. Environmental Research Letters, 2019, 14, 064021. Do the Adaptations of Venice and Miami to Sea Level Rise Offer Lessons for Other Vulnerable Coastal Cities?. Environmental Management, 2019, 64, 391-415.	2.2	10 23
200 201 202	observational period?. Journal of Coastal Conservation, 2019, 23, 759-771. Risk measures and the distribution of damage curves for 600 European coastal cities. Environmental Research Letters, 2019, 14, 064021. Do the Adaptations of Venice and Miami to Sea Level Rise Offer Lessons for Other Vulnerable Coastal Cities?. Environmental Management, 2019, 64, 391-415. Redating the earliest evidence of the mid-Holocene relative sea-level highstand in Australia and implications for global sea-level rise. PLoS ONE, 2019, 14, e0218430.	0.7 2.2 1.2 1.1	10 23 29
200 201 202 203	Observational period?. Journal of Coastal Conservation, 2019, 23, 759-771. Risk measures and the distribution of damage curves for 600 European coastal cities. Environmental Research Letters, 2019, 14, 064021. Do the Adaptations of Venice and Miami to Sea Level Rise Offer Lessons for Other Vulnerable Coastal Cities?. Environmental Management, 2019, 64, 391-415. Redating the earliest evidence of the mid-Holocene relative sea-level highstand in Australia and implications for global sea-level rise. PLoS ONE, 2019, 14, e0218430. Holocene sea-level variability from Chesapeake Bay Tidal Marshes, USA. Holocene, 2019, 29, 1679-1693.	0.7 2.2 1.2 1.1	10 23 29 5
200 201 202 203 204	observational period?. Journal of Coastal Conservation, 2019, 23, 759-771. Risk measures and the distribution of damage curves for 600 European coastal cities. Environmental Research Letters, 2019, 14, 064021. Do the Adaptations of Venice and Miami to Sea Level Rise Offer Lessons for Other Vulnerable Coastal Cities?. Environmental Management, 2019, 64, 391-415. Redating the earliest evidence of the mid-Holocene relative sea-level highstand in Australia and implications for global sea-level rise. PLoS ONE, 2019, 14, e0218430. Holocene sea-level variability from Chesapeake Bay Tidal Marshes, USA. Holocene, 2019, 29, 1679-1693. Low-End Probabilistic Sea-Level Projections. Water (Switzerland), 2019, 11, 1507.	0.7 2.2 1.2 1.1 0.9 1.2	10 23 29 5 16
200 201 202 203 204 205	observational period?. Journal of Coastal Conservation, 2019, 23, 759-771. Risk measures and the distribution of damage curves for 600 European coastal cities. Environmental Research Letters, 2019, 14, 064021. Do the Adaptations of Venice and Miami to Sea Level Rise Offer Lessons for Other Vulnerable Coastal Cities?. Environmental Management, 2019, 64, 391-415. Redating the earliest evidence of the mid-Holocene relative sea-level highstand in Australia and implications for global sea-level rise. PLoS ONE, 2019, 14, e0218430. Holocene sea-level variability from Chesapeake Bay Tidal Marshes, USA. Holocene, 2019, 29, 1679-1693. Low-End Probabilistic Sea-Level Projections. Water (Switzerland), 2019, 11, 1507. Usable Science for Managing the Risks of Seaâ€Level Rise. Earth's Future, 2019, 7, 1235-1269.	0.7 2.2 1.2 1.1 0.9 1.2 2.4	10 23 29 5 16 85
 200 201 202 203 204 205 206 	Observational period?. Journal of Coastal Conservation, 2019, 23, 759-771. Risk measures and the distribution of damage curves for 600 European coastal cities. Environmental Research Letters, 2019, 14, 064021. Do the Adaptations of Venice and Miami to Sea Level Rise Offer Lessons for Other Vulnerable Coastal Cities?. Environmental Management, 2019, 64, 391-415. Redating the earliest evidence of the mid-Holocene relative sea-level highstand in Australia and implications for global sea-level rise. PLoS ONE, 2019, 14, e0218430. Holocene sea-level variability from Chesapeake Bay Tidal Marshes, USA. Holocene, 2019, 29, 1679-1693. Low-End Probabilistic Sea-Level Projections. Water (Switzerland), 2019, 11, 1507. Usable Science for Managing the Risks of Seaâ€Level Rise. Earth's Future, 2019, 7, 1235-1269. Virtual Tide Gauges for Predicting Relative Sea Level Rise. Journal of Geophysical Research: Solid Earth, 2019, 124, 13367-13391.	0.7 2.2 1.2 1.1 0.9 1.2 2.4 1.4	10 23 29 5 16 85 9

#	Article	IF	CITATIONS
208	Uncertainties in Long-Term Twenty-First Century Process-Based Coastal Sea-Level Projections. Surveys in Geophysics, 2019, 40, 1655-1671.	2.1	24
209	Attributing long-term sea-level rise to Paris Agreement emission pledges. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23487-23492.	3.3	35
210	A Numerical Assessment of Artificial Reef Pass Wave-Induced Currents as a Renewable Energy Source. Journal of Marine Science and Engineering, 2019, 7, 284.	1.2	2
212	Characterizing the deep uncertainties surrounding coastal flood hazard projections: A case study for Norfolk, VA. Scientific Reports, 2019, 9, 11373.	1.6	12
213	Observational Requirements for Long-Term Monitoring of the Global Mean Sea Level and Its Components Over the Altimetry Era. Frontiers in Marine Science, 2019, 6, .	1.2	31
214	Measuring rates of present-day relative sea-level rise in low-elevation coastal zones: a critical evaluation. Ocean Science, 2019, 15, 61-73.	1.3	40
215	A photovoltaic ecosystem: improving atmospheric environment and fighting regional poverty. Technological Forecasting and Social Change, 2019, 140, 69-79.	6.2	14
216	Rising Sea Levels: Helping Decision-Makers Confront the Inevitable. Coastal Management, 2019, 47, 127-150.	1.0	23
217	Coastal Land Use in Northeast Brazil: Mangrove Coverage Evolution Over Three Decades. Tropical Conservation Science, 2019, 12, 194008291882241.	0.6	23
218	The impact of sea-level rise on tidal characteristics around Australia. Ocean Science, 2019, 15, 147-159.	1.3	21
219	Coastal Flood Assessment due to Sea Level Rise and Extreme Storm Events: A Case Study of the Atlantic Coast of Portugal's Mainland. Geosciences (Switzerland), 2019, 9, 239.	1.0	17
220	The Ability of Barotropic Models to Simulate Historical Mean Sea Level Changes from Coastal Tide Gauge Data. Surveys in Geophysics, 2019, 40, 1399-1435.	2.1	12
221	Relevance of carbon burial and storage in two contrasting blue carbon ecosystems of a north-east Pacific coastal lagoon. Science of the Total Environment, 2019, 675, 581-593.	3.9	22
223	The breadth of climate change impacts on biological systems. Emerging Topics in Life Sciences, 2019, 3, 107-113.	1.1	2
224	Decomposing Mean Sea Level Rise in a Semi-Enclosed Basin, the Baltic Sea. Journal of Climate, 2019, 32, 3089-3108.	1.2	28
225	Relative sea-level rise and the influence of vertical land motion at Tropical Pacific Islands. Clobal and Planetary Change, 2019, 176, 132-143.	1.6	17
226	New York City Panel on Climate Change 2019 Report Chapter 3: Sea Level Rise. Annals of the New York Academy of Sciences, 2019, 1439, 71-94.	1.8	22
227	Explaining Extreme Events of 2017 from a Climate Perspective. Bulletin of the American Meteorological Society, 2019, 100, S1-S117.	1.7	27

#	Article	IF	CITATIONS
228	Some remarks on Glacial Isostatic Adjustment modelling uncertainties. Geophysical Journal International, 2019, 218, 401-413.	1.0	33
229	Observations of the Rate and Acceleration of Global Mean Sea Level Change. Bulletin of the American Meteorological Society, 2019, 100, S15-S18.	1.7	7
230	Spatial and Temporal Variability of Open-Ocean Barrier Islands along the Indus Delta Region. Remote Sensing, 2019, 11, 437.	1.8	18
231	Long-term flood-hazard modeling for coastal areas using InSAR measurements and a hydrodynamic model: The case study of Lingang New City, Shanghai. Journal of Hydrology, 2019, 571, 593-604.	2.3	26
232	On Some Properties of the Glacial Isostatic Adjustment Fingerprints. Water (Switzerland), 2019, 11, 1844.	1.2	10
233	New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nature Communications, 2019, 10, 4844.	5.8	495
234	The imprints of contemporary mass redistribution on local sea level and vertical land motion observations. Solid Earth, 2019, 10, 1971-1987.	1.2	24
235	Statistical modeling of rates and trends in Holocene relative sea level. Quaternary Science Reviews, 2019, 204, 58-77.	1.4	24
236	Exploiting UAVSAR for a comprehensive analysis of subsidence in the Sacramento Delta. Remote Sensing of Environment, 2019, 220, 124-134.	4.6	20
237	Characterizing the Indian Ocean sea level changes and potential coastal flooding impacts under global warming. Journal of Hydrology, 2019, 569, 373-386.	2.3	29
238	Upper Ocean Heat and Freshwater Budgets. , 2019, , 47-59.		0
239	TEMPORARY REMOVAL: Why would sea-level rise for global warming and polar ice-melt?. Geoscience Frontiers, 2019, 10, 481-494.	4.3	22
240	Using authentic science in climate change education. Applied Environmental Education and Communication, 2019, 18, 350-381.	0.6	2
241	Changing Tides: The Role of Natural and Anthropogenic Factors. Annual Review of Marine Science, 2020, 12, 121-151.	5.1	125
242	Global Trends of Sea Surface Gravity Wave, Wind, and Coastal Wave Setup. Journal of Climate, 2020, 33, 769-785.	1.2	10
243	Tolerance of testate amoeba species to rising sea levels under laboratory conditions and in the South Pacific. Pedobiologia, 2020, 79, 150610.	0.5	6
244	Aquifer-eustasy as the main driver of short-term sea-level fluctuations during Cretaceous hothouse climate phases. Geological Society Special Publication, 2020, 498, 9-38.	0.8	51
245	Effect of Fluvial Discharges and Remote Non-Tidal Residuals on Compound Flood Forecasting in San Francisco Bay. Water (Switzerland), 2020, 12, 2481.	1.2	9

ARTICLE IF CITATIONS # Copernicus Marine Service Ocean State Report, Issue 4. Journal of Operational Oceanography, 2020, 13, 246 0.6 47 S1-S172. Data Revisions and the Statistical Relation of Global Mean Sea Level and Surface Temperature. 247 Econometrics, 2020, 8, 41. Revisiting Vertical Land Motion and Sea Level Trends in the Northeastern Adriatic Sea Using Satellite 248 1.2 18 Altimetry and Tide Gauge Data. Journal of Marine Science and Engineering, 2020, 8, 949. The Global Water Cycle., 2020, , 433-451. 249 Enhancing New York City's resilience to sea level rise and increased coastal flooding. Urban Climate, 250 2.4 23 2020, 33, 100654. Quantifying the Uncertainty in Ground-Based GNSS-Reflectometry Sea Level Measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 4419-4428. 2.3 The Sensitivity of the Antarctic Ice Sheet to a Changing Climate: Past, Present, and Future. Reviews of 252 9.0 49 Geophysics, 2020, 58, e2019RG000663. The causes of sea-level rise since 1900. Nature, 2020, 584, 393-397. 13.7 Tide gauge data archaeology provides natural subsidence rates along the coasts of the Po Plain and of 254 1.0 1 the Veneto-Friuli Plain, Italy. Geophysical Journal International, 2020, , . Impacts of climate change on hurricane flood hazards in Jamaica Bay, New York. Climatic Change, 2020, 1.7 163, 2153-2171. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin 256 4.7414 records. Science Advances, 2020, 6, eaaz1346. Crown Wall Modifications as Response to Wave Overtopping under a Future Sea Level Scenario: An Experimental Parametric Study for an Innovative Composite Seawall. Applied Sciences (Switzerland), 1.3 2020, 10, 2227. Coastline Vulnerability Assessment through Landsat and Cubesats in a Coastal Mega City. Remote 259 1.8 34 Sensing, 2020, 12, 749. Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore 1.6 and Dorchester County in Maryland. Natural Hazards, 2020, 103, 2561-2588. Sea Level, Tidal, and River Flow Trends in the Lower Columbia River Estuary, 1853–present. Journal of 261 1.0 21 Geophysical Research: Oceans, 2020, 125, e2019JC015656. GOM20: A Stable Geodetic Reference Frame for Subsidence, Faulting, and Sea-Level Rise Studies along 1.8 the Coast of the Gulf of Mexico. Remote Sensing, 2020, 12, 350. Contribution of moderate climate events to atoll island building (Fakarava Atoll, French Polynesia). 263 1.1 11 Geomorphology, 2020, 354, 107057. Impacts of Typhoon Mangkhut in 2018 on the deposition of marine debris and microplastics on beaches 264 58 in Hong Kong. Science of the Total Environment, 2020, 716, 137172.

#	Article	IF	CITATIONS
265	Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth System Dynamics, 2020, 11, 35-76.	2.7	92
266	The Costs of Sea-Level Rise: Coastal Adaptation Investments vs. Inaction in Iberian Coastal Cities. Water (Switzerland), 2020, 12, 1220.	1.2	10
267	Understanding of Contemporary Regional Sea‣evel Change and the Implications for the Future. Reviews of Geophysics, 2020, 58, e2019RG000672.	9.0	74
268	Late Holocene sea-level changes and vertical land movements in New Zealand. New Zealand Journal of Geology, and Geophysics, 2021, 64, 21-36.	1.0	11
269	Estimation of sea level variability in the South China Sea from satellite altimetry and tide gauge data. Advances in Space Research, 2021, 68, 523-533.	1.2	11
271	Rising sea levels as an indicator of global change. , 2021, , 205-217.		2
272	The zone of influence: matching sea level variability from coastal altimetry and tide gauges for vertical land motion estimation. Ocean Science, 2021, 17, 35-57.	1.3	31
273	Community Engagement in Climate Change Policy: The Case of Three Mills, East London. Urban Book Series, 2021, , 59-77.	0.3	0
274	Reconciling global mean and regional sea level change in projections and observations. Nature Communications, 2021, 12, 990.	5.8	26
275	Extreme value analysis of the typhoon-induced surges on the coastal seas of South Korea. Natural Hazards, 2021, 107, 617-637.	1.6	2
276	Geoinformation Technologies in Support of Environmental Hazards Monitoring under Climate Change: An Extensive Review. ISPRS International Journal of Geo-Information, 2021, 10, 94.	1.4	27
277	Influences of sea level on depositional environment during the last 1000 years in the southwestern Bengal delta, Bangladesh. Holocene, 2021, 31, 915-925.	0.9	5
278	Common Era sea-level budgets along the U.S. Atlantic coast. Nature Communications, 2021, 12, 1841.	5.8	29
279	Enhancing Resilience of River Restoration Design in Systems Undergoing Change. Journal of Hydraulic Engineering, 2021, 147, .	0.7	5
280	Constraining 20thâ€Century Sea‣evel Rise in the South Atlantic Ocean. Journal of Geophysical Research: Oceans, 2021, 126, .	1.0	4
281	Coupling sea-level rise with tsunamis: Projected adverse impact of future tsunamis on Banda Aceh city, Indonesia. International Journal of Disaster Risk Reduction, 2021, 55, 102084.	1.8	19
282	An ensemble approach to quantify global mean sea-level rise over the 20th century from tide gauge reconstructions. Environmental Research Letters, 2021, 16, 044043.	2.2	30
283	Largest marsh in New England near a precipice. Geomorphology, 2021, 379, 107625.	1.1	11

CITATION	Report

#	Article	IF	CITATIONS
284	Evaluating the Economic Cost of Coastal Flooding. American Economic Journal: Macroeconomics, 2021, 13, 444-486.	1.5	21
285	The Oyambre coastal terrace: a detailed sedimentary record of the Last Interglacial Stage in northern Iberia (Cantabrian coast, Spain). Journal of Quaternary Science, 2021, 36, 570-585.	1.1	7
286	Contribution of Land Water Storage Change to Regional Sea-Level Rise Over the Twenty-First Century. Frontiers in Earth Science, 2021, 9, .	0.8	5
287	Sea Level Projections From IPCC Special Report on the Ocean and Cryosphere Call for a New Climate Adaptation Strategy in the Skagerrak-Kattegat Seas. Frontiers in Marine Science, 2021, 8, .	1.2	6
288	Coastal Sea Level Trends from a Joint Use of Satellite Radar Altimetry, GPS and Tide Gauges: Case Study of the Northern Adriatic Sea. , 0, , .		1
289	Transnational Municipal Networks as a Mechanism for Marine Governance Toward Climate Change Adaptation and Mitigation: Between Potential and Practice. Frontiers in Marine Science, 2021, 8, .	1.2	4
290	Estimating Vertical Land Motion and Residual Altimeter Systematic Errors Using a Kalmanâ€Based Approach. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC017106.	1.0	5
291	Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast. Natural Hazards, 2021, 109, 755-784.	1.6	3
292	Contributions of Organic and Mineral Matter to Vertical Accretion in Tidal Wetlands across a Chesapeake Bay Subestuary. Journal of Marine Science and Engineering, 2021, 9, 751.	1.2	6
293	To move or stay? A cellular automata model to predict urban growth in coastal regions amidst rising sea levels. International Journal of Digital Earth, 2021, 14, 1213-1235.	1.6	7
294	Advances in estimating Sea Level Rise: A review of tide gauge, satellite altimetry and spatial data science approaches. Ocean and Coastal Management, 2021, 208, 105632.	2.0	28
295	Coral conglomerate platforms as foundations for low-lying, reef islands in the French Polynesia (central south Pacific): New insights into the timing and mode of formation. Marine Geology, 2021, 437, 106500.	0.9	7
296	Alternative approaches to medium-long term sea level rise mapping in Southern Miami Beach (Florida,) Tj ETQqO	0 0 rgBT / 0 .9	Overlock 10
297	Testate amoebae from two low-lying tropical islets of Tuvalu, South Pacific. Pedobiologia, 2021, 87-88, 150732.	0.5	1
300	The Global Fingerprint of Modern Iceâ€Mass Loss on 3â€Ð Crustal Motion. Geophysical Research Letters, 2021, 48, e2021GL095477.	1.5	7
301	Sea-level rise in Venice: historic and future trends (review article). Natural Hazards and Earth System Sciences, 2021, 21, 2643-2678.	1.5	61
302	Rapid Sea-Level Rise in the Southern-Hemisphere Subtropical Oceans. Journal of Climate, 2021, , 1-55.	1.2	8
303	Distinguishing Between Regression Model Fits to Global Mean Sea Level Reconstructions. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017347.	1.0	1

#	Article	IF	CITATIONS
304	State of the Science in Meteorological/Hydrological Extremes. , 2021, , 19-58.		0
305	Assessing atoll island physical robustness: Application to Rangiroa Atoll, French Polynesia. Geomorphology, 2021, 390, 107871.	1.1	5
306	Dynamic modeling of sea-level rise impact on coastal flood hazard and vulnerability in New York City's built environment. Coastal Engineering, 2021, 169, 103980.	1.7	5
307	Rates of Natural Subsidence along the Texas Coast Derived from GPS and Tide Gauge Measurements (1904–2020). Journal of Surveying Engineering, - ASCE, 2021, 147, .	1.0	16
308	Testing multiple linear regression systems with metamorphic testing. Journal of Systems and Software, 2021, 182, 111062.	3.3	16
309	Reconstructing the time-variable sea surface from tide gauge records using optimal data-dependent triangulations. Computers and Geosciences, 2021, 157, 104920.	2.0	0
310	Sea-Level Change: Emergent Hazard in a Warming World. , 2021, , .		0
311	Climate change and melting glaciers. , 2021, , 53-84.		4
313	The Challenge of Baltic Sea Level Change. Coastal Research Library, 2017, , 37-54.	0.2	5
314	Recent Baltic Sea Level Changes Induced by Past and Present Ice Masses. Coastal Research Library, 2017, , 55-68.	0.2	5
315	Coping with Higher Sea Levels and Increased Coastal Flooding in New York City. Climate Change Management, 2017, , 209-223.	0.6	2
317	Indian Ocean Variability and Interactions. , 2020, , 153-185.		2
318	20th Century Multivariate Indian Ocean Regional Sea Level Reconstruction. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016270.	1.0	6
319	Detecting a forced signal in satellite-era sea-level change. Environmental Research Letters, 2020, 15, 094079.	2.2	11
320	Population Size Predicts Lexical Diversity, but so Does the Mean Sea Level – Why It Is Important to Correctly Account for the Structure of Temporal Data. PLoS ONE, 2016, 11, e0150771.	1.1	24
321	Sea level rise drives increased tidal flooding frequency at tide gauges along the U.S. East and Gulf Coasts: Projections for 2030 and 2045. PLoS ONE, 2017, 12, e0170949.	1.1	70
322	Sea Level Change in the Western James Bay Region of Subarctic Ontario: Emergent Land and Implications for Treaty No. 9. Arctic, 2016, 69, 99.	0.2	4
323	Characterization of Sea-level Variations Along the Metropolitan Coasts of France: Waves, Tides, Storm Surges and Long-term Changes. Journal of Coastal Research, 2019, 88, 10.	0.1	26

#	ARTICLE	IF	CITATIONS
324	Information for Australian impact and adaptation planning in response to sea-level rise. , 2015, 65, 127-149.		40
325	Climate change and aquaculture: considering biological response and resources. Aquaculture Environment Interactions, 2019, 11, 569-602.	0.7	65
326	Climate change and aquaculture: considering adaptation potential. Aquaculture Environment Interactions, 2019, 11, 603-624.	0.7	58
327	Why Should We Worry About Sea Level Change?. Frontiers for Young Minds, 0, 5, .	0.8	4
329	Semi-equilibrated global sea-level change projections for the next 10 000 years. Earth System Dynamics, 2020, 11, 953-976.	2.7	16
330	Global sea-level budget 1993–present. Earth System Science Data, 2018, 10, 1551-1590.	3.7	409
331	SEA LEVEL TREND AND VARIABILITY IN THE SOUTH CHINA SEA. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-2/W5, 589-593.	0.0	4
332	ACCELERATION OF SEA LEVEL RISE OVER MALAYSIAN SEAS FROM SATELLITE ALTIMETER. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, O, XLII-4/W1, 277-286.	0.2	4
333	Storm tide amplification and habitat changes due to urbanization of a lagoonal estuary. Natural Hazards and Earth System Sciences, 2020, 20, 2415-2432.	1.5	12
338	On the seasonal variations of ocean bottom pressure in the world oceans. Geoscience Letters, 2021, 8, .	1.3	9
339	Evaluation of the Local Sea‣evel Budget at Tide Gauges Since 1958. Geophysical Research Letters, 2021, 48, e2021GL094502.	1.5	28
342	Sea-Level and Climate Change. Encyclopedia of Earth Sciences Series, 2018, , 1-8.	0.1	0
343	Climate Change Overview. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 1-36.	0.3	0
344	Sea-Level and Climate Change. Encyclopedia of Earth Sciences Series, 2019, , 1485-1492.	0.1	1
346	Long-term regional trend and variability of mean sea level during the satellite altimetry era. Scientia Marina, 2019, 83, 111.	0.3	1
347	Estimation of the Vertical Land Motion from GNSS Time Series and Application in Quantifying Sea-Level Rise. Springer Geophysics, 2020, , 317-344.	0.9	1
348	Ege Denizi Bağıl Deniz Seviyesi Değişimlerinde Kapula Fonksiyonları İle Trend Analizleri. Doğal Afetler Çevre Dergisi, 2020, 6, 49-65.	Ve 0.2	1
349	On the relation of the lunar recession and the length-of-the-day. Astrophysics and Space Science, 2021, 366, 1.	0.5	4

ARTICLE IF CITATIONS # Sea Level Anomaly and Earthquake Predictions: Endangered Countries Prognostications. International 350 0.3 0 Journal of East Asian Studies, 2020, 6, 36-41. Phanerozoic Eustasy., 2020, , 357-400. 353 The Science of Climate Change and Sea-Level Rise. Coastal Research Library, 2020, , 5-13. 0.2 5 An Overview of the Impact and Management Strategies of Anthropogenic Climate Change on Fisheries and Aquaculture. Journal of Anatolian Environmental and Animal Sciences, 0, , . Multiâ€Century Impacts of Ice Sheet Retreat on Sea Level and Ocean Tides in Hudson Bay. Journal of 356 1.0 3 Geophysical Research: Oceans, 2020, 125, e2019JC015104. Variability of the Oceans., 2020, , 1-53. 359 Teleconnections in the Atmosphere., 2020, , 54-88. 2 Atmosphere–Ocean Interactions. , 2020, , 89-119. 360 361 Interacting Interannual Variability of the Pacific and Atlantic Oceans., 2020, , 120-152. 2 The Arctic Mediterranean., 2020, , 186-215. Combined Oceanic Influences on Continental Climates., 2020, , 216-257. 363 2 Basin Interactions and Predictability., 2020, , 258-292. 364 Climate Change and Impacts on Variability and Interactions., 2020, , 293-337. 365 0 The Impact of Future World Events on Iranians' Social Health: A Qualitative Futurology. Iranian 367 0.3 Journal of Public Health, 2016, 45, 795-805. Assessment and Prediction of Climate Risks in Three Major Urban Agglomerations of Eastern China. 368 1.6 4 Sustainability, 2021, 13, 13037. An Analysis of the 8.85- and 4.42-Year Cycles in the Gulf of Maine. Journal of Marine Science and 1.2 Engineering, 2021, 9, 1362. Extending Instrumental Seaâ€Level Records Using Coral Microatolls, an Example From Southeast Asia. 370 1.57 Geophysical Research Letters, 2022, 49, . Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature, 2022, 601, 371 374-379.

#	Article	IF	CITATIONS
373	Short-Term Seawater Inundation Induces Trace Metal Mobilisation in Freshwater and Acid Sulfate Soil Environments. SSRN Electronic Journal, 0, , .	0.4	0
374	Timing of emergence of modern rates of sea-level rise by 1863. Nature Communications, 2022, 13, 966.	5.8	24
375	A statistical framework for integrating nonparametric proxy distributions into geological reconstructions of relative sea level. Advances in Statistical Climatology, Meteorology and Oceanography, 2022, 8, 1-29.	0.6	2
377	Recent Developments in Sea-Level Rise and Its Related Geological Disasters Mitigation: A Review. Journal of Marine Science and Engineering, 2022, 10, 355.	1.2	4
378	Paleoclimatic interpretation in southern Laizhou Bay since the late Pleistocene: Evidence from groundwater and sedimentary strata. Continental Shelf Research, 2022, 237, 104676.	0.9	4
379	Annual resolution records of sea-level change since 1850ÂCE reconstructed from coral Î′18O from the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 592, 110897.	1.0	2
380	Glacier response to the Little Ice Age during the Neoglacial cooling in Greenland. Earth-Science Reviews, 2022, 227, 103984.	4.0	22
381	Assessment of 21st Century Changing Sea Surface Temperature, Rainfall, and Sea Surface Height Patterns in the Tropical Pacific Islands Using CMIP6 Greenhouse Warming Projections. Earth's Future, 2022, 10, .	2.4	6
382	Extreme-coastal-water-level estimation and projection: a comparison of statistical methods. Natural Hazards and Earth System Sciences, 2022, 22, 1109-1128.	1.5	10
383	Short-term seawater inundation induces metal mobilisation in freshwater and acid sulfate soil environments. Chemosphere, 2022, 299, 134383.	4.2	4
384	Coastal development in southwestern Bangladesh: understanding the interplay between storms and sea level rise. Progress in Physical Geography, 2022, 46, 331-356.	1.4	3
385	Surging Sovereign Spreads: The Impact of Coastal Flooding on Sovereign Risk. SSRN Electronic Journal, 0, , .	0.4	1
386	Beryllium isotope variations recorded in the Adélie Basin, East Antarctica reflect Holocene changes in ice dynamics, productivity, and scavenging efficiency. Quaternary Science Advances, 2022, , 100054.	1.1	1
393	Biodegraders of Large Woody Debris Across a Tidal Gradient in an Indonesian Mangrove Ecosystem. Frontiers in Forests and Global Change, 2022, 5, .	1.0	2
394	Contemporary sea-level changes from global to local scales: a review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	22
395	Making a Short Story Long: Teaching Sustainability on the Longue Durée. World Development Perspectives, 2022, 26, 100419.	0.8	0
396	Sea Level Variation and Trend Analysis by Comparing Mann–Kendall Test and Innovative Trend Analysis in Front of the Red River Delta, Vietnam (1961–2020). Water (Switzerland), 2022, 14, 1709.	1.2	14
397	Using Modified Harmonic Analysis to Estimate the Trend of Sea-Level Rise around Taiwan. Sustainability, 2022, 14, 7291.	1.6	2

#	Article	IF	CITATIONS
398	Review of the Impacts of Climate Change on Ports and Harbours and Their Adaptation in Spain. Sustainability, 2022, 14, 7507.	1.6	10
399	Rocky coastal cliffs reinforced by vegetation roots and potential collapse risk caused by sea-level rise. Catena, 2022, 217, 106457.	2.2	1
401	Lag in response of coastal barrier-island retreat to sea-level rise. Nature Geoscience, 2022, 15, 633-638.	5.4	16
402	Exceptionally stable preindustrial sea level inferred from the western Mediterranean Sea. Science Advances, 2022, 8, .	4.7	5
403	Advances in the observation and understanding of changes in sea level and tides. Annals of the New York Academy of Sciences, 2022, 1516, 48-75.	1.8	3
404	Earth's Climate History from 4.5 Billion Years to One Minute. Atmosphere - Ocean, 2022, 60, 188-232.	0.6	3
405	Internal relocation as a relevant and feasible adaptation strategy in Rangiroa Atoll, French Polynesia. Scientific Reports, 2022, 12, .	1.6	7
406	Application of Water Quality Index as a vulnerability indicator to determine seawater intrusion in unconsolidated sedimentary aquifers in a tropical coastal region of Sri Lanka. Groundwater for Sustainable Development, 2022, 19, 100831.	2.3	11
407	A detection of the sea level fingerprint of Greenland Ice Sheet melt. Science, 2022, 377, 1550-1554.	6.0	6
408	Large-scale historic habitat loss in estuaries and its implications for commercial and recreational fin fisheries. ICES Journal of Marine Science, 2022, 79, 1981-1991.	1.2	10
410	Is the Atlantic a Source for Decadal Predictability of Sea‣evel Rise in Venice?. Earth and Space Science, 2022, 9, .	1.1	3
411	The Sources of Seaâ€Level Changes in the Mediterranean Sea Since 1960. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	7
412	Sand supply and dune grass species density affect foredune shape along the <scp>US</scp> Central Atlantic Coast. Ecosphere, 2022, 13, .	1.0	3
413	Process-based estimate of global-mean sea-level changes in the Common Era. Earth System Dynamics, 2022, 13, 1417-1435.	2.7	1
414	Global forest products markets and forest sector carbon impacts of projected sea level rise. Global Environmental Change, 2022, 77, 102611.	3.6	6
416	Mediterranean Sea level. , 2023, , 125-159.		0
417	Within-region replication of late Holocene relative sea-level change: An example from southern New England, United States. Quaternary Science Reviews, 2023, 300, 107868.	1.4	0
418	Coastal inundation scenarios in the north-eastern sector of the Island of Gozo (Malta,) Tj ETQq1 1 0.784314 rgBT $$	/Overlock	10 Tf 50 6

#	Article	IF	CITATIONS
419	Assessment of Spatio-Temporal Empirical Forecasting Performance of Future Shoreline Positions. Remote Sensing, 2022, 14, 6364.	1.8	9
420	Data rescue process in the context of sea level reconstructions: An overview of the methodology, lessons learned, upâ€toâ€date best practices and recommendations. Geoscience Data Journal, 2023, 10, 396-425.	1.8	3
421	Overview of Coastal Vulnerability Indices with Reference to Physical Characteristics of the Croatian Coast of Istria. Hydrology, 2023, 10, 14.	1.3	3
422	River effects on sea-level rise in the RÃo de la Plata estuary during the past century. Ocean Science, 2023, 19, 57-75.	1.3	0
423	Sedimentary records and implications for the evolution of sedimentary environments inferred from BH1302 during the late Quaternary in the Bohai Sea, China. Marine Geology, 2023, 456, 106986.	0.9	3
424	Salt marsh vegetation change during a half-century of experimental nutrient addition and climate-driven controls in Great Sippewissett Marsh. Science of the Total Environment, 2023, 867, 161546.	3.9	6
425	Warning water level determination and its spatial distribution in coastal areas of China. Natural Hazards and Earth System Sciences, 2023, 23, 127-138.	1.5	1
426	Land loss in the Mississippi River Delta: Role of subsidence, global sea-level rise, and coupled atmospheric and oceanographic processes. Global and Planetary Change, 2023, 222, 104048.	1.6	10
427	On the Use of Water and Methanol with Zeolites for Heat Transfer. ACS Sustainable Chemistry and Engineering, 2023, 11, 4317-4328.	3.2	3
428	Coastal indices to assess sea-level rise impacts - A brief review of the last decade. Ocean and Coastal Management, 2023, 237, 106536.	2.0	1
429	Defence against the rising seas. Nature Climate Change, 2023, 13, 313-314.	8.1	0
430	Combined effects of climatic factors on extreme sea level changes in the Northwest Pacific Ocean. Ocean Dynamics, 2023, 73, 181-199.	0.9	2
431	Surface Formations Salinity Survey in an Estuarine Area of Northern Morocco, by Crossing Satellite Imagery, Discriminant Analysis, and Machine Learning. Soil Systems, 2023, 7, 33.	1.0	0
432	Acceleration of U.S. Southeast and Gulf coast sea-level rise amplified by internal climate variability. Nature Communications, 2023, 14, .	5.8	21
433	A Combined Assessment of Sea Level Rise (SLR) Effect on Antalya Gulf (Türkiye) and Future Predictions on Land Loss. Journal of the Indian Society of Remote Sensing, 2023, 51, 1121-1133.	1.2	2
434	Sea-level rise in Southwest Greenland as a contributor to Viking abandonment. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	1
439	Sea-Level Changes. , 0, , .		0
446	The Sea-Level Budget of the Instrumental Era. , 2023, , .		0

#	Article	IF	CITATIONS
457	Sea-level rise and flood mapping: a review of models for coastal management. Natural Hazards, 2024, 120, 2155-2178.	1.6	0