Cellular Differentiation Regulator BLIMP1 Induces Epst Epithelial and B Cells by Activating Transcription from

Journal of Virology 89, 1731-1743 DOI: 10.1128/jvi.02781-14

Citation Report

#	Article	IF	CITATIONS
1	5-hydroxymethylation of the EBV genome regulates the latent to lytic switch. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7257-65.	3.3	28
2	The role of Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Virologica Sinica, 2015, 30, 107-121.	1.2	86
3	Contribution of the Epstein-Barr Virus to the Pathogenesis of Hodgkin Lymphoma. Current Topics in Microbiology and Immunology, 2015, 390, 287-313.	0.7	17
4	The Epigenetic Life Cycle of Epstein–Barr Virus. Current Topics in Microbiology and Immunology, 2015, 390, 103-117.	0.7	39
5	Epstein-Barr Virus Lytic Cycle Reactivation. Current Topics in Microbiology and Immunology, 2015, 391, 237-261.	0.7	70
6	Agents and Approaches for Lytic Induction Therapy of Epstein-Barr Virus Associated Malignancies. , 2016, 6, .		2
7	Epstein–Barr Virus: Diseases Linked to Infection and Transformation. Frontiers in Microbiology, 2016, 7, 1602.	1.5	84
8	CRISPR/Cas9 Screens Reveal Epstein-Barr Virus-Transformed B Cell Host Dependency Factors. Cell Host and Microbe, 2017, 21, 580-591.e7.	5.1	113
9	Virus-Like Vesicles of Kaposi's Sarcoma-Associated Herpesvirus Activate Lytic Replication by Triggering Differentiation Signaling. Journal of Virology, 2017, 91, .	1.5	17
10	Selective expression of the transcription elongation factor ELL3 in B cells prior to ELL2 drives proliferation and survival. Molecular Immunology, 2017, 91, 8-16.	1.0	14
11	Persistent KSHV Infection Increases EBV-Associated Tumor Formation InÂVivo via Enhanced EBV Lytic Gene Expression. Cell Host and Microbe, 2017, 22, 61-73.e7.	5.1	102
12	Roles of Non-coding RNAs During Herpesvirus Infection. Current Topics in Microbiology and Immunology, 2017, 419, 243-280.	0.7	18
13	Epsteinâ€Barr virus mRNA profiles and viral DNA methylation status in nasopharyngeal brushings from nasopharyngeal carcinoma patients reflect tumor origin. International Journal of Cancer, 2017, 140, 149-162.	2.3	48
14	Precision Molecular Pathology of Hodgkin Lymphoma. Molecular Pathology Library, 2018, , .	0.1	2
15	Epstein–Barr virus in the pathogenesis of oral cancers. Oral Diseases, 2018, 24, 497-508.	1.5	62
16	S1PR1 drives a feedforward signalling loop to regulate BATF3 and the transcriptional programme of Hodgkin lymphoma cells. Leukemia, 2018, 32, 214-223.	3.3	25
17	Role of EBV in Classical Hodgkin Lymphoma. Molecular Pathology Library, 2018, , 91-109.	0.1	1
18	Epstein–Barr Virus â~†. , 2018, , .		0

#	Article	IF	CITATIONS
19	Epigenetic crossroads of the Epstein-Barr virus B-cell relationship. Current Opinion in Virology, 2018, 32, 15-23.	2.6	17
20	The Dynamic Roles of TGF-Î ² Signalling in EBV-Associated Cancers. Cancers, 2018, 10, 247.	1.7	23
21	Epstein–Barr Virus Gene BARF1 Expression is Regulated by the Epithelial Differentiation Factor ΔNp63α in Undifferentiated Nasopharyngeal Carcinoma. Cancers, 2018, 10, 76.	1.7	14
22	CRISPR–Cas9 Genetic Analysis of Virus–Host Interactions. Viruses, 2018, 10, 55.	1.5	20
23	Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathogens, 2018, 14, e1006868.	2.1	45
24	Pathogenesis of Human Gammaherpesviruses: Recent Advances. Current Clinical Microbiology Reports, 2019, 6, 166-174.	1.8	3
25	IL-10 knockdown with siRNA enhances the efficacy of Doxorubicin chemotherapy in EBV-positive tumors by inducing lytic cycle via PI3K/p38 MAPK/NF-kB pathway. Cancer Letters, 2019, 462, 12-22.	3.2	23
26	Epstein-Barr Virus Infection Promotes Epithelial Cell Growth by Attenuating Differentiation-Dependent Exit from the Cell Cycle. MBio, 2019, 10, .	1.8	25
27	Latency and lytic replication in Epstein–Barr virus-associated oncogenesis. Nature Reviews Microbiology, 2019, 17, 691-700.	13.6	254
28	Smoking can increase nasopharyngeal carcinoma risk by repeatedly reactivating Epsteinâ€Barr Virus: An analysis of a prospective study in southern China. Cancer Medicine, 2019, 8, 2561-2571.	1.3	19
29	Evolutionary effects of the AID/APOBEC family of mutagenic enzymes on human gamma-herpesviruses. Virus Evolution, 2019, 5, vey040.	2.2	27
30	Epstein-Barr virus microRNAs regulate B cell receptor signal transduction and lytic reactivation. PLoS Pathogens, 2019, 15, e1007535.	2.1	47
31	Inhibition of Epstein-Barr Virus Replication in Human Papillomavirus-Immortalized Keratinocytes. Journal of Virology, 2019, 93, .	1.5	20
32	Immunology of EBV-Related Lymphoproliferative Disease in HIV-Positive Individuals. Frontiers in Oncology, 2020, 10, 1723.	1.3	34
33	Reactivation of Epstein-Barr Virus by HIF-1Î \pm Requires p53. Journal of Virology, 2020, 94, .	1.5	12
34	MYC Controls the Epstein-Barr Virus Lytic Switch. Molecular Cell, 2020, 78, 653-669.e8.	4.5	67
35	Clinical Manifestations and Epigenetic Regulation of Oral Herpesvirus Infections. Viruses, 2021, 13, 681.	1.5	15
36	B Cell Receptor-Responsive miR-141 Enhances Epstein-Barr Virus Lytic Cycle via FOXO3 Inhibition. MSphere, 2021, 6, .	1.3	10

CITATION REPORT

3

#	Article	IF	CITATIONS
37	Long non-coding RNAs in Epstein–Barr virus-related cancer. Cancer Cell International, 2021, 21, 278.	1.8	8
38	Roles of Lytic Viral Replication and Co-Infections in the Oncogenesis and Immune Control of the Epstein–Barr Virus. Cancers, 2021, 13, 2275.	1.7	4
39	Regulation of the Macroautophagic Machinery, Cellular Differentiation, and Immune Responses by Human Oncogenic Î ³ -Herpesviruses. Viruses, 2021, 13, 859.	1.5	0
40	The Role of Coinfections in the EBV–Host Broken Equilibrium. Viruses, 2021, 13, 1399.	1.5	7
41	MicroRNA and Other Non-Coding RNAs in Epstein–Barr Virus-Associated Cancers. Cancers, 2021, 13, 3909.	1.7	15
42	Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells. PLoS Pathogens, 2021, 17, e1009783.	2.1	9
43	Stress-Induced Epstein-Barr Virus Reactivation. Biomolecules, 2021, 11, 1380.	1.8	39
44	IRF4 promotes Epstein–Barr virus activation in Burkitt's lymphoma cells. Journal of General Virology, 2019, 100, 851-862.	1.3	8
45	Herpesvirus latency. Journal of Clinical Investigation, 2020, 130, 3361-3369.	3.9	127
46	EBV epigenetically suppresses the B cell-to-plasma cell differentiation pathway while establishing long-term latency. PLoS Biology, 2017, 15, e2001992.	2.6	50
47	Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells. PLoS Pathogens, 2015, 11, e1005195.	2.1	79
48	An Epstein-Barr Virus-Encoded Protein Complex Requires an Origin of Lytic Replication In Cis to Mediate Late Gene Transcription. PLoS Pathogens, 2016, 12, e1005718.	2.1	47
49	Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathogens, 2017, 13, e1006404.	2.1	55
50	Murine gammaherpesvirus M2 antigen modulates splenic B cell activation and terminal differentiation in vivo. PLoS Pathogens, 2017, 13, e1006543.	2.1	10
51	Epigenetic Consequences of Epstein–Barr Virus Infection. Epigenetics and Human Health, 2017, , 65-87.	0.2	0
54	ΔNp63α promotes Epstein-Barr virus latency in undifferentiated epithelial cells. PLoS Pathogens, 2021, 17, e1010045.	2.1	8
55	Molecular Basis of Epstein–Barr Virus Latency Establishment and Lytic Reactivation. Viruses, 2021, 13, 2344.	1.5	70
56	Epigenetic control of the Epstein-Barr lifecycle. Current Opinion in Virology, 2022, 52, 78-88.	2.6	21

TION RE

CITATION REPORT

#	Article	IF	CITATIONS
58	Reduced IRF4 expression promotes lytic phenotype in Type 2 EBV-infected B cells. PLoS Pathogens, 2022, 18, e1010453.	2.1	10
59	A Polymorphism in the Epstein-Barr Virus EBER2 Noncoding RNA Drives <i>In Vivo</i> Expansion of Latently Infected B Cells. MBio, 2022, 13, .	1.8	2
61	Natural killer cell responses to human oncogenic Î ³ -herpesvirus infections. Seminars in Immunology, 2022, 60, 101652.	2.7	5
62	Epstein–Barr Virus and Human Herpesvirus-6 Reactivation in Acute COVID-19 Patients. Viruses, 2022, 14, 1872.	1.5	19
63	Type 1 and Type 2 Epstein-Barr viruses induce proliferation, and inhibit differentiation, in infected telomerase-immortalized normal oral keratinocytes. PLoS Pathogens, 2022, 18, e1010868.	2.1	2
64	EBV Association with Lymphomas and Carcinomas in the Oral Compartment. Viruses, 2022, 14, 2700.	1.5	1
65	Co-Infection of the Epstein–Barr Virus and the Kaposi Sarcoma-Associated Herpesvirus. Viruses, 2022, 14, 2709.	1.5	7
66	A comprehensive single cell data analysis of lymphoblastoid cells reveals the role of superâ€enhancers in maintaining EBV latency. Journal of Medical Virology, 2023, 95, .	2.5	5
67	Retinoblastoma Protein Is Required for Epstein-Barr Virus Replication in Differentiated Epithelia. Journal of Virology, 2023, 97, .	1.5	2
68	Reactivation of Epstein-Barr Virus from Latency Involves Increased RNA Polymerase Activity at CTCF Binding Sites on the Viral Genome. Journal of Virology, 2023, 97,	1.5	4
73	Perspecitve Chapter: Modulation of Latent to Lytic Cycle Infection Switch and its Implication in EBV Mediated Tumorigenicity. , 0, , .		0