No evidence that selection has been less effective at ren Europeans than in Africans

Nature Genetics 47, 126-131 DOI: 10.1038/ng.3186

Citation Report

#	Article	IF	CITATIONS
1	Characteristics of Neutral and Deleterious Protein-Coding Variation among Individuals and Populations. American Journal of Human Genetics, 2014, 95, 421-436.	2.6	89
2	Genetic diversity in humans and non-human primates and its evolutionary consequences. Genes and Genetic Systems, 2015, 90, 133-145.	0.2	27
3	A General Model of the Relationship between the Apportionment of Human Genetic Diversity and the Apportionment of Human Phenotypic Diversity. Human Biology, 2015, 87, 313.	0.4	19
4	Secondary findings and carrier test frequencies in a large multiethnic sample. Genome Medicine, 2015, 7, 54.	3.6	47
6	Dominance of Deleterious Alleles Controls the Response to a Population Bottleneck. PLoS Genetics, 2015, 11, e1005436.	1.5	78
7	Global diversity, population stratification, and selection of human copy-number variation. Science, 2015, 349, aab3761.	6.0	293
8	Whole-Genome Sequencing of Six Mauritian Cynomolgus Macaques (Macaca fascicularis) Reveals a Genome-Wide Pattern of Polymorphisms under Extreme Population Bottleneck. Genome Biology and Evolution, 2015, 7, 821-830.	1.1	37
9	Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8696-8701.	3.3	206
10	Estimating the mutation load in human genomes. Nature Reviews Genetics, 2015, 16, 333-343.	7.7	233
11	The Accumulation of Deleterious Mutations as a Consequence of Domestication and Improvement in Sunflowers and Other Compositae Crops. Molecular Biology and Evolution, 2015, 32, 2273-2283.	3.5	139
12	A global reference for human genetic variation. Nature, 2015, 526, 68-74.	13.7	13,998
13	The role of climate and out-of-Africa migration in the frequencies of risk alleles for 21 human diseases. BMC Genetics, 2015, 16, 81.	2.7	7
14	Expansion load: recessive mutations and the role of standing genetic variation. Molecular Ecology, 2015, 24, 2084-2094.	2.0	152
15	Selection and explosive growth alter genetic architecture and hamper the detection of causal rare variants. Genome Research, 2016, 26, 863-873.	2.4	63
16	Understanding rare and common diseases in the context of human evolution. Genome Biology, 2016, 17, 225.	3.8	76
17	Secondary structure impacts patterns of selection in human lncRNAs. BMC Biology, 2016, 14, 60.	1.7	43
18	When Is Selection Effective?. Genetics, 2016, 203, 451-462.	1.2	73
19	Genetics of Type 2 Diabetes: the Power of Isolated Populations. Current Diabetes Reports, 2016, 16, 65.	1.7	25

		CITATION REPORT	
#	Article	IF	Citations
20	The Genetic Cost of Neanderthal Introgression. Genetics, 2016, 203, 881-891.	1.2	342
21	Genetic surfing in human populations: from genes to genomes. Current Opinion in Genetics and Development, 2016, 41, 53-61.	1.5	48
22	Evolutionary History, Selective Sweeps, and Deleterious Variation in the Dog. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 73-96.	3.8	37
23	Population Genomics Reveals Low Genetic Diversity and Adaptation to Hypoxia in Snub-Nosed Monkeys. Molecular Biology and Evolution, 2016, 33, 2670-2681.	3.5	69
24	Variation in the molecular clock of primates. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10607-10612.	3.3	189
25	The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature, 2016, 538, 201-206.	13.7	1,216
26	Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nature Genetics, 2016, 48, 1071-1076.	9.4	314
28	A continuum of admixture in the Western Hemisphere revealed by the African Diaspora genome. Nature Communications, 2016, 7, 12522.	5.8	136
29	Challenges and disparities in the application of personalized genomic medicine to populations with African ancestry. Nature Communications, 2016, 7, 12521.	5.8	68
30	Recent demography drives changes in linked selection across the maize genome. Nature Plants, 2016, 2, 16084.	4.7	111
31	The impact of recent population history on the deleterious mutation load in humans and close evolutionary relatives. Current Opinion in Genetics and Development, 2016, 41, 150-158.	1.5	89
32	Patterns of deleterious variation between human populations reveal an unbalanced load. Proceedings of the United States of America, 2016, 113, 809-811.	3.3	2
33	Human Knockout Carriers: Dead, Diseased, Healthy, or Improved?. Trends in Molecular Medicine, 2016, 22, 341-351.	3.5	31
34	Health and population effects of rare gene knockouts in adult humans with related parents. Science, 2016, 352, 474-477.	6.0	272
35	The Limits of Natural Selection in a Nonequilibrium World. Trends in Genetics, 2016, 32, 201-210.	2.9	98
36	Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. Proceedings of the United States of America, 2016, 113, E440-9.	3.3	224
37	Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 152-157.	3.3	265
38	Europeans have a higher proportion of high-frequency deleterious variants than Africans. Human Genetics, 2016, 135, 1-7.	1.8	15

#	Article	IF	CITATIONS
39	Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load. American Naturalist, 2017, 189, 368-380.	1.0	88
40	Deleterious variants in Asian rice and the potential cost of domestication. Molecular Biology and Evolution, 2017, 34, msw296.	3.5	68
41	The Effect of an Extreme and Prolonged Population Bottleneck on Patterns of Deleterious Variation: Insights from the Greenlandic Inuit. Genetics, 2017, 205, 787-801.	1.2	54
42	An evolutionary medicine perspective on Neandertal extinction. Journal of Human Evolution, 2017, 108, 62-71.	1.3	16
43	Estimating the selective effects of heterozygous protein-truncating variants from human exome data. Nature Genetics, 2017, 49, 806-810.	9.4	157
44	Genetic Diversity and the Efficacy of Purifying Selection across Plant and Animal Species. Molecular Biology and Evolution, 2017, 34, 1417-1428.	3.5	142
45	Living in an adaptive world: Genomic dissection of the genus Homo and its immune response. Journal of Experimental Medicine, 2017, 214, 877-894.	4.2	34
46	Gene Discovery for Complex Traits: Lessons from Africa. Cell, 2017, 171, 261-264.	13.5	27
47	A Temporal Perspective on the Interplay of Demography and Selection on Deleterious Variation in Humans. G3: Genes, Genomes, Genetics, 2017, 7, 1027-1037.	0.8	14
48	Range Expansion Compromises Adaptive Evolution in an Outcrossing Plant. Current Biology, 2017, 27, 2544-2551.e4.	1.8	75
49	Accumulation of Deleterious Mutations During Bacterial Range Expansions. Genetics, 2017, 207, 669-684.	1.2	74
50	Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples. Genetics, 2017, 206, 345-361.	1.2	170
51	The impact of recombination on human mutation load and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160465.	1.8	31
52	Enrichment of low-frequency functional variants revealed by whole-genome sequencing of multiple isolated European populations. Nature Communications, 2017, 8, 15927.	5.8	64
53	Rapid evolution of the human mutation spectrum. ELife, 2017, 6, .	2.8	144
54	Bioinformatically predicted deleterious mutations reveal complementation in the interior spruce hybrid complex. BMC Genomics, 2017, 18, 970.	1.2	16
55	The interplay of demography and selection during maize domestication and expansion. Genome Biology, 2017, 18, 215.	3.8	172
56	Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science, 2018, 360, 656-660.	6.0	314

#	Article	IF	CITATIONS
57	Elevated Proportions of Deleterious Genetic Variation in Domestic Animals and Plants. Genome Biology and Evolution, 2018, 10, 276-290.	1.1	75
58	On the decidability of population size histories from finite allele frequency spectra. Theoretical Population Biology, 2018, 120, 42-51.	0.5	16
59	The demographic history and mutational load of African hunter-gatherers and farmers. Nature Ecology and Evolution, 2018, 2, 721-730.	3.4	38
60	Slightly deleterious genomic variants and transcriptome perturbations in Down syndrome embryonic selection. Genome Research, 2018, 28, 1-10.	2.4	36
61	Relaxed Selection During a Recent Human Expansion. Genetics, 2018, 208, 763-777.	1.2	49
62	Deleterious variation shapes the genomic landscape of introgression. PLoS Genetics, 2018, 14, e1007741.	1.5	95
63	Patterns of variation in cis-regulatory regions: examining evidence of purifying selection. BMC Genomics, 2018, 19, 95.	1.2	8
64	Frequency of genetic variants associated with arrhythmogenic right ventricular cardiomyopathy in the genome aggregation database. European Journal of Human Genetics, 2018, 26, 1312-1318.	1.4	31
65	Human demographic history has amplified the effects of background selection across the genome. PLoS Genetics, 2018, 14, e1007387.	1.5	71
66	Nearly Neutral Evolution across the Drosophila melanogaster Genome. Molecular Biology and Evolution, 2018, 35, 2685-2694.	3.5	32
67	Direct Evidence of an Increasing Mutational Load in Humans. Molecular Biology and Evolution, 2019, 36, 2823-2829.	3.5	12
68	Uganda Genome Resource Enables Insights into Population History and Genomic Discovery in Africa. Cell, 2019, 179, 984-1002.e36.	13.5	152
69	Linked Mutations at Adjacent Nucleotides Have Shaped Human Population Differentiation and Protein Evolution. Genome Biology and Evolution, 2019, 11, 759-775.	1.1	9
70	Allele frequency of pathogenic variants related to adultâ€onset Mendelian diseases. Clinical Genetics, 2019, 96, 226-235.	1.0	4
71	Applicability of the Mutation–Selection Balance Model to Population Genetics of Heterozygous Protein-Truncating Variants in Humans. Molecular Biology and Evolution, 2019, 36, 1701-1710.	3.5	27
72	Stability of petal color polymorphism: the significance of anthocyanin accumulation in photosynthetic tissues. BMC Plant Biology, 2019, 19, 496.	1.6	18
73	Population size influences the type of nucleotide variations in humans. BMC Genetics, 2019, 20, 93.	2.7	2
74	Multiple episodes of interbreeding between Neanderthal and modern humans. Nature Ecology and Evolution, 2019, 3, 39-44.	3.4	148

#	Article	IF	CITATIONS
75	Exploring rare and low-frequency variants in the Saguenay–Lac-Saint-Jean population identified genes associated with asthma and allergy traits. European Journal of Human Genetics, 2019, 27, 90-101.	1.4	15
76	Impact of Mutation Rate and Selection at Linked Sites on DNA Variation across the Genomes of Humans and Other Homininae. Genome Biology and Evolution, 2020, 12, 3550-3561.	1.1	18
77	From Drift to Draft: How Much Do Beneficial Mutations Actually Contribute to Predictions of Ohta's Slightly Deleterious Model of Molecular Evolution?. Genetics, 2020, 214, 1005-1018.	1.2	25
78	The spatial Muller's ratchet: Surfing of deleterious mutations during range expansion. Theoretical Population Biology, 2020, 135, 19-31.	0.5	5
79	Mitochondrial DNA Sequence Diversity in Mammals: A Correlation between the Effective and Census Population Sizes. Genome Biology and Evolution, 2020, 12, 2441-2449.	1.1	13
80	Inference of natural selection from ancient DNA. Evolution Letters, 2020, 4, 94-108.	1.6	58
81	The Temporal Dynamics of Background Selection in Nonequilibrium Populations. Genetics, 2020, 214, 1019-1030.	1.2	23
82	The influence of evolutionary history on human health and disease. Nature Reviews Genetics, 2021, 22, 269-283.	7.7	133
83	Deleterious variants in genes regulating mammalian reproduction in Neanderthals, Denisovans and extant humans. Human Reproduction, 2021, 36, 734-755.	0.4	5
84	Probing the aggregated effects of purifying selection per individual on 1,380 medical phenotypes in the UK Biobank. PLoS Genetics, 2021, 17, e1009337.	1.5	2
85	The inflated significance of neutral genetic diversity in conservation genetics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	222
86	The Counteracting Effects of Demography on Functional Genomic Variation: The Roma Paradigm. Molecular Biology and Evolution, 2021, 38, 2804-2817.	3.5	14
87	Genetic load has potential in large populations but is realized in small inbred populations. Evolutionary Applications, 2021, 14, 1540-1557.	1.5	58
88	Cutaneous and hepatic vascular lesions due to a recurrent somatic GJA4 mutation reveal a pathway for vascular malformation. Human Genetics and Genomics Advances, 2021, 2, 100028.	1.0	12
92	Authors' Reply to Letter to the Editor: Neutral genetic diversity as a useful tool for conservation biology. Conservation Genetics, 2021, 22, 547-549.	0.8	0
93	Genome of PeÅŸtera Muierii skull shows high diversity and low mutational load in pre-glacial Europe. Current Biology, 2021, 31, 2973-2983.e9.	1.8	18
97	The genetic consequences of dog breed formation—Accumulation of deleterious genetic variation and fixation of mutations associated with myxomatous mitral valve disease in cavalier King Charles spaniels. PLoS Genetics, 2021, 17, e1009726.	1.5	12
98	Bottleneckâ€associated changes in the genomic landscape of genetic diversity in wild lynx populations. Evolutionary Applications, 2021, 14, 2664-2679.	1.5	7

#	Article	IF	CITATIONS
99	Demographic history and patterns of molecular evolution from whole genome sequencing in the radiation of Galapagos giant tortoises. Molecular Ecology, 2021, 30, 6325-6339.	2.0	7
100	Genomic signatures of inbreeding and mutation load in a threatened rattlesnake. Molecular Ecology, 2021, 30, 5454-5469.	2.0	20
101	Maintenance of Adaptive Dynamics and No Detectable Load in a Range-Edge Outcrossing Plant Population. Molecular Biology and Evolution, 2021, 38, 1820-1836.	3.5	24
119	The Strength of Selection against Neanderthal Introgression. PLoS Genetics, 2016, 12, e1006340.	1.5	257
120	Inference of Candidate Germline Mutator Loci in Humans from Genome-Wide Haplotype Data. PLoS Genetics, 2017, 13, e1006549.	1.5	22
121	Genetic Variants in DNA Double-Strand Break Repair Genes and Risk of Salivary Gland Carcinoma: A Case-Control Study. PLoS ONE, 2015, 10, e0128753.	1.1	4
122	Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. ELife, 2016, 5, .	2.8	147
123	The comparative population genetics of <i>Neisseria meningitidis</i> and <i>Neisseria gonorrhoeae</i> . PeerJ, 2019, 7, e7216.	0.9	20
143	Whole-exome analysis in Tunisian Imazighen and Arabs shows the impact of demography in functional variation. Scientific Reports, 2021, 11, 21125.	1.6	4
144	Not out of the woods yet: Signatures of the prolonged negative genetic consequences of a population bottleneck in a rapidly reâ€expanding wader, the blackâ€faced spoonbill <i>Platalea minor</i> . Molecular Ecology, 2022, 31, 529-545.	2.0	3
146	Genomic evidence for inbreeding depression and purging of deleterious genetic variation in Indian tigers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	80
147	Overcoming constraints on the detection of recessive selection in human genes from population frequency data. American Journal of Human Genetics, 2022, 109, 33-49.	2.6	5
148	Genomic analyses reveal rangeâ€wide devastation of sea otter populations. Molecular Ecology, 2023, 32, 281-298.	2.0	12
149	Haplotype-based inference of the distribution of fitness effects. Genetics, 2022, 220, .	1.2	1
150	Dominance Can Increase Genetic Variance After a Population Bottleneck: A Synthesis of the Theoretical and Empirical Evidence. Journal of Heredity, 2022, 113, 257-271.	1.0	2
151	Genetic load: genomic estimates and applications in non-model animals. Nature Reviews Genetics, 2022, 23, 492-503.	7.7	82
152	Purging of deleterious burden in the endangered Iberian lynx. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110614119.	3.3	32
153	Ancient Demographics Determine the Effectiveness of Genetic Purging in Endangered Lizards. Molecular Biology and Evolution, 2022, 39, .	3.5	22

#	Article	IF	CITATIONS
155	The critically endangered vaquita is not doomed to extinction by inbreeding depression. Science, 2022, 376, 635-639.	6.0	49
158	Evaluating the persistence and utility of five wild <i>Vitis</i> species in the context of climate change. Molecular Ecology, 2022, 31, 6457-6472.	2.0	7
159	Deleterious Variation in Natural Populations and Implications for Conservation Genetics. Annual Review of Animal Biosciences, 2023, 11, 93-114.	3.6	32
162	Insights into the differentiation and adaptation within Circaeasteraceae from Circaeaster agrestis genome sequencing and resequencing. IScience, 2023, 26, 106159.	1.9	0
163	An evolutionary perspective on genetic load in small, isolated populations as informed by whole genome resequencing and forward-time simulations. Evolution; International Journal of Organic Evolution, 2023, 77, 690-704.	1.1	13
164	The efficacy of selection may increase or decrease with selfing depending upon the recombination environment. Evolution; International Journal of Organic Evolution, 2023, 77, 394-408.	1.1	3
165	Inbreeding depression explains killer whale population dynamics. Nature Ecology and Evolution, 2023, 7, 675-686.	3.4	24
166	Population genomic analysis provides evidence of the past success and future potential of South China tiger captive conservation. BMC Biology, 2023, 21, .	1.7	3