Visible-light driven heterojunction photocatalysts for w

Energy and Environmental Science 8, 731-759 DOI: 10.1039/c4ee03271c

Citation Report

#	Article	IF	CITATIONS
3	TiO2-Fe2O3 and Co3O4-Fe2O3 nanocomposites analyzed by X-ray Photoelectron Spectroscopy. Surface Science Spectra, 2015, 22, 34-46.	0.3	7
4	Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation. APL Materials, 2015, 3, .	2.2	92
5	Fe ₂ O ₃ –TiO ₂ Nanoâ€heterostructure Photoanodes for Highly Efficient Solar Water Oxidation. Advanced Materials Interfaces, 2015, 2, 1500313.	1.9	103
6	Design of a Metal Oxide–Organic Framework (MoOF) Foam Microreactor: Solarâ€Induced Direct Pollutant Degradation and Hydrogen Generation. Advanced Materials, 2015, 27, 7713-7719.	11.1	86
7	Multichannelâ€Improved Chargeâ€Carrier Dynamics in Wellâ€Designed Heteroâ€nanostructural Plasmonic Photocatalysts toward Highly Efficient Solarâ€ŧoâ€Fuels Conversion. Advanced Materials, 2015, 27, 5906-5914.	11.1	239
8	Metallocorroles as Photocatalysts for Driving Endergonic Reactions, Exemplified by Bromide to Bromine Conversion. Angewandte Chemie, 2015, 127, 12547-12550.	1.6	10
9	High Throughput Discovery of Solar Fuels Photoanodes in the CuO–V ₂ O ₅ System. Advanced Energy Materials, 2015, 5, 1500968.	10.2	82
10	Charge Transfer and Photocatalytic Activity in CuO/TiO ₂ Nanoparticle Heterojunctions Synthesised through a Rapid, Oneâ€Pot, Microwave Solvothermal Route. ChemCatChem, 2015, 7, 1659-1667.	1.8	87
11	Anisotropic relaxation of a CuO/TiO ₂ surface under an electric field and its impact on visible light absorption: ab initio calculations. Physical Chemistry Chemical Physics, 2015, 17, 17880-17886.	1.3	7
12	Crystal Surfaces and Fate of Photogenerated Defects in Shape-Controlled Anatase Nanocrystals: Drawing Useful Relations to Improve the H ₂ Yield in Methanol Photosteam Reforming. Journal of Physical Chemistry C, 2015, 119, 12385-12393.	1.5	50
13	Origin of High Photocatalytic Efficiency in Monolayer g-C ₃ N ₄ /CdS Heterostructure: A Hybrid DFT Study. Journal of Physical Chemistry C, 2015, 119, 28417-28423.	1.5	345
14	Metal–Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 28223-28230.	4.0	145
15	Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese Journal of Catalysis, 2015, 36, 2049-2070.	6.9	458
16	Electronic Structure and Photocatalytic Water-Splitting Properties of Ag ₂ ZnSn(S _{1–<i>x</i>} Se _{<i>x</i>}) ₄ . Journal of Physical Chemistry C, 2015, 119, 27900-27908.	1.5	68
17	On the role of CoO in CoO _x /TiO ₂ for the photocatalytic hydrogen production from water in the presence of glycerol. Journal of Lithic Studies, 2015, 1, 192-200.	0.1	19
18	Efficient water oxidation under visible light by tuning surface defects on ceria nanorods. Journal of Materials Chemistry A, 2015, 3, 20465-20470.	5.2	82
19	Ag3PO4/Ag2CO3 p–n heterojunction composites with enhanced photocatalytic activity under visible light. Chinese Journal of Catalysis, 2015, 36, 2186-2193.	6.9	34
20	A Method for Synthesis of Renewable Cu ₂ O Junction Composite Electrodes and Their Photoelectrochemical Properties. ACS Sustainable Chemistry and Engineering, 2015, 3, 710-717.	3.2	50

#	Article	IF	CITATIONS
21	Synthesizing Nanoparticles of Co-P-Se compounds as Electrocatalysts for the Hydrogen Evolution Reaction. Electrochimica Acta, 2015, 165, 206-210.	2.6	54
22	α-Fe ₂ O ₃ /NiOOH: An Effective Heterostructure for Photoelectrochemical Water Oxidation. ACS Catalysis, 2015, 5, 5292-5300.	5.5	219
23	Enhancing visible light photocatalytic activity of BiOBr/rod-like BiPO ₄ through a heterojunction by a two-step method. RSC Advances, 2015, 5, 63930-63935.	1.7	18
24	Performance improvement by using ammonia water-synthesized TiO2 nanotubes with nanowire porous film mixed nanostructures. Journal of Materials Chemistry A, 2015, 3, 16089-16096.	5.2	12
25	Solar fuel production: Strategies and new opportunities with nanostructures. Nano Today, 2015, 10, 468-486.	6.2	126
26	Morphology transformation of Cu2O sub-microstructures by Sn doping for enhanced photocatalytic properties. Journal of Alloys and Compounds, 2015, 649, 1124-1129.	2.8	36
27	Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. Chemical Society Reviews, 2015, 44, 7808-7828.	18.7	406
28	Realizing chemical codoping in TiO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 17989-17994.	1.3	14
29	Recent progress in photocathodes for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 15824-15837.	5.2	160
30	Photodegradation of Rhodamine B over Ag modified ferroelectric BaTiO ₃ under simulated solar light: pathways and mechanism. RSC Advances, 2015, 5, 30372-30379.	1.7	67
31	A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. Energy and Environmental Science, 2015, 8, 1443-1449.	15.6	90
32	Facile structure design based on C ₃ N ₄ for mediator-free Z-scheme water splitting under visible light. Catalysis Science and Technology, 2015, 5, 3416-3422.	2.1	88
33	Modification Strategies with Inorganic Acids for Efficient Photocatalysts by Promoting the Adsorption of O ₂ . ACS Applied Materials & Interfaces, 2015, 7, 22727-22740.	4.0	68
34	Solar-microbial hybrid device based on oxygen-deficient niobium pentoxide anodes for sustainable hydrogen production. Chemical Science, 2015, 6, 6799-6805.	3.7	51
35	Metallocorroles as Photocatalysts for Driving Endergonic Reactions, Exemplified by Bromide to Bromine Conversion. Angewandte Chemie - International Edition, 2015, 54, 12370-12373.	7.2	43
36	BiOl–BiVO 4 photoanodes with significantly improved solar water splitting capability: p–n junction to expand solar adsorption range and facilitate charge carrier dynamics. Nano Energy, 2015, 18, 222-231.	8.2	199
37	Modified Solvothermal Strategy for Straightforward Synthesis of Cubic NaNbO ₃ Nanowires with Enhanced Photocatalytic H ₂ Evolution. Journal of Physical Chemistry C, 2015, 119, 25956-25964.	1.5	48
38	Investigating the Dispersion Behavior in Solvents, Biocompatibility, and Use as Support for Highly Efficient Metal Catalysts of Exfoliated Graphitic Carbon Nitride. ACS Applied Materials & Interfaces, 2015, 7, 24032-24045.	4.0	57

#	Article	IF	CITATIONS
39	Assembly and Photocarrier Dynamics of Heterostructured Nanocomposite Photoanodes from Multicomponent Colloidal Nanocrystals. Nano Letters, 2015, 15, 7347-7354.	4.5	26
40	Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale, 2015, 7, 19764-19788.	2.8	327
41	Simultaneous doping and heterojunction of silver on Na ₂ Ta ₂ O ₆ nanoparticles for visible light driven photocatalysis: the relationship between tunable optical absorption, defect chemistry and photocatalytic activity. CrystEngComm, 2015, 17, 6651-6660.	1.3	38
42	Metal Ni-loaded g-C ₃ N ₄ for enhanced photocatalytic H ₂ evolution activity: the change in surface band bending. Physical Chemistry Chemical Physics, 2015, 17, 29899-29905.	1.3	162
43	Effect of Rh oxide as a cocatalyst over Bi 0.5 Y 0.5 VO 4 on photocatalytic overall water splitting. Applied Surface Science, 2015, 355, 1069-1074.	3.1	22
44	Facile preparation of BiVO4 nanoparticle film by electrostatic spray pyrolysis for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2015, 40, 12964-12972.	3.8	29
45	Novel ternary component Ag-SrTa2O6/g-C3N4 photocatalyst: Synthesis, optical properties and visible light photocatalytic activity. Applied Surface Science, 2015, 358, 213-222.	3.1	30
46	Visible-light driven water splitting over BiFeO ₃ photoanodes grown via the LPCVD reaction of [Bi(O ^t Bu) ₃] and [Fe(O ^t Bu) ₃] ₂ and enhanced with a surface nickel oxygen evolution catalyst. Nanoscale, 2015, 7, 16343-16353.	2.8	55
47	Nanocarbons with Different Dimensions as Noble-Metal-Free Co-Catalysts for Photocatalysts. Catalysts, 2016, 6, 111.	1.6	7
48	The Applications of Morphology Controlled ZnO in Catalysis. Catalysts, 2016, 6, 188.	1.6	110
49	A Novel Delafossite Structured Visible-Light Sensitive AgFeO2 Photocatalyst: Preparation, Photocatalytic Properties, and Reaction Mechanism. Catalysts, 2016, 6, 69.	1.6	47
50	Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances. Molecules, 2016, 21, 900.	1.7	447
51	Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst. Nanomaterials, 2016, 6, 194.	1.9	79
52	Tris(bipyridine)Metal(II)-Templated Assemblies of 3D Alkali-Ruthenium Oxalate Coordination Frameworks: Crystal Structures, Characterization and Photocatalytic Activity in Water Reduction. Polymers, 2016, 8, 48.	2.0	21
53	Recent Advances in Visible-Light Driven Photocatalysis. , 0, , .		2
54	Photocatalysts Based on Cobalt-Chelating Conjugated Polymers for Hydrogen Evolution from Water. Chemistry of Materials, 2016, 28, 5394-5399.	3.2	81
55	Soft Photocatalysis: Organic Polymers for Solar Fuel Production. Chemistry of Materials, 2016, 28, 5191-5204.	3.2	208
56	A Visibleâ€Lightâ€Active Heterojunction with Enhanced Photocatalytic Hydrogen Generation. ChemSusChem, 2016, 9, 1869-1879.	3.6	42

#	Article	IF	CITATIONS
57	Ultrathin Amorphous Ni(OH) ₂ Nanosheets on Ultrathin <i>α</i> â€Fe ₂ O ₃ Films for Improved Photoelectrochemical Water Oxidation. Advanced Materials Interfaces, 2016, 3, 1600256.	1.9	53
58	Presence of nitrateNO3a ects animal production, photocalysis is a possible solution. Journal of Physics: Conference Series, 2016, 687, 012019.	0.3	ο
59	The g ₃ N ₄ /C ₂ N Nanocomposite: A g ₃ N ₄ â€Based Waterâ€6plitting Photocatalyst with Enhanced Energy Efficiency. ChemPhysChem, 2016, 17, 2100-2104.	1.0	118
60	Silver nanoparticles-sensitized cobalt complex for highly-efficient photocatalytic activity. Applied Catalysis B: Environmental, 2016, 199, 342-349.	10.8	19
61	Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO ₄ Photoanode. ACS Applied Materials & Interfaces, 2016, 8, 18577-18583.	4.0	92
62	Charge Carriers Separation at the Graphene/(101) Anatase TiO ₂ Interface. Advanced Materials Interfaces, 2016, 3, 1500624.	1.9	37
63	New Insights into Defectâ€Mediated Heterostructures for Photoelectrochemical Water Splitting. Advanced Energy Materials, 2016, 6, 1502268.	10.2	95
64	Progress in Black Titania: A New Material for Advanced Photocatalysis. Advanced Energy Materials, 2016, 6, 1600452.	10.2	251
65	NH3-treated MoS2 nanosheets as photocatalysts for enhanced H2 evolution under visible-light irradiation. Journal of Alloys and Compounds, 2016, 688, 368-375.	2.8	35
66	Oxideâ€Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. Angewandte Chemie - International Edition, 2016, 55, 4215-4219.	7.2	176
67	Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible‣ight Photoelectrochemical Hydrogen Evolution. Advanced Materials, 2016, 28, 4935-4942.	11.1	95
68	Preparation of the TiO ₂ /Graphic Carbon Nitride Core–Shell Array as a Photoanode for Efficient Photoelectrochemical Water Splitting. Langmuir, 2016, 32, 13322-13332.	1.6	76
69	Ferrites as Photocatalysts for Water Splitting and Degradation of Contaminants. ACS Symposium Series, 2016, , 79-112.	0.5	10
70	Time-resolved photoluminescence of anatase/rutile TiO2 phase junction revealing charge separation dynamics. Chinese Journal of Catalysis, 2016, 37, 2059-2068.	6.9	55
71	Synthesis of belt-like BiOBr hierarchical nanostructure with high photocatalytic performance. Materials Research Bulletin, 2016, 77, 171-177.	2.7	32
72	Stability and self-passivation of copper vanadate photoanodes under chemical, electrochemical, and photoelectrochemical operation. Physical Chemistry Chemical Physics, 2016, 18, 9349-9352.	1.3	56
73	Thickness-determined photocatalytic performance of bismuth tungstate nanosheets. RSC Advances, 2016, 6, 31744-31750.	1.7	20
74	Plasmonic layer enhanced photoelectrochemical response of Fe2O3 photoanodes. Journal of Power Sources, 2016, 315, 152-160.	4.0	28

#	Article	IF	CITATIONS
75	Catalytic water dissociation by greigite Fe ₃ S ₄ surfaces: density functional theory study. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160080.	1.0	17
76	Morphology regulation and surface modification of hematite nanorods by aging in phosphate solutions for efficient PEC water splitting. International Journal of Hydrogen Energy, 2016, 41, 6211-6219.	3.8	14
77	Hydrothermal synthesis of a uniform sub-micrometer-spherical Zn _{0.83} Cd _{0.17} S photocatalyst with high activity for photocatalytic hydrogen production. RSC Advances, 2016, 6, 51997-52003.	1.7	2
78	Uniform spatial distribution of a nanostructured Ag/AgCl plasmonic photocatalyst and its segregative membrane towards visible light-driven photodegradation. CrystEngComm, 2016, 18, 3725-3733.	1.3	10
79	Enhancement of g-C 3 N 4 nanosheets photocatalysis by synergistic interaction of ZnS microsphere and RGO inducing multistep charge transfer. Applied Catalysis B: Environmental, 2016, 198, 200-210.	10.8	165
80	Continuous solid solutions of Na _{0.5} La _{0.5} TiO ₃ –LaCrO ₃ for photocatalytic H ₂ evolution under visible-light irradiation. RSC Advances, 2016, 6, 51801-51806.	1.7	9
81	Photosensitization of ZnO by AgBr and Ag2CO3: Nanocomposites with tandem n-n heterojunctions and highly enhanced visible-light photocatalytic activity. Journal of Colloid and Interface Science, 2016, 474, 103-113.	5.0	84
82	Fabrication of Fe ₂ TiO ₅ /TiO ₂ nanoheterostructures with enhanced visible-light photocatalytic activity. RSC Advances, 2016, 6, 45343-45348.	1.7	38
83	Fabrication of high-activity hybrid NiTiO3/g-C3N4 heterostructured photocatalysts for water splitting to enhanced hydrogen production. Ceramics International, 2016, 42, 12297-12305.	2.3	73
84	Bottlenecks limiting efficiency of photocatalytic water reduction by mixed Cd-Zn sulfides/Pt-TiO 2 composites. Applied Catalysis B: Environmental, 2016, 198, 16-24.	10.8	13
85	Graphitic Carbon Nitride (g-C ₃ N ₄)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?. Chemical Reviews, 2016, 116, 7159-7329.	23.0	5,505
86	A Place in the Sun for Artificial Photosynthesis?. ACS Energy Letters, 2016, 1, 121-135.	8.8	163
87	A wafer-scale antireflective protection layer of solution-processed TiO ₂ nanorods for high performance silicon-based water splitting photocathodes. Journal of Materials Chemistry A, 2016, 4, 9477-9485.	5.2	47
88	Cerium-doped gehlenite supporting silver/silver chloride for continuous photocatalysis. RSC Advances, 2016, 6, 37995-38003.	1.7	9
89	Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals for photocatalytic hydrogen production. Nano Research, 2016, 9, 726-734.	5.8	41
90	Graphene quantum dots-decorated ZnS nanobelts with highly efficient photocatalytic performances. RSC Advances, 2016, 6, 24115-24120.	1.7	56
91	Generation of Hydrogen by Visible Lightâ€Induced Water Splitting with the Use of Semiconductors and Dyes. Small, 2016, 12, 16-23.	5.2	44
92	Direct photocatalytic hydrogen evolution from water splitting using nanostructures of hydrate organic small molecule as photocatalysts. Journal of Materials Chemistry A, 2016, 4, 6577-6584.	5.2	16

#	Article	IF	CITATIONS
93	Nanocatalysts for Solar Water Splitting and a Perspective on Hydrogen Economy. Chemistry - an Asian Journal, 2016, 11, 22-42.	1.7	74
94	Electrochemical growth of triazine based metal ion containing polymers on nanostructured nickel electrodeposits and their hydrogen evolution activities in acidic condition. International Journal of Hydrogen Energy, 2016, 41, 8829-8838.	3.8	10
95	Photo-enhanced salt-water splitting using orthorhombic Ag8SnS6 photoelectrodes in photoelectrochemical cells. Journal of Power Sources, 2016, 317, 81-92.	4.0	41
96	Constructing a novel carbon nitride/polyaniline/ZnO ternary heterostructure with enhanced photocatalytic performance using exfoliated carbon nitride nanosheets as supports. Journal of Hazardous Materials, 2016, 314, 67-77.	6.5	113
97	Silver nanoparticles modified reduced graphene oxide wrapped Ag ₃ PO ₄ /TiO ₂ visible-light-active photocatalysts with superior performance. RSC Advances, 2016, 6, 43697-43706.	1.7	21
98	Photosensitization of ZnO with Ag 3 VO 4 and Agl nanoparticles: Novel ternary visible-light-driven photocatalysts with highly enhanced activity. Advanced Powder Technology, 2016, 27, 1427-1437.	2.0	38
99	Ultrafine NiO Nanosheets Stabilized by TiO ₂ from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst. Journal of the American Chemical Society, 2016, 138, 6517-6524.	6.6	597
100	Sono-dispersion of CuS-CdS over TiO 2 in one-pot hydrothermal reactor as visible-light-driven nanostructured photocatalyst. Journal of Molecular Catalysis A, 2016, 424, 283-296.	4.8	66
101	Nanostructured hybrid materials based on reduced graphene oxide for solar energy conversion. , 2016, , .		3
102	Facile fabrication of metal-free urchin-like g-C ₃ N ₄ with superior photocatalytic activity. RSC Advances, 2016, 6, 94496-94501.	1.7	19
103	Fabrication of TiO ₂ /CdS/Ag ₂ S Nanoâ€Heterostructured Photoanode for Enhancing Photoelectrochemical and Photocatalytic Activity under Visible Light. ChemistrySelect, 2016, 1, 4891-4900.	0.7	18
104	Photocatalytic Properties of All Four Polymorphs of Nanostructured Iron Oxyhydroxides. ChemNanoMat, 2016, 2, 1047-1054.	1.5	38
105	Co ₃ (OH) ₂ (HPO ₄) ₂ as a novel photocatalyst for O ₂ evolution under visible-light irradiation. Catalysis Science and Technology, 2016, 6, 8080-8088.	2.1	27
106	Fe2O3-TiO2 nanocomposites on activated carbon fibers by a plasma-assisted approach. Surface and Coatings Technology, 2016, 307, 352-358.	2.2	10
107	In Situ Synthesis of V ⁴⁺ and Ce ³⁺ Self-Doped BiVO ₄ /CeO ₂ Heterostructured Nanocomposites with High Surface Areas and Enhanced Visible-Light Photocatalytic Activity. Journal of Physical Chemistry C, 2016, 120, 18548-18559.	1.5	68
108	Direct preparation of hierarchical macroporous <i>l²</i> -SiC using SiO ₂ opal as both template and precursor and its application in water splitting. Materials Technology, 2016, 31, 526-531.	1.5	2
109	Novel g-C 3 N 4 /Ag 2 SO 4 nanocomposites: Fast microwave-assisted preparation and enhanced photocatalytic performance towards degradation of organic pollutants under visible light. Journal of Colloid and Interface Science, 2016, 482, 165-174.	5.0	76
110	Optimization hydrogen production over visible light-driven titania-supported bimetallic photocatalyst from water photosplitting in tandem photoelectrochemical cell. Renewable Energy, 2016, 99, 960-970.	4.3	25

#	Article	IF	Citations
111	UV-visible and near-infrared active NaGdF ₄ :Yb:Er/Ag/TiO ₂ nanocomposite for enhanced photocatalytic applications. RSC Advances, 2016, 6, 80655-80665.	1.7	18
112	Symmetry breaking in semiconductor nanocrystals via kinetic-controlled surface diffusion: a strategy for manipulating the junction structure. Nanoscale, 2016, 8, 15970-15977.	2.8	8
113	BiOl–TiO ₂ Nanocomposites for Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 2016, 3, 1500273.	1.9	34
114	Perovskite Solar Cells for the Generation of Fuels from Sunlight. , 2016, , 285-305.		4
115	Highly efficient three-dimensional flower-like AgI/Bi2O2CO3 heterojunction with enhanced photocatalytic performance. Journal of Alloys and Compounds, 2016, 688, 225-234.	2.8	42
116	Valence band offsets of Sc _{<i>x</i>} Ga _{1â^'<i>x</i>} N/AlN and Sc _{<i>x</i>} Ga _{1â^'<i>x</i>} N/GaN heterojunctions. Journal Physics D: Applied Physics, 2016, 49, 265110.	1.3	6
117	Fabrication of an Efficient BiVO ₄ –TiO ₂ Heterojunction Photoanode for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 20032-20039.	4.0	116
118	Au–Pt alloy nanoparticles site-selectively deposited on Caln ₂ S ₄ nanosteps as efficient photocatalysts for hydrogen production. Journal of Materials Chemistry A, 2016, 4, 12630-12637.	5.2	55
119	Modellierung, Simulation und Implementierung von Zellen für die solargetriebene Wasserspaltung. Angewandte Chemie, 2016, 128, 13168-13183.	1.6	10
120	ZnS@g-C3N4 Composite Photocatalysts: In Situ Synthesis and Enhanced Visible-Light Photocatalytic Activity. Catalysis Letters, 2016, 146, 2185-2192.	1.4	30
121	Highly Efficient Water Oxidation Photoanode Made of Surface Modified LaTiO ₂ N Particles. Small, 2016, 12, 5468-5476.	5.2	42
122	Striving Toward Visible Light Photocatalytic Water Splitting Based on Natural Silicate Clay Mineral: The Interface Modification of Attapulgite at the Atomic-Molecular Level. ACS Sustainable Chemistry and Engineering, 2016, 4, 4601-4607.	3.2	43
123	Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation. Nano Energy, 2016, 28, 296-303.	8.2	231
124	Enhanced photocatalytic behavior of BiVO4 through photoinduced charge transfer to amorphous β-FeOOH nanoparticles. Ceramics International, 2016, 42, 17773-17780.	2.3	10
125	Surface Natrotantite Phase Induced Efficient Charge Carrier Separation and Highly Active Surface of TaON for Superior Enhanced Photocatalytic Performance. Advanced Materials Interfaces, 2016, 3, 1600429.	1.9	9
126	An in Situ Sulfidation Approach for the Integration of MoS ₂ Nanosheets on Carbon Fiber Paper and the Modulation of Its Electrocatalytic Activity by Interfacing with <i>n</i> C ₆₀ . ACS Catalysis, 2016, 6, 6246-6254.	5.5	60
127	Extending the π-Conjugation of g-C ₃ N ₄ by Incorporating Aromatic Carbon for Photocatalytic H ₂ Evolution from Aqueous Solution. ACS Sustainable Chemistry and Engineering, 2016, 4, 5989-5997.	3.2	135
128	An oxygen-vacancy rich 3D novel hierarchical MoS ₂ /BiOI/Agl ternary nanocomposite: enhanced photocatalytic activity through photogenerated electron shuttling in a Z-scheme manner. Physical Chemistry Chemical Physics, 2016, 18, 24984-24993.	1.3	119

#	Article	IF	CITATIONS
129	One-step hydrothermal synthesis of Zn x Cd 1â~'x S/ZnO heterostructures for efficient photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 15208-15217.	3.8	30
130	Photochemical CO ₂ reduction using structurally controlled g-C ₃ N ₄ . Physical Chemistry Chemical Physics, 2016, 18, 24825-24829.	1.3	89
131	Combinatorial fabrication of composite nanorods using oblique angle co-deposition. Nanotechnology, 2016, 27, 365304.	1.3	6
132	Charge Transport in Twoâ€Photon Semiconducting Structures for Solar Fuels. ChemSusChem, 2016, 9, 2878-2904.	3.6	39
133	Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts. Applied Surface Science, 2016, 389, 760-767.	3.1	56
134	Synthesis of BiOBr/carbon quantum dots microspheres with enhanced photoactivity and photostability under visible light irradiation. Applied Catalysis A: General, 2016, 527, 127-136.	2.2	70
135	Insight into Cd0.9Zn0.1S solid-solution nanotetrapods: Growth mechanism and their application for photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2016, 41, 20455-20464.	3.8	26
136	Partial Ion Exchange Derived 2D Cu–Zn–In–S Nanosheets as Sensitizers of 1D TiO ₂ Nanorods for Boosting Solar Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 26235-26243.	4.0	40
137	One-step construction of {001} facet-exposed BiOCl hybridized with Al ₂ O ₃ for enhanced molecular oxygen activation. Catalysis Science and Technology, 2016, 6, 7985-7995.	2.1	45
138	Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting. Nano Energy, 2016, 30, 728-744.	8.2	112
139	Enhanced charge separation and transfer through Fe2O3/ITO nanowire arrays wrapped with reduced graphene oxide for water-splitting. Nano Energy, 2016, 30, 892-899.	8.2	71
140	Catalyst-enhanced hydrothermal generation of highly pure compressed hydrogen gas from iron micro-powders. RSC Advances, 2016, 6, 86938-86942.	1.7	3
141	Anionic Dopants for Improved Optical Absorption and Enhanced Photocatalytic Hydrogen Production in Graphitic Carbon Nitride. Chemistry of Materials, 2016, 28, 7250-7256.	3.2	39
142	Donor–Acceptor Porous Conjugated Polymers for Photocatalytic Hydrogen Production: The Importance of Acceptor Comonomer. Macromolecules, 2016, 49, 6903-6909.	2.2	129
143	BiOX/BiOY (X, Y = F, Cl, Br, I) superlattices for visible light photocatalysis applications. RSC Advances, 2016, 6, 91508-91516.	1.7	41
144	Modeling, Simulation, and Implementation of Solarâ€Driven Waterâ€Splitting Devices. Angewandte Chemie - International Edition, 2016, 55, 12974-12988.	7.2	119
145	Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. Journal of Colloid and Interface Science, 2016, 480, 218-231.	5.0	381
146	Surfactant free, simple, morphological and defect engineered ZnO nanocatalyst: Effective study on sunlight driven and reusable photocatalytic properties. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329, 35-45.	2.0	24

#	Article		IF	CITATIONS
147	Electrochemical Doping Induced In Situ Homo-species for Enhanced Photoelectrochemical Performance on WO3 Nanoparticles Film Photoelectrodes. Electrochimica Acta, 2016, 210, 251-260).	2.6	28
148	Enhanced Hydrogen Evolution under Simulated Sunlight from Neutral Electrolytes on (ZnSe) _{0.85} (Culn _{0.7} Ga _{0.3} Se ₂) _{0.15Photocathodes Prepared by a Bilayer Method. Angewandte Chemie, 2016, 128, 15555-15559.}	>	1.6	8
149	Enhanced Hydrogen Evolution under Simulated Sunlight from Neutral Electrolytes on (ZnSe) _{0.85} (CuIn _{0.7} Ga _{0.3} Se ₂) _{0.15Photocathodes Prepared by a Bilayer Method. Angewandte Chemie - International Edition, 2016, 55 15329-15333.}		7.2	38
150	SECM evaluations of the crystal-facet-correlated photocatalytic activity of hematites for water splitting. Electrochemistry Communications, 2016, 73, 29-32.		2.3	8
151	Electrochemically activated NiSe-Ni x S y hybrid nanorods as efficient electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2016, 220, 536-544.		2.6	60
152	Au Multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect. Nano Energy, 2016, 30, 549-558.		8.2	98
153	Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly. Langmuir, 2016, 32, 12304-12322.		1.6	63
154	Photoelectrochemical and theoretical investigations of spinel type ferrites (M _{<i>x</i>} Fe _{3â^'<i>x</i>} O ₄) for water splitting: a mini-revie Journal of Photonics for Energy, 2016, 7, 012009.	w.	0.8	111
155	A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting. Scientific Reports, 2016, 6, 31406.		1.6	54
156	Exceptional performance of photoelectrochemical water oxidation of single-crystal rutile TiO2 nanorods dependent on the hole trapping of modified chloride. Scientific Reports, 2016, 6, 21430.		1.6	30
157	Codeposition of AgI and Ag2CrO4 on g-C3N4/Fe3O4 nanocomposite: Novel magnetically separable visible-light-driven photocatalysts with enhanced activity. Advanced Powder Technology, 2016, 27, 2496-2506.		2.0	33
158	Spatial separation of photo-generated electron-hole pairs in BiOBr/BiOI bilayer to facilitate water splitting. Scientific Reports, 2016, 6, 32764.		1.6	53
159	Heterostructured TiO ₂ Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. Small, 2016, 12, 1469-1478.		5.2	146
160	Oxideâ€Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. Angewandte Chemie, 2016, 128, 4287-4291.		1.6	33
161	Direct Generation of Fine Bi ₂ WO ₆ Nanocrystals on g ₃ N ₄ Nanosheets for Enhanced Photocatalytic Activity. ChemNanoM 2, 732-738.	at, 2016,	1.5	25
162	Photocatalytic Oxygen Evolution from Cobalt-Modified Nanocrystalline BiFeO3 Films Grown via Low-Pressure Chemical Vapor Deposition from Î ² -Diketonate Precursors. Crystal Growth and Design 2016, 16, 3818-3825.	,	1.4	20
163	Recent developments in visible-light photocatalytic degradation of antibiotics. Chinese Journal of Catalysis, 2016, 37, 792-799.		6.9	178
164	High performance nanoporous silicon photoelectrodes co-catalyzed with an earth abundant [Mo ₃ S ₁₃] ^{2â^'} nanocluster via drop coating. RSC Advances, 15610-15614.	2016, 6,	1.7	10

#	Article	IF	CITATIONS
165	A self-biased fuel cell with TiO2/g-C3N4 anode catalyzed alkaline pollutant degradation with light and without light—What is the degradation mechanism?. Electrochimica Acta, 2016, 210, 122-129.	2.6	36
166	Synthesis of novel metal nanoparitcles/SnNb2O6 nanosheets plasmonic nanocomposite photocatalysts with enhanced visible-light photocatalytic activity and mechanism insight. Journal of Alloys and Compounds, 2016, 685, 647-655.	2.8	41
167	Solar water splitting: Efficiency discussion. International Journal of Hydrogen Energy, 2016, 41, 11941-11948.	3.8	37
168	Accepting Excited High-Energy-Level Electrons and Catalyzing H ₂ Evolution of Dual-Functional Ag-TiO ₂ Modifier for Promoting Visible-Light Photocatalytic Activities of Nanosized Oxides. Journal of Physical Chemistry C, 2016, 120, 11831-11836.	1.5	27
169	Rational Design of Porous Conjugated Polymers and Roles of Residual Palladium for Photocatalytic Hydrogen Production. Journal of the American Chemical Society, 2016, 138, 7681-7686.	6.6	364
170	Mechanistic Insight into the Interaction Between a Titanium Dioxide Photocatalyst and Pd Cocatalyst for Improved Photocatalytic Performance. ACS Catalysis, 2016, 6, 4239-4247.	5.5	50
171	Tuning the composition of Bi _{<i>x</i>} W _{<i>y</i>} O nanorods towards zero bias PEC water splitting. Nanotechnology, 2016, 27, 255401.	1.3	12
172	Hybrid Dot–Disk Au-CuInS ₂ Nanostructures as Active Photocathode for Efficient Evolution of Hydrogen from Water. Chemistry of Materials, 2016, 28, 4358-4366.	3.2	62
173	Nbâ€Ðoped Hematite Nanorods for Efficient Solar Water Splitting: Electronic Structure Evolution versus Morphology Alteration. ChemNanoMat, 2016, 2, 704-711.	1.5	51
174	Nanofabrication of a Solidâ€State, Mesoporous Nanoparticle Composite for Efficient Photocatalytic Hydrogen Generation. ChemPlusChem, 2016, 81, 521-525.	1.3	9
175	Photosensitization of Fe3O4/ZnO by AgBr and Ag3PO4 to fabricate novel magnetically recoverable nanocomposites with significantly enhanced photocatalytic activity under visible-light irradiation. Ceramics International, 2016, 42, 15224-15234.	2.3	45
176	Builtâ€In Potential in Fe ₂ O ₃ â€Cr ₂ O ₃ Superlattices for Improved Photoexcited Carrier Separation. Advanced Materials, 2016, 28, 1616-1622.	11.1	24
177	Highly efficient photoanodes based on cascade structural semiconductors of Cu ₂ Se/CdSe/TiO ₂ : a multifaceted approach to achieving microstructural and compositional control. Journal of Materials Chemistry A, 2016, 4, 1336-1344.	5.2	14
178	Novel layer-by-layer assembly of rGO-hybridised ZnO sandwich thin films for the improvement of photo-catalysed hydrogen production. Journal of Energy Chemistry, 2016, 25, 336-344.	7.1	19
179	In situ growth of graphitic carbon nitride films on transparent conducting substrates via a solvothermal route for photoelectrochemical performance. RSC Advances, 2016, 6, 9916-9922.	1.7	45
180	Solar photochemical and thermochemical splitting of water. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150088.	1.6	22
181	Cobalt oxide nanoparticles on TiO ₂ nanorod/FTO as a photoanode with enhanced visible light sensitization. RSC Advances, 2016, 6, 9789-9795.	1.7	30
182	Hydrothermal generation of compressed hydrogen gas by iron powders. RSC Advances, 2016, 6, 8930-8934.	1.7	7

#	ARTICLE Enhanced Photoelectrochemical Performance of TiO2 Nanorod Arrays by a 500°C Annealing in Air: Insights into the Mechanism. Journal of Electronic Materials, 2016, 45, 648-653.	IF 1.0	CITATIONS
184	Photoelectrochemical cell for unassisted overall solar water splitting using a BiVO ₄ photoanode and Si nanoarray photocathode. RSC Advances, 2016, 6, 9905-9910.	1.7	64
185	A 3D triple-deck photoanode with a strengthened structure integrality: enhanced photoelectrochemical water oxidation. Nanoscale, 2016, 8, 3474-3481.	2.8	29
186	Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements. International Reviews in Physical Chemistry, 2016, 35, 1-36.	0.9	288
187	A pure organic heterostructure of μ-oxo dimeric iron(<scp>iii</scp>) porphyrin and graphitic-C ₃ N ₄ for solar H ₂ roduction from water. Journal of Materials Chemistry A, 2016, 4, 290-296.	5.2	117
188	Efficient utilization of photogenerated electrons and holes for photocatalytic selective organic syntheses in one reaction system using a narrow band gap CdS photocatalyst. Green Chemistry, 2016, 18, 3628-3639.	4.6	101
189	Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Applied Catalysis B: Environmental, 2016, 191, 130-137.	10.8	344
190	Chemically Immobilized Triazine Based Cu ^{II} S ₃ C ₃ N ₃ Metallopolymer on Copper as a Photocathode for Photoelectrochemical Hydrogen Evolution. Journal of the Electrochemical Society, 2016, 163, H402-H409.	1.3	11
191	Photoelectrochemical water splitting using Cu(In,Al)Se2 photoelectrodes developed via selenization of sputtered Cu–In–Al metal precursors. Solar Energy Materials and Solar Cells, 2016, 151, 120-130.	3.0	18
192	Electrocatalytic regeneration of atmospherically aged MoS ₂ nanostructures via solution-phase sulfidation. RSC Advances, 2016, 6, 26689-26695.	1.7	5
193	Facile fabrication of Bi2S3/SnS2 heterojunction photocatalysts with efficient photocatalytic activity under visible light. Journal of Alloys and Compounds, 2016, 674, 98-108.	2.8	77
194	Ultrasonic-assisted preparation of novel ternary ZnO/Ag 3 VO 4 /Ag 2 CrO 4 nanocomposites and their enhanced visible-light activities in degradation of different pollutants. Solid State Sciences, 2016, 55, 58-68.	1.5	23
195	Preparation of solid-state Z-scheme Bi 2 MoO 6 /MO (M Cu, Co 3/4 , or Ni) heterojunctions with internal electric field-improved performance in photocatalysis. Applied Catalysis B: Environmental, 2016, 188, 313-323.	10.8	156
196	Cobalt salophen functionalized SBA-15 as an active catalyst for photocatalytic water oxidation. RSC Advances, 2016, 6, 14416-14420.	1.7	4
197	Novel ternary g -C 3 N 4 /Fe 3 O 4 /Ag 2 CrO 4 nanocomposites: magnetically separable and visible-light-driven photocatalysts for degradation of water pollutants. Journal of Molecular Catalysis A, 2016, 415, 122-130.	4.8	155
198	Controlled synthesis of BiVO 4 photocatalysts: Evidence of the role of heterojunctions in their catalytic performance driven by visible-light. Applied Catalysis B: Environmental, 2016, 188, 87-97.	10.8	128
199	Mechanochemically synthesized m-BiVO ₄ nanoparticles for visible light photocatalysis. RSC Advances, 2016, 6, 15796-15802.	1.7	25
200	A facile one pot synthetic approach for C ₃ N ₄ –ZnS composite interfaces as heterojunctions for sunlight-induced multifunctional photocatalytic applications. RSC Advances, 2016, 6, 17800-17809.	1.7	55

#	ARTICLE	IF	CITATIONS
201	Wavelength-dependent differences in photocatalytic performance between BiOBr nanosheets with dominant exposed (0 0 1) and (0 1 0) facets. Applied Catalysis B: Environmental, 2016, 187, 342-349.	10.8	129
202	Polymer-Mediated Self-Assembly of TiO ₂ @Cu ₂ O Core–Shell Nanowire Array for Highly Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 6082-6092.	4.0	105
203	Ternary magnetic g-C 3 N 4 /Fe 3 O 4 /AgI nanocomposites: Novel recyclable photocatalysts with enhanced activity in degradation of different pollutants under visible light. Materials Chemistry and Physics, 2016, 174, 59-69.	2.0	76
204	Enhanced charge separation of rutile TiO ₂ nanorods by trapping holes and transferring electrons for efficient cocatalyst-free photocatalytic conversion of CO ₂ to fuels. Chemical Communications, 2016, 52, 5027-5029.	2.2	45
205	Synthesis of Cu 2 O nanoparticle films at room temperature for solar water splitting. Journal of Colloid and Interface Science, 2016, 471, 76-80.	5.0	17
206	Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity. Chemical Science, 2016, 7, 4832-4841.	3.7	252
207	Construction of inorganic–organic 2D/2D WO ₃ /g-C ₃ N ₄ nanosheet arrays toward efficient photoelectrochemical splitting of natural seawater. Physical Chemistry Chemical Physics, 2016, 18, 10255-10261.	1.3	118
208	Effect of the KOH chemical treatment on the optical and photocatalytic properties of BiVO4 thin films. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	8
209	Reporting performance in MoS2–TiO2 bilayer and heterojunction films based dye-sensitized photovoltaic devices. Journal of Alloys and Compounds, 2016, 672, 481-488.	2.8	18
210	Innovative CVD synthesis of Cu2O catalysts for CO oxidation. Applied Catalysis B: Environmental, 2016, 186, 10-18.	10.8	67
211	Crystal facet engineering of ZnO photoanode for the higher water splitting efficiency with proton transferable nafion film. Nano Energy, 2016, 20, 156-167.	8.2	99
212	Synthesis of MOF templated Cu/CuO@TiO ₂ nanocomposites for synergistic hydrogen production. Physical Chemistry Chemical Physics, 2016, 18, 4780-4788.	1.3	77
213	Highly efficient rutile TiO ₂ photocatalysts with single Cu(<scp>ii</scp>) and Fe(<scp>iii</scp>) surface catalytic sites. Journal of Materials Chemistry A, 2016, 4, 3127-3138.	5.2	73
214	Efficient hollow double-shell photocatalysts for the degradation of organic pollutants under visible light and in darkness. Journal of Materials Chemistry A, 2016, 4, 4413-4419.	5.2	41
215	Fe2O3–TiO2 core–shell nanorod arrays for visible light photocatalytic applications. Catalysis Today, 2016, 270, 51-58.	2.2	46
216	Tuning the Cu _x O nanorod composition for efficient visible light induced photocatalysis. Catalysis Science and Technology, 2016, 6, 2228-2238.	2.1	56
217	Thickness-dependent photocatalytic activity of bismuth oxybromide nanosheets with highly exposed (0) Tj ETQq	0 0 0 rgBT 10.8	/Overlock 10

218	Alkali metals incorporated ordered mesoporous tantalum oxide with enhanced photocatalytic activity for water splitting. Journal of Materials Chemistry A, 2016, 4, 3007-3017.	5.2	33
-----	---	-----	----

#	Article	IF	CITATIONS
219	Photoelectrocatalytic hydrogen production by water splitting using BiVO4 photoanodes. Chemical Engineering Journal, 2016, 286, 91-97.	6.6	73
220	Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe ₂ O ₃ photoanodes. Journal of Materials Chemistry A, 2016, 4, 2986-2994.	5.2	162
221	Intermediate formation during photodegradation of phenol using lanthanum doped tin dioxide nanoparticles. Research on Chemical Intermediates, 2016, 42, 3055-3069.	1.3	25
222	A review on photocatalysis for air treatment: From catalyst development to reactor design. Chemical Engineering Journal, 2017, 310, 537-559.	6.6	449
223	Employing Overlayers To Improve the Performance of Cu ₂ BaSnS ₄ Thin Film based Photoelectrochemical Water Reduction Devices. Chemistry of Materials, 2017, 29, 916-920.	3.2	61
224	n/n junctioned g-C ₃ N ₄ for enhanced photocatalytic H ₂ generation. Sustainable Energy and Fuels, 2017, 1, 317-323.	2.5	96
225	K3MB5O10 (M = Zn and Cd) with d10 configuration: Efficient and reusable catalysts for dehalogenation of halophenols. Applied Catalysis B: Environmental, 2017, 206, 599-607.	10.8	27
226	Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy and Environmental Science, 2017, 10, 772-779.	15.6	315
227	High performance magnetically recoverable g-C3N4/Fe3O4/Ag/Ag2SO3 plasmonic photocatalyst for enhanced photocatalytic degradation of water pollutants. Advanced Powder Technology, 2017, 28, 565-574.	2.0	60
228	Hydrothermal synthesis of CdS/CoWO 4 heterojunctions with enhanced visible light properties toward organic pollutants degradation. Ceramics International, 2017, 43, 5388-5395.	2.3	43
229	Visible-light-driven water splitting from dyeing wastewater using Pt surface-dispersed TiO 2 -based nanosheets. Journal of Alloys and Compounds, 2017, 699, 183-192.	2.8	24
230	WO ₃ /W:BiVO ₄ /BiVO ₄ graded photoabsorber electrode for enhanced photoelectrocatalytic solar light driven water oxidation. Physical Chemistry Chemical Physics, 2017, 19, 4648-4655.	1.3	38
231	A novel 2D/2D carbonized poly-(furfural alcohol)/g-C3N4 nanocomposites with enhanced charge carrier separation for photocatalytic H2 evolution. Carbon, 2017, 115, 486-492.	5.4	54
232	Large improvement of visible-light photocatalytic H ₂ -evolution based on cocatalyst-free Zn _{0.5} Cd _{0.5} S synthesized through a two-step process. Catalysis Science and Technology, 2017, 7, 961-967.	2.1	57
233	A direct charger transfer from interface to surface for the highly efficient spatial separation of electrons and holes: The construction of Ti–C bonded interfaces in TiO2-C composite as a touchstone for photocatalytic water splitting. Nano Energy, 2017, 33, 29-36.	8.2	63
234	Fabrication of WO _{2.72} /RGO nano-composites for enhanced photocatalysis. RSC Advances, 2017, 7, 2606-2614.	1.7	30
235	Full visible-light absorption of TiO2 nanotubes induced by anionic S22â^' doping and their greatly enhanced photocatalytic hydrogen production abilities. Applied Catalysis B: Environmental, 2017, 206, 168-174.	10.8	62
236	Nanostructured Bi2O3@TiO2 photocatalyst for enhanced hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 6627-6636.	3.8	95

#	Article	IF	CITATIONS
237	Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply. ChemCatChem, 2017, 9, 1523-1544.	1.8	396
238	UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations. Scientific Reports, 2017, 7, 41253.	1.6	125
239	Enhancing Charge Separation in Photocatalysts with Internal Polar Electric Fields. ChemPhotoChem, 2017, 1, 136-147.	1.5	66
240	Plasmon-dominated photoelectrodes for solar water splitting. Journal of Materials Chemistry A, 2017, 5, 4233-4253.	5.2	64
241	Heterojunction Photocatalysts. Advanced Materials, 2017, 29, 1601694.	11.1	3,143
242	Molten Ag ₂ SO ₄ â€based Ionâ€Exchange Preparation of Ag _{0.5} La _{0.5} TiO ₃ for Photocatalytic O ₂ Evolution. Chemistry - an Asian Journal, 2017, 12, 882-889.	1.7	8
243	Epitaxial hetero-structure of CdSe/TiO ₂ nanotube arrays with PEDOT as a hole transfer layer for photoelectrochemical hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 6233-6244.	5.2	27
244	Synthesis of a monoclinic BiVO ₄ nanorod array as the photocatalyst for efficient photoelectrochemical water oxidation. RSC Advances, 2017, 7, 7547-7554.	1.7	67
245	Sulfur-Modified Graphitic Carbon Nitride Nanostructures as an Efficient Electrocatalyst for Water Oxidation. Small, 2017, 13, 1603893.	5.2	52
246	Low-cost dual cocatalysts BiVO ₄ for highly efficient visible photocatalytic oxidation. RSC Advances, 2017, 7, 15053-15059.	1.7	29
247	WO ₃ /g-C ₃ N ₄ composites: one-pot preparation and enhanced photocatalytic H ₂ production under visible-light irradiation. Nanotechnology, 2017, 28, 164002.	1.3	78
248	Controlling the termination and photochemical reactivity of the SrTiO ₃ (110) surface. Physical Chemistry Chemical Physics, 2017, 19, 7910-7918.	1.3	14
249	Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: a combined first-principles calculation and experimental study. Nanoscale, 2017, 9, 4090-4096.	2.8	126
250	Prolonged lifetime and enhanced separation of photogenerated charges of nanosized α-Fe2O3 by coupling SnO2 for efficient visible-light photocatalysis to convert CO2 and degrade acetaldehyde. Nano Research, 2017, 10, 2321-2331.	5.8	44
251	Sulfurated [NiFe]-based layered double hydroxides nanoparticles as efficient co-catalysts for photocatalytic hydrogen evolution using CdTe/CdS quantum dots. Applied Catalysis B: Environmental, 2017, 209, 155-160.	10.8	66
252	Ceria and ceria-based nanostructured materials for photoenergy applications. Nano Energy, 2017, 34, 313-337.	8.2	134
253	Probing interfacial energetics and charge transfer kinetics in semiconductor nanocomposites: New insights into heterostructured TiO2/BiVO4 photoanodes. Nano Energy, 2017, 34, 375-384.	8.2	36
254	Formation of intermediate band and low recombination rate in ZnO-BiVO4 heterostructured photocatalyst: Investigation based on experimental and theoretical studies. Korean Journal of Chemical Engineering, 2017, 34, 500-510.	1.2	20

#	Article	IF	CITATIONS
255	Facile synthesis of CdS/MnWO4 heterojunction with enhanced visible-light-driven photocatalytic activity and mechanism investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 138-145.	2.3	49
256	Doping of TiO ₂ as a tool to optimize the water splitting efficiencies of titania–hematite photoanodes. Sustainable Energy and Fuels, 2017, 1, 199-206.	2.5	17
257	Interfacial Charge Transfer in Photoelectrochemical Processes. Advanced Materials Interfaces, 2017, 4, 1600981.	1.9	40
258	pH-regulated antimony oxychloride nanoparticle formation on titanium oxide nanostructures: a photocatalytically active heterojunction. CrystEngComm, 2017, 19, 1408-1416.	1.3	3
259	Enhanced photocatalytic degradation of Rhodamine B by reduced graphene oxides wrapped-Cu2SnS3 flower-like architectures. Journal of Alloys and Compounds, 2017, 704, 469-477.	2.8	43
260	Anchoring titanium dioxide on carbon spheres for high-performance visible light photocatalysis. Applied Catalysis B: Environmental, 2017, 207, 255-266.	10.8	64
261	Solar H ₂ evolution in water with modified diketopyrrolopyrrole dyes immobilised on molecular Co and Ni catalyst–TiO ₂ hybrids. Chemical Science, 2017, 8, 3070-3079.	3.7	73
262	Mapping the electrocatalytic activity of MoS ₂ across its amorphous to crystalline transition. Journal of Materials Chemistry A, 2017, 5, 5129-5141.	5.2	41
263	C ₃ N ₄ anchored ZIF 8 composites: photo-regenerable, high capacity sorbents as adsorptive photocatalysts for the effective removal of tetracycline from water. Catalysis Science and Technology, 2017, 7, 2118-2128.	2.1	114
264	Photoanodes based on TiO ₂ and α-Fe ₂ O ₃ for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews, 2017, 46, 3716-3769.	18.7	535
265	Synthesis, characterization and application of BiVO 4 photoanode for photoelectrochemical oxidation of chlorate. Chinese Journal of Catalysis, 2017, 38, 710-716.	6.9	8
266	Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation. Nano Energy, 2017, 36, 331-340.	8.2	168
267	Unravelling Photocarrier Dynamics beyond the Space Charge Region for Photoelectrochemical Water Splitting. Chemistry of Materials, 2017, 29, 4036-4043.	3.2	23
268	Synthesis of a hydrophilic α-sulfur/PDA composite as a metal-free photocatalyst with enhanced photocatalytic performance under visible light. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 334-338.	1.2	8
269	Photoelectrochemical performances of kesterite Ag 2 ZnSnSe 4 photoelectrodes in the salt-water and water solutions. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75, 199-208.	2.7	16
270	Influence of [Cu]/[Cu+Sn] molar ratios in p-type Cu–Sn–S photoelectrodes on their photoelectrochemical performances in water and salt–water solutions. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75, 209-219.	2.7	4
271	A novel fabrication approach for three-dimensional hierarchical porous metal oxide/carbon nanocomposites for enhanced solar photocatalytic performance. Catalysis Science and Technology, 2017, 7, 1965-1970.	2.1	13
272	A Review of Direct Zâ€Scheme Photocatalysts. Small Methods, 2017, 1, 1700080.	4.6	955

#	Article	IF	CITATIONS
273	Enhanced Visible-Light-Driven Photocatalytic H ₂ Evolution from Water on Noble-Metal-Free CdS-Nanoparticle-Dispersed Mo ₂ C@C Nanospheres. ACS Sustainable Chemistry and Engineering, 2017, 5, 5449-5456.	3.2	77
274	A small bandgap semiconductor, p-type MnV ₂ O ₆ , active for photocatalytic hydrogen and oxygen production. Dalton Transactions, 2017, 46, 10657-10664.	1.6	32
275	Layer-by-layer assembled photocatalysts for environmental remediation and solar energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 32, 1-20.	5.6	36
276	Positive Ni(HCO ₃) ₂ as a Novel Cocatalyst for Boosting the Photocatalytic Hydrogen Evolution Capability of Mesoporous TiO ₂ Nanocrystals. ACS Sustainable Chemistry and Engineering, 2017, 5, 5027-5038.	3.2	98
277	CO2-Induced Defect Engineering: A New Protocol by Doping Vacancies in 2D Heterostructures for Enhanced Visible-Light Photocatalysis. Applied Surface Science, 2017, 419, 573-579.	3.1	22
278	Interesting Ag ₃ PO ₄ concave rhombic dodecahedra: the same face with different morphologies and photocatalytic properties. RSC Advances, 2017, 7, 23977-23981.	1.7	12
279	Determining the Chargeâ€Transfer Direction in a p–n Heterojunction BiOCl/gâ€C ₃ N ₄ Photocatalyst by Ultrafast Spectroscopy. ChemPhotoChem, 2017, 1, 350-354.	1.5	18
280	Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna–Reactor Plasmonic Photocatalysis. Nano Letters, 2017, 17, 3710-3717.	4.5	202
281	Nest-like NiCoP for Highly Efficient Overall Water Splitting. ACS Catalysis, 2017, 7, 4131-4137.	5.5	480
282	Synthesis of 1,4-diethynylbenzene-based conjugated polymer photocatalysts and their enhanced visible/near-infrared-light-driven hydrogen production activity. Journal of Catalysis, 2017, 350, 64-71.	3.1	85
283	Metal organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage. Materials Research Bulletin, 2017, 96, 385-394.	2.7	50
284	Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS ₂ /CdS nanosheet-based van der Waals heterostructures. Nanoscale, 2017, 9, 6638-6642.	2.8	176
285	Efficient hydrogen evolution under visible light irradiation over BiVO ₄ quantum dot decorated screw-like SnO ₂ nanostructures. Journal of Materials Chemistry A, 2017, 5, 10338-10346.	5.2	57
286	Wide spectrum responsive CdS/NiTiO ₃ /CoS with superior photocatalytic performance for hydrogen evolution. Catalysis Science and Technology, 2017, 7, 2524-2530.	2.1	45
287	Facile fabrication of direct Z-scheme MoS2/Bi2WO6 heterojunction photocatalyst with superior photocatalytic performance under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 335, 140-148.	2.0	79
288	Photoelectrochemical Bioanalysis Platform for Cells Monitoring Based on Dual Signal Amplification Using in Situ Generation of Electron Acceptor Coupled with Heterojunction. ACS Applied Materials & Interfaces, 2017, 9, 22289-22297.	4.0	62
289	A Nanojunction Polymer Photoelectrode for Efficient Charge Transport and Separation. Angewandte Chemie, 2017, 129, 8333-8337.	1.6	29
290	A Nanojunction Polymer Photoelectrode for Efficient Charge Transport and Separation. Angewandte Chemie - International Edition, 2017, 56, 8221-8225.	7.2	130

#	Article	IF	CITATIONS
291	Hydrothermal synthesis of pyramid-like In2S3 film for efficient photoelectrochemical hydrogen generation. International Journal of Hydrogen Energy, 2017, 42, 15085-15095.	3.8	29
292	Combined soft and hard X-ray ambient pressure photoelectron spectroscopy studies of semiconductor/electrolyte interfaces. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 106-115.	0.8	40
293	LaTiO2N–LaCrO3: continuous solid solutions towards enhanced photocatalytic H2 evolution under visible-light irradiation. Dalton Transactions, 2017, 46, 10685-10693.	1.6	6
294	CuO-ZnO Nanosheets with p-n Heterojunction for Enhanced Visible Light Mediated Photocatalytic Activity. ChemistrySelect, 2017, 2, 4866-4873.	0.7	15
295	Recent Progress in the Development of Semiconductorâ€Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants. Advanced Sustainable Systems, 2017, 1, 1700006.	2.7	144
296	Photoelectrochemical devices for solar water splitting – materials and challenges. Chemical Society Reviews, 2017, 46, 4645-4660.	18.7	1,140
297	Enhanced visible light photocatalytic water reduction from a g-C3N4/SrTa2O6 heterojunction. Applied Catalysis B: Environmental, 2017, 217, 448-458.	10.8	58
298	Spatial charge separation of one-dimensional Ni2P-Cd0.9Zn0.1S/g-C3N4 heterostructure for high-quantum-yield photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2017, 217, 551-559.	10.8	126
299	Expanding light utilization to the near-infrared region for hybrid bio–photoelectrochemical cells. Nanoscale, 2017, 9, 9404-9410.	2.8	4
300	Oriented Built-in Electric Field Introduced by Surface Gradient Diffusion Doping for Enhanced Photocatalytic H ₂ Evolution in CdS Nanorods. Nano Letters, 2017, 17, 3803-3808.	4.5	225
301	Air Flow Assisted One Step Synthesis of Porous Carbon with Selected Area Enriched Ag/ZnO Nanocomposites. ACS Sustainable Chemistry and Engineering, 2017, 5, 5651-5656.	3.2	5
302	Enhanced Photocatalytic Activities of g-C3N4 via Hybridization with a Bi–Fe–Nb-Containing Ferroelectric Pyrochlore. ACS Applied Materials & Interfaces, 2017, 9, 19908-19916.	4.0	43
303	Preparation of pompon-like ZnO-PANI heterostructure and its applications for the treatment of typical water pollutants under visible light. Journal of Hazardous Materials, 2017, 338, 276-286.	6.5	56
304	Linker-controlled polymeric photocatalyst for highly efficient hydrogen evolution from water. Energy and Environmental Science, 2017, 10, 1643-1651.	15.6	222
305	Current advances in MoS2/semiconductor heterojunction with enhanced photocatalytic activity. Current Opinion in Green and Sustainable Chemistry, 2017, 6, 42-47.	3.2	10
306	Recent Advances in Bismuthâ€Based Nanomaterials for Photoelectrochemical Water Splitting. ChemSusChem, 2017, 10, 3001-3018.	3.6	117
307	Photodeposited-metal/CdS/ZnO heterostructures for solar photocatalytic hydrogen production under different conditions. International Journal of Hydrogen Energy, 2017, 42, 11356-11363.	3.8	42
308	Photocatalytic behavior of colored mortars containing TiO 2 and iron oxide based pigments. Construction and Building Materials, 2017, 144, 300-310.	3.2	28

#	Article	IF	CITATIONS
309	Boosting photoelectrochemical activities of heterostructured photoanodes through interfacial modulation of oxygen vacancies. Nano Energy, 2017, 35, 290-298.	8.2	59
310	Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO ₃ /TiO ₂ Heterojunction Films: A Computational and Experimental Study. Advanced Functional Materials, 2017, 27, 1605413.	7.8	115
311	Photocatalysis with TiO ₂ Nanotubes: "Colorful―Reactivity and Designing Site-Specific Photocatalytic Centers into TiO ₂ Nanotubes. ACS Catalysis, 2017, 7, 3210-3235.	5.5	236
312	Translating XPS Measurement Procedure for Band Alignment into Reliable Ab Initio Calculation Method. Journal of Physical Chemistry C, 2017, 121, 7139-7143.	1.5	11
313	Mapping Charge Distribution in Single PbS Core – CdS Arm Nano-Multipod Heterostructures by Off-Axis Electron Holography. Nano Letters, 2017, 17, 2778-2787.	4.5	10
314	Hollow hematite single crystals deposited with ultra-thin Al ₂ O ₃ by atom layer deposition for improved photoelectrochemical performance. Dalton Transactions, 2017, 46, 10635-10640.	1.6	7
315	Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Applied Catalysis B: Environmental, 2017, 210, 235-254.	10.8	359
316	The role of dissolution in the synthesis of high-activity organic nanocatalysts in a wet chemical reaction. Journal of Materials Chemistry A, 2017, 5, 8029-8036.	5.2	6
317	Photoelectrochemical dimethoxylation of furan via a bromide redox mediator using a BiVO ₄ /WO ₃ photoanode. Chemical Communications, 2017, 53, 4378-4381.	2.2	63
319	Semiconductor, molecular and hybrid systems for photoelectrochemical solar fuel production. Journal of Energy Chemistry, 2017, 26, 219-240.	7.1	48
320	High-efficiency photoelectrochemical hydrogen generation enabled by p-type semiconductor nanoparticle-decorated n-type nanotube arrays. RSC Advances, 2017, 7, 17551-17558.	1.7	13
321	Facile synthesis and enhanced photocatalytic H 2 -evolution performance of NiS 2 -modified g-C 3 N 4 photocatalysts. Chinese Journal of Catalysis, 2017, 38, 296-304.	6.9	153
322	Amorphous MoSx on CdS nanorods for highly efficient photocatalytic hydrogen evolution. Journal of Solid State Chemistry, 2017, 246, 230-236.	1.4	29
323	Enhanced visible light photoelectrocatalytic activity over Cu _x Zn _{1â^*x} In ₂ S ₄ @TiO ₂ nanotube array hetero-structures. Journal of Materials Chemistry A, 2017, 5, 1292-1299.	5.2	37
324	Factors affecting the efficiency of a water splitting photocatalyst: A perspective. Renewable and Sustainable Energy Reviews, 2017, 71, 585-601.	8.2	93
325	Low-potential driven fully-depleted BiVO4/ZnO heterojunction nanodendrite array photoanodes for photoelectrochemical water splitting. Nano Energy, 2017, 32, 232-240.	8.2	128
326	Facile ultrasonic-assisted preparation of Fe3O4/Ag3VO4 nanocomposites as magnetically recoverable visible-light-driven photocatalysts with considerable activity. Journal of the Iranian Chemical Society, 2017, 14, 863-872.	1.2	8
327	Markedly enhanced visible-light photocatalytic H ₂ generation over g-C ₃ N ₄ nanosheets decorated by robust nickel phosphide (Ni ₁₂ P ₅) cocatalysts. Dalton Transactions, 2017, 46, 1794-1802.	1.6	111

#	Article	IF	Citations
" 328	A Composite Polymeric Carbon Nitride with In Situ Formed Isotype Heterojunctions for Highly	5.2	55
020	Improved Photoćatalysis under Visible Light. Small, 2017, 13, 1603182.	0.2	00
329	Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant. Applied Catalysis B: Environmental, 2017, 205, 133-147.	10.8	343
330	Bi 2 O 3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO 2. Applied Surface Science, 2017, 400, 530-536.	3.1	125
331	The Role of Interfaces in Heterostructures. ChemPlusChem, 2017, 82, 42-59.	1.3	33
332	Heterojunction construction between TiO2 hollowsphere and ZnIn2S4 flower for photocatalysis application. Applied Surface Science, 2017, 398, 81-88.	3.1	123
333	Z-scheme visible-light-driven Ag3PO4 nanoparticle@MoS2 quantum dot/few-layered MoS2 nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation. Journal of Catalysis, 2017, 345, 281-294.	3.1	147
334	Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. Journal of Colloid and Interface Science, 2017, 491, 216-229.	5.0	271
335	Fabrication of p-Cu ₂ O/n-Bi-WO ₃ heterojunction thin films: optical and photoelectrochemical properties. New Journal of Chemistry, 2017, 41, 755-762.	1.4	15
336	Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chemistry, 2017, 19, 882-899.	4.6	261
337	Visualizing the Nano Cocatalyst Aligned Electric Fields on Single Photocatalyst Particles. Nano Letters, 2017, 17, 6735-6741.	4.5	164
338	Preparation of WO3, BiVO4 and reduced graphene oxide composite thin films and their photoelectrochemical performance. Korean Journal of Chemical Engineering, 2017, 34, 3220-3225.	1.2	18
339	Active Cocatalysts for Photocatalytic Hydrogen Evolution Derived from Nickel or Cobalt Amine Complexes. Angewandte Chemie - International Edition, 2017, 56, 14804-14806.	7.2	28
340	A comparative study of heterostructured CuO/CuWO4 nanowires and thin films. Journal of Crystal Growth, 2017, 480, 78-84.	0.7	17
341	Ultrathin Microporous SiO ₂ Membranes Photodeposited on Hydrogen Evolving Catalysts Enabling Overall Water Splitting. ACS Catalysis, 2017, 7, 7931-7940.	5.5	40
342	Trapping Behaviors of Photogenerated Electrons on the (110), (101), and (221) Facets of SnO ₂ : Experimental and DFT Investigations. ACS Applied Materials & Interfaces, 2017, 9, 38984-38991.	4.0	10
343	Oxygen vacancies induced by zirconium doping in bismuth ferrite nanoparticles for enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2017, 508, 237-247.	5.0	70
344	Spatial separation of the hydrogen evolution center from semiconductors using a freestanding silica-sphere-supported Pt composite. Physical Chemistry Chemical Physics, 2017, 19, 24249-24254.	1.3	5
345	Production of hydrogen by water splitting in a photoelectrochemical cell using a BiVO4/TiO2 layered photoanode. Electrochimica Acta, 2017, 251, 244-249.	2.6	47

#	Article	IF	CITATIONS
346	Combining ZnS with WS ₂ nanosheets to fabricate a broad-spectrum composite photocatalyst for hydrogen evolution. New Journal of Chemistry, 2017, 41, 12451-12458.	1.4	20
348	Co-Fe layered double hydroxide decorated titanate nanowires for overall photoelectrochemical water splitting. Journal of Alloys and Compounds, 2017, 728, 1171-1179.	2.8	30
349	Efficient Photocatalytic Hydrogen Evolution via Band Alignment Tailoring: Controllable Transition from Typeâ€I to Typeâ€II. Small, 2017, 13, 1702163.	5.2	47
350	SrTiO ₃ Nanoparticle/SnNb ₂ O ₆ Nanosheet 0D/2D Heterojunctions with Enhanced Interfacial Charge Separation and Photocatalytic Hydrogen Evolution Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 9749-9757.	3.2	54
351	One-Pot in Situ Hydrothermal Growth of BiVO4/Ag/rGO Hybrid Architectures for Solar Water Splitting and Environmental Remediation. Scientific Reports, 2017, 7, 8404.	1.6	78
352	Aerosols: A Sustainable Route to Functional Materials. Chemistry - A European Journal, 2017, 23, 15543-15552.	1.7	32
353	Photoelectrochemical Oxidation of Benzylic Alcohol Derivatives on BiVO ₄ /WO ₃ under Visible Light Irradiation. ChemElectroChem, 2017, 4, 3283-3287.	1.7	44
354	Enhanced photocatalytic activity of BiOI under visible light irradiation by the modification of MoS ₂ . RSC Advances, 2017, 7, 42398-42406.	1.7	32
355	MoS2 quantum dots interspersed WO3 nanoplatelet arrays with enhanced photoelectrochemical activity. Electrochimica Acta, 2017, 252, 416-423.	2.6	32
356	A novel p–n heterojunction Mn 0.25 Cd 0.75 S/Co 3 O 4 for highly efficient photocatalytic H 2 evolution under visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 570-577.	2.7	45
357	Water Splitting via Decoupled Photocatalytic Water Oxidation and Electrochemical Proton Reduction Mediated by Electronâ€Coupledâ€Proton Buffer. Chemistry - an Asian Journal, 2017, 12, 2666-2669.	1.7	19
358	Construction of novel WO3/SnNb2O6 hybrid nanosheet heterojunctions as efficient Z-scheme photocatalysts for pollutant degradation. Journal of Colloid and Interface Science, 2017, 506, 93-101.	5.0	57
359	Surface polycondensation as an effective tool to activate organic crystals: from "boxed― semiconductors for water oxidation to 1d carbon nanotubes. Journal of Materials Chemistry A, 2017, 5, 18502-18508.	5.2	24
360	Urchin-shaped MoS2–Cd0.8Zn0.2S nanocomposites with greatly enhanced and long-lasting photocatalytic activity. International Journal of Hydrogen Energy, 2017, 42, 18824-18831.	3.8	18
361	Aligned cobalt-based Co@CoO _x nanostructures for efficient electrocatalytic water oxidation. Chemical Communications, 2017, 53, 9277-9280.	2.2	65
362	Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation. Engineering, 2017, 3, 365-378.	3.2	51
363	Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets. Journal of Materials Chemistry A, 2017, 5, 18261-18269.	5.2	136
364	Vastly Enhanced BiVO ₄ Photocatalytic OER Performance by NiCoO ₂ as Cocatalyst. Advanced Materials Interfaces, 2017, 4, 1700540.	1.9	92

#	Article	IF	CITATIONS
365	Atomicâ€Level Insight into Optimizing the Hydrogen Evolution Pathway over a Co ₁ â€N ₄ Singleâ€Site Photocatalyst. Angewandte Chemie, 2017, 129, 12359-12364.	1.6	36
366	Atomicâ€Level Insight into Optimizing the Hydrogen Evolution Pathway over a Co ₁ â€N ₄ Singleâ€6ite Photocatalyst. Angewandte Chemie - International Edition, 2017, 56, 12191-12196.	7.2	269
367	Biotemplating synthesis and photocatalytic activities of N-doped CeO2 microcapsule tailored by hemerocallis pollen. Advanced Powder Technology, 2017, 28, 2741-2746.	2.0	20
368	Spatially selective photochemical activity on surfaces of ferroelastics with local polarization. Semiconductor Science and Technology, 2017, 32, 103001.	1.0	6
369	Conjugated Microporous Polymer Nanosheets for Overall Water Splitting Using Visible Light. Advanced Materials, 2017, 29, 1702428.	11.1	302
370	Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities. Advanced Energy Materials, 2017, 7, 1700841.	10.2	484
371	Cu ₂ ZnSnS ₄ –CdS heterostructured nanocrystals for enhanced photocatalytic hydrogen production. Catalysis Science and Technology, 2017, 7, 3980-3984.	2.1	15
372	A general method for boosting the supercapacitor performance of graphitic carbon nitride/graphene hybrids. Journal of Materials Chemistry A, 2017, 5, 25545-25554.	5.2	77
373	Nonstoichiometric Cu _{<i>x</i>} In _{<i>y</i>} S Quantum Dots for Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 4833-4838.	3.6	45
374	New Insights into the Electronic Structure and Photoelectrochemical Properties of Nitrogen-Doped HNb3O8 via a Combined in Situ Experimental and DFT Investigation. ACS Applied Materials & Interfaces, 2017, 9, 42751-42760.	4.0	7
375	Aktive Cokatalysatoren mit molekularen Nickel―und Cobaltkomplexen für die photokatalytische Wasserstoffentwicklung. Angewandte Chemie, 2017, 129, 14998-15000.	1.6	6
376	Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode. Chemistry of Materials, 2017, 29, 10027-10036.	3.2	17
377	Thermal conductivity, morphology and mechanical properties for thermally reduced graphite oxide-filled ethylene vinylacetate copolymers. Polymer, 2017, 132, 294-305.	1.8	14
378	Colloidal synthesis of monodisperse trimetallic IrNiFe nanoparticles as highly active bifunctional electrocatalysts for acidic overall water splitting. Journal of Materials Chemistry A, 2017, 5, 24836-24841.	5.2	85
379	Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels. ChemSusChem, 2017, 10, 4277-4305.	3.6	75
380	Schottky barrier and band edge engineering via the interfacial structure and strain for the Pt/TiO ₂ heterostructure. Physical Chemistry Chemical Physics, 2017, 19, 18750-18756.	1.3	18
381	Electronic Structure and Band Alignment at the NiO and SrTiO ₃ p–n Heterojunctions. ACS Applied Materials & Interfaces, 2017, 9, 26549-26555.	4.0	65
382	Ternary nickel–iron sulfide microflowers as a robust electrocatalyst for bifunctional water splitting. Journal of Materials Chemistry A, 2017, 5, 15838-15844.	5.2	179

#	Article	IF	CITATIONS
383	Recent advances in functional mesoporous graphitic carbon nitride (mpg-C ₃ N ₄) polymers. Nanoscale, 2017, 9, 10544-10578.	2.8	189
384	Visible light photocatalysis over solid acid: Enhanced by gold plasmonic effect. Applied Catalysis B: Environmental, 2017, 218, 480-487.	10.8	22
385	Enhanced Photocatalytic Activity of Heterostructured Ferroelectric BaTiO ₃ /l±-Fe ₂ O ₃ and the Significance of Interface Morphology Control. ACS Applied Materials & Interfaces, 2017, 9, 24518-24526.	4.0	135
386	Band alignment of semiconductors and insulators using dielectric-dependent hybrid functionals: Toward high-throughput evaluation. Physical Review B, 2017, 95, .	1.1	59
387	CNT based photoelectrodes for PEC generation of hydrogen: A review. International Journal of Hydrogen Energy, 2017, 42, 3994-4006.	3.8	39
388	Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chemical Reviews, 2017, 117, 3717-3797.	23.0	1,042
389	High-performance BiVO4 photoanodes cocatalyzed with an ultrathin α-Fe2O3 layer for photoelectrochemical application. Applied Catalysis B: Environmental, 2017, 204, 127-133.	10.8	133
390	Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications. Journal of Materials Science and Technology, 2017, 33, 1-22.	5.6	176
391	Bimetallic Cobaltâ€Based Phosphide Zeolitic Imidazolate Framework: CoP <i>_x</i> Phaseâ€Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1601555.	10.2	340
392	Bi-functional ferroelectric BiFeO 3 passivated BiVO 4 photoanode for efficient and stable solar water oxidation. Nano Energy, 2017, 31, 28-36.	8.2	150
393	Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation. Applied Surface Science, 2017, 396, 78-84.	3.1	57
394	Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy and Environmental Science, 2017, 10, 402-434.	15.6	820
395	Comparison of photocatalytic reaction-induced selective corrosion with photocorrosion: Impact on morphology and stability of Ag-ZnO. Applied Catalysis B: Environmental, 2017, 201, 348-358.	10.8	72
396	Photoluminescence and Photocatalysis of Gallium Oxynitride Synthesized from Nitridation of Ga2O3. ECS Journal of Solid State Science and Technology, 2017, 6, Q3001-Q3006.	0.9	10
397	Perovskite oxide ultrathin nanosheets/g-C3N4 2D-2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Applied Catalysis B: Environmental, 2017, 201, 617-628.	10.8	360
398	Phosphate modified N/Si co-doped rutile TiO 2 nanorods for photoelectrochemical water oxidation. Applied Surface Science, 2017, 391, 288-294.	3.1	14
399	Preparation of CuWO4@Cu2O film on copper mesh by anodization for oil/water separation and aqueous pollutant degradation. Chemical Engineering Journal, 2017, 307, 803-811.	6.6	99
400	Assessment of mechanisms for enhanced performance of Yb/Er/titania photocatalysts for organic degradation: Role of rare earth elements in the titania phase. Applied Catalysis B: Environmental, 2017, 202, 156-164.	10.8	63

ARTICLE IF CITATIONS Facile synthesis of CNTs/Caln 2 S 4 composites with enhanced visible-light photocatalytic 401 3.1 48 performance. Applied Surface Science, 2017, 391, 565-571. Investigation of visibleâ€light absorption in Cu₂O/TiO₂ heterojunctions with an interstitial at the interface. Physica Status Solidi (B): Basic Research, 2017, 254, 1600420. Two-dimensional g-C3N4/Ca2Nb2TaO10 nanosheet composites for efficient visible light photocatalytic 403 10.8 143 hydrogen evolution. Applied Catalysis B: Environmental, 2017, 202, 184-190. One-pot preparation of porous Cr2O3/g-C3N4 composites towards enhanced photocatalytic H2 evolution under visible-light irradiation. International Journal of Hydrogen Energy, 2017, 42, 404 4651-4659. Cobalt-Phosphate modified TiO2/BiVO4 nanoarrays photoanode for efficient water splitting. 405 3.8 67 International Journal of Hydrogen Energy, 2017, 42, 5496-5504. Oneâ€dimensional TiO₂ Nanotube Photocatalysts for Solar Water Splitting. Advanced 5.6 Science, 2017, 4, 1600152. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. 407 3.1 989 Applied Surface Science, 2017, 392, 658-686. Nanotube array-like WO3/W photoanode fabricated by electrochemical anodization for 408 6.9 37 photoelectrocatalytic overall water splitting. Chinese Journal of Catalysis, 2017, 38, 2132-2140. 409 Ultra-Fast XAFS Studies on Photocatalyst Using SACLA. Nihon Kessho Gakkaishi, 2017, 59, 24-28. 0.0 0 Enhanced photoelectrochemical response of plasmonic Au embedded BiVO₄/Fe₂O₃ heterojunction. Physical Chemistry Chemical 1.3 34 Physics, 2017, 19, 15039-15049. Selective adsorption of thiocyanate anions on Ag-modified g-C3N4 for enhanced photocatalytic 411 120 6.9 hydrogen evolution. Chinese Journal of Catalysis, 2017, 38, 1990-1998. The Promoting Role of Different Carbon Allotropes Cocatalysts for Semiconductors in 1.8 Photocatalytic Energy Generation and Pollutant's Degradation. Frontiers in Chemistry, 2017, 5, 84. 413 Photocatalytic Water Oxidation on ZnO: A Review. Catalysts, 2017, 7, 93. 1.6 122 Facile Synthesis of Indium Sulfide/Flexible Electrospun Carbon Nanofiber for Enhanced 414 Photocatalytic Efficiency and Its Application. Scanning, 2017, 2017, 1-10. Phaseâ€Modulated Band Alignment in CdS Nanorod/SnS_x Nanosheet Hierarchical 415 102 7.8 Heterojunctions toward Efficient Water Splitting. Advanced Functional Materials, 2018, 28, 1706785. Photocatalytic conversion of biomass into valuable products: a meaningful approach?. Green Chemistry, 2018, 20, 1169-1192. Novel ZnS-ZnO composite synthesized by the solvothermal method through the partial sulfidation of 417 10.8 74 ZnO for H2 production without sacrificial agent. Applied Catalysis B: Environmental, 2018, 230, 125-134. Decoration of Inorganic Nanostructures by Metallic Nanoparticles to Induce Fluorescence, Enhance 1.5 Solubility, and Tune Band Gap. Journal of Physical Chemistry C, 2018, 122, 6748-6759.

#	Article	IF	CITATIONS
419	Oneâ€pot combustion synthesis and efficient broad spectrum photoactivity of Bi/Bi <scp>OB</scp> r:Yb,Er/C photocatalyst. Journal of the American Ceramic Society, 2018, 101, 3424-3436.	1.9	74
420	Solar energy conversion on g-C3N4 photocatalyst: Light harvesting, charge separation, and surface kinetics. Journal of Energy Chemistry, 2018, 27, 1111-1123.	7.1	144
421	Coherent Bi2O3-TiO2 hetero-junction material through oriented growth as an efficient photo-catalyst for methyl orange degradation. Materials Today Chemistry, 2018, 8, 36-41.	1.7	5
422	Construction of self-powered cytosensing device based on ZnO nanodisks@g-C3N4 quantum dots and application in the detection of CCRF-CEM cells. Nano Energy, 2018, 46, 101-109.	8.2	78
423	Ultrasmall Ir nanoparticles for efficient acidic electrochemical water splitting. Inorganic Chemistry Frontiers, 2018, 5, 1121-1125.	3.0	49
424	Three-Dimensional Undoped Crystalline SnO ₂ Nanodendrite Arrays Enable Efficient Charge Separation in BiVO ₄ /SnO ₂ Heterojunction Photoanodes for Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2018, 1, 2143-2149.	2.5	37
425	Mimicking Natural Photosynthesis: Solar to Renewable H ₂ Fuel Synthesis by Z-Scheme Water Splitting Systems. Chemical Reviews, 2018, 118, 5201-5241.	23.0	748
427	In situ synthesized MoS2/Ag dots/Ag3PO4 Z-scheme photocatalysts with ultrahigh activity for oxygen evolution under visible light irradiation. Applied Surface Science, 2018, 450, 441-450.	3.1	30
428	Construction of strontium tantalate homo-semiconductor composite photocatalysts with a tunable type II junction structure for overall water splitting. Catalysis Science and Technology, 2018, 8, 3025-3033.	2.1	8
429	Enhanced visible light activated hydrogen evolution activity over cadmium sulfide nanorods by the synergetic effect of a thin carbon layer and noble metal-free nickel phosphide cocatalyst. Journal of Colloid and Interface Science, 2018, 525, 107-114.	5.0	35
430	Boosting Charge Separation and Transfer by Plasmon-Enhanced MoS ₂ /BiVO ₄ p–n Heterojunction Composite for Efficient Photoelectrochemical Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 6378-6387.	3.2	77
431	Construction of Eu2 O3 /g-C3 N4 Redox Heterojunctions Containing Eu3+ /Eu2+ Self-Redox Centers for Boosted Visible-Light Photocatalytic Activity. European Journal of Inorganic Chemistry, 2018, 2018, 2564-2573.	1.0	12
432	Coupling P Nanostructures with P-Doped g-C ₃ N ₄ As Efficient Visible Light Photocatalysts for H ₂ Evolution and RhB Degradation. ACS Sustainable Chemistry and Engineering, 2018, 6, 6342-6349.	3.2	130
433	Self-assembled inorganic clusters of semiconducting quantum dots for effective solar hydrogen evolution. Chemical Communications, 2018, 54, 4858-4861.	2.2	14
434	A 3D Photothermal Structure toward Improved Energy Efficiency in Solar Steam Generation. Joule, 2018, 2, 1171-1186.	11.7	527
435	2D lateral heterostructures of group-III monochalcogenide: Potential photovoltaic applications. Applied Physics Letters, 2018, 112, .	1.5	66
436	Plasmonic Ag nanoparticles decorated NaNbO3 nanorods for efficient photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2018, 43, 8198-8205.	3.8	37
437	Computational Screening of 2D Materials and Rational Design of Heterojunctions for Water Splitting Photocatalysts. Small Methods, 2018, 2, 1700359.	4.6	151

#	Article	IF	CITATIONS
438	Durian-Shaped CdS@ZnSe Core@Mesoporous-Shell Nanoparticles for Enhanced and Sustainable Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry Letters, 2018, 9, 2212-2217.	2.1	31
439	Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy and Environmental Science, 2018, 11, 1617-1624.	15.6	212
440	Morphology effect on photocatalytic activity in Bi ₃ Fe _{0.5} Nb _{1.5} O ₉ . Nanotechnology, 2018, 29, 265706.	1.3	9
441	Stable photoelectrochemical salt-water splitting using the n-ZnSe/n-Ag 8 SnS 6 photoanodes with the nanoscale surface state capacitances. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 182-195.	2.7	17
442	Enhanced photoelectrochemical water splitting performance of α-Fe2O3 nanostructures modified with Sb2S3 and cobalt phosphate. Journal of Alloys and Compounds, 2018, 742, 918-927.	2.8	101
443	Fabrication of In ₂ S ₃ /NaTaO ₃ composites for enhancing the photocatalytic activity toward the degradation of tetracycline. New Journal of Chemistry, 2018, 42, 5052-5058.	1.4	52
444	Enhanced charge carrier separation to improve hydrogen production efficiency by ferroelectric spontaneous polarization electric field. Applied Catalysis B: Environmental, 2018, 227, 322-329.	10.8	91
445	Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties. Applied Surface Science, 2018, 441, 40-48.	3.1	91
446	A novel CoOOH/(Ti, C)-Fe2O3 nanorod photoanode for photoelectrochemical water splitting. Science China Materials, 2018, 61, 887-894.	3.5	69
447	Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts. Journal of Industrial and Engineering Chemistry, 2018, 62, 1-25.	2.9	697
448	Photocatalytic activity of BiFeO ₃ /ZnFe ₂ O ₄ nanocomposites under visible light irradiation. RSC Advances, 2018, 8, 6988-6995.	1.7	48
449	Improved visible-light activities of nanocrystalline CdS by coupling with ultrafine NbN with lattice matching for hydrogen evolution. Sustainable Energy and Fuels, 2018, 2, 549-552.	2.5	35
450	Cocatalyst designing: a binary noble-metal-free cocatalyst system consisting of ZnIn ₂ S ₄ and In(OH) ₃ for efficient visible-light photocatalytic water splitting. RSC Advances, 2018, 8, 4979-4986.	1.7	40
451	Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catalysis, 2018, 8, 2253-2276.	5.5	773
452	Smoothing Surface Trapping States in 3D Coral-Like CoOOH-Wrapped-BiVO ₄ for Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 6228-6234.	4.0	87
453	Hexagonal SiC with spatially separated active sites on polar and nonpolar facets achieving enhanced hydrogen production from photocatalytic water reduction. Physical Chemistry Chemical Physics, 2018, 20, 4787-4792.	1.3	16
454	Artificial Photosynthesis: Taking a Big Leap for Powering the Earth by Harnessing Solar Energy. Particle and Particle Systems Characterization, 2018, 35, 1700451.	1.2	10
455	Photoelectrochemical performances of the cubic AgSnSe2 thin film electrodes created using the selenization of thermal evaporated Ag-Sn metal precursors. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 56-65.	2.7	2

ARTICLE IF CITATIONS Au@Nb@H x K1-xNbO3 nanopeapods with near-infrared active plasmonic hot-electron injection for 456 5.8 55 water splitting. Nature Communications, 2018, 9, 232. Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Applied 10.8 Catalysis B: Environmental, 2018, 227, 418-424. Band gap engineering of SnS₂ nanosheets by anion–anion codoping for visible-light 458 1.7 31 photocatalysis. RSC Advances, 2018, 8, 3304-3311. {[Ru(bda)]xLy}n cross-linked coordination polymers: toward efficient heterogeneous catalysis for 1.4 water oxidation in an organic solvent-free system. New Journal of Chemistry, 2018, 42, 2526-2536. Ultrafine ZnO quantum dot-modified TiO₂ composite photocatalysts: the role of the quantum size effect in heterojunction-enhanced photocatalytic hydrogen evolution. Catalysis Science 460 2.1 55 and Technology, 2018, 8, 1296-1303. Facile synthesis of ultrathin two-dimensional nanosheets-constructed MCo₂O₄ (M = Ni, Cu, Zn) nanotubes for efficient photocatalytic oxygen 2.8 evolution. Nanoscale, 2018, 10, 3871-3876. Unraveling the Mechanisms of Visible Light Photocatalytic NO Purification on Earth-Abundant 462 Insulator-Based Coreâ€"Shell Heterojunctions. Environmental Science & amp; Technology, 2018, 52, 4.6 192 1479-1487. Ultrathin Ir nanowires as high-performance electrocatalysts for efficient water splitting in acidic media. Nanoscale, 2018, 10, 1892-1897. 2.8 122 Zâ€Scheme Photocatalytic Water Splitting on a 2D Heterostructure of Black Phosphorus/Bismuth 464 7.2 506 Vanadate Using Visible Light. Angewandte Chemie - International Edition, 2018, 57, 2160-2164. Surface Photovoltage Measurements on a Particle Tandem Photocatalyst for Overall Water Splitting. 4.5 Nano Letters, 2018, 18, 805-810. Constructing CdS/Cd/doped TiO2 Z-scheme type visible light photocatalyst for H2 production. Science 466 3.5 39 China Materials, 2018, 61, 851-860. Cellular heterojunctions fabricated through the sulfurization of MOFs onto ZnO for high-efficient 10.8 54 photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2018, 226, 421-428. Visibleâ€Lightâ€Responsive Photoanodes for Highly Active, Stable Water Oxidation. Angewandte Chemie -468 7.2 145 International Edition, 2018, 57, 8396-8415. Facile Synthesis of Multi-shelled ZnS-CdS Cages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. CheM, 2018, 4, 162-173. 5.8 Auf sichtbares Licht ansprechende Photoanoden fÅ1/4r hochaktive, dauerhafte Wasseroxidation. 470 1.6 22 Angewandte Chemie, 2018, 130, 8530-8550. Hybrid density functional study on the photocatalytic properties of AlN/MoSe₂, 471 AlN/WS₂, and AlN/WSe₂heterostructures. Journal Physics D: Applied Physics, 1.3 2018, 51, 025109. Ternary non-noble metal zinc-nickel-cobalt carbonate hydroxide cocatalysts toward highly efficient 472 5.6 28 photoelectrochemical water splitting. Journal of Materials Science and Technology, 2018, 34, 899-904. Design and fabrication of sandwich-structured α-Fe2O3/Au/ZnO photoanode for photoelectrochemical 473 water splitting. Solar Energy Materials and Solar Cells, 2018, 178, 38-45.

#	Article	IF	CITATIONS
474	Lab scale optimization of various factors for photocatalytic hydrogen generation over low cost Cu0.02Ti0.98O2-δ photocatalyst under UV/Visible irradiation and sunlight. International Journal of Hydrogen Energy, 2018, 43, 1271-1284.	3.8	15
475	Novel SrZrO3-Sb2O3 heterostructure with enhanced photocatalytic activity: Band engineering and charge transference mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 166-176.	2.0	23
476	ZnS nanospheres/reduced graphene oxide photoanode for highly efficient solar water oxidation. Solar Energy, 2018, 161, 226-234.	2.9	34
477	Designing Novel Nonsymmetric Ag/AgI Nanoplates for Superior Photocatalytic Activity. Small, 2018, 14, 1702948.	5.2	18
478	Direct Z-scheme heterojunction nanocomposite for the enhanced solar H2 production. Applied Catalysis A: General, 2018, 553, 43-51.	2.2	33
479	Rare earth metal Gd influenced defect sites in N doped TiO2: Defect mediated improved charge transfer for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 2073-2082.	3.8	72
480	Magnetically Separable CdS/ZnFe ₂ O ₄ Composites with Highly Efficient Photocatalytic Activity and Photostability under Visible Light. ACS Applied Nano Materials, 2018, 1, 831-838.	2.4	47
481	Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nature Reviews Chemistry, 2018, 2, .	13.8	631
482	Fabrication of Z-Scheme Fe ₂ O ₃ –MoS ₂ –Cu ₂ O Ternary Nanofilm with Significantly Enhanced Photoelectrocatalytic Performance. Industrial & Engineering Chemistry Research, 2018, 57, 881-890.	1.8	48
483	Zâ€Scheme Photocatalytic Water Splitting on a 2D Heterostructure of Black Phosphorus/Bismuth Vanadate Using Visible Light. Angewandte Chemie, 2018, 130, 2182-2186.	1.6	356
484	Activity Origins in Nanocarbons for the Electrocatalytic Hydrogen Evolution Reaction. Small, 2018, 14, e1800235.	5.2	68
485	A photochemical diode artificial photosynthesis system for unassisted high efficiency overall pure water splitting. Nature Communications, 2018, 9, 1707.	5.8	123
486	Synthesis of MoS ₂ from [Mo ₃ S ₇ (S ₂ CNEt ₂) ₃]I for enhancing photoelectrochemical performance and stability of Cu ₂ O photocathode toward efficient solar water splitting, Journal of Materials Chemistry A, 2018, 6, 9569-9582.	5.2	33
487	Ultrathin g-C3N4 films supported on Attapulgite nanofibers with enhanced photocatalytic performance. Applied Surface Science, 2018, 440, 170-176.	3.1	52
488	P-doped ZnxCd1â^'xS solid solutions as photocatalysts for hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural. Applied Catalysis B: Environmental, 2018, 233, 70-79.	10.8	203
489	Hydrothermal growth of Co3(OH)2(HPO4)2 nano-needles on LaTiO2N for enhanced water oxidation under visible-light irradiation. Applied Catalysis B: Environmental, 2018, 232, 268-274.	10.8	30
490	Bis(selenobenzoato)dibutyltin(<scp>iv</scp>) as a single source precursor for the synthesis of SnSe nanosheets and their photo-electrochemical study for water splitting. Dalton Transactions, 2018, 47, 5465-5473.	1.6	44
491	Constructing Film Photocatalyst with Abundant Interfaces between CdS and Ni ₃ S ₂ Nanosheets for Efficient Photocatalytic Hydrogen Production. Energy Technology, 2018, 6, 2132-2138.	1.8	21

		CITATION REPORT		
#	Article		IF	CITATIONS
492	Building of peculiar heterostructure of Ag/two-dimensional fullerene shell-WO3-x for e photoelectrochemical performance. Applied Catalysis B: Environmental, 2018, 231, 38	nhanced 1-390.	10.8	54
493	A facile dissolution strategy facilitated by H2SO4 to fabricate a 2D metal-free g-C3N4/ heterojunction for efficient photocatalytic H2 production. International Journal of Hyd Energy, 2018, 43, 7007-7019.	rGO rogen	3.8	47
494	Sono-coprecipitation synthesis and physicochemical characterization of CdO-ZnO nan for removal of acid orange 7 from wastewater. Ultrasonics Sonochemistry, 2018, 40, 3		3.8	69
495	Enhanced photo-assistant electrocatalysis of anodization TiO 2 nanotubes via surroun decoration with MoS 2 for hydrogen evolution reaction. Applied Surface Science, 2018		3.1	14
496	Solarâ€ŧoâ€Hydrogen Energy Conversion Based on Water Splitting. Advanced Energy 1701620.	Materials, 2018, 8,	10.2	429
497	Optical and recyclable photocatalytic properties of silica supported ZnO/Au heterostru sun light. Journal of Materials Science: Materials in Electronics, 2018, 29, 667-673.	ctures under	1.1	8
498	Promoted photoelectrochemical activity of BiVO4 coupled with LaFeO3 and LaCoO3. I Chemical Intermediates, 2018, 44, 1013-1024.	Research on	1.3	10
499	Role of oxygen vacancies in photocatalytic water oxidation on ceria oxide: Experiment studies. Applied Catalysis B: Environmental, 2018, 224, 101-108.	and DFT	10.8	197
500	Ultrathin nanoporous metal–semiconductor heterojunction photoanodes for visible evolution. Nano Research, 2018, 11, 2046-2057.	light hydrogen	5.8	8
501	A new natural layered clay mineral applicable to photocatalytic hydrogen production a degradation of dye pollutant. Environmental Progress and Sustainable Energy, 2018, 3	nd/or 7, 1003-1010.	1.3	11
502	Novel hybrids of graphitic carbon nitride sensitized with free-base meso-tetrakis(carbo porphyrins for efficient visible light photocatalytic hydrogen production. Applied Catal Environmental, 2018, 221, 56-69.		10.8	136
503	Graphene-based heterojunction photocatalysts. Applied Surface Science, 2018, 430, 5	3-107.	3.1	386
504	Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and fut Materials Horizons, 2018, 5, 9-27.	ure prospects.	6.4	586
505	How morphological surface parameters are correlated with electrocatalytic performanc cobalt-based nanostructures. Journal of Industrial and Engineering Chemistry, 2018, 57		2.9	18
506	Na2Ti6O13@TiO2 core-shell nanorods with controllable mesoporous shells and their e photocatalytic performance. Applied Surface Science, 2018, 427, 1183-1192.	nhanced	3.1	22
507	Synthesis of Large Surfaceâ€Area gâ€C ₃ N ₄ Comodified with MnO <i>_x</i> and Auâ€TiO ₂ as Efficient Visibleâ€Light Photo Production. Advanced Energy Materials, 2018, 8, 1701580.	b bcatalysts for Fuel	10.2	157
508	Oligomerâ€Incorporated Polymeric Layer Framework of Graphitic Carbon Nitride for Ef Photocatalytic Hydrogen Evolution. Particle and Particle Systems Characterization, 20		1.2	10
509	Artificial Photosynthesis: Learning from Nature. ChemPhotoChem, 2018, 2, 148-160.		1.5	51

#	Article	IF	CITATIONS
510	Two-Dimensional Transition Metal Oxide and Chalcogenide-Based Photocatalysts. Nano-Micro Letters, 2018, 10, 23.	14.4	257
511	Monolithic aerogel photocatalysts: a review. Journal of Materials Chemistry A, 2018, 6, 754-775.	5.2	152
512	SEMICONDUCTING PHOTOCATALYSIS FOR SOLAR HYDROGEN CONVERSION. , 2018, , 63-108.		0
513	One-dimensional MgxTiyOx+2y nanostructures: General synthesis and enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2018, 225, 332-339.	10.8	11
514	<i>In situ</i> g-C ₃ N ₄ self-sacrificial synthesis of a g-C ₃ N ₄ /LaCO ₃ OH heterostructure with strong interfacial charge transfer and separation for photocatalytic NO removal. Journal of Materials Chemistry A, 2018, 6, 972-981.	5.2	54
515	Visible light-assisted photocatalytic mineralization of diuron pesticide using novel type II CuS/Bi ₂ W ₂ O ₉ heterojunctions with a hierarchical microspherical structure. New Journal of Chemistry, 2018, 42, 281-292.	1.4	51
516	Enhancing visible-light photocatalytic performance and stability of Ag3PO4 nanoparticles by coupling with hierarchical flower-like In2S3 microspheres. Materials Research Bulletin, 2018, 100, 102-110.	2.7	16
517	Integration of Ag2WO4 and AgBr with TiO2 to fabricate ternary nanocomposites: Novel plasmonic photocatalysts with remarkable activity under visible light. Materials Research Bulletin, 2018, 99, 93-102.	2.7	68
518	Optimization of electrolyte to significantly improve photoelectrochemical water splitting performance of ZnO nanowire arrays. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 227, 129-135.	1.7	33
519	Scaleâ€Up of BiVO ₄ Photoanode for Water Splitting in a Photoelectrochemical Cell: Issues and Challenges. Energy Technology, 2018, 6, 100-109.	1.8	49
520	In-situ fabrication of diketopyrrolopyrrole-carbazole-based conjugated polymer/TiO2 heterojunction for enhanced visible light photocatalysis. Applied Surface Science, 2018, 434, 796-805.	3.1	35
521	High efficiency water splitting photoanodes composed of nano-structured anatase-rutile TiO2 heterojunctions by pulsed-pressure MOCVD. Applied Catalysis B: Environmental, 2018, 224, 904-911.	10.8	51
522	Semiconductor-Based Photocatalytic Systems for the Solar-Light-Driven Water Splitting and Hydrogen Evolution. Lecture Notes in Quantum Chemistry II, 2018, , 39-125.	0.3	1
523	Enhanced photoelectrochemical activity in the heterostructure of vertically aligned few-layer MoS2 flakes on ZnO. Electrochimica Acta, 2018, 260, 150-156.	2.6	60
524	Recent progress on perovskite materials in photovoltaic and water splitting applications. Materials Today Energy, 2018, 7, 246-259.	2.5	84
525	One-pot construction of 1D/2D Zn1-Cd S/D-ZnS(en)0.5 composites with perfect heterojunctions and their superior visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 220, 324-336.	10.8	64
526	Structural evolution and microwave dielectric properties of a novel Li ₃ Mg _{2â^*x/3} Nb _{1â^*2x/3} Ti _x O ₆ system with a rock salt structure. Inorganic Chemistry Frontiers, 2018, 5, 3113-3125.	3.0	43
527	Oxygen vacancies of the TiO ₂ nano-based composite photocatalysts in visible light responsive photocatalysis. RSC Advances, 2018, 8, 33551-33563.	1.7	31

	CHATION	CITATION REPORT	
#	Article	IF	CITATIONS
528	Hydrogen evolution from silicon nanowire surfaces. RSC Advances, 2018, 8, 41657-41662.	1.7	3
529	Rational design of a novel quaternary ZnO@ZnS/Ag@Ag ₂ S nanojunction system for enhanced photocatalytic H ₂ production. Inorganic Chemistry Frontiers, 2018, 5, 3074-3081.	3.0	21
531	Direct visible light activation of a surface cysteine-engineered [NiFe]-hydrogenase by silver nanoclusters. Energy and Environmental Science, 2018, 11, 3342-3348.	15.6	26
532	Design and Comparative Studies of Z-Scheme and Type II Based Heterostructures of NaNbO ₃ /CuInS ₂ /In ₂ S ₃ for Efficient Photoelectrochemical Applications. Inorganic Chemistry, 2018, 57, 15112-15122.	1.9	40
533	Theory-Driven Heterojunction Photocatalyst Design with Continuously Adjustable Band Gap Materials. Journal of Physical Chemistry C, 2018, 122, 28065-28074.	1.5	20
534	Angstrom Thick ZnO Passivation Layer to Improve the Photoelectrochemical Water Splitting Performance of a TiO2 Nanowire Photoanode: The Role of Deposition Temperature. Scientific Reports, 2018, 8, 16322.	1.6	39
535	Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nature Catalysis, 2018, 1, 889-896.	16.1	391
536	Ordered Mesoporous TiO ₂ Gyroids: Effects of Pore Architecture and Nbâ€Doping on Photocatalytic Hydrogen Evolution under UV and Visible Irradiation. Advanced Energy Materials, 2018, 8, 1802566.	10.2	46
537	Janus nanostructures for heterogeneous photocatalysis. Applied Physics Reviews, 2018, 5, 041111.	5.5	51
538	Hydrogen Generation from Photoelectrochemical Water Splitting. , 2018, , 121-157.		0
541	<i>In situ</i> topotactic fabrication of direct Z-scheme 2D/2D ZnO/Zn _x Cd _{1â^'x} S single crystal nanosheet heterojunction for efficient photocatalytic water splitting. Catalysis Science and Technology, 2018, 8, 6458-6467.	2.1	49
542	Constructing SrTiO ₃ –TiO ₂ Heterogeneous Hollow Multiâ€shelled Structures for Enhanced Solar Water Splitting. Angewandte Chemie, 2019, 131, 1436-1440.	1.6	42
543	Construction of Novel CdS/SnNb2 O6 Heterojunctions with Enhanced Photocatalytic Degradation Activity Under Visible Light. European Journal of Inorganic Chemistry, 2018, 2018, 4812-4818.	1.0	6
544	Singleâ€Source Bismuth (Transition Metal) Polyoxovanadate Precursors for the Scalable Synthesis of Doped BiVO ₄ Photoanodes. Advanced Materials, 2018, 30, e1804033.	11.1	47
545	Synthesis and Broadband Spectra Photocatalytic Properties of Bi2O2(CO3)1â^'xSx. Materials, 2018, 11, 791.	1.3	5
546	Nanotube Array-Like WO ₃ Photoanode with Dual-Layer Oxygen-Evolution Cocatalysts for Photoelectrocatalytic Overall Water Splitting. ACS Applied Energy Materials, 2018, 1, 6871-6880.	2.5	60
547	Design and constructing of mutually independent crystal facet exposed TiO ₂ homojunction and improving synergistic effects for photoelectrochemical hydrogen generation and pollutant degradation. International Journal of Energy Research, 2018, 42, 4625-4641.	2.2	12
548	Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nature Communications, 2018, 9, 4009.	5.8	179

#	Article	IF	CITATIONS
549	Triple Planar Heterojunction of SnO2/WO3/BiVO4 with Enhanced Photoelectrochemical Performance under Front Illumination. Applied Sciences (Switzerland), 2018, 8, 1765.	1.3	17
550	Hierarchically structured CoN/Cu ₃ N nanotube array supported on copper foam as an efficient bifunctional electrocatalyst for overall water splitting. Inorganic Chemistry Frontiers, 2018, 5, 2906-2913.	3.0	29
551	Low-Cost Oriented Hierarchical Growth of BiVO ₄ /rGO/NiFe Nanoarrays Photoanode for Photoelectrochemical Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 14695-14703.	3.2	38
552	Catalyst or Precatalyst? The Effect of Oxidation on Transition Metal Carbide, Pnictide, and Chalcogenide Oxygen Evolution Catalysts. ACS Energy Letters, 2018, 3, 2956-2966.	8.8	309
553	Metal oxide semiconductors for solar water splitting. , 2018, , 205-249.		9
554	Graphitic Carbon Nitride for Electrochemical Energy Conversion and Storage. ACS Energy Letters, 2018, 3, 2796-2815.	8.8	149
555	Syntheses and Applications of Silver Halide-Based Photocatalysts. Lecture Notes in Quantum Chemistry II, 2018, , 307-343.	0.3	3
556	Material Design for Photocatalytic Water Splitting from a Theoretical Perspective. Advanced Materials, 2018, 30, e1802106.	11.1	258
557	Localized NiS ₂ Quantum Dots on g ₃ N ₄ Nanosheets for Efficient Photocatalytic Hydrogen Production from Water. ChemCatChem, 2018, 10, 5441-5448.	1.8	46
558	Effect of Water Adsorption on the Interfacial Structure and Band Edge Alignment of Anatase TiO ₂ (001)/Water by First-Principles Molecular Dynamics. Journal of Physical Chemistry C, 2018, 122, 26965-26973.	1.5	22
559	TiO ₂ and NaTaO ₃ Decorated by Trimetallic Au/Pd/Pt Core–Shell Nanoparticles as Efficient Photocatalysts: Experimental and Computational Studies. ACS Sustainable Chemistry and Engineering, 2018, 6, 16665-16682.	3.2	38
560	Recent progress in efficiency of hydrogen evolution process based photoelectrochemical cell. International Journal of Hydrogen Energy, 2018, 43, 21502-21523.	3.8	47
561	MoS ₂ /CQDs obtained by photoreduction for assembly of a ternary MoS ₂ /CQDs/ZnIn ₂ S ₄ nanocomposite for efficient photocatalytic hydrogen evolution under visible light. Journal of Materials Chemistry A, 2018, 6, 19735-19742.	5.2	77
564	Metal oxide electrodes for photo-activated water splitting. , 2018, , 19-48.		4
565	Enhanced Charge Separation of TiO ₂ Nanotubes Photoelectrode for Efficient Conversion of CO ₂ . ACS Sustainable Chemistry and Engineering, 2018, 6, 12953-12960.	3.2	8
566	Investigations of Interfacial Electric Field on Reducedâ€Grapheneâ€Oxideâ€Supported Molybdenum Oxide @ Silver Phosphate Ternary Hybrid Composite: Highly Efficient Visibleâ€Lightâ€Driven Photocatalyst. ChemistrySelect, 2018, 3, 9920-9932.	0.7	5
567	Enhanced photocatalytic hydrogen evolution over a heterojunction composed of silver cyanamide and graphitic carbon nitride. New Journal of Chemistry, 2018, 42, 16005-16012.	1.4	12
568	Synergy between quantum confinement and chemical functionality of graphene dots promotes photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2018, 6, 18216-18224.	5.2	10

# 569 570	ARTICLE Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants. Beilstein Journal of Nanotechnology, 2018, 9, 2297-2305. Serial hole transfer layers for a BiVO ₄ photoanode with enhanced photoelectrochemical water splitting. Nanoscale, 2018, 10, 18378-18386.	IF 1.5 2.8	CITATIONS 15 44
571	Defect engineering in photocatalytic materials. Nano Energy, 2018, 53, 296-336.	8.2	732
572	Visible-light-active g-C ₃ N ₄ /N-doped Sr ₂ Nb ₂ O ₇ heterojunctions as photocatalysts for the hydrogen evolution reaction. Sustainable Energy and Fuels, 2018, 2, 2507-2515.	2.5	46
573	Defects induced efficient overall water splitting on a carbon-based metal-free photocatalyst. Applied Catalysis B: Environmental, 2018, 237, 166-174.	10.8	46
574	Efficient Charge Separation from F [–] Selective Etching and Doping of Anatase-TiO ₂ {001} for Enhanced Photocatalytic Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 19633-19638.	4.0	67
575	Two Ni(II) semiconducting metal-organic frameworks based on the tetrakis(4-carboxyphenyl)silane and an imidazole ligand: Syntheses, characterization, water stability and photoelectric properties. Journal of Solid State Chemistry, 2018, 265, 100-108.	1.4	5
576	NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn–Air Batteries: The Effect of Surface S Residues. Advanced Materials, 2018, 30, e1800757.	11.1	219
577	Plasmonic Au Nanoparticles/KCa2Nb3O10 nanosheets 0D/2D heterojunctions with enhanced photocatalytic activity towards the degradation of tetracycline hydrochloride. Journal of Alloys and Compounds, 2018, 762, 38-45.	2.8	17
578	A Short Review on Hydrogen, Biofuel, and Electricity Production Using Seawater as a Medium. Energy & Fuels, 2018, 32, 6423-6437.	2.5	53
579	Spinel photocatalysts for environmental remediation, hydrogen generation, CO ₂ reduction and photoelectrochemical water splitting. Journal of Materials Chemistry A, 2018, 6, 11078-11104.	5.2	176
580	p-n Based Photoelectrochemical Device for Water Splitting Application Alpha-Hematite (α-Fe2O3)-Titanium Dioxide (tio2) as N-Electrode & Polyhexylthiophene (rrphth) - Nanodiamond (ND) as P-Electrode. MRS Advances, 2018, 3, 697-706.	0.5	0
581	Solar light active plasmonic Au@TiO ₂ nanocomposite with superior photocatalytic performance for H ₂ production and pollutant degradation. New Journal of Chemistry, 2018, 42, 10958-10968.	1.4	67
582	Mn-Doped g-C ₃ N ₄ Nanoribbon for Efficient Visible-Light Photocatalytic Water Splitting Coupling with Methylene Blue Degradation. ACS Sustainable Chemistry and Engineering, 2018, 6, 8754-8761.	3.2	93
583	Bismuth vanadate-based semiconductor photocatalysts: a short critical review on the efficiency and the mechanism of photodegradation of organic pollutants. Environmental Science and Pollution Research, 2018, 25, 19362-19379.	2.7	58
584	β yclodextrin as a Precursor to Holey Câ€Doped g ₃ N ₄ Nanosheets for Photocatalytic Hydrogen Generation. ChemSusChem, 2018, 11, 2681-2694.	3.6	92
585	Manipulation structure of carbon nitride via trace level iron with improved interfacial redox activity and charge separation for synthetic enhancing photocatalytic hydrogen evolution. Applied Surface Science, 2018, 456, 609-614.	3.1	13
586	Surface chemistry imposes selective reduction of CO ₂ to CO over Ta ₃ N ₅ /LaTiO ₂ N photocatalyst. Journal of Materials Chemistry A, 2018, 6, 14838-14846.	5.2	34

#	Article	IF	CITATIONS
587	Charge separation via asymmetric illumination in photocatalytic Cu2O particles. Nature Energy, 2018, 3, 655-663.	19.8	275
588	Strong coupling effect at the interface of cobalt phosphate-carbon dots boost photocatalytic water splitting. Journal of Colloid and Interface Science, 2018, 530, 256-263.	5.0	38
589	Antibacterial activity of Cu2O and Ag co-modified rice grains-like ZnO nanocomposites. Journal of Materials Science and Technology, 2018, 34, 2359-2367.	5.6	46
590	Dion–Jacobson-type perovskite KCa ₂ Ta ₃ O ₁₀ nanosheets hybridized with g-C ₃ N ₄ nanosheets for photocatalytic H ₂ production. Catalysis Science and Technology, 2018, 8, 3767-3773.	2.1	26
591	A heterojunction strategy to improve the visible light sensitive water splitting performance of photocatalytic materials. Journal of Materials Chemistry A, 2018, 6, 21696-21718.	5.2	244
592	FeCoW multimetal oxide-coatedÂW:BiVO ₄ photoanode for efficient oxygen evolution. Sustainable Energy and Fuels, 2018, 2, 2053-2059.	2.5	9
593	Photocatalytic hydrogen evolution and bacterial inactivation utilizing sonochemical-synthesized g-C3N4/red phosphorus hybrid nanosheets as a wide-spectral-responsive photocatalyst: The role of type I band alignment. Applied Catalysis B: Environmental, 2018, 238, 126-135.	10.8	209
594	Light-tuned switching of charge transfer channel for simultaneously boosted photoactivity and stability. Applied Catalysis B: Environmental, 2018, 238, 19-26.	10.8	48
595	Defective Anatase TiO _{2â^'<i>x</i>} Mesocrystal Growth In Situ on gâ€C ₃ N ₄ Nanosheets: Construction of 3D/2D Zâ€6cheme Heterostructures for Highly Efficient Visibleâ€Light Photocatalysis. Chemistry - A European Journal, 2018, 24, 13311-13321.	1.7	46
596	Nanocomposites and Its Applications. , 2018, , 1-22.		12
597	Application of Exfoliated Inorganic Nanosheets for Strongly oupled Hybrid Photocatalysts. Solar Rrl, 2018, 2, 1800092.	3.1	22
598	Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy. Chemical Society Reviews, 2018, 47, 8238-8262.	18.7	343
599	Reductive Transformation of Layeredâ€Doubleâ€Hydroxide Nanosheets to Feâ€Based Heterostructures for Efficient Visibleâ€Light Photocatalytic Hydrogenation of CO. Advanced Materials, 2018, 30, e1803127.	11.1	100
600	Aluminum enhances photochemical charge separation in strontium titanate nanocrystal photocatalysts for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 16170-16176.	5.2	27
601	Temperature-Program Assisted Synthesis of Novel Z-Scheme CuBi2O4/β-Bi2O3 Composite with Enhanced Visible Light Photocatalytic Performance. Nanomaterials, 2018, 8, 579.	1.9	9
602	Interstitial charge transfer pathways in a TiO ₂ /Cdln ₂ S ₄ heterojunction photocatalyst for direct conversion of sunlight into fuel. Journal of Materials Chemistry A, 2018, 6, 16064-16073.	5.2	73
603	Janus MoSSe Nanotubes: Tunable Band Gap and Excellent Optical Properties for Surface Photocatalysis. Advanced Theory and Simulations, 2018, 1, 1800082.	1.3	35
604	Plasmon-Enhanced Layered Double Hydroxide Composite BiVO ₄ Photoanodes: Layering-Dependent Modulation of the Water-Oxidation Reaction. ACS Applied Energy Materials, 2018, 1, 3577-3586.	2.5	52

#	Article	IF	CITATIONS
605	Advances in materials engineering of CdS coupled with dual cocatalysts of graphene and MoS ₂ for photocatalytic hydrogen evolution. Pure and Applied Chemistry, 2018, 90, 1379-1392.	0.9	4
606	Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 86-93.	2.0	74
607	Ag ₂ WO ₄ nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants. Beilstein Journal of Nanotechnology, 2018, 9, 1308-1316.	1.5	22
608	Architecture of high efficient zinc vacancy mediated Z-scheme photocatalyst from metal-organic frameworks. Nano Energy, 2018, 52, 105-116.	8.2	179
609	Polystyrene-heterojunction semiconductor composite spheres prepared by a hydrothermal synthesis process: a recyclable photocatalyst under visible light irradiation for removing organic dyes from aqueous solution. Dalton Transactions, 2018, 47, 12130-12137.	1.6	6
610	Z-scheme CuFe2O4–TiO2 nanocomposite microspheres for the photodegradation of methylene blue. Research on Chemical Intermediates, 2018, 44, 7107-7116.	1.3	12
611	Fabrication of Hierarchical Two-Dimensional MoS ₂ Nanoflowers Decorated upon Cubic Caln ₂ S ₄ Microflowers: Facile Approach To Construct Novel Metal-Free p–n Heterojunction Semiconductors with Superior Charge Separation Efficiency. Inorganic Chemistry, 2018, 57, 10059-10071.	1.9	117
612	Elemental doping for optimizing photocatalysis in semiconductors. Dalton Transactions, 2018, 47, 12642-12646.	1.6	62
613	Constructing film composites of silicon nanowires@CdS quantum dot arrays with ameliorated photocatalytic performance. New Journal of Chemistry, 2018, 42, 14096-14103.	1.4	18
614	Construction of heterojunction ZnFe2O4/ZnO/Ag by using ZnO and Ag nanoparticles to modify ZnFe2O4 and its photocatalytic properties under visible light. Materials Chemistry and Physics, 2018, 219, 22-29.	2.0	46
615	g-C3N4-Based Nanomaterials for Visible Light-Driven Photocatalysis. Catalysts, 2018, 8, 74.	1.6	188
616	Modular Construction of Photoanodes with Covalently Bonded Ru- and Ir-Polypyridyl Visible Light Chromophores. ACS Applied Materials & Amp; Interfaces, 2018, 10, 24533-24542.	4.0	15
617	A Facile Method for the Preparation of Colored Bi4Ti3O12â^'x Nanosheets with Enhanced Visible-Light Photocatalytic Hydrogen Evolution Activity. Nanomaterials, 2018, 8, 261.	1.9	23
618	Hybrid Density Functional Study on the Photocatalytic Properties of Two-dimensional g-ZnO Based Heterostructures. Nanomaterials, 2018, 8, 374.	1.9	15
619	Experimental and first-principles studies of BiVO4/BiV1-xMnxO4-y n-n+ homojunction for efficient charge carrier separation in sunlight induced water splitting. International Journal of Hydrogen Energy, 2018, 43, 15815-15822.	3.8	8
620	Role of cobalt–iron (oxy)hydroxide (CoFeO _x) as oxygen evolution catalyst on hematite photoanodes. Energy and Environmental Science, 2018, 11, 2972-2984.	15.6	120
621	Black hollow TiO2 nanocubes: Advanced nanoarchitectures for efficient visible light photocatalytic applications. Applied Catalysis B: Environmental, 2018, 238, 177-183.	10.8	62
622	Titanium dioxide nanostructures for photoelectrochemical applications. Progress in Materials Science, 2018, 98, 299-385.	16.0	205

ARTICLE IF CITATIONS # Hierarchical CdS Nanorod@SnO₂ Nanobowl Arrays for Efficient and Stable 623 5.2 42 Photoelectrochemical Hydrogen Generation. Small, 2018, 14, e1801352. Enhanced efficiency of hematite photoanode for water splitting with the doping of Ge. International 624 3.8 Journal of Hydrogen Energy, 2018, 43, 12646-12652. Atomically Thin 2D Multinary Nanosheets for Energyâ€Related Photo, Electrocatalysis. Advanced 625 5.6 54 Science, 2018, 5, 1800244. A Nobleâ€Metalâ€Free CdS/Ni₃S₂@C Nanocomposite for Efficient Visibleâ€Lightâ€Driven Photocatalysis. Small Methods, 2018, 2, 1800029. Surface, Bulk, and Interface: Rational Design of Hematite Architecture toward Efficient 627 11.1 248 Photoâ€Electrochemical Water Splitting. Advanced Materials, 2018, 30, e1707502. Development of Sunlight Driven Water Splitting Devices towards Future Artificial Photosynthetic 1.0 Industry. ChemEngineering, 2018, 2, 36. Synthesis of monoclinic BiVO4 nanorod array for photoelectrochemical water oxidation: Seed layer 629 2.6 42 effects on growth of BiVO4 nanorod array. Electrochimica Acta, 2018, 285, 164-171. High performance plasmonic activation of Ag on \hat{l}^2 -Ag2WO4/BiVO4 as nanophotocatalyst for oxidation of alcohols by incident visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 2.0 10 367, 56-65. Preparation, Photoelectrochemical Properties and Biosensor Applications of Oriented 2-D ZnIn2S4 631 Nanosheet Arrays for Detecting Glutathione (CSH). Journal of Electronic Materials, 2018, 47, 1.0 11 6540-6550. Understanding the visible-light photocatalytic activity of GaN:ZnO solid solution: the role of Rh_{2â[^]y}Cr_yO₃ cocatalyst and charge carrier lifetimes over tens of seconds. Chémical Science, 2018, 9, 7546-7555. Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light 633 10.8 183 photocatalytic water oxidation reaction. Applied Catalysis B: Environmental, 2018, 239, 398-407. C-I codoped porous g-C3N4 for superior photocatalytic hydrogen evolution. Chinese Journal of 634 6.9 Catalysis, 2018, 39, 1615-1624. Recent developments of metal oxide based heterostructures for photocatalytic applications towards 635 1.4 187 environmental remediation. Journal of Solid State Chemistry, 2018, 267, 35-52. Preparation of TiO2/C3N4 heterojunctions on carbon-fiber cloth as efficient filter-membrane-shaped photocatalyst for removing various pollutants from the flowing wastewater. Journal of Colloid and Interface Science, 2018, 532, 798-807. 5.0 Driving Surface Redox Reactions in Heterogeneous Photocatalysis: The Active State of Illuminated Semiconductor-Supported Nanoparticles during Overall Water-Splitting. ACS Catalysis, 2018, 8, 637 5.5 68 9154-9164. Facile Synthesis of Ag/AgCl Grafted AgBi(MoO₄)₂ with Enhanced Photocatalytic Performance Under Visible Light. Nano, 2018, 13, 1850089. High Performance Photocatalytic Based on Ce Doped CoWO4: Controllable Synthesis and Enhanced 639 1.4 26 Photocatalytic Activity. Catalysis Letters, 2018, 148, 3205-3213. Strategic modulation of electron migration in the TiO2-Au-CdS: Z-scheme design for the enhancement 640 2.3 in hydrogen evolution reaction. Electrochemistry Communications, 2018, 95, 28-32.

#	Article	IF	CITATIONS
641	Energy-Band Alignment of BiVO ₄ from Photoelectron Spectroscopy of Solid-State Interfaces. Journal of Physical Chemistry C, 2018, 122, 20861-20870.	1.5	38
642	Mesoporous Pt/TiO2-xNx nanoparticles with less than 10 nm and high specific surface area as visible light hydrogen evolution photocatalysts. Journal of Sol-Gel Science and Technology, 2018, 87, 230-239.	1.1	3
643	Hydrogenated heterojunction of boron nitride and titania enables the photocatalytic generation of H2 in the absence of noble metal catalysts. Applied Catalysis B: Environmental, 2018, 237, 772-782.	10.8	41
644	Aluminum-incorporated p-CuO/n-ZnO photocathode coated with nanocrystal-engineered TiO ₂ protective layer for photoelectrochemical water splitting and hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 11951-11965.	5.2	58
645	Black Phosphorusâ€Based Compound with Few Layers for Photocatalytic Water Oxidation. ChemCatChem, 2018, 10, 3424-3428.	1.8	14
646	Influences of Silver and Zinc Contents in the Stannite Ag ₂ ZnSnS ₄ Photoelectrodes on Their Photoelectrochemical Performances in the Saltwater Solution. ACS Applied Materials & Interfaces, 2018, 10, 22130-22142.	4.0	19
647	Combinatorial alloying improves bismuth vanadate photoanodes <i>via</i> reduced monoclinic distortion. Energy and Environmental Science, 2018, 11, 2444-2457.	15.6	21
648	Upgraded organic vapor treatment and hydrogen generation using low-cost metal/1D black titania nanocomposites under simulated solar irradiation. Journal of Industrial and Engineering Chemistry, 2018, 66, 318-324.	2.9	2
649	A Facetâ€Dependent Schottkyâ€Junction Electron Shuttle in a BiVO ₄ {010}–Au–Cu ₂ O Zâ€Scheme Photocatalyst for Efficient Charge Separation. Advanced Functional Materials, 2018, 28, 1801214.	7.8	193
650	Enhanced Photocatalytic H ₂ Production on Three-Dimensional Porous CeO ₂ /Carbon Nanostructure. ACS Sustainable Chemistry and Engineering, 2018, 6, 9691-9698.	3.2	48
651	Improved photocatalytic activity for water splitting over MFe2O4–ZnO (M =â€ ⁻ Cu and Ni) type-ll heterostructures. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 433-442.	2.0	22
652	Pd@H _{<i>y</i>} WO _{3–<i>x</i>} Nanowires Efficiently Catalyze the CO ₂ Heterogeneous Reduction Reaction with a Pronounced Light Effect. ACS Applied Materials & Interfaces, 2019, 11, 5610-5615.	4.0	52
653	Engineered bi-functional hydrophilic/hydrophobic yolk@shell architectures: A rational strategy for non-time dependent ultra selective photocatalytic oxidation. Applied Catalysis B: Environmental, 2019, 240, 72-78.	10.8	26
654	Synthesis of a novel magnetic SnNb2O6/CoFe-LDH 2D/2D heterostructure for the degradation of organic pollutants under visible light irradiation. Journal of Materials Science, 2019, 54, 172-187.	1.7	17
655	Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Advanced Materials, 2019, 31, e1801369.	11.1	506
656	Anchoring Active Pt ²⁺ /Pt ⁰ Hybrid Nanodots on gâ€C ₃ N ₄ Nitrogen Vacancies for Photocatalytic H ₂ Evolution. ChemSusChem, 2019, 12, 2029-2034.	3.6	54
657	Fabrication of UV–Vis-NIR-driven photocatalysts Ag/Bi/BiOCl0.8Br0.2 with high catalytic activity. Separation and Purification Technology, 2019, 210, 281-291.	3.9	41
658	Conformal growth of few-layer MoS2 flakes on closely-packed TiO2 nanowires and their enhanced photoelectrochemical reactivity. Journal of Alloys and Compounds, 2019, 770, 686-691.	2.8	24

#	Article	IF	CITATIONS
659	In Operando Photoelectrochemical Femtosecond Transient Absorption Spectroscopy of WO ₃ /BiVO ₄ Heterojunctions. ACS Energy Letters, 2019, 4, 2213-2219.	8.8	42
660	Earth-Abundant MoS ₂ and Cobalt Phosphate Dual Cocatalysts on 1D CdS Nanowires for Boosting Photocatalytic Hydrogen Production. Langmuir, 2019, 35, 11056-11065.	1.6	77
661	Improving the photo-cathodic properties of TiO2 nano-structures with graphdiynes. New Journal of Chemistry, 2019, 43, 12896-12899.	1.4	5
662	Insights into the TiO2-Based Photocatalytic Systems and Their Mechanisms. Catalysts, 2019, 9, 680.	1.6	77
663	Hollow mesoporous TiO2/WO3 sphere heterojunction with high visible-light-driven photocatalytic activity. Materials Research Bulletin, 2019, 119, 110571.	2.7	40
664	Photocatalytic Water Splitting Cycle in a Dye-Catalyst Supramolecular Complex: Ab Initio Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2019, 123, 21403-21414.	1.5	17
665	Research advances towards large-scale solar hydrogen production from water. EnergyChem, 2019, 1, 100014.	10.1	130
666	Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering. Nature Communications, 2019, 10, 3687.	5.8	300
667	Effect of controlling the number of fused rings on polymer photocatalysts for visible-light-driven hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 22924-22929.	5.2	51
668	Substantially enhanced photoelectrochemical performance of TiO2 nanorods/CdS nanocrystals heterojunction photoanode decorated with MoS2 nanosheets. Applied Catalysis B: Environmental, 2019, 259, 118102.	10.8	99
669	Water Splitting Exceeding 17% Solar-to-Hydrogen Conversion Efficiency Using Solution-Processed Ni-Based Electrocatalysts and Perovskite/Si Tandem Solar Cell. ACS Applied Materials & Interfaces, 2019, 11, 33835-33843.	4.0	67
670	Integrating Pt@Ni(OH) nanowire and Pt nanoparticle on C N4with fast surface kinetics and charge transfer towards highly efficient photocatalytic water splitting. Applied Catalysis B: Environmental, 2019, 259, 118028.	10.8	30
671	Fabrication of Ag based ternary nanocomposite system for visible-light photocatalytic hydrogen evolution reaction. Applied Surface Science, 2019, 494, 886-894.	3.1	20
672	Characterization techniques and analytical methods of carbon-based materials for energy applications. , 2019, , 63-88.		4
673	Visible light driven photocatalytic degradation enhanced by α/β phase heterojunctions on electrospun Bi2O3 nanofibers. Journal of Alloys and Compounds, 2019, 806, 1060-1067.	2.8	32
674	Graphitic carbon nitride based Z scheme photocatalysts: Design considerations, synthesis, characterization and applications. Journal of Industrial and Engineering Chemistry, 2019, 79, 383-408.	2.9	63
675	NiSe ₂ as Coâ€Catalyst with CdS: Nanocomposites for Highâ€Performance Photodriven Hydrogen Evolution under Visibleâ€Light Irradiation. ChemPlusChem, 2019, 84, 999-1010.	1.3	12
676	Synergetic Effect of Facet Junction and Specific Facet Activation of ZnFe ₂ O ₄ Nanoparticles on Photocatalytic Activity Improvement. ACS Applied Materials & Interfaces, 2019, 11, 29004-29013.	4.0	57

#	Article	IF	Citations
677	A multifunctional platform by controlling of carbon nitride in the core-shell structure: From design to construction, and catalysis applications. Applied Catalysis B: Environmental, 2019, 258, 117957.	10.8	126
678	Spontaneous full photocatalytic water splitting on 2D MoSe ₂ /SnSe ₂ and WSe ₂ /SnSe ₂ vdW heterostructures. Nanoscale, 2019, 11, 14836-14843.	2.8	156
679	Cross-linked bond accelerated interfacial charge transfer in monolayer zinc indium sulfide (ZnIn2S4)/reduced graphene oxide (RGO) heterostructure for photocatalytic hydrogen production with mechanistic insight. Catalysis Science and Technology, 2019, 9, 4066-4076.	2.1	26
680	Ultrathin Nanotubes of Bi ₅ O ₇ I with a Reduced Band Gap as a High-Performance Photocatalyst. Inorganic Chemistry, 2019, 58, 9833-9843.	1.9	45
681	In situ self-assembly synthesis of sandwich-like TiO2/reduced graphene oxide/LaFeO3 Z-scheme ternary heterostructure towards enhanced photocatalytic hydrogen production. Molecular Catalysis, 2019, 475, 110497.	1.0	16
682	Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution. Applied Catalysis B: Environmental, 2019, 257, 117931.	10.8	170
683	PINO/NHPI-mediated selective oxidation of cycloalkenes to cycloalkenones <i>via</i> a photo-electrochemical method. Chemical Communications, 2019, 55, 9339-9342.	2.2	20
684	B-site modified photoferroic Cr ³⁺ -doped barium titanate nanoparticles: microwave-assisted hydrothermal synthesis, photocatalytic and electrochemical properties. RSC Advances, 2019, 9, 20806-20817.	1.7	44
685	Morphology evolution and photocatalytic applications of W-doped Bi2O3 films prepared using unique oblique angle co-sputtering technology. Ceramics International, 2019, 45, 21968-21974.	2.3	24
686	Evaluating the materials used for hydrogen production based on photoelectrochemical technology. International Journal of Renewable Energy Development, 2019, 8, 169-178.	1.2	4
687	Nickel Ammine Complexâ€derived NiO Modified g 3 N 4 Composites with Enhanced Visibleâ€light Photocatalytic H 2 Evolution Performance. ChemistrySelect, 2019, 4, 8095-8103.	0.7	5
688	Understanding the Surface of g-C3N4, an Experimental Investigation of the Catalytic Active Site on the Interface. Catalysis Letters, 2019, 149, 3296-3303.	1.4	7
689	Local structure of iron oxide sensitizing Nb2O5 photocatalysts. Journal of Alloys and Compounds, 2019, 806, 543-552.	2.8	9
690	TiO ₂ /Fe ₂ O ₃ heterostructures with enhanced photocatalytic reduction of Cr(<scp>vi</scp>) under visible light irradiation. RSC Advances, 2019, 9, 22764-22771.	1.7	60
691	Core–Shell or Dimer Heterostructures? Synergistic Catalysis of an Advanced Oxidation Process at the Exposed Interface under Illumination. ACS Applied Materials & Interfaces, 2019, 11, 28996-29003.	4.0	5
692	Facile synthesis of g-C3N4/ LaMO3 (M: Co, Mn, Fe) composites for enhanced visible-light-driven photocatalytic water splitting. Materials Science in Semiconductor Processing, 2019, 103, 104643.	1.9	21
693	A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS Nano, 2019, 13, 9811-9840.	7.3	331
694	Electrospun Nanofibers Embedding ZnO/Ag2CO3/Ag2O Heterojunction Photocatalyst with Enhanced Photocatalytic Activity. Catalysts, 2019, 9, 565.	1.6	40

#	Article	IF	Citations
695	Ternary Composite of g ₃ N ₄ /ZnFe ₂ O ₄ /Fe ₂ O ₃ : Hydrothermal Synthesis and Enhanced Photocatalytic Performance. ChemistrySelect, 2019, 4, 7308-7316.	0.7	18
696	Nanoscale lightning rod effect in 3D carbon nitride nanoneedle: Enhanced charge collection and separation for efficient photocatalysis. Journal of Catalysis, 2019, 375, 361-370.	3.1	55
697	CVD technique assisted, advanced synthesis of WO ₃ -G composites for enhanced photocatalytic H ₂ generation under visible light illumination. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 762-769.	1.0	2
698	Deliberate construction of direct <i>Z</i> -scheme photocatalysts through photodeposition. Journal of Materials Chemistry A, 2019, 7, 18348-18356.	5.2	85
699	The Electronic Structure and Optical Properties of Twoâ€Dimensional BiOX–YO ₃ (X = Cl,	Br,) Tj ET	Qq0 0 0 rgBT

700	Nanotechnology for biological photovoltaics; industrial applications of nanomaterials. , 2019, , 65-89.		8
701	One-step co-precipitation method to construct black phosphorus nanosheets/ZnO nanohybrid for enhanced visible light photocatalytic activity. Applied Surface Science, 2019, 497, 143682.	3.1	40
702	Lowâ€Energy GeP Monolayers with Natural Typeâ€II Homojunctions for SunLightâ€Driven Water Splitting. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900470.	1.2	12
703	Hydrogen from photo-electrocatalytic water splitting. , 2019, , 419-486.		17
704	Enhanced photoelectrochemical water oxidation activity of BiVO4 by coating of Co-phenolic networks as hole-transfer and co-catalyst. Journal of Catalysis, 2019, 377, 684-691.	3.1	43
705	Photocatalytic dye decolorization under light-emitting-diode irradiation by silver halides prepared from hydrohalic acids. Materials Research Express, 2019, 6, 115524.	0.8	2
706	A Systematic Study on the Double-Layered Photosensitizing Dye Structure on the Surface of Pt-Cocatalyst-Loaded TiO2 Nanoparticles. Bulletin of the Chemical Society of Japan, 2019, 92, 1793-1800.	2.0	8
707	Nanowire Genome: A Magic Toolbox for 1D Nanostructures. Advanced Materials, 2019, 31, e1902807.	11.1	44
708	Photocatalytic Hydrogen Production by Boron Modified TiO ₂ /Carbon Nitride Heterojunctions. ChemCatChem, 2019, 11, 6408-6416.	1.8	35
709	Photoinduced Carrier Dynamics at the Interface of Black Phosphorus and Bismuth Vanadate. Journal of Physical Chemistry A, 2019, 123, 10019-10029.	1.1	5
710	Fully Conjugated Covalent Organic Polymer with Carbon-Encapsulated Ni ₂ P for Highly Sustained Photocatalytic H ₂ Production from Seawater. ACS Applied Materials & Interfaces, 2019, 11, 41313-41320.	4.0	71
711	GIT1 regulates angiogenic factor secretion in bone marrow mesenchymal stem cells via NFâ€₽B/Notch signalling to promote angiogenesis. Cell Proliferation, 2019, 52, e12689.	2.4	16
712	Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem, 2019, 1, 100015.	10.1	73

#	Article	IF	CITATIONS
713	Orientation Engineering in Lowâ€Dimensional Crystalâ€Structural Materials via Seed Screening. Advanced Materials, 2019, 31, e1903914.	11.1	104
714	Constructing 0D FeP Nanodots/2D g 3 N 4 Nanosheets Heterojunction for Highly Improved Photocatalytic Hydrogen Evolution. ChemCatChem, 2019, 11, 6310-6315.	1.8	33
715	Triplet–Triplet Annihilation Upconversion for Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2019, 25, 16270-16276.	1.7	36
716	Carbon-Based Nanomaterials via Heterojunction Serving as Photocatalyst. Frontiers in Chemistry, 2019, 7, 713.	1.8	42
717	The comparative study of two reusable phosphotungstic acid salts/reduced graphene oxides composites with enhanced photocatalytic activity. Environmental Science and Pollution Research, 2019, 26, 34248-34260.	2.7	12
718	Serendipitous Assembly of Mixed Phase BiVO ₄ on B-Doped g-C ₃ N ₄ : An Appropriate p–n Heterojunction for Photocatalytic O ₂ evolution and Cr(VI) reduction. Inorganic Chemistry, 2019, 58, 12480-12491.	1.9	85
719	Novel Co-doped Fe ₃ O ₄ /Bi ₂ WO ₆ core–shell magnetic photocatalysts with enhanced photocatalytic degradation of contaminants. New Journal of Chemistry, 2019, 43, 15335-15341.	1.4	15
720	Photocatalytic Degradation of Selected Pharmaceuticals Using g-C3N4 and TiO2 Nanomaterials. Nanomaterials, 2019, 9, 1194.	1.9	39
721	In-situ synthesis of CdS quantum dots on CdCO3 cubic structure for enhanced photocatalytic hydrogen production performance. Materials Letters, 2019, 255, 126560.	1.3	17
722	Triple Layer Heterojunction WO ₃ /BiVO ₄ /BiFeO ₃ Porous Photoanode for Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials, 2019, 2, 6428-6439.	2.5	57
723	Janus MoSSe/WSeTe heterostructures: a direct Z-scheme photocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 21835-21842.	5.2	119
724	Designing CdS-Based Ternary Heterostructures Consisting of Co-Metal and CoO _{<i>x</i>} Cocatalysts for Photocatalytic H ₂ Evolution under Visible Light. Inorganic Chemistry, 2019, 58, 12325-12333.	1.9	27
725	Facile synthesis of 3D flower-like mesoporous Ce-ZnO at room temperature for the sunlight-driven photocatalytic degradations of RhB and phenol. Journal of Colloid and Interface Science, 2019, 556, 726-733.	5.0	30
726	Hollow In ₂ O ₃ @ZnFe ₂ O ₄ heterojunctions for highly efficient photocatalytic degradation of tetracycline under visible light. Environmental Science: Nano, 2019, 6, 3123-3132.	2.2	50
727	Self-constructed side-by-side nanofiber photocatalyst <i>via</i> oppositely charged electrospinning and its photocatalytic degradation of rhodamine B. New Journal of Chemistry, 2019, 43, 15405-15412.	1.4	8
728	Nitrogen doping in coexposed (001)–(101) anatase TiO ₂ surfaces: a DFT study. Physical Chemistry Chemical Physics, 2019, 21, 21497-21505.	1.3	36
729	Influence of MoS2 on Activity and Stability of Carbon Nitride in Photocatalytic Hydrogen Production. Catalysts, 2019, 9, 695.	1.6	15
730	CuO/ZnO/g-C3N4 heterostructures as efficient visible light-driven photocatalysts. Journal of Environmental Chemical Engineering, 2019, 7, 103412.	3.3	61

#	Article	IF	CITATIONS
731	Construction of porous nanoscale NiO/NiCo2O4 heterostructure for highly enhanced electrocatalytic oxygen evolution activity. Journal of Catalysis, 2019, 379, 1-9.	3.1	75
732	Boosting the photocatalytic hydrogen evolution performance via an atomically thin 2D heterojunction visualized by scanning photoelectrochemical microscopy. Nano Energy, 2019, 65, 104053.	8.2	18
733	An overview and recent progress in the heterogeneous photocatalytic reduction of U(VI). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 41, 100320.	5.6	97
734	Fabrication of CdS PbWO4 nanocomposite to improve the photocatalytic degradation efficiency of methylene blue under visible light irradiation. Journal of Physics and Chemistry of Solids, 2019, 129, 261-269.	1.9	24
735	GaP–ZnS Multilayer Films: Visible-Light Photoelectrodes by Interface Engineering. Journal of Physical Chemistry C, 2019, 123, 3336-3342.	1.5	7
736	Layer-by-layer assembly for photoelectrochemical nanoarchitectonics. Molecular Systems Design and Engineering, 2019, 4, 65-77.	1.7	25
737	Electron polarons in the subsurface layer of Mo/W-doped BiVO ₄ surfaces. RSC Advances, 2019, 9, 819-823.	1.7	8
738	Boosting photocatalytic water splitting by tuning built-in electric field at phase junction. Journal of Materials Chemistry A, 2019, 7, 10264-10272.	5.2	91
739	All-Oxide α-Fe ₂ O ₃ /H:TiO ₂ Heterojunction Photoanode: A Platform for Stable and Enhanced Photoelectrochemical Performance through Favorable Band Edge Alignment. Journal of Physical Chemistry C, 2019, 123, 3326-3335.	1.5	38
740	Decreased Surface Photovoltage of ZnO Photoanode Films via Optimal Annealing Temperature for Enhanced Photoelectrochemical Performance. Journal of Nanomaterials, 2019, 2019, 1-8.	1.5	2
741	Highly Efficient Photoelectrochemical Water Splitting: Surface Modification of Cobaltâ€Phosphateâ€Loaded Co ₃ O ₄ /Fe ₂ O ₃ p–n Heterojunction Nanorod Arrays. Advanced Functional Materials, 2019, 29, 1801902.	7.8	220
742	Perovskite—a Perfect Top Cell for Tandem Devices to Break the S–Q Limit. Advanced Science, 2019, 6, 1801704.	5.6	80
743	Amorphous Ni <i>_x</i> Co <i>_y</i> P-supported TiO ₂ nanotube arrays as an efficient hydrogen evolution reaction electrocatalyst in acidic solution. Beilstein Journal of Nanotechnology, 2019, 10, 62-70.	1.5	14
744	Boosting interfacial charge migration of TiO2/BiVO4 photoanode by W doping for photoelectrochemical water splitting. Electrochimica Acta, 2019, 300, 138-144.	2.6	36
745	Environmentally benign synthesis of Co3O4-SnO2 heteronanorods with efficient photocatalytic performance activated by visible light. Journal of Colloid and Interface Science, 2019, 542, 460-468.	5.0	49
746	Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting. Renewable and Sustainable Energy Reviews, 2019, 111, 332-343.	8.2	179
747	Realizing super-long Cu ₂ O nanowires arrays for high-efficient water splitting applications with a convenient approach. Journal of Semiconductors, 2019, 40, 052701.	2.0	15
748	Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Applied Catalysis B: Environmental, 2019, 256, 117867.	10.8	137

#	Article	IF	CITATIONS
749	Suppressed Charge Recombination in Hematite Photoanode via Protonation and Annealing. ACS Applied Energy Materials, 2019, 2, 5438-5445.	2.5	16
750	Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48, 4178-4280.	18.7	810
751	Ag decorated Gâ€C 3 N 4 /black titanium oxides composite for the destruction of environmental pollutant under solar irradiation. Canadian Journal of Chemical Engineering, 2019, 97, 2632-2641.	0.9	4
752	Fabrication of FeOOH/BiOCl Nanocomposites with Enhanced Visible Light Photocatalytic Activity. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 906-909.	0.6	26
753	Controlled assembly of Ag nanoparticles on the surface of phosphate pillar [6]arene functionalized single-walled carbon nanotube for enhanced catalysis and sensing performance. Electrochimica Acta, 2019, 318, 711-719.	2.6	23
754	Chlorine doped graphitic carbon nitride nanorings as an efficient photoresponsive catalyst for water oxidation and organic decomposition. Journal of Materials Science and Technology, 2019, 35, 2288-2296.	5.6	61
755	Ag plasmon resonance promoted 2D AgBr-δ-Bi2O3 nanosheets with enhanced photocatalytic ability. Journal of Alloys and Compounds, 2019, 803, 565-575.	2.8	28
756	Facile controlled synthesis of Ag ₃ PO ₄ with various morphologies for enhanced photocatalytic oxygen evolution from water splitting. RSC Advances, 2019, 9, 18222-18231.	1.7	18
757	Hierarchical flower-like ZnIn ₂ S ₄ anchored with well-dispersed Ni ₁₂ P ₅ nanoparticles for high-quantum-yield photocatalytic H ₂ evolution under visible light. Catalysis Science and Technology, 2019, 9, 4010-4016.	2.1	46
758	Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale, 2019, 11, 18968-18994.	2.8	168
759	High light-to-fuel efficiency and CO ₂ reduction rates achieved on a unique nanocomposite of Co/Co doped Al ₂ O ₃ nanosheets with UV-vis-IR irradiation. Energy and Environmental Science, 2019, 12, 2581-2590.	15.6	91
760	TiO2 @ MoSe2 line-to-face heterostructure: An advanced photocatalyst for highly efficient reduction of Cr (VI). Ceramics International, 2019, 45, 18065-18072.	2.3	19
761	Synthesis of g-C3N4/NiO p–n heterojunction materials with ball-flower morphology and enhanced photocatalytic performance for the removal of tetracycline and Cr6+. Journal of Materials Science, 2019, 54, 11417-11434.	1.7	48
762	Noble-metal-free CdS@MoS2 core-shell nanoheterostructures for efficient and stabilized visible-light-driven H2 generation. International Journal of Hydrogen Energy, 2019, 44, 16657-16666.	3.8	27
763	Vapor growth of binary and ternary phosphorus-based semiconductors into TiO ₂ nanotube arrays and application in visible light driven water splitting. Nanoscale Advances, 2019, 1, 2881-2890.	2.2	11
764	Design of Heterostructured Hollow Photocatalysts for Solarâ€toâ€Chemical Energy Conversion. Advanced Materials, 2019, 31, e1900281.	11.1	307
765	Activating and Converting CH ₄ to CH ₃ OH via the CuPdO ₂ /CuO Nanointerface. ACS Catalysis, 2019, 9, 6938-6944.	5.5	47
766	Molecular Engineering of Conjugated Acetylenic Polymers for Efficient Cocatalystâ€free Photoelectrochemical Water Reduction. Angewandte Chemie, 2019, 131, 10476-10482.	1.6	27

#	Article	IF	CITATIONS
767	Molecular Engineering of Conjugated Acetylenic Polymers for Efficient Cocatalystâ€free Photoelectrochemical Water Reduction. Angewandte Chemie - International Edition, 2019, 58, 10368-10374.	7.2	42
768	Unraveling the Interfacial Charge Migration Pathway at the Atomic Level in a Highly Efficient Zâ€Scheme Photocatalyst. Angewandte Chemie, 2019, 131, 11451-11456.	1.6	22
769	Deposition of CdS and Au nanoparticles on TiO2(B) spheres towards superior photocatalytic performance. International Journal of Hydrogen Energy, 2019, 44, 17697-17708.	3.8	15
770	Dual role of a g-C ₃ N ₄ /carbon intra-Schottky junction in charge carrier generation and separation for efficient solar H ₂ production. Catalysis Science and Technology, 2019, 9, 3493-3503.	2.1	31
772	Orienting the charge transfer path of type-II heterojunction for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 256, 117853.	10.8	65
773	The electronic structure and the formation of polarons in Mo-doped BiVO ₄ measured by angle-resolved photoemission spectroscopy. RSC Advances, 2019, 9, 15606-15614.	1.7	11
774	Bioprocess-inspired fabrication of materials with new structures and functions. Progress in Materials Science, 2019, 105, 100571.	16.0	76
775	Influence of Strain on the Band Gap of Cu ₂ O. Chemistry of Materials, 2019, 31, 4787-4792.	3.2	24
776	A Theoretical Perspective on Charge Separation and Transfer in Metal Oxide Photocatalysts for Water Splitting. ChemCatChem, 2019, 11, 3688-3715.	1.8	27
777	Electrophoretic deposition of photocatalytic materials. Advances in Colloid and Interface Science, 2019, 269, 236-255.	7.0	56
778	Vapor Deposition of Semiconducting Phosphorus Allotropes into TiO ₂ Nanotube Arrays for Photoelectrocatalytic Water Splitting. ACS Applied Nano Materials, 2019, 2, 3358-3367.	2.4	30
779	Steering charge kinetics in W2C@C/TiO2 heterojunction architecture: Efficient solar-light-driven hydrogen generation. Applied Catalysis B: Environmental, 2019, 255, 117760.	10.8	25
780	Unraveling the Interfacial Charge Migration Pathway at the Atomic Level in a Highly Efficient Z cheme Photocatalyst. Angewandte Chemie - International Edition, 2019, 58, 11329-11334.	7.2	152
781	Enhanced photocatalytic activity of Ag/Ag2Ta4O11/g-C3N4 under wide-spectrum-light irradiation: H2 evolution from water reduction without co-catalyst. Journal of Colloid and Interface Science, 2019, 550, 64-72.	5.0	23
782	Awakening Solar Hydrogen Evolution of MoS ₂ in Alkalescent Electrolyte through Doping with Co. ChemSusChem, 2019, 12, 3336-3342.	3.6	27
783	Strategies of Anode Materials Design towards Improved Photoelectrochemical Water Splitting Efficiency. Coatings, 2019, 9, 309.	1.2	13
784	Ag1.69Sb2.27O6.25 coupled carbon nitride photocatalyst with high redox potential for efficient multifunctional environmental applications. Applied Surface Science, 2019, 487, 82-90.	3.1	14
785	Sandwich-type cobalt-polyoxometalate as an effective hole extraction layer for enhancing BiVO4-based photoelectrochemical oxidation. Journal of Alloys and Compounds, 2019, 797, 140-147.	2.8	39

#	Article	IF	CITATIONS
786	Interfacial Charge Transfer in MoS2/TiO2 Heterostructured Photocatalysts: The Impact of Crystal Facets and Defects. Molecules, 2019, 24, 1769.	1.7	18
787	2D BiVO4/g-C3N4 Z-scheme photocatalyst for enhanced overall water splitting. Journal of Materials Science, 2019, 54, 10836-10845.	1.7	36
788	Monolayer Ti ₃ C ₂ <i>T</i> _{<i>x</i>} as an Effective Co-catalyst for Enhanced Photocatalytic Hydrogen Production over TiO ₂ . ACS Applied Energy Materials, 2019, 2, 4640-4651.	2.5	177
789	Improved visible-light photoactivities of porous LaFeO ₃ by coupling with nanosized alkaline earth metal oxides and mechanism insight. Catalysis Science and Technology, 2019, 9, 3149-3157.	2.1	40
790	Metal–Organic Frameworks as Porous Templates for Enhanced Cobalt Oxide Electrocatalyst Performance. ACS Applied Energy Materials, 2019, 2, 3306-3313.	2.5	7
791	High-Throughput Experimental Study of Wurtzite Mn1–xZnxO Alloys for Water Splitting Applications. ACS Omega, 2019, 4, 7436-7447.	1.6	5
792	Ultrafast spectroscopic study of plasmon-induced hot electron transfer under NIR excitation in Au triangular nanoprism/g-C ₃ N ₄ for photocatalytic H ₂ production. Chemical Communications, 2019, 55, 6014-6017.	2.2	45
793	The effect of different physicochemical properties of titania on the photocatalytic decolourization of methyl orange. Materials Research Express, 2019, 6, 075519.	0.8	5
794	AgBr/(Sr0.6Bi0.305)2Bi2O7 Heterostructured Composites: Fabrication, Characterization, and Significantly Enhanced Photocatalytic Activity. Catalysts, 2019, 9, 394.	1.6	6
795	A comparative study on photocatalytic hydrogen evolution activity of synthesis methods of CDs/ZnIn2S4 photocatalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574, 105-114.	2.3	26
796	Stepping towards Solar Water Splitting: Recent Progress in Bismuth Vanadate Photoanodes. ChemElectroChem, 2019, 6, 3227-3243.	1.7	42
797	RGO-α-Fe2O3/β-FeOOH ternary heterostructure with urchin-like morphology for efficient oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2019, 843, 1-11.	1.9	32
798	Fabrication of Cu2O-RGO/BiVO4 nanocomposite for simultaneous photocatalytic CO2 reduction and benzyl alcohol oxidation under visible light. Inorganic Chemistry Communication, 2019, 104, 171-177.	1.8	47
799	Enhanced charge separation by oriented growth of Ta3N5-Cu2O n-p array heterojunction. Applied Physics Letters, 2019, 114, .	1.5	6
800	Role of Heterojunction in Charge Carrier Separation in Coexposed Anatase (001)–(101) Surfaces. Journal of Physical Chemistry Letters, 2019, 10, 2372-2377.	2.1	46
801	Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail―for the photocatalytic hydrogen evolution reaction under visible light. Energy and Environmental Science, 2019, 12, 2080-2147.	15.6	803
802	Strategies for Improving the Performance and Application of MOFs Photocatalysts. ChemCatChem, 2019, 11, 2978-2993.	1.8	46
803	Enhancement of photocatalytic H2 evolution on pyrene-based polymer promoted by MoS2 and visible light. Applied Catalysis B: Environmental, 2019, 251, 102-111.	10.8	55

#	Article	IF	CITATIONS
804	Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2019, 58, 8676-8680.	7.2	230
805	Au-decorated 3D/1D titanium dioxide flower-like/rod bilayers for photoelectrochemical water oxidation. Electrochimica Acta, 2019, 306, 185-197.	2.6	10
806	Hybrid Cu _{<i>x</i>} O–TiO ₂ Nanopowders Prepared by Ball Milling for Solar Energy Conversion and Visible-Light-Induced Wastewater Treatment. ACS Applied Nano Materials, 2019, 2, 2446-2455.	2.4	34
807	Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie, 2019, 131, 8768-8772.	1.6	67
808	Direct observation of charge transfer at the interface between PEDOT:PSS and perovskite layers. Applied Physics Express, 2019, 12, 041002.	1.1	12
809	Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chinese Journal of Catalysis, 2019, 40, 289-319.	6.9	413
810	In-situ exfoliation of porous carbon nitride nanosheets for enhanced hydrogen evolution. Nano Energy, 2019, 59, 598-609.	8.2	112
811	First-principles study on visible light absorption of defected SrNbO3. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 175-180.	2.0	6
812	Highly Active Ni- and Co-Based Bimetallic Catalysts for Hydrogen Production From Ammonia-Borane. Frontiers in Chemistry, 2019, 7, 138.	1.8	19
813	Synergistic effects in simultaneous photocatalytic removal of Cr(VI) and tetracycline hydrochloride by Z-scheme Co3O4/Ag/Bi2WO6 heterojunction. Applied Surface Science, 2019, 483, 677-687.	3.1	109
814	Controlled synthesis of symbiotic structured TiO2 microspheres to improve the performance of dye-sensitized solar cells. Solar Energy, 2019, 183, 587-593.	2.9	19
815	Partially Ionized Beam Growth of Tungsten Oxide Nanowires by Oblique Angle Deposition. Crystal Growth and Design, 2019, 19, 2706-2711.	1.4	4
816	Poly(1,4â€Diethynylbenzene) Gradient Homojunction with Enhanced Charge Carrier Separation for Photoelectrochemical Water Reduction. Advanced Materials, 2019, 31, e1900961.	11.1	53
817	Advantaging Synergy Photocatalysis with Grapheneâ€Related Carbon as a Counterpart Player of Titania. Chemical Record, 2019, 19, 1393-1406.	2.9	10
818	Self-limited ion-exchange grown Bi6Fe2Ti3O18-BiOBr ferroelectric heterostructure and the enhanced photocatalytic oxygen evolution. Applied Surface Science, 2019, 479, 137-147.	3.1	19
819	Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting. Chemical Reviews, 2019, 119, 5192-5247.	23.0	551
820	Solar light decomposition of warfare agent simulant DMMP on TiO2/graphene oxide nanocomposites. Catalysis Science and Technology, 2019, 9, 1816-1824.	2.1	13
821	A Self-Assembled Organic/Metal Junction for Water Photo-Oxidation. Journal of the American Chemical Society, 2019, 141, 6765-6774.	6.6	14

# 822	ARTICLE Fluorine-doped tin oxide/ hematite/ Ni(OH)2/ Prussian white photoelectrode for use in a visible-light-assisted pseudocapacitor. Journal of Power Sources, 2019, 426, 40-46.	IF 4.0	CITATIONS
823	Facile band alignment of C3N4/CdS/MoS2 sandwich hybrid for efficient charge separation and high photochemical performance under visible-light. Powder Technology, 2019, 351, 222-228.	2.1	18
824	Ferroelectric Fe–Cr Codoped BaTiO ₃ Nanoparticles for the Photocatalytic Oxidation of Azo Dyes. ACS Applied Nano Materials, 2019, 2, 2890-2901.	2.4	43
825	Highly efficient photocatalytic hydrogen evolution from water-soluble conjugated polyelectrolytes. Nano Energy, 2019, 60, 775-783.	8.2	82
826	Controllable assembly of single/double-thin-shell g-C ₃ N ₄ vesicles <i>via</i> a shape-selective solid-state templating method for efficient photocatalysis. Journal of Materials Chemistry A, 2019, 7, 17815-17822.	5.2	33
827	Modulation of Bi ₂ MoO ₆ â€Based Materials for Photocatalytic Water Splitting and Environmental Application: a Critical Review. Small, 2019, 15, e1901008.	5.2	179
828	Well-organized CN-M/CN-U/Pt-TiO2 ternary heterojunction design for boosting photocatalytic H2 production via electronic continuous and directional transmission. Applied Catalysis A: General, 2019, 576, 74-84.	2.2	8
829	Significance of an anion effect in the selective oxidation of Ce3+ to Ce4+ over a porous WO3 photoanode. Electrochimica Acta, 2019, 307, 369-374.	2.6	7
830	Enhanced Photoelectrochemical Water Splitting through Bismuth Vanadate with a Photon Upconversion Luminescent Reflector. Angewandte Chemie - International Edition, 2019, 58, 6891-6895.	7.2	36
831	Two-dimensional blue-phosphorene-phase germanium monochalcogenide photocatalysts for water splitting: From ultraviolet to visible absorption. Journal of Catalysis, 2019, 373, 67-74.	3.1	26
832	Iodine-Deficient BiOI Nanosheets with Lowered Valence Band Maximum To Enable Visible Light Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2019, 7, 7900-7907.	3.2	74
833	Photoelectrochemical Biosensor Based on Co ₃ O ₄ Nanoenzyme Coupled with PbS Quantum Dots for Hydrogen Peroxide Detection. ACS Applied Nano Materials, 2019, 2, 2204-2211.	2.4	50
834	Enhanced Photoelectrochemical Water Splitting through Bismuth Vanadate with a Photon Upconversion Luminescent Reflector. Angewandte Chemie, 2019, 131, 6965-6969.	1.6	4
835	A strong coupled 2D metal-organic framework and ternary layered double hydroxide hierarchical nanocomposite as an excellent electrocatalyst for the oxygen evolution reaction. Electrochimica Acta, 2019, 307, 275-284.	2.6	49
836	Recent advances in computational photocatalysis: A review. Canadian Journal of Chemical Engineering, 2019, 97, 1982-1998.	0.9	45
837	Enhanced Photoelectrochemical Performance of BiVO4 by a NiMoO4 Modification. Journal of Electronic Materials, 2019, 48, 2501-2508.	1.0	7
838	Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 6161-6172.	5.2	61
839	Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: A review. Applied Catalysis B: Environmental, 2019, 248, 405-422.	10.8	141

#	Article	IF	CITATIONS
840	Enhanced photoelectrochemical activity of MoS2-decorated ZnO nanowires electrodeposited onto stainless steel mesh for hydrogen production. Applied Surface Science, 2019, 478, 937-945.	3.1	36
841	Recent developments of strontium titanate for photocatalytic water splitting application. International Journal of Hydrogen Energy, 2019, 44, 14316-14340.	3.8	89
842	Towards Solar Methanol: Past, Present, and Future. Advanced Science, 2019, 6, 1801903.	5.6	63
843	WC _{1â^'x} â€Coupled 3D Porous Defective gâ€C ₃ N ₄ for Efficient Photocatalytic Overall Water Splitting. Solar Rrl, 2019, 3, 1800341.	3.1	38
844	More efficiently enhancing photocatalytic activity by embedding Pt within anatase–rutile TiO2 heterophase junction than exposing Pt on the outside surface. Journal of Catalysis, 2019, 372, 8-18.	3.1	37
845	A microfluidic all-vanadium photoelectrochemical cell with the N-doped TiO2 photoanode for enhancing the solar energy storage. Journal of Power Sources, 2019, 419, 162-170.	4.0	21
846	Heterostructure of 1D Ta ₃ N ₅ Nanorod/BaTaO ₂ N Nanoparticle Fabricated by a Oneâ€6tep Ammonia Thermal Route for Remarkably Promoted Solar Hydrogen Production. Advanced Materials, 2019, 31, e1808185.	11.1	115
847	Synergistic decomposition of imidacloprid by TiO2-Fe3O4 nanocomposite conjugated with persulfate in a photovoltaic-powered UV-LED photoreactor. Korean Journal of Chemical Engineering, 2019, 36, 965-974.	1.2	11
848	Enhanced visible-light-driven photocatalytic activity of Ag3PO4/metal–organic framework composite. Polyhedron, 2019, 163, 1-6.	1.0	22
849	Photocatalytic hydrogen generation using gold decorated BiFeO3 heterostructures as an efficient catalyst under visible light irradiation. Solar Energy Materials and Solar Cells, 2019, 194, 195-206.	3.0	89
850	Artificial Z-scheme photocatalytic system: What have been done and where to go?. Coordination Chemistry Reviews, 2019, 385, 44-80.	9.5	265
851	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
852	Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 248, 193-201.	10.8	369
853	Comparative Study of p-type CuBi ₂ O ₄ Films and CuBi ₂ O ₄ Nanopillars Photocathode for High Performance Photoelectrochemical Water Splitting. Journal of Physics: Conference Series, 2019, 1373, 012016.	0.3	3
854	Tio ₂ /Co ₃ O ₄ Composite as Photoanode of Photoelectrochemical Water Splitting. Journal of Physics: Conference Series, 2019, 1351, 012032.	0.3	3
855	Mpg-C3N4-ZIF-8 composites for the degradation of tetracycline hydrochloride using visible light. Water Science and Technology, 2019, 80, 2206-2217.	1.2	22
856	Effect of Fe doping concentration on photocatalytic performance of CeO2 from DFT insight into analysis. AIP Advances, 2019, 9, .	0.6	10
857	Simply blending Ni nanoparticles with typical photocatalysts for efficient photocatalytic H ₂ production. Catalysis Science and Technology, 2019, 9, 7016-7022.	2.1	18

#	Article	IF	CITATIONS
858	A Three-Dimensional ZnO/CdS/NiFe Layered Double Hydroxide Photoanode Coupled with a Cu ₂ O Photocathode in a Tandem Cell for Overall Solar Water Splitting. Nano, 2019, 14, 1950146.	0.5	4
859	Unveiling the role of tetragonal BiVO ₄ as a mediator for dual phase BiVO ₄ /g-C ₃ N ₄ composite photocatalysts enabling highly efficient water oxidation <i>via Z</i> -scheme charge transfer. Journal of Materials Chemistry A, 2019, 7, 26279-26284.	5.2	22
860	Co(OH)2-Modified CuO Nanoparticles Enabling High-Efficiency Photoinduced Charge Transfer toward the Water Oxidation Reaction. Industrial & Engineering Chemistry Research, 2019, 58, 22236-22243.	1.8	3
861	Electrodeposition of Cu doped ZnS and evaluation of its photocatalytic property. , 2019, , .		0
862	Fabrication and optical properties of InP/Cu2O nanojunctions. IOP Conference Series: Materials Science and Engineering, 2019, 612, 022102.	0.3	0
863	Internal electric field engineering for steering photogenerated charge separation and enhancing photoactivity. EcoMat, 2019, 1, e12007.	6.8	134
864	Polymer Nanocomposites for Photocatalytic Applications. Catalysts, 2019, 9, 986.	1.6	78
865	Electrospun core–sheath PAN@PPY nanofibers decorated with ZnO: photo-induced water decontamination enhanced by a semiconducting support. Journal of Materials Chemistry A, 2019, 7, 26429-26441.	5.2	8
866	Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production. Applied Catalysis B: Environmental, 2019, 240, 64-71.	10.8	143
867	Amorphous cerium phosphate on P-doped Fe2O3 nanosheets for efficient photoelectrochemical water oxidation. Chemical Engineering Journal, 2019, 355, 910-919.	6.6	87
868	Bandgap engineering of NiWO4/CdS solid Z-scheme system via an ion-exchange reaction. Applied Catalysis B: Environmental, 2019, 241, 284-291.	10.8	33
869	Fabrication of a novel g-C3N4/Carbon nanotubes/Ag3PO4 Z-scheme photocatalyst with enhanced photocatalytic performance. Materials Letters, 2019, 234, 183-186.	1.3	37
870	Carbonâ€Based Photocathode Materials for Solar Hydrogen Production. Advanced Materials, 2019, 31, e1801446.	11.1	83
871	Epitaxial growth and band alignment of p-NiO/n-Fe2O3 heterojunction on Al2O3(0 0 0 1). Applied Surface Science, 2019, 464, 488-493.	3.1	16
872	Rational design of C ₂ N-based type-II heterojunctions for overall photocatalytic water splitting. Nanoscale Advances, 2019, 1, 154-161.	2.2	70
873	Cobalt-doped titanium oxide nanotubes grown via one-step anodization for water splitting applications. Applied Surface Science, 2019, 464, 351-359.	3.1	31
874	Cobalt Phosphide Nanowire Arrays on Conductive Substrate as an Efficient Bifunctional Catalyst for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 2360-2369.	3.2	37
875	2D–2D Heterostructured UNiMOF/g-C ₃ N ₄ for Enhanced Photocatalytic H ₂ Production under Visible-Light Irradiation. ACS Sustainable Chemistry and Engineering, 2019, 7, 2492-2499.	3.2	90

#	Article	IF	CITATIONS
876	Poly(1,4â€di(2â€ŧhienyl))benzene Facilitating Complete Lightâ€Driven Water Splitting under Visible Light at High pH. Advanced Energy Materials, 2019, 9, 1803286.	10.2	23
877	Iron Doped CdSe Films with Improved Photosensitivity and Stability for Use in a Liquid Junction Solar Cell. ACS Applied Energy Materials, 2019, 2, 232-242.	2.5	7
878	Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of αâ€Fe ₂ O ₃ Photoanode. ChemCatChem, 2019, 11, 157-179.	1.8	135
879	Carbonâ€Coated Cu nanoparticles as a Cocatalyst of gâ€C ₃ N ₄ for Enhanced Photocatalytic H ₂ Evolution Activity under Visibleâ€Light Irradiation. Energy Technology, 2019, 7, 1800846.	1.8	17
880	Controllable TiO2 core-shell phase heterojunction for efficient photoelectrochemical water splitting under solar light. Applied Catalysis B: Environmental, 2019, 244, 519-528.	10.8	71
881	Highly porous SnO2 nanosheet arrays sandwiched within TiO2 and CdS quantum dots for efficient photoelectrochemical water splitting. Applied Surface Science, 2019, 470, 800-806.	3.1	36
882	Microwave-assisted preparation and enhanced photocatalytic activity of Bi2WO6/BiOI heterojunction for organic pollutants degradation under visible-light irradiation. Solid State Sciences, 2019, 87, 101-109.	1.5	32
883	The Synergetic Benefits of Passivation Layer and Catalytic Layer on Hematite for Efficient Water Splitting. Energy Technology, 2019, 7, 1800899.	1.8	7
884	Facile synthesized low-cost MoS2/CdS nanodots-on-nanorods heterostructures for highly efficient pollution degradation under visible-light irradiation. Separation and Purification Technology, 2019, 212, 135-141.	3.9	64
885	An Approach Using Oxidative Coupling of Methane for Converting Biogas and Acid Natural Gas into High-Calorific Fuels. Industrial & Engineering Chemistry Research, 2019, 58, 2454-2459.	1.8	8
886	A sandwich-type polyoxometalate for efficient noble-metal-free hydrogen evolution upon visible light irradiation. Journal of Catalysis, 2019, 369, 54-59.	3.1	16
887	Enhanced electron separation on in-plane benzene-ring doped g-C3N4 nanosheets for visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 244, 459-464.	10.8	99
888	A new photocatalyst based on Co(CO3)0.5(OH)·0.11H2O/Bi2WO6 nanocomposites for high-efficiency cocatalyst-free O2 evolution. Chemical Engineering Journal, 2019, 359, 924-932.	6.6	59
889	WO3 nanosheets/g-C3N4 nanosheets' nanocomposite as an effective photocatalyst for degradation of rhodamine B. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	34
890	Two-dimensional-related catalytic materials for solar-driven conversion of CO _x into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48, 1972-2010.	18.7	350
891	Photoelectrochemical Water Splitting with pâ€Type Metal Oxide Semiconductor Photocathodes. ChemSusChem, 2019, 12, 1835-1845.	3.6	96
892	Construction of Ni-doped SnO2-SnS2 heterojunctions with synergistic effect for enhanced photodegradation activity. Journal of Hazardous Materials, 2019, 368, 204-213.	6.5	48
893	Hydrothermal synthesis of MoS2-NiS/CdS with enhanced photocatalytic hydrogen production activity and stability. Journal of Solid State Chemistry, 2019, 270, 531-538.	1.4	41

ARTICLE IF CITATIONS Inorganic Photochemistry and Solar Energy Harvesting: Current Developments and Challenges to 894 35 1.4 Solar Fuel Production. International Journal of Photoenergy, 2019, 2019, 1-23. Review on Metal Sulphideâ€based Zâ€scheme Photocatalysts. ChemCatChem, 2019, 11, 1394-1411. 1.8 439 Photocatalytic overall water splitting on isolated semiconductor photocatalyst sites in an ordered 896 3.120 mesoporous silica matrix: A multiscale strategy. Journal of Catalysis, 2019, 370, 210-223. Organic-inorganic hybrid perovskite – TiO2 nanorod arrays for efficient and stable photoelectrochemical hydrogen evolution from HI splitting. Materials Today Chemistry, 2019, 12, 1-6. Recent progress in photocatalysts for overall water splitting. International Journal of Energy 898 2.2 72 Research, 2019, 43, 1082-1098. Interfacial charge transfer in Pt-loaded TiO2 P25 photocatalysts studied by in-situ diffuse reflectance FTIR spectroscopy of adsorbed CO. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 370, 84-88. Construction of Z-scheme Fe2O3@e-HNbWO6 composite and its enhanced photocatalytic activity. 900 1.9 4 Journal of Physics and Chemistry of Solids, 2019, 126, 33-42. All-solid-state Z-scheme Co9S8/graphitic carbon nitride photocatalysts for simultaneous reduction of Cr(VI) and oxidation of 2,4-dichlorophenoxyacetic acid under simulated solar irradiation. Chemical Engineering Journal, 2019, 360, 1188-1198. 6.6 902 Photoassisted CO₂ Conversion to Fuels. ChemCatChem, 2019, 11, 342-356. 1.8 41 Suppression of poisoning of photocathode catalysts in photoelectrochemical cells for highly stable 1.2 sunlight-driven overall water splitting. Journal of Chemical Physics, 2019, 150, 041713. Ta3N5/Co(OH)x composites as photocatalysts for photoelectrochemical water splitting. 904 1.6 14 Photochemical and Photobiological Sciences, 2019, 18, 837-844. Constructing SrTiO₃â€"TiO₂ Heterogeneous Hollow Multiâ€shelled Structures 212 for Enhanced Solar Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 1422-1426. Graphitic Carbon Nitride Impregnated Niobium oxide (g-C₃N₄/Nb₂O₅) Type (II) Heterojunctions and its 906 2.5 64 . Synergetic Solar-Driven Hydrogen Generation. ACS Applied Energy Matérials, 2019, 2, 607-615. Integrating the plasmonic effect and p-n heterojunction into a novel Ag/Ag2O/PbBiO2Br photocatalyst: Broadened light absorption and accelerated charge separation co-mediated highly efficient visible/NIR light photocatalysis. Chemical Engineering Journal, 2019, 360, 349-363. 6.6 165 Ternary Hierarchical Cu₇S₄/TiO₂/CoCrâ€LDH Heterostructured Nanorod Arrays with Multiphase Reaction Interfaces for More Efficient Photoelectrochemical Water 908 1.9 18 Splitting. Advanced Materials Interfaces, 2019, 6, 1800970. Two-dimensional g-C3N4/TiO2 nanocomposites as vertical Z-scheme heterojunction for improved 909 2.2 93 photocatalytic water disinfection. Catalysis Today, 2019, 335, 243-251. Oxygenâ€Defected Molybdenum Oxides Hierarchical Nanostructure Constructed by Atomicâ€Level 910 3.162 Thickness Nanosheets as an Efficient Absorber for Solar Steam Generation. Solar Rrl, 2019, 3, 1800277. Recent Developments in Graphitic Carbon Nitride Based Hydrogels as Photocatalysts. ChemSusChem, 2019, 12, 1794-1806.

		KLFORT	
#	Article	IF	CITATIONS
912	Tunable Type I and II heterojunction of CoOx nanoparticles confined in g-C3N4 nanotubes for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2019, 244, 814-822.	10.8	151
913	Photocatalytic Nanoheterostructures and Chemically Bonded Junctions Made by Solution-Based Approaches. Critical Reviews in Solid State and Materials Sciences, 2019, 44, 239-263.	6.8	13
914	Optimization of hydrogen production over TiO2 supported copper and nickel oxides: effect of photoelectrochemical features. Journal of Applied Electrochemistry, 2019, 49, 27-38.	1.5	2
915	Black phosphorus-CdS-La2Ti2O7 ternary composite: Effective noble metal-free photocatalyst for full solar spectrum activated H2 production. Applied Catalysis B: Environmental, 2019, 242, 441-448.	10.8	105
916	Improved visible-light photoactivity of Pt/g-C3N4 nanosheets for solar fuel production via pretreated boric acid modification. Research on Chemical Intermediates, 2019, 45, 249-259.	1.3	16
917	Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Applied Catalysis B: Environmental, 2019, 242, 178-185.	10.8	174
918	All-solid-state Z-scheme system of NiO/CDs/BiVO4 for visible light-driven efficient overall water splitting. Chemical Engineering Journal, 2019, 358, 134-142.	6.6	71
919	Corroles as triplet photosensitizers. Coordination Chemistry Reviews, 2019, 379, 121-132.	9.5	81
920	Nanojunction-mediated visible light photocatalytic enhancement in heterostructured ternary BiOCl/ CdS/g-C3N4 nanocomposites. Catalysis Today, 2019, 321-322, 18-25.	2.2	72
921	Photocatalytic H2 production over inverse opal TiO2 catalysts. Catalysis Today, 2019, 321-322, 113-119.	2.2	29
922	Sensitizing effects of BiVO4 and visible light induced production of highly reductive electrons in the TiO2/BiVO4 heterojunction. Catalysis Today, 2020, 340, 19-25.	2.2	30
923	Rational construction of plasmon Au assisted ferroelectric-BaTiO3/Au/g-C3N4 Z-scheme system for efficient photocatalysis. Catalysis Today, 2020, 355, 311-318.	2.2	51
924	Green Cu2O/TiO2 heterojunction for glycerol photoreforming. Catalysis Today, 2020, 349, 88-97.	2.2	16
925	The enhanced visible-light-driven antibacterial performances of PTCDI-PANI(Fe(III)-doped) heterostructure. Journal of Hazardous Materials, 2020, 383, 121166.	6.5	35
926	First-principles investigation of β-Ge3N4 loaded with RuO2 cocatalyst for photocatalytic overall water splitting. Journal of Energy Chemistry, 2020, 44, 24-32.	7.1	11
927	Photocatalytic evolution of H2 over visible-light active LaMO3 (M: Co, Mn, Fe) perovskite materials: Roles of oxygenated species in catalytic performance. Journal of Physics and Chemistry of Solids, 2020, 136, 109189.	1.9	21
928	A novel SiC/Zn0.5Cd0.5S solid-state Z-scheme system and its enhanced hydrogen production activity. Applied Surface Science, 2020, 500, 144009.	3.1	18
929	Plasmonic Ag as electron-transfer mediators in Bi2MoO6/Ag-AgCl for efficient photocatalytic inactivation of bacteria. Chemical Engineering Journal, 2020, 382, 122762.	6.6	71

#	Article	IF	CITATIONS
930	Poly(dibenzothiophene-S,S-dioxide) with visible light-induced hydrogen evolution rate up to 44.2â€ ⁻ mmol hâ^'1 gâ''1 promoted by K2HPO4. Applied Catalysis B: Environmental, 2020, 261, 118230.	10.8	40
931	Visible-light responsive organic nano-heterostructured photocatalysts for environmental remediation and H2 generation. Journal of Materials Science and Technology, 2020, 38, 93-106.	5.6	31
932	Structural, electronic and photocatalytic properties of g-C3N4 with intrinsic defects: A first-principles hybrid functional investigation. Applied Surface Science, 2020, 499, 143994.	3.1	29
933	Hierarchical Hollow Heterostructures for Photocatalytic CO ₂ Reduction and Water Splitting. Small Methods, 2020, 4, 1900586.	4.6	157
934	Zn defect-mediated Z-scheme electron-hole separation in AgIn5S8/ZnS heterojunction for enhanced visible-light photocatalytic hydrogen evolution. Applied Surface Science, 2020, 504, 144396.	3.1	48
935	Biotemplating synthesis of N-doped two-dimensional CeO2–TiO2 nanosheets with enhanced visible light photocatalytic desulfurization performance. Journal of Alloys and Compounds, 2020, 815, 152326.	2.8	60
936	Fabrication of high surface area Agl incorporated porous BiVO4 heterojunction photocatalysts. Materials Science in Semiconductor Processing, 2020, 106, 104756.	1.9	34
937	Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews, 2020, 120, 919-985.	23.0	1,605
938	Engineering oxygen vacancies by one-step growth of distributed homojunctions to enhance charge separation for efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2020, 379, 122266.	6.6	23
939	Ni(OH)2-CuxO-TiO2 nanocomposite for the enhanced H2 production under solar light: The mechanistic pathway. International Journal of Hydrogen Energy, 2020, 45, 7552-7561.	3.8	9
940	ZnS-Reduced Graphene Oxide Nanohybrid Materials as Photoanodes with Improved Photovoltaic Performance. Journal of Cluster Science, 2020, 31, 257-264.	1.7	7
941	Facile one-pot synthesis of novel hierarchical Bi2O3/Bi2S3 nanoflower photocatalyst with intrinsic p-n junction for efficient photocatalytic removals of RhB and Cr(VI). Journal of Hazardous Materials, 2020, 381, 120942.	6.5	180
942	Electrodeposited Cu thin layers as low cost and effective underlayers for Cu2O photocathodes in photoelectrochemical water electrolysis. Journal of Solid State Electrochemistry, 2020, 24, 339-355.	1.2	5
943	Surfaceâ€Polarityâ€Induced Spatial Charge Separation Boosts Photocatalytic Overall Water Splitting on GaN Nanorod Arrays. Angewandte Chemie - International Edition, 2020, 59, 935-942.	7.2	89
944	Surfaceâ€Polarityâ€Induced Spatial Charge Separation Boosts Photocatalytic Overall Water Splitting on GaN Nanorod Arrays. Angewandte Chemie, 2020, 132, 945-952.	1.6	22
945	Recent advances in twoâ€dimensional transition metal dichalcogenides as photoelectrocatalyst for hydrogen evolution reaction. Journal of Chemical Technology and Biotechnology, 2020, 95, 2597-2607.	1.6	52
946	Facile preparation of nanosized MoP as cocatalyst coupled with g-C3N4 by surface bonding state for enhanced photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2020, 265, 118620.	10.8	153
947	Revealing the size effect of metallic CoS2 on CdS nanorods for photocatalytic hydrogen evolution based on Schottky junction. Applied Catalysis A: General, 2020, 592, 117377.	2.2	26

#	Article	IF	CITATIONS
948	Effect of Dual-Cocatalyst Surface Modification on Photodegradation Activity, Pathway, and Mechanisms with Highly Efficient Ag/BaTiO ₃ /MnO <i>_x</i> . Langmuir, 2020, 36, 498-509.	1.6	38
949	Enhanced carrier separation and increased electron density in 2D heavily N-doped ZnIn ₂ S ₄ for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 207-217.	5.2	131
950	A novel TiO2 nanotube arrays/MgTixOy multiphase-heterojunction film with high efficiency for photoelectrochemical cathodic protection. Corrosion Science, 2020, 166, 108441.	3.0	52
951	A promising blue phosphorene/C ₂ N van der Waals type-II heterojunction as a solar photocatalyst: a first-principles study. Physical Chemistry Chemical Physics, 2020, 22, 615-623.	1.3	43
952	Exfoliated Mo2C nanosheets hybridized on CdS with fast electron transfer for efficient photocatalytic H2 production under visible light irradiation. Applied Catalysis B: Environmental, 2020, 264, 118541.	10.8	79
953	Band-gap engineering of layered covalent organic frameworks via controllable exfoliation for enhanced visible-light-driven hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 2689-2698.	3.8	32
954	Nitrogen-deficient modified P–Cl co-doped graphitic carbon nitride with enhanced photocatalytic performance. Journal of Alloys and Compounds, 2020, 821, 153439.	2.8	47
955	Design of twin junction with solid solution interface for efficient photocatalytic H2 production. Nano Energy, 2020, 69, 104410.	8.2	62
956	Bandâ€Gap and Charge Transfer Engineering in Red Phosphorusâ€Based Composites for Enhanced Visibleâ€Lightâ€Driven H ₂ Evolution. Chemistry - A European Journal, 2020, 26, 2285-2292.	1.7	19
957	Visible-light-driven HSr2Nb3O10/CdS heterojunctions for high hydrogen evolution activity. International Journal of Hydrogen Energy, 2020, 45, 2896-2908.	3.8	16
958	Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications. Energy and Environmental Science, 2020, 13, 1326-1346.	15.6	115
959	Tubular acceptor-rich ZnO hierarchical heterostructure as an efficient photocatalyst for organic degradation. Applied Surface Science, 2020, 506, 145008.	3.1	5
960	Highly Efficient Semiconductor-Based Metasurface for Photoelectrochemical Water Splitting: Broadband Light Perfect Absorption with Dimensions Smaller than the Diffusion Length. Plasmonics, 2020, 15, 829-839.	1.8	3
961	Fabrication and band structure of Ag3PO4–TiO2 heterojunction with enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 149-159.	3.8	42
962	FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting. Progress in Materials Science, 2020, 110, 100632.	16.0	47
963	Natural wolframite as a novel visible-light photocatalyst towards organics degradation and bacterial inactivation. Catalysis Today, 2020, 358, 177-183.	2.2	13
964	Facet-Engineered Surface and Interface Design of Monoclinic Scheelite Bismuth Vanadate for Enhanced Photocatalytic Performance. ACS Catalysis, 2020, 10, 1024-1059.	5.5	105
965	Band bending and valence band shifting of sub-monolayer TiO2 functionalized SnO2 nanowires. Journal of Materials Science: Materials in Electronics, 2020, 31, 637-643.	1.1	2

#	Article	IF	CITATIONS
966	Facile synthesis of low crystalline BiOCl-based thermally-responsive photocatalyst with enhanced catalytic performance for photodegrading rhodamine B solution. Journal of Alloys and Compounds, 2020, 819, 153042.	2.8	20
967	Nitrofurazone degradation in the self-biased bio-photoelectrochemical system: g-C3N4/CdS photocathode characterization, degradation performance, mechanism and pathways. Journal of Hazardous Materials, 2020, 384, 121438.	6.5	50
968	2D Graphene oxide (GO) doped p-n type BiOI/Bi2WO6 as a novel composite for photodegradation of bisphenol A (BPA) in aqueous solutions under UV-vis irradiation. Materials Science and Engineering C, 2020, 108, 110420.	3.8	56
969	Ferrite@TiO2-nanocomposites as Z-scheme photocatalysts for CO2 conversion: Insight into the correlation of the Co-Zn metal composition and the catalytic activity. Journal of CO2 Utilization, 2020, 36, 177-186.	3.3	26
970	Theoretical studies on the BC 2 N monolayers with promising photoelectronic characteristics and remarkable environmental stabilities. International Journal of Quantum Chemistry, 2020, 120, e26120.	1.0	6
971	Nanoassembly of perovskite-based photocatalysts in a nanoconfined system for photocatalytic H2 production under visible light. Molecular Catalysis, 2020, 483, 110719.	1.0	4
972	Development of Na2Ti6O13/CuO/Cu2O heterostructures for solar photocatalytic production of low-carbon fuels. Materials Research Bulletin, 2020, 122, 110679.	2.7	28
973	Moâ€Doped ZnIn ₂ S ₄ Flowerâ€Like Hollow Microspheres for Improved Visible Lightâ€Driven Hydrogen Evolution. Solar Rrl, 2020, 4, 1900483.	3.1	76
974	Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion?. Journal of Materials Chemistry A, 2020, 8, 2286-2322.	5.2	251
975	Surface Aspects of Semiconductor Photochemistry. Surfaces, 2020, 3, 467-472.	1.0	1
976	g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: A review. Journal of Cleaner Production, 2020, 276, 124319.	4.6	379
977	Biomass activated carbon-decorated spherical β-Ni(OH)2 nanoparticles for enhanced hydrogen production from sulphide wastewater. Journal of Water Process Engineering, 2020, 38, 101669.	2.6	16
978	A type-II GaSe/HfS2 van der Waals heterostructure as promising photocatalyst with high carrier mobility. Applied Surface Science, 2020, 534, 147607.	3.1	97
979	Synthesis of conjugated microporous polymer and its embedding in porous nanofibers for visible-light-driven photocatalysis with reusability. Polymer, 2020, 211, 123060.	1.8	13
980	Physisorbed State Regulates the Dissociation Mechanism of H2O on Ni(100). Journal of Physical Chemistry A, 2020, 124, 8724-8732.	1.1	5
981	Formation of NiCo Alloy Nanoparticles on Co Doped Al ₂ O ₃ Leads to High Fuel Production Rate, Large Lightâ€toâ€Fuel Efficiency, and Excellent Durability for Photothermocatalytic CO ₂ Reduction. Advanced Energy Materials, 2020, 10, 2002602.	10.2	67
982	ALD-grown oxide protective layers on Ta3N5–Cu2O n–p nanoarray heterojunction for improved photoelectrochemical water splitting. Applied Physics Letters, 2020, 117, 163902.	1.5	13
983	A two-dimensional h-BN/C ₂ N heterostructure as a promising metal-free photocatalyst for overall water-splitting. Physical Chemistry Chemical Physics, 2020, 22, 24446-24454.	1.3	41

		CITATION REPO	RT	
#	Article	IF	-	CITATIONS
984	Modification of Graphitic Carbon Nitride with Hydrogen Peroxide. Nanomaterials, 2020, 10, 1747.	1.	.9	3
985	Enhanced electrochemical oxygen evolution reaction activity on natural single-atom catalysts transition metal phthalocyanines: the substrate effect. Catalysis Science and Technology, 2020, 10 8339-8346.	, 2	.1	22
986	Origin of highly efficient photocatalyst NiO/SrTiO3 for overall water splitting: Insights from density functional theory calculations. Journal of Solid State Chemistry, 2020, 292, 121683.	1.	.4	14
987	Interface modulation of BiVO4 based photoanode with Bi(III)Bi(V)O4 for enhanced solar water splitting. Journal of Catalysis, 2020, 391, 513-521.	3	.1	12
988	Application of nanostructured aluminium titanate (Al2TiO5) photocatalyst for removal of organic pollutants from water: Influencing factors and kinetic study. Materials Chemistry and Physics, 2020 256, 123740.), 2	.0	11
989	Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment—A Revie Catalysts, 2020, 10, 804.	ew. 1	.6	133
990	Steering Hollow Multishelled Structures in Photocatalysis: Optimizing Surface and Mass Transport. Advanced Materials, 2020, 32, e2002556.	1	1.1	116
991	Carrier Dynamics and Transfer across the CdS/MoS ₂ Interface upon Optical Excitation Journal of Physical Chemistry Letters, 2020, 11, 6544-6550.	. 2	.1	13
992	One-pot fabrication of 2D/2D HCa ₂ Nb ₃ O ₁₀ /g-C ₃ N ₄ type II heterojunctions towards enhanced photocatalytic H ₂ evolution under visible-light irradiation. Catalysis Science and Technology, 2020, 10, 5896-5902.	2	.1	15
993	Improved photoelectrocatalytic properties of ZnO/CuWO4 heterojunction film for RhB degradatior Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401, 112778.	ı. 2	.0	28
994	A Z-scheme photocatalyst for enhanced photocatalytic H2 evolution, constructed by growth of 2D plasmonic MoO3-x nanoplates onto 2D g-C3N4 nanosheets. Journal of Colloid and Interface Science 2020, 567, 213-223.	e, 5	.0	77
995	Barium- and Phosphorus-Codoped g-C ₃ N ₄ Microtubes with Efficient Photocatalytic H ₂ Evolution under Visible Light Irradiation. Industrial & Engineeri Chemistry Research, 2020, 59, 4549-4556.	ng 1	.8	35
996	Architecting epitaxial-lattice-mismatch-free (LMF) zinc oxide/bismuth oxyiodide nano-heterostructures for efficient photocatalysis. Journal of Materials Chemistry C, 2020, 8, 11263-11273.	2	.7	19
997	Heterojunction Photocatalysts Based on 2D Materials: The Role of Configuration. Advanced Sustainable Systems, 2020, 4, 2000130.	2	.7	120
998	Carbon nitride nanotube-based materials for energy and environmental applications: a review of recent progresses. Journal of Materials Chemistry A, 2020, 8, 25626-25648.	5	.2	66
999	2D–2D Heterojunctions of a Covalent Triazine Framework with a Triphenylphosphine-Based Cova Organic Framework for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2020, 3, 11939-11946.		.5	33
1000	Recent Advances in Zinc Oxide Nanostructures with Antimicrobial Activities. International Journal o Molecular Sciences, 2020, 21, 8836.	f 1	.8	52
1001	Seamlessly Splicing Metallic Sn <i>_x</i> Mo _{1â^'} <i>_x</i> S ₂ at MoS _{2<!--<br-->for Enhanced Photoelectrocatalytic Performance in Microreactor. Advanced Science, 2020, 7, 2002}		.6	30

#	Article	IF	CITATIONS
1002	Cobalt Oxide Nanofilms on n-GaN Working Electrodes for Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2020, 124, 25196-25201.	1.5	2
1003	Photoelectrochemical Catalysis of Fluorineâ€Doped Amorphous TiO ₂ Nanotube Array for Water Splitting. ChemistrySelect, 2020, 5, 8831-8838.	0.7	4
1004	Two-dimensional semiconducting covalent organic frameworks for photocatalytic solar fuel production. Materials Today, 2020, 40, 160-172.	8.3	56
1005	Strain or Electronic Effects? – The influence of alkali metals on the bandgap of Cu2O. Chemical Physics Letters, 2020, 755, 137799.	1.2	1
1006	Photocatalytic Properties of Bi _{2–<i>x</i>} Ti ₂ O _{7–1.5<i>x</i>} (<i>x</i> = 0, 0.5) Pyrochlores: Hybrid DFT Calculations and Experimental Study. Inorganic Chemistry, 2020, 59, 12385-12396.	1.9	18
1007	Development of MOF-based heterostructures for photocatalytic hydrogen evolution. Dalton Transactions, 2020, 49, 12136-12144.	1.6	25
1008	Sub 10 nm CoO nanoparticle-decorated graphitic carbon nitride for solar hydrogen generationviaefficient charge separation. Nanoscale Advances, 2020, 2, 4473-4481.	2.2	4
1009	Fe-doped zirconia nanoparticles with highly negative conduction band potential for enhancing visible light photocatalytic performance. Applied Surface Science, 2020, 530, 147291.	3.1	18
1010	Non-covalent Functionalization of Graphene to Tune Its Band Gap and Stabilize Metal Nanoparticles on Its Surface. ACS Omega, 2020, 5, 18849-18861.	1.6	17
1011	2D layered SiC/C2N van der Waals type-II heterostructure: a visible-light-driven photocatalyst for water splitting. New Journal of Chemistry, 2020, 44, 15439-15445.	1.4	21
1012	Perovskite Microcrystals with Intercalated Monolayer MoS2 Nanosheets as Advanced Photocatalyst for Solar-Powered Hydrogen Generation. Matter, 2020, 3, 935-949.	5.0	81
1013	Fabrication of direct Z-scheme heterojunction between Zn0.5Cd0.5S and N-rich graphite carbon nitride for boosted H2 production. International Journal of Hydrogen Energy, 2020, 45, 22711-22721.	3.8	21
1014	Rapid fabrication of oxygen defective α-Fe ₂ O ₃ (110) for enhanced photoelectrochemical activities. Dalton Transactions, 2020, 49, 12037-12048.	1.6	36
1015	Fermi Level Pinning Controls Band Bending and Photochemical Charge Separation in Particles of n-SrTiO3, n-SrTiO3:Al, and n-GaAs:Te. Journal of Physical Chemistry C, 2020, 124, 18426-18435.	1.5	10
1016	Further studies of photodegradation and photocatalytic hydrogen production over Nafion-coated Pt/P25 sensitized by rhodamine B. International Journal of Hydrogen Energy, 2020, 45, 22700-22710.	3.8	22
1017	Energy-Inexpensive Galvanic Deposition of BiOI on Electrodes and Its Conversion to 3D Porous BiVO ₄ -Based Photoanode. Journal of Physical Chemistry C, 2020, 124, 18930-18945.	1.5	9
1018	An overview on bismuth molybdate based photocatalytic systems: Controlled morphology and enhancement strategies for photocatalytic water purification. Journal of Environmental Chemical Engineering, 2020, 8, 104291.	3.3	54
1019	Efficient separation of photoexcited carriers in a g-C ₃ N ₄ -decorated WO ₃ nanowire array heterojunction as the cathode of a rechargeable Li–O ₂ battery. Nanoscale, 2020, 12, 18742-18749.	2.8	32

#	Article	IF	CITATIONS
1020	Recent developments and perspectives in CdS-based photocatalysts for water splitting. Journal of Materials Chemistry A, 2020, 8, 20752-20780.	5.2	203
1021	Effective charge separation through the sulfur vacancy interfacial in n-CdO/p-CdS bulk heterojunction particle and its solar-induced hydrogen production. Journal of Industrial and Engineering Chemistry, 2020, 91, 149-166.	2.9	25
1022	Red Phosphorus/Carbon Nitride van der Waals Heterostructure for Photocatalytic Pure Water Splitting under Wide-Spectrum Light Irradiation. ACS Sustainable Chemistry and Engineering, 2020, 8, 13459-13466.	3.2	46
1023	Qualitative Approaches Towards Useful Photocatalytic Materials. Frontiers in Chemistry, 2020, 8, 817.	1.8	5
1024	State-of-the-art advancements in photo-assisted CO ₂ hydrogenation: recent progress in catalyst development and reaction mechanisms. Journal of Materials Chemistry A, 2020, 8, 24868-24894.	5.2	40
1025	Role of electronically coupled in situ grown silver sulfides (Ag2S) nanoparticles with TiO2 for the efficient photoelectrochemical H2 evolution. International Journal of Hydrogen Energy, 2020, 45, 30153-30164.	3.8	9
1026	Evaluation of Photocatalysts for Water Splitting through Combined Analysis of Surface Coverage and Energy-Level Alignment. ACS Catalysis, 2020, 10, 13186-13195.	5.5	19
1027	Theoretical insights into single-atom catalysts. Chemical Society Reviews, 2020, 49, 8156-8178.	18.7	231
1028	Fabrication of rGO/α-Fe2O3 electrodes: characterization and use in photoelectrocatalysis. Journal of Materials Science: Materials in Electronics, 2020, 31, 16882-16897.	1.1	5
1029	Tailored Coupling of Biomineralized CdS Quantum Dots to rGO to Realize Ambient Aqueous Synthesis of a High-Performance Hydrogen Evolution Photocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 42773-42780.	4.0	15
1030	Graphene Quantum Dot-Sensitized ZnO-Nanorod/GaN-Nanotower Heterostructure-Based High-Performance UV Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 47038-47047.	4.0	70
1031	Hydrogen production through photoreforming processes over Cu2O/TiO2 composite materials: A mini-review. International Journal of Hydrogen Energy, 2020, 45, 28531-28552.	3.8	51
1032	Underestimation of Platinum Electrocatalysis Induced by Carbon Monoxide Evolved from Graphite Counter Electrodes. ACS Catalysis, 2020, 10, 10773-10783.	5.5	26
1033	Enhanced Performance of a Novel Quaternary Nanocomposite CuO/ZnO/ZnS/CuS towards Removal of Dye Pollutant under Simulated Sunlight Irradiation. ChemistrySelect, 2020, 5, 9195-9205.	0.7	4
1034	Plasmonic Ag-Decorated Few-Layer MoS2 Nanosheets Vertically Grown on Graphene for Efficient Photoelectrochemical Water Splitting. Nano-Micro Letters, 2020, 12, 172.	14.4	39
1035	Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catalysis, 2020, 10, 10253-10315.	5.5	401
1036	Oxygen Vacancies Induced NiFe-Hydroxide as a Scalable, Efficient, and Stable Electrode for Alkaline Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 14071-14081.	3.2	32
1037	Highly efficient hydrogen evolution reaction, plasmon-enhanced by AuNP-l-TiO2NP photocatalysts. New Journal of Chemistry, 2020, 44, 16491-16500.	1.4	4

#	Article	IF	CITATIONS
1038	Recent Advances in the Fabrication of All-Solid-State Nanostructured TiO ₂ -Based Z-scheme Heterojunctions for Environmental Remediation. Journal of Nanoscience and Nanotechnology, 2020, 20, 5861-5873.	0.9	11
1039	A Metal-Free Oxygenated Covalent Triazine 2-D Photocatalyst Works Effectively from the Ultraviolet to Near-Infrared Spectrum for Water Oxidation Apart from Water Reduction. ACS Applied Energy Materials, 2020, 3, 8960-8968.	2.5	7
1040	Theoretical study on the photocatalytic properties of 2D InX(X = S, Se)/transition metal disulfide (MoS ₂ and WS ₂) van der Waals heterostructures. Nanoscale, 2020, 12, 20025-20032.	2.8	49
1041	One-dimensional CdS@Cd _{0.5} Zn _{0.5} S@ZnS-Ni(OH) ₂ nano-hybrids with epitaxial heterointerfaces and spatially separated photo-redox sites enabling highly-efficient visible-light-driven H ₂ evolution. Nanoscale, 2020, 12, 20522-20535.	2.8	17
1042	Enhanced Photocatalysis by Synergistic Piezotronic Effect and Exciton–Plasmon Interaction Based on (Agâ€Ag ₂ S)/BaTiO ₃ Heterostructures. Advanced Functional Materials, 2020, 30, 2005716.	7.8	65
1043	Design of Ti3C2ZnOAlN ternary nanocomposite for photocatalytic antifouling: a first-principle study. Journal of Materials Science, 2020, 55, 16588-16602.	1.7	5
1044	Direct Identification of Antisite Cation Intermixing and Correlation with Electronic Conduction in CuBi ₂ O ₄ for Photocathodes. ACS Applied Materials & Interfaces, 2020, 12, 43720-43727.	4.0	10
1045	Graphitic Carbon Nitride Microtubes for Efficient Photocatalytic Overall Water Splitting: The Morphology Derived Electrical Field Enhancement. ACS Sustainable Chemistry and Engineering, 2020, 8, 14386-14396.	3.2	39
1046	Pulsed Laser Deposited Fe2TiO5 Photoanodes for Photoelectrochemical Water Oxidation. Journal of Physical Chemistry C, 2020, 124, 19911-19921.	1.5	11
1047	Unravelling the Mechanisms that Drive the Performance of Photocatalytic Hydrogen Production. Catalysts, 2020, 10, 901.	1.6	45
1048	Conjugated Acetylenic Polymers Grafted Cuprous Oxide as an Efficient Z‣cheme Heterojunction for Photoelectrochemical Water Reduction. Advanced Materials, 2020, 32, e2002486.	11.1	34
1049	Ta2O5 NTs-TiO2 nanodots heterostructure photocatalyst material for enhanced photodegradation and photoelectrochemical performance under simulated solar light. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	7
1050	Highly efficient hamburger-like nanostructure of a triadic Ag/Co ₃ O ₄ /BiVO ₄ photoanode for enhanced photoelectrochemical water oxidation. RSC Advances, 2020, 10, 45067-45075.	1.7	11
1051	Perspective and advanced development of lead–carbon battery for inhibition of hydrogen evolution. Emergent Materials, 2020, 3, 791-805.	3.2	8
1052	Visible Light-Driven Photoelectrocatalytic Water Splitting Using Z-Scheme Ag-Decorated MoS ₂ /RGO/NiWO ₄ Heterostructure. ACS Omega, 2020, 5, 31644-31656.	1.6	29
1053	Combined effect between PVP and glass wool for improvement of the photocatalytic activity under visible light of bismuth (III) oxyhalide and access to α-Bi2O3-BiOI-BiOBr. Applied Surface Science, 2020, 534, 147577.	3.1	17
1054	3D structured materials and devices for artificial photosynthesis. Nanotechnology, 2020, 31, 282001.	1.3	10
1055	Catalytic materials for efficient electrochemical production of hydrogen peroxide. APL Materials, 2020, 8, .	2.2	16

#	Article	IF	CITATIONS
1056	Recent Progress in Engineering Metal Halide Perovskites for Efficient Visible‣ightâ€Driven Photocatalysis. ChemSusChem, 2020, 13, 4005-4025.	3.6	79
1057	Recent Advancement of p―and dâ€Block Elements, Single Atoms, and Grapheneâ€Based Photoelectrochemical Electrodes for Water Splitting. Advanced Energy Materials, 2020, 10, 2000280.	10.2	88
1058	Reversed configuration of photocatalyst to exhibit improved properties of basic processes compared to conventional one. Science China Chemistry, 2020, 63, 771-776.	4.2	4
1059	Density Functional Theory investigation of rhombohedral multiferroic oxides for photocatalytic water splitting and organic photodegradation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112656.	2.0	16
1060	Recent Advances in Conjugated Polymers for Visible‣ightâ€Driven Water Splitting. Advanced Materials, 2020, 32, e1907296.	11.1	279
1061	Metalâ€Free Photocatalytic Hydrogenation Using Covalent Triazine Polymers. Angewandte Chemie - International Edition, 2020, 59, 14378-14382.	7.2	60
1062	Plasmon-Induced Water Splitting—through Flexible Hybrid 2D Architecture up to Hydrogen from Seawater under NIR Light. ACS Applied Materials & Interfaces, 2020, 12, 28110-28119.	4.0	41
1063	Nanofibrous MgO composites: structures, properties, and applications. Polymer-Plastics Technology and Materials, 2020, 59, 1522-1551.	0.6	6
1064	Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO ₂ . Chemical Society Reviews, 2020, 49, 2937-3004.	18.7	479
1065	LaTiO2N/Bi2S3 Z-scheme nano heterostructures modified by rGO with high interfacial contact for rapid photocatalytic degradation of tetracycline. Journal of Molecular Liquids, 2020, 311, 113300.	2.3	30
1066	Study of structural, elastic, electronic, and vibrational properties of MRh2O4 (M = Cd and Zn) spinels: DFT-based calculations. Journal of Molecular Modeling, 2020, 26, 140.	0.8	2
1067	Current progress and challenges in photoelectrode materials for the production of hydrogen. Chemical Engineering Journal, 2020, 397, 125415.	6.6	55
1068	Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 15985-16038.	3.8	187
1069	Tuning of the Oxygen Species Linker on the Surface of Polymeric Carbon Nitride to Promote the Photocatalytic Hydrogen Evolution Performance. ChemSusChem, 2020, 13, 3605-3613.	3.6	9
1070	Characterization of charge carrier behavior in photocatalysis using transient absorption spectroscopy. Journal of Chemical Physics, 2020, 152, 194201.	1.2	72
1071	Simultaneous formation of Bi2O2(OH)(NO3)/BiOBr ultrathin hierarchical microspheres for effectively promoting visible-light-driven photocatalytic activity in environmental remediation. Chemosphere, 2020, 258, 127384.	4.2	19
1072	Bi ₂ O ₃ –BiFeO ₃ Glass-Ceramic: Controllable β-ʃÎ3-Bi ₂ O ₃ Transformation and Application as Magnetic Solar-Driven Photocatalyst for Water Decontamination. ACS Omega, 2020, 5, 14625-14634.	1.6	37
1073	Metalâ€Free Photocatalytic Hydrogenation Using Covalent Triazine Polymers. Angewandte Chemie, 2020, 132, 14484-14488.	1.6	7

#	Article	IF	CITATIONS
1074	In situ constructing intramolecular ternary homojunction of carbon nitride for efficient photoinduced molecular oxygen activation and hydrogen evolution. Nano Energy, 2020, 75, 104865.	8.2	46
1075	Tunable Photoâ€Electrochemistry of Patterned TiO ₂ /BDD Heterojunctions. Small Methods, 2020, 4, 2000257.	4.6	26
1076	Effects of alkali ion on boosting WO3 photoelectrochemical performance by electrochemical doping. International Journal of Hydrogen Energy, 2020, 45, 19257-19266.	3.8	17
1077	Inert basal plane activation of two-dimensional ZnIn ₂ S ₄ <i>via</i> Ni atom doping for enhanced co-catalyst free photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 13376-13384.	5.2	79
1078	Excellent properties of type-II van der Waals Janus-XM2X'/MX heterojunctions toward solar cell utilization. Journal Physics D: Applied Physics, 2020, 53, 405101.	1.3	5
1079	Bi electrodeposition on WO3 photoanode to improve the photoactivity of the WO3/BiVO4 heterostructure to water splitting. Chemical Engineering Journal, 2020, 399, 125836.	6.6	41
1080	Superior Photocatalytic Hydrogen Evolution Performances of WS ₂ over MoS ₂ Integrated with CdS Nanorods. Journal of Physical Chemistry C, 2020, 124, 14485-14495.	1.5	36
1082	Graphene Quantum Dotsâ€Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2020, 10, 2001275.	10.2	109
1083	Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Research, 2020, 13, 2313-2322.	5.8	148
1084	Creation of oxygen vacancies to activate lanthanum-doped bismuth titanate nanosheets for efficient synchronous photocatalytic removal of Cr(VI) and methyl orange. Journal of Molecular Liquids, 2020, 314, 113613.	2.3	24
1085	Engineering the Morphology and Crystal Phase of 3 D Hierarchical TiO ₂ with Excellent Photochemical and Photoelectrochemical Solar Water Splitting. ChemSusChem, 2020, 13, 3005-3016.	3.6	17
1086	Effects of a Ni cocatalyst on the photocatalytic hydrogen evolution reaction of anatase TiO ₂ by first-principles calculations. New Journal of Chemistry, 2020, 44, 5428-5437.	1.4	8
1087	Study of the GaAs/SiH van der Waals type-II heterostructure: a high efficiency photocatalyst promoted by a built-in electric field. Physical Chemistry Chemical Physics, 2020, 22, 8565-8571.	1.3	27
1088	Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments. ChemBioChem, 2020, 21, 1573-1581.	1.3	11
1089	Photocatalytic reduction of <scp>CO₂</scp> to methanol over <scp>ZnFe₂O₄</scp> / <scp>TiO₂</scp> (p–n) heterojunctions under visible light irradiation. Journal of Chemical Technology and Biotechnology, 2020, 95, 2208-2221.	1.6	31
1090	Recent Achievements in Development of TiO2-Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting. Materials, 2020, 13, 1338.	1.3	76
1091	Electron Transfer Mediated by Iron Carbonyl Clusters Enhance Lightâ€Driven Hydrogen Evolution in Water by Quantum Dots. ChemSusChem, 2020, 13, 3252-3260.	3.6	7
1092	Design, fabrication, electro- and photoelectrochemical investigations of novel CoTiO3/CuBi2O4 heterojunction semiconductor: An efficient photocatalyst for the degradation of DR16 dye. Materials Science in Semiconductor Processing, 2020, 113, 105055.	1.9	31

		CITATION R	EPORT	
#	Article		IF	Citations
1093	Hydrogen Generation by Solar Water Splitting Using 2D Nanomaterials. Solar Rrl, 2020	, 4, 2000050.	3.1	29
1094	Recent advances in conjugated microporous polymers for photocatalysis: designs, appl prospects. Journal of Materials Chemistry A, 2020, 8, 6434-6470.	ications, and	5.2	140
1095	An efficient ternary Mn0.2Cd0.8S/MoS2/Co3O4 heterojunction for visible-light-driven p H2 evolution. International Journal of Hydrogen Energy, 2020, 45, 10764-10774.	photocatalytic	3.8	36
1096	Recent progress on heterostructures of photocatalysts for environmental remediation. Today: Proceedings, 2020, 32, 584-593.	Materials	0.9	7
1097	Polymeric heptazine imide by O doping and constructing van der Waals heterostructur photocatalytic water splitting: a theoretical perspective from transition dipole moment Physical Chemistry Chemical Physics, 2020, 22, 9915-9922.	es for analyses.	1.3	14
1098	Controlled Synthesis of Au Nanocrystals-Metal Selenide Hybrid Nanostructures toward Plasmon-Enhanced Photoelectrochemical Energy Conversion. Nanomaterials, 2020, 10	. 564.	1.9	8
1099	Noble-Metal-Free Perovskite–BiVO ₄ Tandem Device with Simple Prepara Unassisted Solar Water Splitting. Energy & Fuels, 2020, 34, 5016-5023.	ition Method for	2.5	28
1100	Designing catalysts for water splitting based on electronic structure considerations. Ele Structure, 2020, 2, 023001.	ectronic	1.0	43
1101	The Improved Photoelectrochemical Performance of WO 3 /BiVO 4 Heterojunction Thir Photoanodes via Thermal Treatment. Energy Technology, 2020, 8, 2000147.	ıâ€Film	1.8	10
1102	Synergistic RGO/Black TiO ₂ /2Dâ€ZIFâ€8 Ternary Heterogeneous Compos Efficient Photocatalytic Activity. ChemistrySelect, 2020, 5, 3746-3755.	ite with Highly	0.7	18
1103	A Hydrogenâ€Deficient Nickel–Cobalt Double Hydroxide for Photocatalytic Overall V Angewandte Chemie - International Edition, 2020, 59, 11510-11515.	Jater Splitting.	7.2	55
1104	Porous Tantalum Nitride Single Crystal at Twoâ€Centimeter Scale with Enhanced Photo Performance. Angewandte Chemie - International Edition, 2020, 59, 8891-8895.	pelectrochemical	7.2	34
1105	Porous Tantalum Nitride Single Crystal at Two entimeter Scale with Enhanced Photo Performance. Angewandte Chemie, 2020, 132, 8976-8980.	pelectrochemical	1.6	4
1106	Emerging energy and environmental application of graphene and their composites: a re Materials Science, 2020, 55, 7156-7183.	wiew. Journal of	1.7	24
1107	Metal-free hydrophilic D-A conjugated polyelectrolyte dots/g-C3N4 nanosheets heteroj efficient and irradiation-stable water-splitting photocatalysis. Applied Catalysis B: Enviro 2020, 270, 118852.	unction for onmental,	10.8	46
1108	Photocatalytic Degradation of Chlorpyrifos with Mn-WO3/SnS2 Heterostructure. Catal 699.	ysts, 2020, 10,	1.6	26
1109	TiO2 nanosheet/ultra-thin layer g-C3N4 core-shell structure: Bifunctional visible-light ph for H2 evolution and removal of organic pollutants from water. Applied Surface Science 146930.		3.1	22
1110	The presence and effect of oxygen in graphitic carbon nitride synthetized in air and nitr atmosphere. Applied Surface Science, 2020, 529, 147086.	ogen	3.1	25

#	Article	IF	Citations
1111	A systemic study on Gd, Fe and N co-doped TiO2 nanomaterials for enhanced photocatalytic activity under visible light irradiation. Ceramics International, 2020, 46, 24744-24752.	2.3	28
1112	Recent advances in homojunction-based photocatalysis for sustainable environmental remediation and clean energy generation. Applied Materials Today, 2020, 20, 100741.	2.3	28
1113	Fabrication of Ag3PO4/Ag/MoO3-x Z-scheme system with excellent photocatalytic degradation performance under visible light irradiation. Materials Chemistry and Physics, 2020, 253, 123325.	2.0	16
1114	Boosting Visible-Light Photodegradation over Ternary Strategy-Engineered Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2020, 59, 13491-13501.	1.8	8
1115	Polyimide-based photocatalysts: rational design for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 14441-14462.	5.2	38
1116	Properties of titanium oxide hollow structure layer for photocatalysis prepared by liquid phase deposition. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	3
1117	Metal-support interaction for heterogeneous catalysis: from nanoparticles to single atoms. Materials Today Nano, 2020, 12, 100093.	2.3	89
1118	Recent progress in structural development and band engineering of perovskites materials for photocatalytic solar hydrogen production: A review. International Journal of Hydrogen Energy, 2020, 45, 19078-19111.	3.8	76
1119	Efficient photocatalytic overall water splitting on metal-free 1D SWCNT/2D ultrathin C3N4 heterojunctions via novel non-resonant plasmonic effect. Applied Catalysis B: Environmental, 2020, 278, 119312.	10.8	89
1120	Photocatalytic hydrogen production over Rh-loaded TiO2: What is the origin of hydrogen and how to achieve hydrogen production from water?. Applied Catalysis B: Environmental, 2020, 278, 119316.	10.8	73
1121	Photocatalytic activity enhanced via surface hybridization. , 2020, 2, 308-349.		68
1122	Immobilization of Metal–Organic Framework MIL-100(Fe) on the Surface of BiVO ₄ : A New Platform for Enhanced Visible-Light-Driven Water Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 10410-10419.	4.0	42
1123	Ti ₂ O ₃ /TiO ₂ heterophase junctions with enhanced charge separation and spatially separated active sites for photocatalytic CO ₂ reduction. Physical Chemistry Chemical Physics, 2020, 22, 4526-4532.	1.3	44
1124	Nanoporous WO3 films synthesized by tuning anodization conditions for photoelectrochemical water oxidation. Solar Energy Materials and Solar Cells, 2020, 209, 110472.	3.0	28
1125	Combining Photocatalysis and Optical Fiber Technology toward Improved Microreactor Design for Hydrogen Generation with Metallic Nanoparticles. ACS Photonics, 2020, 7, 714-722.	3.2	13
1126	Supersonically sprayed Zn2SnO4/SnO2/carbon nanotube films for high-efficiency water splitting photoanodes. Journal of Alloys and Compounds, 2020, 828, 154374.	2.8	14
1127	Deep Eutectic Solventâ€Assisted Synthesis of Ternary Heterojunctions for the Oxygen Evolution Reaction and Photocatalysis. ChemSusChem, 2020, 13, 2726-2738.	3.6	17
1128	Supporting bimetallic sulfide on 3D TiO2 hollow shells to boost photocatalytic activity. Chemical Engineering Journal, 2020, 390, 124602.	6.6	18

ARTICLE IF CITATIONS Enhanced visible light photocatalytic activity of CdS through controllable self-assembly compositing 1129 1.0 23 with ZIF-67. Molecular Catalysis, 2020, 485, 110797. Carbon Sphere Template Derived Hollow Nanostructure for Photocatalysis and Gas Sensing. 1.9 Nanomaterials, 2020, 10, 378. Experimental Study of CO2 Conversion into Methanol by Synthesized Photocatalyst (ZnFe2O4/TiO2) 1131 1.6 16 Using Visible Light as an Energy Source. Catalysts, 2020, 10, 163. Black TiO₂: What are exact functions of disorder layer. , 2020, 2, 44-53. Two-step method to prepare the direct Z-scheme heterojunction hierarchical flower-like 1133 Ag@AgBr/Bi2MoO6 microsphere photocatalysts for waste water treatment under visible light. 1.1 14 Journal of Materials Science: Materials in Electronics, 2020, 31, 5054-5067. Trisodium citrate-assisted synthesis of BiOBr nanostructure catalyst for efficient activity under visible light. Korean Journal of Chemical Engineering, 2020, 37, 358-365. 1134 1.2 Yb-substitution triggered BiVO4-Bi2O3 heterojunction electrode for photoelectrocatalytic degradation of organics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 593, 1135 2.322 124640. Recent progress and strategies for enhancing photocatalytic water splitting. Materials Today 1.9 Sustainability, 2020, 9, 100032. Control of Excited-State Proton-Coupled Electron Transfer by Ultrafast Pump-Push-Probe 1137 Spectroscopy in Heptazine-Phenol Complexes: Implications for Photochemical Water Oxidation. 1.5 18 Journal of Physical Chemistry C, 2020, 124, 9151-9160. Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen 169 production from water splitting. Coordination Chemistry Reviews, 2020, 409, 213220. Type-II/type-II band alignment to boost spatial charge separation: a case study of g-Ċ₃N₄ quantum dots/a-TiO₂/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO<sub/r-TiO< 1139 79 2.8 efficient photocatalytic hydrogen and oxygen evolution. Nanoscale, 2020, 12, 6037-6046. Development of Heterostructured Ferroelectric SrZrO₃/CdS Photocatalysts with Enhanced Surface Area and Photocatalytic Activity, Journal of Nanoscience and Nanotechnology, 0.9 2020, 20, 3770-3779. Recent advances in ternary layered double hydroxide electrocatalysts for the oxygen evolution 1141 1.4 76 reaction. New Journal of Chemistry, 2020, 44, 9981-9997. Recent Progress of Heterojunction Ultraviolet Photodetectors: Materials, Integrations, and 1142 264 Applications. Advanced Functional Materials, 2020, 30, 1909909. CoSe2 modified Se-decorated CdS nanowire Schottky heterojunctions for highly efficient 1143 6.6 57 photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 389, 124431. Controlling Pt co-catalyst loading in a WO₃ quantum dot and MoS₂ 1144 nanosheet composite Z-scheme system for enhanced photocatalytic H₂ evolution. Nanotechnology, 2020, 31, 185701. First demonstration of photoelectrochemical water splitting by commercial W–Cu powder 1145 metallurgy parts converted to highly porous 3D WO3/W skeletons. International Journal of Hydrogen 3.8 8 Energy, 2020, 45, 6369-6379. The roles and mechanism of cocatalysts in photocatalytic water splitting to produce hydrogen. 1146 Chinese Journal of Catalysis, 2020, 41, 642-671.

#	Article	IF	CITATIONS
1147	Metal Chalcogenides Based Heterojunctions and Novel Nanostructures for Photocatalytic Hydrogen Evolution. Catalysts, 2020, 10, 89.	1.6	48
1148	Research Frontiers in Energyâ€Related Materials and Applications for 2020–2030. Advanced Sustainable Systems, 2020, 4, 1900145.	2.7	30
1149	Charge Carriers Cascade in a Ternary TiO ₂ /TiO ₂ /ZnS Heterojunction: A DFT Study. ChemCatChem, 2020, 12, 2097-2105.	1.8	25
1150	Light-Induced Formation of MoO <i>_x</i> S <i>_y</i> Clusters on CdS Nanorods as Cocatalyst for Enhanced Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 8324-8332.	4.0	67
1151	Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping. Chinese Journal of Catalysis, 2020, 41, 847-852.	6.9	53
1152	Photoelectrochemistry of manganese oxide/mixed phase titanium oxide heterojunction. New Journal of Chemistry, 2020, 44, 3514-3523.	1.4	58
1153	Post-Synthetic Derivatization of Graphitic Carbon Nitride with Methanesulfonyl Chloride: Synthesis, Characterization and Photocatalysis. Nanomaterials, 2020, 10, 193.	1.9	13
1154	NiSâ€Decorated ZnO/ZnS Nanorod Heterostructures for Enhanced Photocatalytic Hydrogen Production: Insight into the Role of NiS. Solar Rrl, 2020, 4, 1900568.	3.1	35
1155	Photocatalytic degradation of methyl orange on the novel hetero-system La2NiO4/ZnO under solar light. Chemical Physics Letters, 2020, 742, 137132.	1.2	51
1156	Photodegradation of organic pollutants using heterojunctions: A review. Journal of Environmental Chemical Engineering, 2020, 8, 103666.	3.3	138
1157	Novel in Situ Synthesis of BiVO ₄ Photocatalyst/Co ₃ (PO ₄) ₂ Co-Catalyst Powder via the One-Step Solid-State Process for Photoelectrochemical Catalyzing Water Oxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 2948-2956.	3.2	25
1158	Visible-light-driven selective oxidation of methane to methanol on amorphous FeOOH coupled m-WO3. Fuel, 2020, 266, 117104.	3.4	64
1159	Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight. Journal of Alloys and Compounds, 2020, 826, 154122.	2.8	80
1160	Separating type I heterojunction of NaBi(MoO4)2/Bi2MoO6 by TiO2 nanofibers for enhanced visible-photocatalysis. Chemical Physics, 2020, 533, 110696.	0.9	17
1161	Fabrication of BiFeO3-g-C3N4-WO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for water reduction and 2,4-dichlorophenol degradation: Insight mechanism. Journal of Hazardous Materials, 2020, 397, 122708.	6.5	102
1162	Exploring the Relationship between Effective Mass, Transient Photoconductivity, and Photocatalytic Activity of Sr _{<i>x</i>} Pb _{1–<i>x</i>} BiO ₂ Cl (<i>x</i> = 0–1) Oxyhalides. Chemistry of Materials, 2020, 32, 4166-4173.	3.2	24
1163	LaCl3 flux mediated Ta3N5 planar photoanode for solar water oxidation. Chemical Engineering Journal, 2020, 396, 125161.	6.6	13
1164	Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chemical Engineering Journal, 2020, 395, 125030.	6.6	133

#	Article	IF	CITATIONS
1165	A Hydrogenâ€Deficient Nickel–Cobalt Double Hydroxide for Photocatalytic Overall Water Splitting. Angewandte Chemie, 2020, 132, 11607-11612.	1.6	6
1166	Nanostructured Metal-Oxide Electrode Materials for Water Purification. Engineering Materials, 2020,	0.3	1
1167	Sustainable hydrogen production by molybdenum carbide-based efficient photocatalysts: From properties to mechanism. Advances in Colloid and Interface Science, 2020, 279, 102144.	7.0	55
1168	Wedged ß-In2S3 sensitized TiO2 films for enhanced photoelectrochemical hydrogen generation. Journal of Alloys and Compounds, 2020, 831, 154798.	2.8	17
1169	Efficient recovery of uranium from saline lake brine through photocatalytic reduction. Journal of Molecular Liquids, 2020, 308, 113007.	2.3	29
1170	Phosphorus-based metal-free Z-scheme 2D van der Waals heterostructures for visible-light photocatalytic water splitting: a first-principles study. Physical Chemistry Chemical Physics, 2020, 22, 9250-9256.	1.3	19
1171	A two-dimensional CdO/CdS heterostructure used for visible light photocatalysis. Physical Chemistry Chemical Physics, 2020, 22, 9587-9592.	1.3	63
1172	Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. National Science Review, 2020, 7, 1638-1646.	4.6	57
1173	Lightâ€Intensityâ€Responsive Changes of Products in Photocatalytic Reduction of Nitrous Acid on a Cuâ€Đoped Covalent Triazine Framework–TiO 2 Hybrid. ChemSusChem, 2020, 13, 3462-3468.	3.6	16
1174	Boosting the photocatalytic performances of covalent organic frameworks enabled by spatial modulation of plasmonic nanocrystals. Applied Catalysis B: Environmental, 2020, 272, 119035.	10.8	38
1175	Sulfur and potassium co-doped graphitic carbon nitride for highly enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 273, 119050.	10.8	138
1176	Ni-nanoparticle-bound boron nitride nanosheets prepared by a radiation-induced reduction-exfoliation method and their catalytic performance. Journal of Materials Chemistry A, 2020, 8, 9109-9120.	5.2	19
1177	In-situ generation of g-C3N4 on BiVO4 photoanode for highly efficient photoelectrochemical water oxidation. Applied Surface Science, 2020, 523, 146441.	3.1	15
1178	Rational design of photoelectrochemical cells towards bias-free water splitting: Thermodynamic and kinetic insights. Journal of Power Sources, 2020, 462, 228113.	4.0	15
1179	Design and fabrication of direct Z-scheme photocatalysts. Interface Science and Technology, 2020, 31, 193-229.	1.6	12
1180	Bridging effect of Co heteroatom between g-C3N4 and Pt NPs for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 394, 124964.	6.6	40
1181	Quantification of zearalenone in mildewing cereal crops using an innovative photoelectrochemical aptamer sensing strategy based on ZnO-NGQDs composites. Food Chemistry, 2020, 322, 126778.	4.2	47
1182	Engineered Superparamagnetic Core–Shell Metal–Organic Frame-Work (Fe3O4@Ni–Co-BTC NPs) with Enhanced Photocatalytic Activity for Selective Aerobic Oxidation of Alcohols Under Solar Light Irradiation. Catalysis Letters, 2021, 151, 107-123.	1.4	7

#	Article	IF	CITATIONS
1183	Synthesis of core-shell nanostructured Cr2O3/C@TiO2 for photocatalytic hydrogen production. Chinese Journal of Catalysis, 2021, 42, 225-234.	6.9	43
1184	Degradation and mineralization of erythromycin by heterogeneous photocatalysis using SnO2-doped TiO2 structured catalysts: Activity and stability. Chemosphere, 2021, 268, 128858.	4.2	27
1185	Three-in-one to enhance visible-light driven photocatalytic activity of BiOCI: Synergistic effect of mesocrystalline stacking superstructure, porous nanosheet and oxygen vacancy. Journal of Materiomics, 2021, 7, 328-338.	2.8	16
1186	Precious Metalâ€Free Photocatalytic Water Oxidation by a Layered Double Hydroxideâ€Prussian Blue Analogue Hybrid Assembly. ChemSusChem, 2021, 14, 679-685.	3.6	10
1187	Visible-light overall water splitting on g-C3N4 decorated by subnanometer oxide clusters. Materials Today Physics, 2021, 16, 100312.	2.9	20
1188	Facile construction for new core-shell Z-scheme photocatalyst GO/AgI/Bi2O3 with enhanced visible-light photocatalytic activity. Journal of Colloid and Interface Science, 2021, 581, 148-158.	5.0	57
1189	MoS2 hydrogen evolution catalysis on p-Si nanorod photocathodes. Materials Science in Semiconductor Processing, 2021, 121, 105308.	1.9	9
1190	Metal-seed assistant photodeposition of platinum over Ta3N5 photocatalyst for promoted solar hydrogen production under visible light. Journal of Energy Chemistry, 2021, 55, 444-448.	7.1	27
1191	CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction. Applied Surface Science, 2021, 537, 147891.	3.1	147
1192	Photo-assisted separation of noble-metal-free oxidation and reduction cocatalysts for graphitic carbon nitride nanosheets with efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021, 280, 119456.	10.8	91
1193	Recent advances in photocatalytic removal of organic and inorganic pollutants in air. Journal of Cleaner Production, 2021, 278, 123895.	4.6	103
1194	Titanium dioxide nanostructures as efficient photocatalyst: Progress, challenges and perspective. International Journal of Energy Research, 2021, 45, 3569-3589.	2.2	85
1195	Recent Progress on Carbon Nitride and Its Hybrid Photocatalysts for CO ₂ Reduction. Solar Rrl, 2021, 5, 2000478.	3.1	34
1196	MOF-derived core/shell C-TiO2/CoTiO3 type II heterojunction for efficient photocatalytic removal of antibiotics. Journal of Hazardous Materials, 2021, 406, 124675.	6.5	81
1197	Nitrogen doping-mediated oxygen vacancies enhancing co-catalyst-free solar photocatalytic H2 production activity in anatase TiO2 nanosheet assembly. Applied Catalysis B: Environmental, 2021, 285, 119755.	10.8	86
1198	Surface and morphology investigation of FeCrO3 material in ilmenite-, corundum- and lithium niobate- polymorphs. Surfaces and Interfaces, 2021, 22, 100837.	1.5	3
1199	Hexagonal boron nitride composite photocatalysts for hydrogen production. Journal of Alloys and Compounds, 2021, 864, 158153.	2.8	26
1200	Graphene/graphene oxide–based nanomaterials for hydrogen production and storage applications. , 2021, , 97-116.		1

#	Article	IF	CITATIONS
1201	Investigation of bulk carrier diffusion dynamics using β-Mn2V2â^'xMoxO7 photoanodes in solar water splitting. Applied Surface Science, 2021, 540, 148376.	3.1	6
1202	Fabrication and Characterization of Typeâ€ll Heterostructure n:In ₂ O ₃ /p:inâ€TiO ₂ for Enhanced Photocatalytic Activity. Physica Status Solidi (B): Basic Research, 2021, 258, 2000441.	0.7	7
1203	Construction of a carbon dots-based Z-scheme photocatalytic electrode with enhanced visible-light-driven activity for Cr(VI) reduction and carbamazepine degradation in different reaction systems. Chemical Engineering Journal, 2021, 420, 127571.	6.6	19
1204	Visible light-induced stable HER performance using duality of ultrafine Pt NPs in a Z-scheme p-n junction Fe2O3@Pt@FeS catalyst. Applied Surface Science, 2021, 541, 148347.	3.1	13
1205	Recent strategies to enhance the efficiency of hematite photoanodes in photoelectrochemical water splitting. Chinese Journal of Catalysis, 2021, 42, 904-919.	6.9	23
1206	Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. Chinese Journal of Catalysis, 2021, 42, 872-903.	6.9	73
1207	Photocatalytic Oxygen Evolution from Water Splitting. Advanced Science, 2021, 8, 2002458.	5.6	98
1208	Solar photo-catalytic production of hydrogen by irradiation of cobalt co-doped TiO2. International Journal of Hydrogen Energy, 2021, 46, 12068-12081.	3.8	14
1209	Employing one-step coupling cold plasma and thermal polymerization approach to construct nitrogen defect-rich carbon nitrides toward efficient visible-light-driven hydrogen generation. International Journal of Hydrogen Energy, 2021, 46, 5158-5168.	3.8	3
1210	Few-layer WS2–MoS2 in-plane heterostructures for efficient photocatalytic hydrogen evolution. Nano Energy, 2021, 81, 105608.	8.2	65
1211	Advanced Functional Electroactive and Photoactive Materials for Monitoring the Environmental Pollutants. Advanced Functional Materials, 2021, 31, 2008227.	7.8	39
1212	Recent progress in Bi ₂ WO ₆ â€Based photocatalysts for clean energy and environmental remediation: Competitiveness, challenges, and future perspectives. Nano Select, 2021, 2, 187-215.	1.9	31
1213	Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes. Chemical Society Reviews, 2021, 50, 1407-1437.	18.7	93
1214	Take a cue from nature: Promoting electrocatalytic watersplitting with a helping hand of hemoglobin. International Journal of Hydrogen Energy, 2021, 46, 3504-3509.	3.8	7
1215	Highly efficient H2 generation over Cu2Se decorated CdS0.95Se0.05 nanowires by photocatalytic water reduction. Chemical Engineering Journal, 2021, 409, 128157.	6.6	22
1216	Characteristics of transmission light in tetracycline hydrochloride polluted wastewater and the response of g-C3N4 under different transmission spectral range during the photodegradation process. Chemosphere, 2021, 263, 128196.	4.2	9
1217	The spatially oriented redistribute of photogenerated carriers and photocatalytic hydrogen evolution mechanism research on polymeric carbon nitride Van der Waals homojunction. Chemical Engineering Journal, 2021, 408, 127284.	6.6	8
1218	Enhanced synergistic catalysis of novel Ag2O/CuO nanosheets under visible light illumination for the photodecomposition of three dyes. Journal of Environmental Chemical Engineering, 2021, 9, 104824.	3.3	9

#	Article	IF	CITATIONS
1219	Exploring the mechanism of Ta3N5/KTaO3 photocatalyst for overall water splitting by first-principles calculations. Journal of Energy Chemistry, 2021, 56, 353-364.	7.1	4
1220	Encapsulating band gap engineered CoSnO3 mixed metal oxide nanocomposite in rGO matrix: A novel catalyst towards LED light induced photoelectrocatalytic water oxidation at neutral pH. Journal of Electroanalytical Chemistry, 2021, 880, 114830.	1.9	9
1221	All-solid-state Z-scheme BiVO4â^`Bi6O6(OH)3(NO3)3 heterostructure with prolonging electron-hole lifetime for enhanced photocatalytic hydrogen and oxygen evolution. Journal of Materials Science and Technology, 2021, 77, 117-125.	5.6	16
1222	n-p Heterojunction of TiO2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming. Journal of Colloid and Interface Science, 2021, 585, 694-704.	5.0	91
1223	Environment friendly and remarkably efficient photocatalytic hydrogen evolution based on metal organic framework derived hexagonal/cubic In2O3 phase-junction. Applied Catalysis B: Environmental, 2021, 282, 119602.	10.8	81
1224	Strategic Surface Modification for the Enhanced Photocatalyic Activity: Synergistic Promotion for Energy Utilization in TiO2–Cu2O–Au. Catalysis Letters, 2021, 151, 1693-1699.	1.4	6
1225	Interfacial Charge Transport in 1D TiO ₂ Based Photoelectrodes for Photoelectrochemical Water Splitting. Small, 2021, 17, e1903378.	5.2	102
1226	One-step synthesis and photocatalytic behavior for H2 production from water of ZnS/MoS2 composite material. Catalysis Today, 2021, 360, 99-105.	2.2	26
1227	Ultrafast microwave-assisted hydrothermal synthesis and photocatalytic behaviour of ferroelectric Fe3+-doped BaTiO3 nanoparticles under simulated sunlight. Catalysis Today, 2021, 360, 90-98.	2.2	30
1228	Challenges and prospects about the graphene role in the design of photoelectrodes for sunlight-driven water splitting. RSC Advances, 2021, 11, 14374-14398.	1.7	8
1229	Recent Advances in the Fabrication of BiVO4 Photoanodes and CuBi2O4 Photocathodes for the Photoelectrochemical Water Splitting. Engineering Materials, 2021, , 271-287.	0.3	0
1230	Modulating formation rates of active species population by optimizing electron transport channels for boosting the photocatalytic activity of a Bi ₂ S ₃ /BiO _{1â^*x} Cl heterojunction. Catalysis Science and Technology, 2021, 11, 4196-4207.	2.1	8
1231	Polarization-enhanced photoelectrochemical properties of BaTiO ₃ /BaTiO _{3â^'x} /CdS heterostructure nanocubes. Dalton Transactions, 2021, 50, 3137-3144.	1.6	15
1232	<i>In situ</i> growth of metal-free snowflake-like 1D/2D phosphorus element heterostructures for photocatalytic overall pure-water splitting. New Journal of Chemistry, 2021, 45, 19876-19882.	1.4	4
1233	Confined synthesis of BiVO ₄ nanodot and ZnO cluster co-decorated 3DOM TiO ₂ for formic acid production from the xylan-based hemicellulose photorefinery. Green Chemistry, 2021, 23, 8124-8130.	4.6	7
1234	Strategies and Challenges on Selectivity of Photocatalytic Oxidation of Organic Substances. Advanced Energy Materials, 2021, 11, 2003216.	10.2	216
1235	Z-Scheme <i>versus</i> type-Il junction in g-C ₃ N ₄ /TiO ₂ and g-C ₃ N ₄ /SrTiO ₃ /TiO ₂ heterostructures. Catalysis Science and Technology, 2021, 11, 3589-3598.	2.1	25
1236	Role of surface termination and quantum size in α-CsPbX ₃ (X = Cl, Br, I) 2D nanostructures for solar light harvesting. Physical Chemistry Chemical Physics, 2021, 23, 3031-3040.	1.3	20

#	Article	IF	CITATIONS
1237	Enhanced visible-light photocatalytic activity of perylene diimide (PDI) supramolecular nanorods with Pt QDs deposited <i>in situ</i> . Dalton Transactions, 2021, 50, 4008-4016.	1.6	20
1238	Surface treatment of titanium by in-situ anodizination and NiO photodeposition: enhancement of photoelectrochemical properties for water splitting and photocathodic protection of stainless steel. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
1239	Alkylamine-Grafted Organic Semiconductors with Plasma-Induced Defects as Electron Promoters of CO-Resistant Pd-Based Nanoparticles for Efficient Light-Driven On-Demand H₂ Generation . ACS Applied Energy Materials, 2021, 4, 704-713.	2.5	8
1240	Chemical Sensors: Photoelectrochemical Sensors. , 2023, , 243-259.		1
1241	Nanostructured CuO with a thin g-C ₃ N ₄ layer as a highly efficient photocathode for solar water splitting. RSC Advances, 2021, 11, 16083-16089.	1.7	15
1242	Phosphorus nitride nano-dots as a versatile and metal-free support for efficient photoelectrochemical water oxidation. Chemical Communications, 2021, 57, 6157-6160.	2.2	3
1243	Linking melem with conjugated Schiff-base bonds to boost photocatalytic efficiency of carbon nitride for overall water splitting. Nanoscale, 2021, 13, 9315-9321.	2.8	17
1244	Efficiency enhancement in a stoichiometrically stable CdS/TiO2 nanotube heterostructure electrode for sunlight-driven hydrogen generation. New Journal of Chemistry, 2021, 45, 12838-12847.	1.4	1
1245	High-entropy oxynitride as a low-bandgap and stable photocatalyst for hydrogen production. Journal of Materials Chemistry A, 2021, 9, 15076-15086.	5.2	59
1246	Charge carrier separation and enhanced PEC properties of BiVO4 based heterojunctions having ultrathin overlayers. International Journal of Hydrogen Energy, 2021, 46, 189-196.	3.8	17
1247	Semiconductor photocatalysts and mechanisms of carbon dioxide reduction and nitrogen fixation under UV and visible light. Russian Chemical Reviews, 2021, 90, 1520-1543.	2.5	6
1248	Metal oxide catalysts for photoelectrochemical water splitting. , 2021, , 105-138.		1
1249	Photocatalysis using bismuth-based heterostructured nanomaterials for visible light harvesting. , 2021, , 289-328.		0
1250	Visible light active Zr- and N-doped TiO ₂ coupled g-C ₃ N ₄ heterojunction nanosheets as a photocatalyst for the degradation of bromoxynil and Rh B along with the H ₂ evolution process. Nanoscale Advances, 2021, 3, 6468-6481.	2.2	5
1251	Atomically thin photoanode of InSe/graphene heterostructure. Nature Communications, 2021, 12, 91.	5.8	26
1252	Tuning the interfacial electronic structure <i>via</i> Au clusters for boosting photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2021, 9, 1759-1769.	5.2	33
1253	High carrier separation efficiency for a defective g-C ₃ N ₄ with polarization effect and defect engineering: mechanism, properties and prospects. Catalysis Science and Technology, 2021, 11, 5432-5447.	2.1	19
1254	Effect of anisotropic conductivity of Ag ₂ S-modified Zn _{<i>m</i>} In ₂ S _{3+<i>m</i>} (<i>m</i> = 1, 5) on the photocatalytic properties in solar hydrogen evolution. RSC Advances, 2021, 11, 26908-26914.	1.7	4

#	Article	IF	CITATIONS
1255	Solar-driven valorisation of glycerol on BiVO ₄ photoanodes: effect of co-catalyst and reaction media on reaction selectivity. Journal of Materials Chemistry A, 2021, 9, 6252-6260.	5.2	34
1256	Experimental determination of charge carrier dynamics in carbon nitride heterojunctions. Chemical Communications, 2021, 57, 1550-1567.	2.2	22
1257	Active sites provided by the surface autocatalytic effect and quantum confinement for stable and efficient photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2021, 9, 14768-14774.	5.2	11
1258	Advancing photoreforming of organics: highlights on photocatalyst and system designs for selective oxidation reactions. Energy and Environmental Science, 2021, 14, 1140-1175.	15.6	128
1259	MOFâ€Based Hybrids for Solar Fuel Production. Advanced Energy Materials, 2021, 11, 2003052.	10.2	58
1260	Design of active photocatalysts and visible light photocatalysis. Interface Science and Technology, 2021, 32, 557-623.	1.6	16
1261	Enhanced light-driven hydrogen generation on carbon quantum dots with TiO ₂ nanoparticles. Physical Chemistry Chemical Physics, 2021, 23, 10448-10455.	1.3	11
1262	Advanced applications of magnetic nanoparticles in water purification. , 2021, , 373-394.		1
1263	Photocatalytic hydrogen generation using Z-scheme heterostructures through water reduction. , 2021, , 109-130.		1
1264	High-performance Pt _{0.01} Fe _{0.05} -g-C ₃ N ₄ Catalyst for Photothermal Catalytic CO ₂ Reduction. Acta Chimica Sinica, 2021, 79, 932.	0.5	6
1265	Recent advances in 2D MXene-based heterostructured photocatalytic materials. , 2021, , 329-362.		4
1266	Rational design of benzodifuran-functionalized donor–acceptor covalent organic frameworks for photocatalytic hydrogen evolution from water. Chemical Communications, 2021, 57, 4464-4467.	2.2	36
1267	Research Progress of Graphitic Nitride Hydrogels for Photocatalytic Water Splitting. Hans Journal of Chemical Engineering and Technology, 2021, 11, 305-314.	0.0	0
1268	Elucidating the Factors Affecting Hydrogen Production Activity Using a CdS/TiO ₂ Type-II Composite Photocatalyst. ACS Omega, 2021, 6, 4395-4400.	1.6	17
1269	Electrostatic interaction mechanism of visible light absorption broadening in ion-doped graphitic carbon nitride. RSC Advances, 2021, 11, 22652-22660.	1.7	2
1270	Solar-driven hydrogen production from a water-splitting cycle based on carbon-TiO2 nano-tubes. International Journal of Hydrogen Energy, 2022, 47, 3294-3305.	3.8	32
1271	3D/2D Bi ₂ S ₃ /SnS ₂ heterostructures: superior charge separation and enhanced solar light-driven photocatalytic performance. CrystEngComm, 2021, 23, 2276-2288.	1.3	7
1272	TiO2-based materials for photocatalytic hydrogen production. , 2021, , 211-240.		0

#	Article	IF	CITATIONS
1273	Fabrication of 1D/2D CdS/CoSx direct Z-scheme photocatalyst with enhanced photocatalytic hydrogen evolution performance. International Journal of Hydrogen Energy, 2021, 46, 9351-9359.	3.8	24
1274	Revealing Surface Charge Population on Flake-Like BiVO ₄ Photocatalysts by Single Particle Imaging Spectroscopies. ACS Applied Energy Materials, 2021, 4, 2543-2551.	2.5	16
1275	Surface polarization enables high charge separation in TiO2 nanorod photoanode. Nano Research, 2021, 14, 4056-4062.	5.8	20
1276	Charge Transport Phenomena in Heterojunction Photocatalysts: The WO ₃ /TiO ₂ System as an Archetypical Model. ACS Applied Materials & Interfaces, 2021, 13, 9781-9793.	4.0	24
1277	Newly emerging borate-based nonlinear optical materials for organic pollutant degradation: A review. Critical Reviews in Environmental Science and Technology, 2022, 52, 2227-2269.	6.6	10
1278	Investigation of photo-electrochemical response of iron oxide/mixed-phase titanium oxide heterojunction toward possible solar energy conversion. International Journal of Hydrogen Energy, 2021, 46, 7241-7253.	3.8	90
1279	Recovering Hydrogen Energy from Photocatalytic Treatment of Pharmaceutical-Contaminated Water Using Co ₃ O ₄ Modified {001}/{101}-TiO ₂ Nanosheets. ACS ES&T Engineering, 2021, 1, 603-611.	3.7	30
1280	Environmental Applications of Nanotechnology: Nano-enabled Remediation Processes in Water, Soil and Air Treatment. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	14
1281	A Review of Inorganic Photoelectrode Developments and Reactor Scaleâ€Up Challenges for Solar Hydrogen Production. Advanced Energy Materials, 2021, 11, 2003286.	10.2	51
1282	Lattice Defects Engineering in W-, Zr-doped BiVO4 by Flame Spray Pyrolysis: Enhancing Photocatalytic O2 Evolution. Nanomaterials, 2021, 11, 501.	1.9	19
1283	Nature and Role of Surface Junctions in BiOIO ₃ Photocatalysts. Advanced Functional Materials, 2021, 31, 2009472.	7.8	20
1285	Charge Carrier Processes and Optical Properties in TiO2 and TiO2-Based Heterojunction Photocatalysts: A Review. Materials, 2021, 14, 1645.	1.3	118
1286	Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures. Frontiers of Physics, 2021, 16, 1.	2.4	25
1287	Advances in nanomaterials for heterogeneous photocatalysis. Nano Express, 2021, 2, 012005.	1.2	25
1288	Engineering Nanostructure–Interface of Photoanode Materials Toward Photoelectrochemical Water Oxidation. Advanced Materials, 2021, 33, e2005389.	11.1	100
1289	P-Type Cobalt Phosphide Composites (CoP–Co ₂ P) Decorated on Titanium Oxide for Enhanced Noble-Metal-Free Photocatalytic H ₂ Evolution Activity. Langmuir, 2021, 37, 3321-3330.	1.6	24
1290	Composition-dependent micro-structure and photocatalytic performance of g-C3N4 quantum dots@SnS2 heterojunction. Nano Research, 2021, 14, 4188-4196.	5.8	26
1291	Material Design and Surface/Interface Engineering of Photoelectrodes for Solar Water Splitting. Solar Rrl, 2021, 5, 2100100.	3.1	33

#	Article	IF	CITATIONS
1292	Manufacturing of Photoactive β-Bismuth Oxide by Flame Spray Oxidation. Journal of Thermal Spray Technology, 2021, 30, 1107-1119.	1.6	3
1293	Enhanced Visible-Light-Driven Hydrogen Production through MOF/MOF Heterojunctions. ACS Applied Materials & Interfaces, 2021, 13, 14239-14247.	4.0	73
1294	Hierarchical 0D NiSe ₂ /2D ZnIn ₂ S ₄ Nanosheetâ€Assembled Microflowers for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials Interfaces, 2021, 8, 2100052.	1.9	34
1295	Emerging polymeric carbon nitride Z-scheme systems for photocatalysis. Cell Reports Physical Science, 2021, 2, 100355.	2.8	99
1296	Study on the photoelectrical performance of anodized titanium sheets. Royal Society Open Science, 2021, 8, 201778.	1.1	0
1297	Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol A degradation. Applied Materials Today, 2021, 22, 100963.	2.3	23
1298	Promoting carrier separation efficiently by macroscopic polarization charges and interfacial modulation for photocatalysis. Chemical Engineering Journal, 2021, 410, 128393.	6.6	35
1299	Effect of SILAR-anchored ZnFe2O4 on the BiVO4 nanostructure: An attempt towards enhancing photoelectrochemical water splitting. Applied Surface Science, 2021, 546, 149033.	3.1	39
1300	Synthesis and characterizations of graphene/Sm doped BiFeO3 composites photoanode for efficient photo-electrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 15550-15560.	3.8	22
1301	Nanoarray Structures for Artificial Photosynthesis. Small, 2021, 17, e2006530.	5.2	32
1302	Centimeter-Scale Porous Ta ₃ N ₅ Single Crystal Monolith Enhances Photoelectrochemical Performance. Journal of Physical Chemistry C, 2021, 125, 8098-8104.	1.5	4
1303	Simultaneous Conduction and Valence Band Regulation of Indium-Based Quantum Dots for Efficient H2 Photogeneration. Nanomaterials, 2021, 11, 1115.	1.9	3
1304	MOF-derived synthesis of MnS/In2S3 p-n heterojunctions with hierarchical structures for efficient photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2021, 588, 547-556.	5.0	48
1305	An Overview of the Recent Progress in Polymeric Carbon Nitride Based Photocatalysis. Chemical Record, 2021, 21, 1811-1844.	2.9	29
1306	Flexible BiVO ₄ /WO ₃ /ITO/Muscovite Heterostructure for Visible-Light Photoelectrochemical Photoelectrode. ACS Applied Materials & Interfaces, 2021, 13, 21186-21193.	4.0	9
1307	Anionsâ€Exchangeâ€Induced Efficient Carrier Transport at CsPbBr _x Cl _{3â€x} /TiO ₂ Interface for Photocatalytic Activation of C(sp ³)â~'H bond in Toluene Oxidation. ChemCatChem, 2021, 13, 2592-2598.	1.8	19
1308	State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts. Frontiers in Energy, 2021, 15, 600-620.	1.2	13
1309	Ultrasound-assisted adsorption of paraquat herbicide from aqueous solution by graphene oxide/ mesoporous silica. Journal of Environmental Chemical Engineering, 2021, 9, 105043.	3.3	26

#	Article	IF	CITATIONS
1310	Interplay between Valence Band Tuning and Redox Stability in SnTiO ₃ : Implications for Directed Design of Photocatalysts. Chemistry of Materials, 2021, 33, 2824-2836.	3.2	16
1311	Recent progress of bismuth vanadate-based photoelectrocatalytic water splitting. Chinese Science Bulletin, 2021, , .	0.4	2
1312	Facile hydrothermal preparation of a ZnFe2O4/TiO2 heterojunction for NOx removal. Molecular Catalysis, 2021, 507, 111570.	1.0	5
1313	NaBr-Assisted Photoelectrochemical and Photochemical Integrated Process for Isomerization of Maleate Esters to Fumarate Esters. ACS Sustainable Chemistry and Engineering, 2021, 9, 6886-6893.	3.2	5
1314	Enhancement of the visible-light absorption and charge mobility in a zinc porphyrin polymer/g-C3N4 heterojunction for promoting the oxidative coupling of amines. Applied Catalysis B: Environmental, 2021, 285, 119863.	10.8	49
1315	Engineering of cobalt oxide-integrated nitric acid-functionalized Zr-Fe2O3 nanocoral photoanodes for photoelectrochemical water splitting. Korean Journal of Chemical Engineering, 2021, 38, 1149-1160.	1.2	4
1316	Heterojunction of nanostructured $\hat{l}\pm$ -Fe2O3/CuO for enhancement of photoelectrochemical water splitting. Journal of Alloys and Compounds, 2021, 863, 158724.	2.8	48
1317	In Situ Analytical Techniques for the Investigation of Material Stability and Interface Dynamics in Electrocatalytic and Photoelectrochemical Applications. Small Methods, 2021, 5, e2100322.	4.6	22
1318	Synthesis and characterization of immobilized titanium-zirconium Sn-doped oxides onto metallic meshes and their photocatalytic activity for erythromycin mineralization. Chemical Engineering Journal, 2021, 414, 128891.	6.6	8
1319	Z-scheme transition metal bridge of Co9S8/Cd/CdS tubular heterostructure for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021, 286, 119853.	10.8	112
1320	Zinc sulfide quantum dots/zinc oxide nanospheres/bismuth-enriched bismuth oxyiodides as Z-scheme/type-II tandem heterojunctions for an efficient charge separation and boost solar-driven photocatalytic performance. Journal of Colloid and Interface Science, 2021, 592, 259-270.	5.0	35
1321	Crystal phase-dependent generation of mobile OH radicals on TiO2: Revisiting the photocatalytic oxidation mechanism of anatase and rutile. Applied Catalysis B: Environmental, 2021, 286, 119905.	10.8	61
1322	Fe on molecular-layer MoS2 as inorganic Fe-S2-Mo motifs for light-driven nitrogen fixation to ammonia at elevated temperatures. Chem Catalysis, 2021, 1, 162-182.	2.9	32
1323	Novel Two-Dimensional Janus MoSiGeN ₄ and WSiGeN ₄ as Highly Efficient Photocatalysts for Spontaneous Overall Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 28090-28097.	4.0	89
1324	Unexpected impact of oxygen vacancies on photoelectrochemical performance of Au@TiO2 photoanodes. Materials Science in Semiconductor Processing, 2021, 127, 105714.	1.9	5
1325	Three-dimensional hierarchical PANI/Bi2S3 nanoflowers heterojunction for enhanced photoelectrochemical water splitting. Journal of Alloys and Compounds, 2021, 865, 158779.	2.8	23
1326	Orientational Alignment of Oxygen Vacancies: Electric-Field-Inducing Conductive Channels in TiO ₂ Film to Boost Photocatalytic Conversion of CO ₂ into CO. Nano Letters, 2021, 21, 5060-5067.	4.5	19
1327	Excellent catalytic performance of molten-salt-synthesized Bi0.5Na0.5TiO3 nanorods by the piezo-phototronic coupling effect. Nano Energy, 2021, 84, 105936.	8.2	89

#	Article	IF	Citations
1328	Dual-sensitized modification engineering with enhanced photocatalytic degradation for organic dye. Journal of Materials Science: Materials in Electronics, 2021, 32, 19380-19389.	1.1	0
1329	Pathways towards Boosting Solarâ€Driven Hydrogen Evolution of Conjugated Polymers. Small, 2021, 17, e2007576.	5.2	36
1330	Flexoelectricity enhanced water splitting and hydrogen evolution reaction on grain boundaries of monolayer transition metal dichalcogenides. Nano Research, 2022, 15, 978-984.	5.8	15
1331	A Review of Recent Developments in Molecular Dynamics Simulations of the Photoelectrochemical Water Splitting Process. Catalysts, 2021, 11, 807.	1.6	7
1332	Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation. Nano Research, 2021, 14, 3365-3371.	5.8	24
1333	Synthesis and characterization of a novel single-phase sputtered Cu2O thin films: Structural, antibacterial activity and photocatalytic degradation of methylene blue. Inorganic Chemistry Communication, 2021, 128, 108606.	1.8	20
1334	Different anticipated criteria to achieve novel and efficient photocatalysis via green ZnO: scope and challenges. International Journal of Environmental Science and Technology, 2022, 19, 9209-9242.	1.8	6
1335	Rational construction of dual cobalt active species encapsulated by ultrathin carbon matrix from MOF for boosting photocatalytic H2 generation. Applied Catalysis B: Environmental, 2021, 286, 119924.	10.8	49
1336	Rationally embedded zinc oxide nanospheres serving as electron transport channels in bismuth vanadate/zinc oxide heterostructures for improved photoelectrochemical efficiency. Journal of Colloid and Interface Science, 2021, 592, 127-134.	5.0	9
1337	Nanoporous CoFe2O4 Loaded with Pt-Ag for Photocatalytic Hydrogen Evolution. Jom, 2021, 73, 2798-2807.	0.9	2
1338	Hydrogen Environmental Benefits Depend on the Way of Production: An Overview of the Main Processes Production and Challenges by 2050. Advanced Energy and Sustainability Research, 2021, 2, 2100093.	2.8	22
1339	Review on Solar Hydrogen: Its Prospects and Limitations. Energy & amp; Fuels, 2021, 35, 11613-11639.	2.5	48
1340	K–Na co-doping in crystalline polymeric carbon nitride for highly improved photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 26318-26328.	3.8	21
1341	Size Effect of (CuO) _{<i>n</i>} (<i>n</i> = 1–6) Clusters on the Modification of Rutile–TiO ₂ Photocatalysts. Energy Technology, 2022, 10, 2100161.	1.8	7
1342	Modulating Local Charge Distribution of Carbon Nitride for Promoting Exciton Dissociation and Chargeâ€induced Reactions. Small, 2021, 17, e2100698.	5.2	18
1343	Photoredox Dual Catalysis: A Fertile Playground for the Discovery of New Reactivities. European Journal of Inorganic Chemistry, 2021, 2021, 3421-3431.	1.0	29
1344	Evaluation of optical band gaps and dopant state energies in transition metal oxides using oxidation-state constrained density functional theory. Journal of Physics Condensed Matter, 2021, 33, 365901.	0.7	3
1345	Two-Dimensional In ₂ X ₂ X′ (X and X′ = S, Se, and Te) Monolayers with an Intrinsic Electric Field for High-Performance Photocatalytic and Piezoelectric Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 34178-34187.	4.0	38

#	Article	IF	CITATIONS
1346	SILAR Deposition of Metal Oxide Nanostructured Films. Small, 2021, 17, e2101666.	5.2	33
1347	Facile fabrication of sulfur-doped Cu2O and g-C3N4 with Z-scheme structure for enhanced photocatalytic water splitting performance. Materials Chemistry and Physics, 2021, 266, 124542.	2.0	13
1348	Nanostructured Î ² -Bi2O3/PbS heterojunction as np-junction photoanode for enhanced photoelectrochemical performance. Journal of Alloys and Compounds, 2021, 870, 159545.	2.8	22
1349	Emerging Cocatalysts on gâ€C ₃ N ₄ for Photocatalytic Hydrogen Evolution. Small, 2021, 17, e2101070.	5.2	223
1350	Generation of enhanced stability of SnO/In(OH)3/InP for photocatalytic water splitting by SnO protection layer. Frontiers in Energy, 2021, 15, 710-720.	1.2	4
1351	Fabrication of Mn–ZnO photoanodes for photoelectrochemical water splitting applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 20946-20954.	1.1	2
1352	Magnetic field modulated photoelectric devices in ferromagnetic semiconductor CrXh (X =) Tj ETQq0 0 (Ο rgBT /Ον 1.5	erlock 10 Tf
1353	Opportunities from Doping of Non ritical Metal Oxides in Last Generation Light onversion Devices. Advanced Energy Materials, 2021, 11, 2101041.	10.2	29
1354	Ultrahigh degradation efficiency of AB type in-plane reverse polarization WS2 nano sheets in dark by piezo-catalyst effect. Applied Surface Science, 2021, 553, 149557.	3.1	13
1355	A first-principles research of two-dimensional AlN/C2N van der Waals heterostructure as photocatalyst. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 132, 114754.	1.3	15
1356	Iron sites on defective BiOBr nanosheets: Tailoring the molecular oxygen activation for enhanced photocatalytic organic synthesis. Nano Research, 2022, 15, 1509-1516.	5.8	31
1357	Selectively recombining the photoinduced charges in bandgap-broken Ag3PO4/GdCrO3 with a plasmonic Ag bridge for efficient photothermocatalytic VOCs degradation and CO2 reduction. Applied Catalysis B: Environmental, 2021, 291, 120053.	10.8	57
1358	Photocatalytic water splitting for solving energy crisis: Myth, Fact or Busted?. Chemical Engineering Journal, 2021, 417, 128847.	6.6	108
1359	Improvement of Photoelectrocatalytic Activity and Stability of WO ₃ for Oxygen Photoevolution Reaction by Loading of Brownmilleriteâ€Type Ca ₂ FeCoO ₅ as a Cocatalyst. Energy Technology, 2021, 9, 2100197.	1.8	4
1360	The PtSe2/GaN van der Waals heterostructure photocatalyst with type II alignment: A first-principles study. Applied Catalysis A: General, 2021, 624, 118332.	2.2	34
1361	Band offset in semiconductor heterojunctions. Journal of Physics Condensed Matter, 2021, 33, 415002.	0.7	19
1362	Interfacial charge transfer of heterojunction photocatalysts: Characterization and calculation. Surfaces and Interfaces, 2021, 25, 101265.	1.5	16
1363	Effects of Adsorbing Noble Metal Single Atoms on the Electronic Structure and Photocatalytic Activity of Ta ₃ N ₅ . Journal of Physical Chemistry C, 2021, 125, 17600-17611.	1.5	9

#	Article	IF	Citations
1364	Engineered Modular Design of a Nanoscale CoNP/Au _{nano} Hybrid Assembly for High-Performance Overall Water Splitting. ACS Applied Energy Materials, 2021, 4, 8953-8968.	2.5	16
1365	Synthesis of donor-acceptor-type conjugated polymer dots as organic photocatalysts for dye degradation and hydrogen evolution. Polymer, 2021, 229, 124004.	1.8	13
1366	Interface of GO with SnO2 quantum dots as an efficient visible-light photocatalyst. Chemosphere, 2021, 276, 130142.	4.2	20
1367	Role of Interfacial Defects in Photoelectrochemical Properties of BiVO4 Coated on ZnO Nanodendrites: X-ray Spectroscopic and Microscopic Investigation. ACS Applied Materials & Interfaces, 2021, 13, 41524-41536.	4.0	2
1368	Woodâ€Inspired Binder Enabled Vertical 3D Printing of g ₃ N ₄ /CNT Arrays for Highly Efficient Photoelectrochemical Hydrogen Evolution. Advanced Functional Materials, 2021, 31, 2105045.	7.8	34
1369	Nonlinear optical polarization and heterostructure synergistically boosted the built-in electric field of CeF3/LiNbO3 for a higher photocatalytic nitrogen reduction activity. Applied Surface Science, 2021, 556, 149753.	3.1	11
1370	Spinel ferrites (MFe2O4): Synthesis, improvement and catalytic application in environment and energy field. Advances in Colloid and Interface Science, 2021, 294, 102486.	7.0	159
1371	Application of twoâ€dimensional sandwich structure supported Pt singleâ€atom catalysts in photocatalytic hydrogen evolution: A firstâ€principles study. International Journal of Quantum Chemistry, 2021, 121, e26800.	1.0	4
1372	Metal Halide Perovskites for Solar Fuel Production and Photoreactions. Journal of Physical Chemistry Letters, 2021, 12, 8292-8301.	2.1	17
1373	Advancement towards Antibiotic Remediation: Heterostructure and Composite materials. ChemistrySelect, 2021, 6, 7323-7345.	0.7	9
1374	Novel CoWO4-Ag2MoO4 NCs: Synthesis, enhanced photocatalytic activity under visible-light irradiation and its antimicrobial activity. Surfaces and Interfaces, 2021, 25, 101237.	1.5	14
1375	Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe ₂ O ₃ /MoS ₂ Photoanode: A Collaborative Approach of MoS ₂ as a Heterojunction and W as a Metal Dopant. ACS Applied Materials & amp; Interfaces. 2021. 13. 39215-39229.	4.0	37
1376	Rational Design of Semiconductor Heterojunctions for Photocatalysis. Chemistry - A European Journal, 2021, 27, 13306-13317.	1.7	44
1377	Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical Reviews, 2022, 122, 2752-2906.	23.0	330
1378	Water-splitting photoelectrodes consisting of heterojunctions of carbon nitride with a p-type low bandgap double perovskite oxide. Nanotechnology, 2021, 32, 485407.	1.3	13
1379	Revealing the Intrinsic Nature of the Synergistic Effect Caused by the Formation of Heterojunctions in Cu–Cu ₂ O/rGO-NH ₂ Nanomaterials in the Catalysis of Selective Aerobic Oxidation of Benzyl Alcohol. Inorganic Chemistry, 2021, 60, 14540-14543.	1.9	10
1380	Use of Cellulose for the Production of Photocatalytic Films for Hydrogen Evolution Along the Lines of Paper Production. Energy Technology, 2022, 10, 2100525.	1.8	6
1381	Recent developments of perylene diimide (PDI) supramolecular photocatalysts: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 48, 100436.	5.6	66

		CITATION REPORT		
#	Article		IF	CITATIONS
1382	Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule, 2021, 5	, 2564-2592.	11.7	32
1383	Investigation of hydrophobic MoSe2 grown at edge sites on TiO2 nanofibers for photo reduction. Chemical Engineering Journal, 2021, 420, 130496.	catalytic CO2	6.6	24
1384	Heterostructure of Ta3N5 nanorods and CaTaO2N nanosheets fabricated using a prec to boost water splitting under visible light. Journal of Energy Chemistry, 2022, 67, 27-3		7.1	14
1385	Hollow Carbon Sphereâ€Modified Graphitic Carbon Nitride for Efficient Photocatalytic Production. Chemistry - A European Journal, 2021, 27, 16879-16888.	H ₂	1.7	9
1386	Selective biomass photoreforming for valuable chemicals and fuels: A critical review. Re Sustainable Energy Reviews, 2021, 148, 111266.	enewable and	8.2	70
1387	Three-dimensional core-shell heterostructure of tungsten trioxide/bismuth molybdate/ phosphate for enhanced photoelectrochemical water splitting. Journal of Colloid and Ir Science, 2021, 598, 348-357.	cobalt iterface	5.0	19
1388	Interfacial charge transfer and photocatalytic activity in a reverse designed Bi2O3/TiO2 Frontiers in Energy, 2021, 15, 732.	? core-shell.	1.2	2
1389	TiO2 photocatalyst with single and dual noble metal co-catalysts for efficient water sp organic compound removal. International Journal of Hydrogen Energy, 2021, 46, 3287	itting and 1-32881.	3.8	20
1390	Mesoporous BiVO4/2D-g-C3N4 heterostructures for superior visible light-driven photored reduction of Hg(II) ions. Ceramics International, 2021, 47, 26063-26073.	catalytic	2.3	26
1391	ZnIn ₂ S ₄ â€Based Photocatalysts for Energy and Environmen Small Methods, 2021, 5, e2100887.	tal Applications.	4.6	153
1392	Thermoelectric performance of p-type (Bi,Sb)2Te3 incorporating amorphous Sb2S3 na Chemical Engineering Journal, 2022, 430, 132738.	nospheres.	6.6	21
1393	The upsurge of photocatalysts in antibiotic micropollutants treatment: Materials desig toxicity and bioanalysis. Journal of Photochemistry and Photobiology C: Photochemistr 2021, 48, 100437.		5.6	26
1394	Synergetic excitonic and defective effects in confined SnO2/α-Fe2O3 nanoheterojunc photocatalytic molecular oxygen activation. Chemical Engineering Journal, 2021, 421,		6.6	11
1395	Assessing the photocatalytic oxygen evolution reaction of BiFeO3 loaded with IrO2 na cocatalyst. Solar Energy Materials and Solar Cells, 2021, 232, 111349.	noparticles as	3.0	13
1396	In situ fabrication of Bi2MoO6/Bi2MoO6-x homojunction photocatalyst for simultanec photocatalytic phenol degradation and Cr(VI) reduction. Journal of Colloid and Interfac 2021, 599, 741-751.		5.0	80
1397	Visible light-conducting polymer nanocomposites as efficient photocatalysts for the trong organic pollutants in wastewater. Journal of Environmental Management, 2021, 295, 1		3.8	41
1398	Effect of ferroelectric polarization field on different carrier migration in photoanode. N Science in Semiconductor Processing, 2021, 133, 105958.	aterials	1.9	1
1399	Type-II vdW heterojunction SeGa2Te/SeIn2Se as a high-efficiency visible-light-driven wa photocatalyst. Physics Letters, Section A: General, Atomic and Solid State Physics, 202		0.9	9

	CITATION	Report	
#	Article	IF	CITATIONS
1400	Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105967.	3.3	47
1401	Novel Z-Scheme ZnIn2S4-based photocatalysts for solar-driven environmental and energy applications: Progress and perspectives. Journal of Materials Science and Technology, 2021, 87, 234-257.	5.6	104
1402	Cubic Cu2O nanoparticles decorated on TiO2 nanofiber heterostructure as an excellent synergistic photocatalyst for H2 production and sulfamethoxazole degradation. Applied Catalysis B: Environmental, 2021, 294, 120221.	10.8	79
1403	Preparation of CuBi2O4 photocathodes for overall water splitting under visible light irradiation. Materials Science in Semiconductor Processing, 2021, 134, 105989.	1.9	12
1404	Photocatalytic performance of binary and ternary Pt–Cu2O–BiVO4 catalysts under visible-light irradiation. Ceramics International, 2021, 47, 32364-32370.	2.3	10
1405	State-of-the-art progress in the rational design of layered double hydroxide based photocatalysts for photocatalytic and photoelectrochemical H2/O2 production. Coordination Chemistry Reviews, 2021, 446, 214103.	9.5	42
1406	Two-dimensional SiMI4(MÂ=ÂGe, Sn) monolayers as visible-light-driven photocatalyst of hydrogen production. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 261, 120013.	2.0	8
1407	State-of-the-art progress in the selective photo-oxidation of alcohols. Journal of Energy Chemistry, 2021, 62, 338-350.	7.1	50
1408	A highly sensitive and visible-light-driven photoelectrochemical sensor for chlorpyrifos detection using hollow Co9S8@CdS heterostructures. Sensors and Actuators B: Chemical, 2021, 348, 130719.	4.0	12
1409	Constructing CdSe QDs modified porous g-C3N4 heterostructures for visible light photocatalytic hydrogen production. Journal of Materials Science and Technology, 2021, 95, 167-171.	5.6	26
1410	Overall water splitting on surface-polarized Sn3O4 through weakening the trap of Sn(II) to holes. Applied Catalysis B: Environmental, 2021, 299, 120689.	10.8	17
1411	A review of photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials. Sustainable Materials and Technologies, 2021, 30, e00343.	1.7	30
1412	Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting. Journal of Energy Chemistry, 2022, 64, 406-431.	7.1	125
1413	Intramolecular heterostructured carbon nitride with heptazine-triazine for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 428, 132579.	6.6	86
1414	A novel paradigm of photocatalytic cleaning for membrane fouling removal. Journal of Membrane Science, 2022, 641, 119859.	4.1	31
1415	Preparation of uniform gold nanoparticles of different quantity deposited on zinc oxide nanorods for photoelectrochemical water splitting. Chemosphere, 2022, 287, 132168.	4.2	6
1416	Unified surface modification by double heterojunction of MoS2 nanosheets and BiVO4 nanoparticles to enhance the photoelectrochemical water splitting of hematite photoanode. Journal of Alloys and Compounds, 2022, 890, 161802.	2.8	33
1417	A facile synthesis of Ag3PO4/BiPO4 p-n heterostructured composite as a highly efficient photocatalyst for fluoroquinolones degradation. Environmental Research, 2022, 203, 111843.	3.7	21

#	Article	IF	Citations
1418	Development of a metal-free black phosphorus/graphitic carbon nitride heterostructure for visible-light-driven degradation of indomethacin. Science of the Total Environment, 2022, 804, 150062.	3.9	15
1419	Cu2O-loaded TiO2 heterojunction composites for enhanced photocatalytic H2 production. Journal of Molecular Structure, 2022, 1247, 131294.	1.8	24
1420	Coaxial electrospinning Fe2O3@Co3O4 double-shelled nanotubes for enhanced ethanol sensing performance in a wide humidity range. Journal of Alloys and Compounds, 2022, 891, 161868.	2.8	21
1421	Fabrication of graphitic carbon Nitride/Nonstoichiometric molybdenum oxide nanorod composite with the nonmetal plasma enhanced photocatalytic hydrogen evolution activity. Journal of Colloid and Interface Science, 2022, 606, 848-859.	5.0	21
1422	A first-principles study of two-dimensional NbSe ₂ H/g-ZnO van der Waals heterostructures as a water splitting photocatalyst. Physical Chemistry Chemical Physics, 2021, 23, 24222-24232.	1.3	10
1423	Hybrid Nanomaterials for Advanced Photocatalysis. Materials Horizons, 2021, , 117-132.	0.3	0
1424	TiO2 based Z-scheme photocatalysts for energy and environmental applications. , 2021, , 257-282.		1
1425	SIn ₂ Te/TeIn ₂ Se: a type-II heterojunction as a water-splitting photocatalyst with high solar energy harvesting. Journal of Materials Chemistry C, 2021, 9, 7734-7744.	2.7	10
1426	Novel photocatalytic techniques for organic dye degradation in water. , 2021, , 1-22.		0
1427	Polytype wurtzite- <i>n</i> H ZnS (<i>n</i> = 2 and 8): facile synthesis and photocatalytic hydrogen production under sacrificial reagents. New Journal of Chemistry, 2021, 45, 13119-13126.	1.4	6
1428	Efficient solar photocatalytic hydrogen production using direct Z-scheme heterojunctions. Physical Chemistry Chemical Physics, 2021, 23, 22743-22749.	1.3	7
1429	The <i>in situ</i> derivation of a NiFe-LDH ultra-thin layer on Ni-BDC nanosheets as a boosted electrocatalyst for the oxygen evolution reaction. CrystEngComm, 2021, 23, 1172-1180.	1.3	17
1430	Strengthening reactive metal–support interaction to stabilize Ni species on the nitrogen vacancies of g-C ₃ N ₄ for boosting photocatalytic H ₂ production. Catalysis Science and Technology, 2021, 11, 7134-7140.	2.1	14
1431	New materials for water-splitting. Interface Science and Technology, 2021, 32, 791-870.	1.6	5
1432	Heterojunction-based photocatalyst. , 2021, , 85-130.		1
1433	Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions. Journal of Materials Chemistry C, 2021, 9, 14065-14092.	2.7	24
1434	Superior light absorbing CdS/vanadium sulphide nanowalls@TiO2 nanorod ternary heterojunction photoanodes for solar water splitting. New Journal of Chemistry, 2021, 45, 7353-7367.	1.4	20
1435	P-Doped CdS integrated with multiphasic MoSe ₂ nanosheets accomplish prominent photocatalytic activity for hydrogen evolution. Catalysis Science and Technology, 2021, 11, 5849-5858.	2.1	6

#	Article	IF	CITATIONS
1436	Enhanced solar-to-hydrogen efficiency for photocatalytic water splitting based on a polarized heterostructure: the role of intrinsic dipoles in heterostructures. Journal of Materials Chemistry A, 2021, 9, 14515-14523.	5.2	32
1437	Recent advancements and opportunities of decorated graphitic carbon nitride toward solar fuel production and beyond. Sustainable Energy and Fuels, 2021, 5, 4457-4511.	2.5	25
1438	Solar water oxidation using TaON–BiVO ₄ photoanodes functionalized with WO ₃ . Dalton Transactions, 2021, 50, 1780-1787.	1.6	4
1439	Interface chemistry of two-dimensional heterostructures – fundamentals to applications. Chemical Society Reviews, 2021, 50, 4684-4729.	18.7	152
1441	XYO ₃ (<i>X</i> = K, Na; <i>Y</i> = Nb, Ta) based superlattices for photocatalysi Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1700026.	s, Physica 0.8	6
1442	Quantum Dots in Green Photocatalytic Applications for Degradation of Environmental Pollutants and Hydrogen Evolution. Environmental Chemistry for A Sustainable World, 2020, , 87-108.	0.3	2
1443	Mn0.3Cd0.7S nanorods modified with NiS clusters as photocatalysts for the H2 evolution reaction. Journal of Materials Science, 2020, 55, 5390-5401.	1.7	31
1444	Recent Advances of Epitaxial BiVO4 Thin Film: Preparation and Physical and Photoelectrochemical Properties. Brazilian Journal of Physics, 2020, 50, 185-191.	0.7	7
1445	Segregation of copper oxide on calcium copper titanate surface induced by Graphene Oxide for Water splitting applications. Applied Surface Science, 2020, 516, 146051.	3.1	31
1446	Vastly improved solar-light induced water splitting catalyzed by few-layer MoS2 on Au nanoparticles utilizing localized surface plasmon resonance. Nano Energy, 2020, 77, 105267.	8.2	23
1447	Carbon Dots in Solar-to-Hydrogen Conversion. Trends in Chemistry, 2020, 2, 623-637.	4.4	47
1448	Double Insurance of Continuous Band Structure and N–C Layer Induced Prolonging of Carrier Lifetime to Enhance the Long-Wavelength Visible-Light Catalytic Activity of N-Doped In2O3. Inorganic Chemistry, 2021, 60, 1160-1171.	1.9	11
1449	Polaron States as a Massive Electron-Transfer Pathway at Heterojunction Interface. Journal of Physical Chemistry Letters, 2020, 11, 9184-9194.	2.1	14
1450	Enhanced Photocatalytic VOCs Mineralization via Special Ga-O-H Charge Transfer Channel in α-Ga ₂ O ₃ /MgAl-LDH Heterojunction. ACS ES&T Engineering, 2021, 1, 501-511.	3.7	32
1451	BiVO4-Based Photoanodes for Photoelectrochemical Water Splitting. ACS Symposium Series, 2020, , 137-167.	0.5	4
1452	Chapter 7. Artificial Photosynthesis with Inorganic Particles. RSC Energy and Environment Series, 2018, , 214-280.	0.2	4
1453	Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chemical Society Reviews, 2020, 49, 4273-4306.	18.7	559
1454	Role of surface termination in forming type-II photocatalyst heterojunctions: the case of TiO ₂ /BiVO ₄ . Journal of Physics Condensed Matter, 2021, 33, 075001.	0.7	18

#	Article	IF	CITATIONS
1455	Hierarchical PANI/ZnO nanocomposite: synthesis and synergistic effect of shape-selective ZnO nanoflowers and polyaniline sensitization for efficient photocatalytic dye degradation and photoelectrochemical water splitting. Nanotechnology, 2020, 31, 465402.	1.3	19
1456	Earth abundant transition metal ferrite nanoparticles anchored ZnO nanorods as efficient and stable photoanodes for solar water splitting. Nanotechnology, 2020, 31, 475403.	1.3	7
1457	Two-dimensional heterostructures for photocatalytic water splitting: a review of recent progress. Nano Futures, 2020, 4, 032006.	1.0	31
1458	Hydrogen from wastewater by photocatalytic and photoelectrochemical treatment. JPhys Energy, 2021, 3, 012006.	2.3	23
1459	Effects of composition, crystal structure, and surface orientation on band alignment of divalent metal oxides: A first-principles study. Physical Review Materials, 2018, 2, .	0.9	24
1460	Type-II ZnO/ZnS core-shell nanowires: Earth-abundant photoanode for solar-driven photoelectrochemical water splitting. Optics Express, 2019, 27, A184.	1.7	19
1461	A retrospective on MXene-based composites for solar fuel production. Pure and Applied Chemistry, 2020, 92, 1953-1969.	0.9	14
1462	Visible Light Responsive Metal Oxide Photoanodes for Photoelectrochemical Water Splitting: a Comprehensive Review on Rational Materials Design. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2018, 33, 173.	0.6	23
1463	Reactive Inorganic Vapor Deposition of Perovskite Oxynitride Films for Solar Energy Conversion. Research, 2019, 2019, 9282674.	2.8	17
1464	Recent Developments in H2 Production Photoelectrochemical Electrode Materials by Atomic Layer Deposition. Journal of Korean Powder Metallurgy Institute, 2018, 25, 60-68.	0.2	1
1465	Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review. Journal of the Korean Ceramic Society, 2018, 55, 185-202.	1.1	35
1466	Band edge positions as a key parameter to a systematic design of heterogeneous photocatalyst. European Journal of Chemistry, 2019, 10, 82-94.	0.3	9
1467	A hydrogen evolution system based on hybrid nanogel films with capabilities of spontaneous moisture collection and high light harvesting. Green Chemistry, 2021, 23, 8969-8978.	4.6	13
1468	Synergistic impact of photocatalyst and dopants on pharmaceutical-polluted waste water treatment: a review. Environmental Pollutants and Bioavailability, 2021, 33, 347-364.	1.3	19
1469	Photocatalytic Zâ€ s cheme Overall Water Splitting: Recent Advances in Theory and Experiments. Advanced Materials, 2021, 33, e2105195.	11.1	123
1470	Advances and Promises of 2D MXenes as Cocatalysts for Artificial Photosynthesis. Solar Rrl, 2021, 5, 2100603.	3.1	22
1471	CNT/TiO2 Hybrid Nanostructured Materials: Synthesis, Properties and Applications. Engineering Materials, 2022, , 185-204.	0.3	0
1472	Synthesis and property analysis of high magnetic and stable ternary composite Fe3O4/BiOBr/BiOI. Chemical Physics Letters, 2021, 785, 139159.	1.2	3

#	Article	IF	CITATIONS
1473	Platinum Single Atoms Anchored on a Covalent Organic Framework: Boosting Active Sites for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2021, 11, 13266-13279.	5.5	149
1474	2D/2D Heterojunction systems for the removal of organic pollutants: A review. Advances in Colloid and Interface Science, 2021, 297, 102540.	7.0	51
1475	Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. Journal of CO2 Utilization, 2021, 53, 101748.	3.3	15
1476	Fabrication and Photoelectrochemical Properties of a Cu2O/CuO Heterojunction Photoelectrode for Hydrogen Production from Solar Water Splitting. Korean Journal of Materials Research, 2016, 26, 604-610.	0.1	3
1477	2 Devices for Solar-Driven Water Splitting to Hydrogen Fuel and Their Technical and Economic Assessments. , 2016, , 9-46.		0
1478	Photoelectrochemical Properties of a Cu ₂ O Film/ZnO Nanorods Oxide p-n Heterojunction Photoelectrode for Solar-Driven Water Splitting. Korean Journal of Materials Research, 2018, 28, 214-220.	0.1	1
1479	Fabrication and Photoelectrochemical Properties of an Oxide Photoanode with Zinc Oxide Nanorod Array Embedded in Cuprous Oxide Thin Film. Korean Journal of Materials Research, 2019, 29, 196-203.	0.1	2
1480	Green Photocatalyst for Diverge Applications. Environmental Chemistry for A Sustainable World, 2020, , 1-18.	0.3	1
1481	Effects of mixed sacrificial reagents on hydrogen evolution over typical photocatalysts. Journal of Photonics for Energy, 2019, 10, 1.	0.8	2
1482	Application of Modified Metal Oxide Electrodes in Photoelectrochemical Removal of Organic Pollutants from Wastewater. Engineering Materials, 2020, , 151-166.	0.3	1
1483	Photocatalysts based on polymeric carbon nitride for solar-to-fuel conversion. Interface Science and Technology, 2020, 31, 475-507.	1.6	2
1484	Multiâ€interfacial catalyst with spatially defined redox reactions for enhanced pure water photothermal hydrogen production. EcoMat, 2021, 3, .	6.8	40
1485	Mechanistic understanding of cellulose β-1,4-glycosidic cleavage via photocatalysis. Applied Catalysis B: Environmental, 2022, 302, 120872.	10.8	35
1486	Designing of TiO2/α-Fe2O3 coupled g-C3N4 magnetic heterostructure composite for efficient Z-scheme photo-degradation process under visible light exposures. Journal of Alloys and Compounds, 2022, 894, 162498.	2.8	36
1487	Visible-light photoactive thermally sprayed coatings deposited from spray-dried (Na0.5Bi0.5)TiO3 microspheres. Surface and Coatings Technology, 2021, 427, 127851.	2.2	2
1488	Fabrication of Ta ₃ N ₅ and ZnO Composite-Type Photoanodes by the Roll Press Method. Transactions of the Materials Research Society of Japan, 2020, 45, 217-221.	0.2	0
1489	Artificial Photosynthesis for Value-Added Chemicals Production. Ceramist, 2020, 23, 324-338.	0.0	0
1490	Pivotal Role of Chirality in Photoelectrocatalytic (PEC) Water Splitting. Current Chinese Science, 2021, 1, 115-121.	0.2	1

ARTICLE

IF CITATIONS

Facile synthesis of nanostructured trirutile antimonates M(II)Sb ₂ O ₆ (Mâ \in %=â \in %Co,) TjETQq00 0 rgBT/0.00 rgB

1492	Graphitic carbon nitride-based photocatalysts for hydrogen production. , 2022, , 213-236.		3
1493	A diagnosis approach for semiconductor properties evaluation from ab initio calculations: Ag-based materials investigation. Journal of Solid State Chemistry, 2022, 305, 122670.	1.4	7
1494	Enhanced photoelectrocatalytic hydrogen evolution using off-stoichiometry La0.43FeOy films. Journal of Alloys and Compounds, 2022, 893, 162238.	2.8	0
1495	Synergistic effect of flower-like MnFe2O4/MoS2 on photo-Fenton oxidation remediation of tetracycline polluted water. Journal of Colloid and Interface Science, 2022, 608, 942-953.	5.0	60
1497	The role of guanidine hydrochloride in graphitic carbon nitride synthesis. Scientific Reports, 2021, 11, 21600.	1.6	8
1498	Covalent organic framework based WO3@COF/rGO for efficient visible-light-driven H2 evolution by two-step separation mode. Chemical Engineering Journal, 2022, 431, 133404.	6.6	40
1499	Catalytic removal of methylene blue with different stoichiometric ratios of ZnCuS nanoparticles. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2020, 75, 981-986.	0.7	0
1500	Strengthened absorption of ultra-thin film bismuth vanadate using a motheye-structured triple-deck photoanode. Journal of Catalysis, 2020, 389, 38-46.	3.1	1
1501	Visible-Light-Driven Water Oxidation on Self-Assembled Metal-Free Organic@Carbon Junctions at Neutral pH. Jacs Au, 2021, 1, 2294-2302.	3.6	5
1502	Construction of Au/g-C3N4/ZnIn2S4 plasma photocatalyst heterojunction composite with 3D hierarchical microarchitecture for visible-light-driven hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 2900-2913.	3.8	43
1503	Current status on designing of dual Z-scheme photocatalysts for energy and environmental applications. Journal of Industrial and Engineering Chemistry, 2022, 106, 340-355.	2.9	39
1504	Electrospun Ceramic Nanofibers for Photocatalysis. Nanomaterials, 2021, 11, 3221.	1.9	8
1505	Multiple-phases LaFeO3 decorated with sea-urchin-like Au nanoparticles for photoelectrochemical hydrogen generation from bio-ethanol and 1-butanol. International Journal of Hydrogen Energy, 2022, 47, 40742-40754.	3.8	3
1506	Tuning the Interfacial Energetics in WO ₃ /WO ₃ and WO ₃ /TiO ₂ Heterojunctions by Nanostructure Morphological Engineering. Journal of Physical Chemistry Letters, 2021, 12, 11528-11533.	2.1	12
1507	Recent advancements of layered double hydroxide heterojunction composites with engineering approach towards photocatalytic hydrogen production: A review. International Journal of Hydrogen Energy, 2022, 47, 862-901.	3.8	39
1508	Observation of 4th-order water oxidation kinetics by time-resolved photovoltage spectroscopy. IScience, 2021, 24, 103500.	1.9	8
1509	Enhancing the photocatalytic activity of Ruddlesden-Popper Sr2TiO4 for hydrogen evolution through synergistic silver doping and moderate reducing pretreatment. Materials Today Energy, 2022, 23,	2.5	29

#	Article	IF	Citations
1510	SnS ₂ with Flower-like Structure for Efficient CO ₂ Photoreduction under Visible-Light Irradiation. Inorganic Chemistry, 2021, 60, 18598-18602.	1.9	13
1511	NiO-TiO2 p-n Heterojunction for Solar Hydrogen Generation. Catalysts, 2021, 11, 1427.	1.6	12
1512	Two-Dimensional Ti2CO2/CrSSe Heterostructure as a Direct Z-Scheme Photocatalyst for Water Splitting. Catalysis Letters, 2022, 152, 2564-2574.	1.4	6
1513	Heterostructures obtained by ultrasonic methods for photocatalytic application: A review. Materials Science in Semiconductor Processing, 2022, 139, 106311.	1.9	7
1514	Multifunctional silicene/CeO2 heterojunctions: Desirable electronic material and promising water-splitting photocatalyst. Chinese Chemical Letters, 2022, 33, 3947-3950.	4.8	17
1515	Wet-chemistry hydrogen doped TiO2 with switchable defects control for photocatalytic hydrogen evolution. Matter, 2022, 5, 206-218.	5.0	66
1516	Semiconductor heterojunctions for photocatalytic hydrogen production and Cr(VI) Reduction: A review. Materials Research Bulletin, 2022, 147, 111636.	2.7	30
1517	Novel Two-Step Surface Boron Decoration of Graphitic Carbon Nitride Photoelectrodes for Efficient Charge Transport and Separation. Journal of Physical Chemistry C, 2021, 125, 25207-25216.	1.5	9
1518	Effect of the Type of Heterostructures on Photostimulated Alteration of the Surface Hydrophilicity: TiO2/BiVO4 vs. ZnO/BiVO4 Planar Heterostructured Coatings. Catalysts, 2021, 11, 1424.	1.6	5
1519	The structural and optical properties of Ag/Cu co-doped BiVO4 material: A density functional study. Materials Letters, 2022, 315, 131289.	1.3	3
1520	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Heterojunctions. Chemistry of Materials, 2021, 33, 9012-9092.	3.2	88
1521	Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances. Molecules, 2021, 26, 7271.	1.7	19
1522	Effective enhancement of electron migration and photocatalytic performance of nitrogen-rich carbon nitride by constructing fungal carbon dot/molybdenum disulfide cocatalytic system. Journal of Colloid and Interface Science, 2022, 609, 592-605.	5.0	19
1523	Platinum Crosslinked Carbon Dot@TiO _{2â^'} <i>_x</i> pâ€n Junctions for Relapseâ€Free Sonodynamic Tumor Eradication via Highâ€Yield ROS and GSH Depletion. Small, 2022, 18, e2103528.	5.2	61
1524	Multidimensional Tungsten Oxides for Efficient Solar Energy Conversion. Small Structures, 2022, 3, 2100130.	6.9	21
1525	Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chemical Society Reviews, 2021, 50, 13692-13729.	18.7	97
1526	Recent advances in photo-assisted electrocatalysts for energy conversion. Journal of Materials Chemistry A, 2021, 9, 27193-27214.	5.2	19
1527	Enhancing interfacial charge transfer in mesoporous MoS ₂ /CdS nanojunction architectures for highly efficient visible-light photocatalytic water splitting. Inorganic Chemistry Frontiers, 2022, 9, 625-636.	3.0	8

#	Article	IF	Citations
π 1528	Efficient photocatalytic degradation of tetracycline under visible light by AgCl/Bi12O15Cl6/g-C3N4 with a dual electron transfer mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128227.	2.3	6
1529	Systematic Exploration of WO ₃ /TiO ₂ Heterojunction Phase Space for Applications in Photoelectrochemical Water Splitting. Journal of Physical Chemistry C, 2022, 126, 871-884.	1.5	16
1530	Single-atom Cu anchored catalysts for photocatalytic renewable H2 production with a quantum efficiency of 56%. Nature Communications, 2022, 13, 58.	5.8	175
1531	Unleashing non-conjugated polymers as charge relay mediators. Chemical Science, 2022, 13, 497-509.	3.7	17
1532	Fundamental understanding of electrocatalysis over layered double hydroxides from the aspects of crystal and electronic structures. Nanoscale, 2022, 14, 1107-1122.	2.8	6
1533	Strategies and perspectives of tailored SnS2 photocatalyst for solar driven energy applications. Solar Energy, 2022, 231, 546-565.	2.9	32
1534	In-situ infrared investigation of m-TiO2 \hat{l} ±-Fe2O3 photocatalysts and tracing of intermediates in photocatalytic hydrogenation of CO2 to methanol. Journal of CO2 Utilization, 2022, 56, 101864.	3.3	10
1535	In-situ grown nanoscale p-n heterojuction of Cu2S-TiO2 thin film for efficient photoelectrocatalytic H2 evolution. Surfaces and Interfaces, 2022, 28, 101660.	1.5	7
1536	Copper phosphide decorated g-C3N4 catalysts for highly efficient photocatalytic H2 evolution. Journal of Colloid and Interface Science, 2022, 610, 126-135.	5.0	37
1537	MoS2–ZnO nanocomposites for photocatalytic energy conversion and solar applications. Physica B: Condensed Matter, 2022, 628, 413569.	1.3	10
1538	Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renewable and Sustainable Energy Reviews, 2022, 156, 111980.	8.2	179
1539	Induction of a piezo-potential improves photocatalytic hydrogen production over ZnO/ZnS/MoS2 Heterostructures. Nano Energy, 2022, 93, 106867.	8.2	41
1540	Alkali-mediated dissolution-recrystallization strategy for in situ construction of a BiVO4/Bi25VO40 heterojunction with promoted interfacial charge transfer: Formation mechanism and photocatalytic tetracycline degradation studies. Chemical Engineering Journal, 2022, 431, 134181.	6.6	17
1541	Photoelectrochemical properties of plasma-induced nanostructured tungsten oxide. Applied Surface Science, 2022, 580, 151979.	3.1	10
1542	In-situ synthesis of metal oxide and polymer decorated activated carbon-based photocatalyst for organic pollutants degradation. Separation and Purification Technology, 2022, 286, 120380.	3.9	25
1543	In-Situ Synthesis of Metal Oxide and Polymer Decorated Activated Carbon-Based Photocatalyst for Organic Pollutants Degradation. SSRN Electronic Journal, 0, , .	0.4	0
1544	Two-dimensional CdS/SnS ₂ heterostructure: a highly efficient direct Z-scheme water splitting photocatalyst. Physical Chemistry Chemical Physics, 2022, 24, 3826-3833.	1.3	18
1545	Synthesis, properties, and applications of MoS2 semiconductor. , 2022, , 155-189.		2

#	Article	IF	CITATIONS
1546	Synthesis of Cr/Mn and S - doped with CuO nanoparticles and systematic investigations of structural, optical and photocatalytic properties. Inorganic Chemistry Communication, 2022, 138, 109245.	1.8	3
1547	Transition metal oxide-based materials for visible-light-photocatalysis. , 2022, , 153-183.		2
1548	Well-defined 2D nanoheterostructure based on MoS2 in-situ grown on CdS nanosheet at room temperature for efficient visible-light-driven H2 generation. International Journal of Hydrogen Energy, 2022, 47, 5990-5998.	3.8	4
1549	Unraveling Chargeâ€Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques. Angewandte Chemie, 2022, 134, .	1.6	9
1550	Morphology-dependent visible light photocatalysis. , 2022, , 375-412.		3
1551	Polymer-based materials for visible light photocatalysis. , 2022, , 491-510.		Ο
1552	Fabrication of a high-efficiency CdS@TiO ₂ @C/Ti ₃ C ₂ composite photocatalyst for the degradation of TC-HCl under visible light. New Journal of Chemistry, 2022, 46, 3305-3314.	1.4	7
1554	Synthesis of photocatalytic hybrid nanostructures. , 2022, , .		Ο
1555	Density Functional Theory Estimate of Halide Perovskite Band Gap: When Spin Orbit Coupling Helps. Journal of Physical Chemistry C, 2022, 126, 2184-2198.	1.5	40
1556	A review on hierarchical Bi ₂ MoO ₆ nanostructures for photocatalysis applications. New Journal of Chemistry, 2022, 46, 906-918.	1.4	15
1558	Simulations to Cover the Waterfront for Iron Oxide Catalysis. ChemPhysChem, 2022, 23, .	1.0	3
1559	Unraveling Chargeâ€Separation Mechanisms in Photocatalyst Particles by Spatially Resolved Surface Photovoltage Techniques. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
1560	ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: a review. Environmental Chemistry Letters, 2022, 20, 1047-1081.	8.3	68
1561	Two-Dimensional Arsenene/ZrS ₂ (HfS ₂) Heterostructures as Direct Z-Scheme Photocatalysts for Overall Water Splitting. Journal of Physical Chemistry C, 2022, 126, 2587-2595.	1.5	17
1562	New Findings for the Muchâ€Promised Hematite Photoanodes with Gradient Doping and Overlayer Elaboration. Solar Rrl, 2022, 6, .	3.1	15
1563	Removal of ciprofloxacin applying Pt@BiVO4-g-C3N4 nanocomposite under visible light. Optical Materials, 2022, 124, 111976.	1.7	15
1564	Water promoted photocatalytic Cβ-O bonds hydrogenolysis in lignin model compounds and lignin biomass conversion to aromatic monomers. Chemical Engineering Journal, 2022, 435, 134980.	6.6	34
1565	Bi-based photocatalysts for bacterial inactivation in water: Inactivation mechanisms, challenges, and strategies to improve the photocatalytic activity. Environmental Research, 2022, 209, 112834.	3.7	43

#	Article	IF	CITATIONS
1566	Fabrication of 3D CuS@Znln2S4 hierarchical nanocages with 2D/2D nanosheet subunits p-n heterojunctions for improved photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 433, 134474.	6.6	81
1567	Cooperative effects of zinc–nickel sulfides as a dual cocatalyst for the enhanced photocatalytic hydrogen evolution activity of g-C3N4. Journal of Environmental Chemical Engineering, 2022, 10, 107216.	3.3	14
1568	Photo-thermal conversion of CO2 and biomass-based glycerol into glycerol carbonate over Co3O4-ZnO p-n heterojunction catalysts. Fuel, 2022, 315, 123294.	3.4	4
1569	Cu2-xO@TiO2-y Z-scheme heterojunctions for sonodynamic-chemodynamic combined tumor eradication. Chemical Engineering Journal, 2022, 435, 134777.	6.6	30
1570	Chapter 4. 2D Inorganic Nanosheet-based Hybrid Photocatalysts for Water Splitting. Inorganic Materials Series, 2022, , 170-216.	0.5	0
1571	Recent Advancement of the Current Aspects of g ₃ N ₄ for its Photocatalytic Applications in Sustainable Energy System. Chemical Record, 2022, 22, e202100310.	2.9	32
1572	Preparation of polymeric carbon nitride/TiO2 heterostructure with NH4Cl as template: Structural and photocatalytic studies. Journal of Physics and Chemistry of Solids, 2022, 164, 110629.	1.9	9
1573	Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coordination Chemistry Reviews, 2022, 458, 214428.	9.5	107
1574	Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. Small Methods, 2022, 6, e2101395.	4.6	69
1575	Electrospun Semiconductorâ€Based Nanoâ€Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges. Energy and Environmental Materials, 2023, 6, .	7.3	37
1576	Experimental and Theoretical Identifications of Durable Fe–Nx Configurations Embedded in Graphitic Carbon Nitride for Uranium Photoreduction. SSRN Electronic Journal, 0, , .	0.4	0
1578	Advanced Photocatalysts for Uranium Extraction: Elaborate Design and Future Perspectives. SSRN Electronic Journal, 0, , .	0.4	1
1579	Nanoscale metal oxides–2D materials heterostructures for photoelectrochemical water splitting—a review. Journal of Materials Chemistry A, 2022, 10, 8656-8686.	5.2	48
1580	Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. Journal of Materials Chemistry A, 2022, 10, 6835-6871.	5.2	63
1581	2D material based heterostructures for solar light driven photocatalytic H ₂ production. Materials Advances, 2022, 3, 3389-3417.	2.6	20
1582	Preparation of Ni-loaded oxygen-enriched vacancy TiO _{2â^'<i>x</i>} hierarchical micro-nanospheres and the study of their photocatalytic hydrogen evolution performance. New Journal of Chemistry, 2022, 46, 7118-7127.	1.4	6
1583	Crystalline C ₃ N ₄ /CeO ₂ composites as photocatalyst for hydrogen production in visible light. IOP Conference Series: Earth and Environmental Science, 2022, 997, 012018.	0.2	0
1584	Synthesis of ZnWO4/Ag3PO4: p–n heterojunction photocatalyst with enhanced visible-light degradation performance of RhB. Journal of Materials Science: Materials in Electronics, 2022, 33, 7543-7558.	1.1	9

#	Article	IF	CITATIONS
1585	Intrinsic Mechanisms of Morphological Engineering and Carbon Doping for Improved Photocatalysis of 2D/2D Carbon Nitride Van Der Waals Heterojunction. Energy and Environmental Materials, 2023, 6, .	7.3	17
1586	Dimensional heterojunction design: The rising star of 2D bismuth-based nanostructured photocatalysts for solar-to-chemical conversion. Nano Research, 2023, 16, 4310-4364.	5.8	34
1587	Heterojunction Nanomedicine. Advanced Science, 2022, 9, e2105747.	5.6	51
1588	Two-Dimensional PtS2/MoTe2 van der Waals Heterostructure: An Efficient Potential Photocatalyst for Water Splitting. Frontiers in Chemistry, 2022, 10, 847319.	1.8	12
1589	Effect of Ru Deposition on the Mechanism of Photocatalytic Water Splitting by GaZnNO Solid Solution. Journal of Physical Chemistry C, 2022, 126, 4000-4007.	1.5	1
1590	Fabrication and Characterization of Highly Efficient As-Synthesized WO3/Graphitic-C3N4 Nanocomposite for Photocatalytic Degradation of Organic Compounds. Materials, 2022, 15, 2482.	1.3	10
1591	Electrodeposition of ZnS and evaluation of its electrochemical property. Japanese Journal of Applied Physics, 2022, 61, SC1075.	0.8	1
1592	Engineering 2D Materials for Photocatalytic Water-Splitting from a Theoretical Perspective. Materials, 2022, 15, 2221.	1.3	43
1593	Influence of Fermiâ€Level Engineering in Multiâ€Interface CuO/Cu ₂ O rGO <i>h</i> â€WO ₃ rGO Photoelectrodes on Photoelectrochemical CO ₂ Reduction. Energy Technology, 2022, 10, .	1.8	2
1594	2D materials and heterostructures for photocatalytic water-splitting: a theoretical perspective. Journal Physics D: Applied Physics, 2022, 55, 293002.	1.3	74
1595	Theoretical design of two-dimensional visible light-driven photocatalysts for overall water splitting. Chemical Physics Reviews, 2022, 3, .	2.6	7
1596	A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment. Membranes, 2022, 12, 345.	1.4	83
1597	Pdâ€Modified Deâ€alloyed Auâ~'Niâ€Microelectrodes for In Situ and Operando Mapping of Hydrogen Evolution. ChemElectroChem, 2022, 9, .	1.7	7
1598	A Triad Photoanode for Visible Lightâ€Driven Water Oxidation via Immobilization of Molecular Polyoxometalate on Polymeric Carbon Nitride. Advanced Sustainable Systems, 2022, 6, .	2.7	6
1599	Recent advances in BiOX-based photocatalysts to enhanced efficiency for energy and environment applications. Catalysis Reviews - Science and Engineering, 2024, 66, 119-173.	5.7	27
1600	Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: a review. Environmental Chemistry Letters, 2022, 20, 3505-3523.	8.3	22
1601	S-scheme heterojunction BP/WO3 with tight interface firstly prepared in magnetic stirring reactor for enhanced photocatalytic degradation of hazardous contaminants under visible light. Separation and Purification Technology, 2022, 292, 120986.	3.9	10
1602	First principles approach to solar energy conversion efficiency of semiconductor heterojunctions. Solar Energy, 2022, 236, 445-454.	2.9	6

#	Article	IF	CITATIONS
1603	Transitionâ€Metalâ€Based Cocatalysts for Photocatalytic Water Splitting. Small Structures, 2022, 3, .	6.9	53
1604	Modulating the Band Alignments of Two-Dimensional In2Se3/InSe Heterostructure via Ferroelectric Polarization and Interlayer Coupling. Frontiers in Physics, 2022, 10, .	1.0	2
1605	Water photo-oxidation on self-assembled organic/Co3O4 metal junctions in biphasic systems. Electrochimica Acta, 2022, 414, 140166.	2.6	3
1606	Self-powered transparent ultraviolet photo-sensors based on bilayer p-NiO/n-Zn(1â^'x) Sn(x)O heterojunction. Sensors and Actuators A: Physical, 2022, 338, 113479.	2.0	12
1607	Emerging bismuth-based direct Z-scheme photocatalyst for the degradation of organic dye and antibiotic residues. Chemosphere, 2022, 297, 134227.	4.2	22
1608	Construction of 0D/2D CuO/BiOBr hierarchical heterojunction for the enhanced photocatalytic degradation of benzene-containing pollutants under visible light. Journal of Environmental Chemical Engineering, 2022, 10, 107365.	3.3	19
1609	Interfacial engineering in Pickering emulsion photocatalytic microreactors: From mechanisms to prospects. Chemical Engineering Journal, 2022, 438, 135655.	6.6	16
1610	Photo-persistent effect-induced energy band bending at the TiO2/Ag nanoparticle surface plasmonic interface. Materials Letters, 2022, 316, 132001.	1.3	3
1611	Type-II CdS/PtSSe heterostructures used as highly efficient water-splitting photocatalysts. Applied Surface Science, 2022, 589, 152931.	3.1	59
1612	Precisely engineered type II ZnO-CuS based heterostructure: A visible light driven photocatalyst for efficient mineralization of organic dyes. Applied Surface Science, 2022, 590, 153053.	3.1	18
1613	Recent development on core-shell photo(electro)catalysts for elimination of organic compounds from pharmaceutical wastewater. Chemosphere, 2022, 298, 134311.	4.2	21
1614	Edge stimulated hydrogen evolution reaction on monodispersed MXene quantum dots. Chemical Engineering Journal, 2022, 442, 136119.	6.6	15
1615	Facile Synthesis Bi2Te3 Based Nanocomposites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Nanomaterials, 2021, 11, 3390.	1.9	6
1616	g-C3N4: Properties, Pore Modifications, and Photocatalytic Applications. Nanomaterials, 2022, 12, 121.	1.9	55
1617	PbBi ₃ O ₄ X ₃ (X = Cl, Br) with Single/Double Halogen Layers as a Photocatalyst for Visible-Light-Driven Water Splitting: Impact of a Halogen Layer on the Band Structure and Stability. Chemistry of Materials, 2021, 33, 9580-9587.	3.2	11
1618	Ag-Doped TiO2: Synthesis, Characterization and Photodegradation of 4BS Dye. Journal of Nanoscience and Technology, 2021, 7, 952-955.	0.2	0
1619	Artificial photosynthesis for highâ€valueâ€added chemicals: Old material, new opportunity. , 2022, 4, 21-44.		49
1620	Emerging Surface, Bulk, and Interface Engineering Strategies on BiVO ₄ for Photoelectrochemical Water Splitting. Small, 2022, 18, e2105084.	5.2	78

#	Article	IF	CITATIONS
1621	Titanium Nitride Protected Cuprous Oxide Photocathode for Stable and Efficient Water Reduction. ACS Applied Energy Materials, 2022, 5, 770-776.	2.5	6
1622	Lead-free hybrid perovskite photocatalysts: surface engineering, charge-carrier behaviors, and solar-driven applications. Journal of Materials Chemistry A, 2022, 10, 12296-12316.	5.2	29
1623	Controlled Synthesis and Photoelectrochemical Performance Enhancement of Cu2â^'xSe Decorated Porous Au/Bi2Se3 Z-Scheme Plasmonic Photoelectrocatalyst. Catalysts, 2022, 12, 359.	1.6	6
1624	Metal–organic frameworkâ€based heterojunction photocatalysts for organic pollutant degradation: design, construction, and performances. Journal of Chemical Technology and Biotechnology, 2022, 97, 2675-2693.	1.6	23
1625	Petal-like Fe _{<i>x</i>} S _{<i>y</i>} /WS ₂ Heterojunction Nanosheets as an Electrocatalyst for Highly Effective Hydrogen Evolution Reaction. Energy & Fuels, 2022, 36, 4888-4894.	2.5	9
1626	Photocatalytic materials for sustainable chemistry via cooperative photoredox catalysis. Catalysis Today, 2023, 410, 85-101.	2.2	36
1627	Dual-doping in the bulk and the surface to ameliorate the hematite anode for photoelectrochemical water oxidation. Journal of Colloid and Interface Science, 2022, 624, 60-69.	5.0	17
1628	Tip-induced directional charge separation on one-dimensional BiVO4 nanocones for asymmetric light absorption. Journal of Energy Chemistry, 2022, 72, 326-332.	7.1	4
1629	Hot electron assisted photoelectrochemical water splitting from Au-decorated ZnO@TiO2 nanorods array. Nano Research, 2022, 15, 5824-5830.	5.8	18
1630	Boost the large driving photovoltages for overall water splitting in direct Z-scheme heterojunctions by interfacial polarization. Catalysis Science and Technology, 2022, 12, 3614-3621.	2.1	10
1631	Challenges surrounding nanosheets and their application to solar-driven photocatalytic water treatment. Materials Advances, 2022, 3, 4103-4131.	2.6	5
1632	Mediated Electron Transfer in Electrosynthesis: Concepts, Applications, and Recent Influences from Photoredox Catalysis. RSC Green Chemistry, 2022, , 119-153.	0.0	1
1633	Facile Synthesis of Nitrogen-Doped Tio2 Microspheres Containing Oxygen Vacancies with Excellent Photocatalytic H2 Evolution Activity. SSRN Electronic Journal, 0, , .	0.4	0
1634	Metal-organic framework for photocatalytic reduction of carbon dioxide. , 2022, , 727-748.		0
1635	Experimental and Theoretical Identifications of Durable Fe–Nx Configurations Embedded in Graphitic Carbon Nitride for Uranium Photoreduction. SSRN Electronic Journal, 0, , .	0.4	0
1636	Unraveling the Role of Introduced W in Oxidation Tolerance for Pt-Based Catalysts Via On-Line Inductive Coupled Plasma-Mass Spectrometry. SSRN Electronic Journal, 0, , .	0.4	0
1637	Hydrogen Evolution Performances of Different Z-Scheme Configurations Composed of Ta ₃ N ₅ and WO ₃ on a Nanohoneycomb Substrate. ACS Applied Energy Materials, 2022, 5, 5947-5953.	2.5	1
1638	Hydrogen Production as a Clean Energy Carrier through Heterojunction Semiconductors for Environmental Remediation. Energies, 2022, 15, 3222.	1.6	10

#	Article	IF	CITATIONS
1639	An overview of co atalysts on metal oxides for photocatalytic water splitting. International Journal of Energy Research, 2022, 46, 11596-11619.	2.2	13
1640	Photoenhanced Oxidase–Peroxidase-like NiCo ₂ O ₄ @MnO ₂ Nanozymes for Colorimetric Detection of Hydroquinone. ACS Sustainable Chemistry and Engineering, 2022, 10, 5651-5658.	3.2	26
1641	Identifying Key Design Criteria for Large-Scale Photocatalytic Hydrogen Generation from Engineering and Economic Perspectives. ACS ES&T Engineering, 2022, 2, 1130-1143.	3.7	11
1642	Modulation of the Band Bending of CdS by Fluorination to Facilitate Photoinduced Electron Transfer for Efficient H ₂ Evolution over Pt/CdS. Journal of Physical Chemistry C, 2022, 126, 7896-7902.	1.5	10
1643	Efficient solar-driven CO2-to-fuel conversion via Ni/MgAlO @SiO2 nanocomposites at low temperature. Fundamental Research, 2024, 4, 131-139.	1.6	2
1644	Enhancing the Photocatalytic Hydrogen Evolution Performance of the CsPbl ₃ /MoS ₂ Heterostructure with Interfacial Defect Engineering. Journal of Physical Chemistry Letters, 2022, 13, 4007-4014.	2.1	9
1645	Hierarchical Hollow Zinc Oxide Nanocomposites Derived from Morphology‶unable Coordination Polymers for Enhanced Solar Hydrogen Production. Angewandte Chemie, 2022, 134, .	1.6	4
1646	Rational design of plasmonic Ag@CoFe2O4/g-C3N4 p-n heterojunction photocatalysts for efficient overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 18708-18724.	3.8	17
1647	Electrospun Donor/Acceptor Nanofibers for Efficient Photocatalytic Hydrogen Evolution. Nanomaterials, 2022, 12, 1535.	1.9	0
1648	Hierarchical BaTiO3/NiFe2O4 nanocomposite as an efficacious photoanode for photoelectrochemical water splitting. Ceramics International, 2022, 48, 29136-29143.	2.3	10
1649	Hierarchical Hollow Zinc Oxide Nanocomposites Derived from Morphologyâ€Tunable Coordination Polymers for Enhanced Solar Hydrogen Production. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
1650	Enhanced Photocarrier Collection in Bismuth Vanadate Photoanode through Modulating the Inner Potential Distribution. Advanced Optical Materials, 0, , 2200046.	3.6	1
1651	Effect of SnO2 incorporation on the photoelectrochemical properties of α-Fe2O3–SnO2 nanocomposites prepared by hydrothermal method. Materials Chemistry and Physics, 2022, 286, 126201.	2.0	1
1652	Co-assembly strategy for organic/inorganic heterojunctions with intimate interfaces and effective charges separation. Applied Surface Science, 2022, 596, 153589.	3.1	1
1653	A review on recent advances in the treatment of dye-polluted wastewater. Journal of Industrial and Engineering Chemistry, 2022, 112, 1-19.	2.9	116
1654	Au nanoparticles loaded Ta2O5@nanohoneycomb structure for visible-light-driven photocatalytic hydrogen evolution. Applied Surface Science, 2022, 599, 153620.	3.1	5
1655	Recent Advances in Photocatalytic Removal of Organic and Inorganic Pollutants in Air. SSRN Electronic Journal, 0, , .	0.4	0
1656	First-principles calculations of the structural, energetic, electronic, optical, and photocatalytic properties of BaTaO ₂ N low-index surfaces. New Journal of Chemistry, 2022, 46, 11540-11552.	1.4	1

#	Article	IF	CITATIONS
1657	Constructing Co3O4/La2Ti2O7 p-n Heterojunction for the Enhancement of Photocatalytic Hydrogen Evolution. Nanomaterials, 2022, 12, 1695.	1.9	4
1658	Graphitic-polytriaminopyrimidine (g-PTAP): A novel bifunctional catalyst for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2022, , .	3.8	1
1659	Highly efficient UV-visible-infrared light-driven photothermocatalytic steam biomass reforming to H ₂ on Ni nanoparticles loaded on mesoporous silica. Energy and Environmental Science, 2022, 15, 3041-3050.	15.6	19
1660	Enhancement of N2 adsorption by Z-scheme porous g-C3N4/ZnFe2O4 composite material for high-efficient photocatalytic nitrogen fixation. Journal of Porous Materials, 2022, 29, 1431-1440.	1.3	8
1661	Unraveling the role of introduced W in oxidation tolerance for Pt-based catalysts via on-line inductive coupled plasma-mass spectrometry. Electrochemistry Communications, 2022, 139, 107301.	2.3	1
1662	Environmentally-friendly carbon nanomaterials for photocatalytic hydrogen production. Chinese Journal of Catalysis, 2022, 43, 1719-1748.	6.9	32
1663	Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms. Chinese Journal of Catalysis, 2022, 43, 1774-1804.	6.9	45
1664	Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives. Coordination Chemistry Reviews, 2022, 467, 214615.	9.5	170
1665	Tailoring Oxygen Evolution Performances of Carbon Nitride Systems Fabricated by Electrophoresisthrough Ag and AU Plasma Functionalization. SSRN Electronic Journal, 0, , .	0.4	0
1666	A surface plasmon polariton-triggered Z-scheme for overall water splitting and solely light-induced hydrogen generation. Journal of Materials Chemistry A, 2022, 10, 13829-13838.	5.2	7
1667	Recent development on titania-based nanomaterial for photocatalytic CO2 reduction: A review. Journal of Alloys and Compounds, 2022, 918, 165533.	2.8	29
1668	Insight on Reaction Pathways of Photocatalytic CO ₂ Conversion. ACS Catalysis, 2022, 12, 7300-7316.	5.5	134
1669	Enhancing catalytic activity of Fe3O4 for electrochemical water oxidation via the coupling of OER-inert Au. International Journal of Hydrogen Energy, 2022, 47, 22731-22737.	3.8	6
1670	Stable Ti3+ in B-TiO2/BN based hybrids for efficient photocatalytic reduction. Chemical Engineering Journal Advances, 2022, 11, 100333.	2.4	14
1671	Rationally Designed Ws2/C2n Layered Heterostructures for Enhanced Photocatalytic Hydrogen Evolution: Interface and Bandgap Engineering. SSRN Electronic Journal, 0, , .	0.4	0
1672	Silver niobate perovskites: structure, properties and multifunctional applications. Journal of Materials Chemistry A, 2022, 10, 14747-14787.	5.2	27
1673	Rapid synthesis of zeolites through g-C ₃ N ₄ -based photocatalysis. Green Chemistry, 2022, 24, 5792-5799.	4.6	2
1674	Charge Carrier Management in Semiconductors: Modeling Charge Transport and Recombination. Springer Handbooks, 2022, , 365-398.	0.3	2

#	ARTICLE The role of selective contacts and built-in field for charge separation and transport in		IF	Citations
1675	photoelectrochemical devices. Sustainable Energy and Fuels, 2022, 6, 3701-3716.		2.5	10
1676	Role of hydrogen generation technologies for renewable hydrogen production. , 2022, ,	, 377-407.		0
1677	Oxygen Vacancy-Induced Construction of CoO/h-TiO ₂ Z-Scheme Heterosti Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2 28945-28955.		4.0	34
1678	Current trending and beyond for solar-driven water splitting reaction on WO3 photoand of Energy Chemistry, 2022, 73, 88-113.	odes. Journal	7.1	35
1679	Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges. Chemical 2022, 122, 11778-11829.	Reviews,	23.0	39
1680	Solar Energy Storage in an All-Vanadium Photoelectrochemical Cell: Structural Effect of Nanocatalyst in Photoanode. Energies, 2022, 15, 4508.	Titania	1.6	2
1681	Visible-Light-Driven photocatalytic oxidation of H2S by Boron-doped TiO2/LDH Heteroju Synthesis, performance, and reaction mechanism. Chemical Engineering Journal, 2022,		6.6	25
1682	Tailoring oxygen evolution performances of carbon nitride systems fabricated by electro through Ag and Au plasma functionalization. Chemical Engineering Journal, 2022, 448,	pphoresis 137645.	6.6	12
1683	Charge carrier dynamics and reaction intermediates in heterogeneous photocatalysis by spectroscopies. Chemical Society Reviews, 2022, 51, 5777-5794.	y time-resolved	18.7	43
1684	A carbon nanowire-promoted Cu ₂ O/TiO ₂ nanocomposite for photoelectrochemical performance. New Journal of Chemistry, 2022, 46, 15495-15503.		1.4	5
1685	Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and treatment. EnergyChem, 2022, 4, 100078.	l environmental	10.1	232
1686	2D/2D Interface Engineering Promotes Charge Separation of Mo ₂ C/g-C ₃ N ₄ Nanojunction Photocatalysts for Photocatalytic Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2022, 14, 2		4.0	30
1687	Cu Nanoparticles Modified Step-Scheme Cu2O/WO3 Heterojunction Nanoflakes for Vis Conversion of CO2 to CH4. Nanomaterials, 2022, 12, 2284.	ible-Light-Driven	1.9	3
1688	Interfacial Heterojunction-Engineered Fe ₂ O ₃ /CoFe-Layered D Catalyst for the Electrocatalytic Oxygen Evolution Reaction. Energy & Fuels, 2022,		2.5	12
1689	Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversior UV-light active to visible-light active photocatalyst. Inorganic Chemistry Communicatior 109700.		1.8	64
1690	TiO2 based Photocatalysis membranes: An efficient strategy for pharmaceutical mineral Science of the Total Environment, 2022, 845, 157221.	lization.	3.9	30
1691	Interfacial microenvironment-regulated cascade charge transport in Co6Mo6C2-MoO2- photocatalyst for efficient hydrogen evolution. Chemical Engineering Journal, 2022, 450		6.6	24
1692	Ag2O modified CuO nanosheets as efficient difunctional water oxidation catalysts. Jour Photochemistry and Photobiology A: Chemistry, 2022, 433, 114166.	nal of	2.0	0

ARTICLE IF CITATIONS Carbon-Doped Copper (hydro)Oxides on Copper Wires as Self-supported Bifunctional Catalytic 1693 1.4 2 Electrode for Full Water Splitting. Catalysis Letters, 2023, 153, 1678-1688. Synthesis of P-doped CdS nanorods for efficient blue LED light induced photocatalytic hydrogen 1694 2.5 evolution. Sustainable Energy and Fuels, 0, , . Effect of metal doping in Bi2WO6 micro-flowers for enhanced photoelectrochemical water splitting. 1695 2.3 10 Ceramics International, 2022, 48, 35814-35824. Photoactive Heterostructures Based on α-Fe₂O₃ and CuO Thin Films for the 1696 Removal of Pollutants from Aqueous Solutions., 0,,. Stabilization and Performance Enhancement Strategies for Halide Perovskite Photocatalysts. 1697 11.1 31 Advanced Materials, 2023, 35, . Efficient Photocatalytic Charge Separation at Anatase–Hematite Heterojunctions with a Tuned 1698 Three-Dimensional Ćocatalytic NiO Support. Industrial & amp; Engineering Chemistry Research, 2022, 61, 1.8 12415-12426. Adenine-functionalized conjugated polymer as an efficient photocatalyst for hydrogen evolution 1699 3.8 3 from water. International Journal of Hydrogen Energy, 2022, 47, 29771-29780. Recent advances in nature-inspired nanocatalytic reduction of organic molecules with water. Nano 1700 9 5.8 Research, 2022, 15, 10292-10315. Photocatalytic water splitting on BiVO4: Balanced charge-carrier consumption and selective redox 1701 9 5.8 reaction. Nano Research, 2023, 16, 4568-4573. Fabrication and Characterization of P-Type Semiconducting Copper Oxide-Based Thin-Film 1702 1.2 Photoelectrodes for Solar Water Splitting. Coatings, 2022, 12, 1206. spâ€Carbon Incorporated Conductive Metalâ€Organic Framework as Photocathode for 1703 17 7.2 Photoelectrochemical Hydrogen Generation. Angewandte Chemie - International Edition, 2022, 61, . Surface and Trapping Energies as Predictors for the Photocatalytic Degradation of Aromatic Organic 1704 1.5 Pollutants. Journal of Physical Chemistry C, 2022, 126, 14859-14877. Eine spâ€Kohlenstoffhaltige LeitfĤige Metallorganische Gerüstverbindung als Photokathode für die 1705 1.6 0 Photoelektrochemische Wasserstoffentwicklung. Angewandte Chemie, 2022, 134, . Band bending caused by forming heterojunctions in Cu-Cu2O/rGO-NH2 semiconductor materials and surface coordination of N-methylimidazole, and the intrinsic nature of synergistic effect on the catalysis of selective aerobic oxidation of alcohols. Applied Surface Science, 2022, 605, 154563. 1706 3.1 Hydrogen production from wastewater, storage, economy, governance and applications: a review. 1707 8.3 18 Environmental Chemistry Letters, 2022, 20, 3453-3504. Experimental and theoretical identifications of durable Fe–Nx configurations embedded in graphitic carbon nitride for uranium photoreduction. Journal of Environmental Chemical Engineering, 2022, 10, 1708 108374. TiO2/BiVO4 composite from preformed nanoparticles for heterogeneous photocatalysis. Materials 1709 2.0 2 Chemistry and Physics, 2022, 290, 126588. Recent advances on Z-scheme engineered BiVO4-based semiconductor photocatalysts for CO2 1710 reduction: A review. Applied Surface Science Advances, 2022, 11, 100289.

#	Article	IF	CITATIONS
1711	Facile one-step synthesis of CuGaS2 nanosheets and its electrocatalytic activity towards hydrogen evolution. Journal of Physics and Chemistry of Solids, 2022, 170, 110929.	1.9	0
1712	Facile synthesis of nitrogen-doped TiO2 microspheres containing oxygen vacancies with excellent photocatalytic H2 evolution activity. Journal of Physics and Chemistry of Solids, 2022, 170, 110930.	1.9	7
1713	Visible-light photocatalytic oxygen production on a high-entropy oxide by multiple-heterojunction introduction. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433, 114167.	2.0	12
1714	Understanding inclusive quantum dots hollow CN@CIZS heterojunction for enhanced photocatalytic CO2 reduction. Applied Surface Science, 2022, 604, 154601.	3.1	17
1715	The applications of MOFs related materials in photo/electrochemical decontamination: An updated review. Chemical Engineering Journal, 2022, 450, 138326.	6.6	17
1716	Photochemistry of ZnO/GeO2 film for H2 production. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433, 114185.	2.0	2
1717	Enhancement in the photoelectrochemical performance of BiVO4 photoanode with high (0 4 0) facet exposure. Journal of Colloid and Interface Science, 2022, 628, 726-735.	5.0	7
1718	Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction. Carbon Letters, 2023, 33, 1381-1394.	3.3	35
1719	Segmented Structure Design of Carbon Ring Inâ€Plane Embedded in g ₃ N ₄ Nanotubes for Ultraâ€High Hydrogen Production. ChemSusChem, 2022, 15, .	3.6	3
1720	Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives. Renewable and Sustainable Energy Reviews, 2022, 168, 112916.	8.2	122
1721	Unveiling the activity and stability of BiVO4 photoanodes with cocatalyst for water oxidation. Renewable Energy, 2022, 199, 132-139.	4.3	11
1722	Evolutionary face-to-face 2D/2D bismuth-based heterojunction: The quest for sustainable photocatalytic applications. Applied Materials Today, 2022, 29, 101636.	2.3	9
1723	Structural, morphological, optical, photocatalytic activity and bacterial growth inhibition of Nd-doped TiO2 nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 286, 116018.	1.7	14
1724	Photocatalytic degradation of organic pollutants by Ag2O/AgSiOx. Materials Science in Semiconductor Processing, 2022, 152, 107066. "http://www.w3.org/1998/Math/MathML"	1.9	3
1725	altimg="si186.svg" display="inline" id="d1e919"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> /C <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si186.svg" display="inline" id="d1e927"><mml:msub><mml:mrow< td=""><td>3.1</td><td>6</td></mml:mrow<></mml:msub></mml:math 	3.1	6
1726	<pre>/><mml:mrow><mml:mn>2</mml:mn></mml:mrow>N layered heterostructure Stimuli-responsive heterojunctions based photo-electrocatalytic membrane reactors for reactive filtration of persistent organic pollutants. Chemical Engineering Journal, 2023, 452, 139374.</pre>	6.6	6
1727	Effect of Brookite on the Photocatalytic Properties of Mixed-Phase Tio2 Obtained at a Higher Temperature. SSRN Electronic Journal, 0, , .	0.4	0
1728	Mechanism of the two-dimensional WSeTe/Zr ₂ CO ₂ direct Z-scheme van der Waals heterojunction as a photocatalyst for water splitting. Physical Chemistry Chemical Physics, 2022, 24, 21030-21039.	1.3	4

#	Article	IF	CITATIONS
1729	Three-Phase Co-Assembly of Compositionally Tunable Wo3/Tio2 Inverse Opal Photoelectrodes. SSRN Electronic Journal, 0, , .	0.4	0
1730	On-demand continuous H ₂ release by methanol dehydrogenation and reforming <i>via</i> photocatalysis in a membrane reactor. Green Chemistry, 2022, 24, 8345-8354.	4.6	2
1731	Vacancy-modified g-C ₃ N ₄ and its photocatalytic applications. Materials Chemistry Frontiers, 2022, 6, 3143-3173.	3.2	29
1732	MgIn2S4@In2O3 hierarchical tubular heterostructures with expedited photocarrier separation for efficient visible-light-driven antimicrobial activity. Chemical Engineering Journal, 2023, 452, 139559.	6.6	10
1733	Sonochemical Synthesis of Large Twoâ€Dimensional Bi ₂ O ₂ CO ₃ Nanosheets for Hydrogen Evolution in Photocatalytic Water Splitting. Advanced Sustainable Systems, 2022, 6, .	2.7	3
1734	Au@Cu ₂ O Core–Shell and Au@Cu ₂ Se Yolk–Shell Nanocrystals as Promising Photocatalysts in Photoelectrochemical Water Splitting and Photocatalytic Hydrogen Production. ACS Applied Materials & Interfaces, 2022, 14, 40771-40783.	4.0	25
1735	The GaSe/g-C6N6 type-II van der Waals heterostructure: A prospective water-splitting photocatalyst under acidic, alkaline and neutral conditions. Thin Solid Films, 2022, 758, 139419.	0.8	4
1736	Outstanding cooperation of all-inorganic CsPbI3 perovskite with TiO2 forming composites and heterostructures for photodegradation. Journal of Materials Science, 2022, 57, 17363-17379.	1.7	0
1737	Copolymerization Driven Construction of in-Plane Heterostructure for Enhanced Photocatalytic Performance: Structure–Activity and Effects of Water Matrices. Catalysis Letters, 0, , .	1.4	0
1738	Construction of novel PG/GeP2 and PG/SiP2 vdW heterostructures for high-efficiency photocatalytic water splitting. Applied Surface Science, 2023, 608, 155106.	3.1	34
1740	Solar Boosting Pollutant Removal plus Hydrogen Production by Lifting-Heat and Lowering-Potential Chemical Synergy. ACS Omega, 2022, 7, 33443-33452.	1.6	1
1741	Influence of Excess Charge on Water Adsorption on the BiVO ₄ (010) Surface. Journal of the American Chemical Society, 2022, 144, 17173-17185.	6.6	17
1742	Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products. Chemical Research in Chinese Universities, 2022, 38, 1197-1206.	1.3	7
1743	Transient absorption spectroscopic studies of linear polymeric photocatalysts for solar fuel generation. Chemical Physics Reviews, 2022, 3, .	2.6	4
1744	Photocatalytic Approaches for Sustainable Olefin Transfer Hydrogenation and Semihydrogenation of Alkynes Using Natural Sunlight. ACS Applied Energy Materials, 2022, 5, 11052-11057.	2.5	2
1745	Recent advances in covalent organic framework (COF) nanotextures with band engineering for stimulating solar hydrogen production: A comprehensive review. International Journal of Hydrogen Energy, 2022, 47, 34323-34375.	3.8	13
1746	Photoelectrochemical reforming of glycerol by Bi2WO6 photoanodes: Role of the electrolyte pH on the H2 evolution efficiency and product selectivity. Applied Catalysis A: General, 2022, 646, 118867.	2.2	14
1747	Alternatives to Water Photooxidation for Photoelectrochemical Solar Energy Conversion and Green H ₂ Production. Advanced Energy Materials, 2022, 12, .	10.2	39

#	Article	IF	CITATIONS
1748	Recent Advances in g-C ₃ N ₄ -Based Donor–Acceptor Photocatalysts for Photocatalytic Hydrogen Evolution: An Exquisite Molecular Structure Engineering. , 2022, 4, 2166-2186.		25
1749	Nanoscale hetero-interfaces for electrocatalytic and photocatalytic water splitting. Science and Technology of Advanced Materials, 2022, 23, 587-616.	2.8	4
1750	Heterogeneous doping of visible-light-responsive Y ₂ Ti ₂ O ₅ S ₂ for enhanced hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 24552-24560.	5.2	10
1751	MoSSe/Hf(Zr)S ₂ heterostructures used for efficient Z-scheme photocatalytic water-splitting. Physical Chemistry Chemical Physics, 2022, 24, 25287-25297.	1.3	13
1752	CoS ₂ -decorated CdS nanorods for efficient degradation of organic pollutants. New Journal of Chemistry, 2022, 46, 21560-21567.	1.4	3
1753	Photocatalytic and Adsorptive Removal of Liquid Textile Industrial Waste with Carbon-Based Nanomaterials. Green Energy and Technology, 2023, , 1-73.	0.4	0
1754	An unconstrained approach to systematic structural and energetic screening of materials interfaces. Nature Communications, 2022, 13, .	5.8	8
1755	Recent Advances in Semiconductor Heterojunctions and Z-Schemes for Photocatalytic Hydrogen Generation. Topics in Current Chemistry, 2022, 380, .	3.0	18
1756	Semiconductor-Based Photocatalytic Oxygen Evolution Performance for Water Splitting: Light-Driven Energy Conversion and Storage. Green Energy and Technology, 2023, , 263-320.	0.4	0
1757	Heterojunction nanochannel arrays based on SiC Core–TiO2 shell for efficiently enhanced photoelectrochemical water splitting. Journal of Materials Science, 0, , .	1.7	0
1758	Uncovering mechanism of photocatalytic performance enhancement induced by multivariate defects on SnS2. Nano Research, 2023, 16, 2102-2110.	5.8	4
1759	Toward Superb Perovskite Oxide Electrocatalysts: Engineering of Coupled Nanocomposites. Small, 2022, 18, .	5.2	7
1760	Solar Hydrogen Fuel Generation from Wastewater—Beyond Photoelectrochemical Water Splitting: A Perspective. Energies, 2022, 15, 7399.	1.6	19
1761	Surface engineering of Ba-doped TiO2 nanorods by Bi2O3 passivation and (NiFe)OOH Co-catalyst layers for efficient and stable solar water oxidation. International Journal of Hydrogen Energy, 2022, 47, 40920-40931.	3.8	7
1762	Methanol photooxidation in a black body like reactor using bismuth-based heterojunctions. Applied Catalysis A: General, 2022, 648, 118926.	2.2	2
1763	Work-function-tuned electronic effect of a solute metal in the particles of copper alloys and the thin layer of surface oxides, and its influence on the catalysis on selective aerobic oxidation of benzylic alcohols. Applied Surface Science, 2023, 611, 155549.	3.1	1
1764	Enhanced photoelectrochemical water splitting and photocatalytic degradation performance of visible light active ZnIn2S4/PANI nanocomposite. International Journal of Hydrogen Energy, 2023, 48, 2518-2531.	3.8	14
1765	Improvement of surface light absorption of ZnO photoanode using a double heterojunction with α–Fe2O3/g–C3N4 composite to enhance photoelectrochemical water splitting. Applied Surface Science, 2023, 608, 154915.	3.1	17

#	Article	IF	CITATIONS
1766	Carbon-based hole storage engineering toward ultralow onset potential and high photocurrent density of integrated SiC photoanodes. Carbon, 2023, 202, 41-50.	5.4	2
1767	Covalently interconnected layers in g-C3N4: Toward high mechanical stability, catalytic efficiency and sustainability. Applied Catalysis B: Environmental, 2023, 322, 122069.	10.8	8
1768	Effect of brookite on the photocatalytic properties of mixed-phase TiO2 obtained at a higher temperature. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 287, 116104.	1.7	5
1769	A Solid Redox Mediator Analog as a Highly Efficient Catalyst for Na–O2 Batteries. Batteries, 2022, 8, 227.	2.1	1
1770	Insights on Carbon Neutrality by Photocatalytic Conversion of Small Molecules into Value-Added Chemicals or Fuels. Accounts of Materials Research, 2022, 3, 1206-1219.	5.9	6
1772	2D layered MXene/TiO2 nano-heterostructures for photocatalytic H2 generation. , 2022, 7, 91-106.		3
1773	The Synthesis of a Novel Ternary Bi/Bi2WO6/Amorphous Bi4V2O11 Heterojunction Photocatalyst with Enhanced Visible-Light-Driven Photocatalytic Reduction of Cr(VI). Catalysis Letters, 2023, 153, 2927-2935.	1.4	1
1774	Band Edges Engineering of 2D/2D Heterostructures: The C ₃ N ₄ /Phosphorene Interface. ChemPhysChem, 2023, 24, .	1.0	2
1775	Redox-active polyimides for energy conversion and storage: from synthesis to application. Chemical Communications, 2022, 59, 153-169.	2.2	11
1776	Modelling single atom catalysts for water splitting and fuel cells: A tutorial review. Journal of Power Sources, 2023, 556, 232492.	4.0	19
1777	In-situ construction of h-BN/BiOCl heterojunctions with rich oxygen vacancies for rapid photocatalytic removal of typical contaminants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 659, 130756.	2.3	3
1778	Three-phase co-assembly of compositionally tunable WO3/TiO2 inverse opal photoelectrodes. Applied Surface Science, 2023, 613, 155919.	3.1	4
1779	Understanding the injection process of hydrogen on Pt1-TiO2 surface for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2023, 325, 122303.	10.8	12
1780	Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks. Acta Chimica Sinica, 2022, 80, 1494.	0.5	5
1781	Nanomaterials design for photoelectrochemical water oxidation. , 2023, , 515-532.		1
1782	A new breakthrough in photocatalytic hydrogen evolution by amorphous and chalcogenide enriched cocatalysts. Chemical Engineering Journal, 2023, 455, 140601.	6.6	66
1783	Exploring the Ti ₂ CO ₂ –WSe ₂ Heterostructure as a Direct <i>Z</i> -Scheme Photocatalyst for Water Splitting: A Non-Adiabatic Study. Journal of Physical Chemistry C, 2022, 126, 20852-20863.	1.5	14
1784	More than One Century of History for Photocatalysis, from Past, Present and Future Perspectives. Catalysts, 2022, 12, 1572.	1.6	3

CITATION REPO	RT

#	Article	IF	CITATIONS
1785	Structure-Dependent Surface Molecule-Modified Semiconductor Photocatalysts: Recent Progress and Future Challenges. ACS Sustainable Chemistry and Engineering, 2022, 10, 16476-16502.	3.2	8
1786	Metal–Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chemical Reviews, 2023, 123, 445-490.	23.0	84
1787	Metal–Organic Frameworkâ€Based Photocatalysis for Solar Fuel Production. Small Methods, 2023, 7, .	4.6	43
1788	Patterning alternate TiO2 and Cu2O strips on a conductive substrate as film photocatalyst for Z-scheme photocatalytic water splitting. Science Bulletin, 2022, 67, 2420-2427.	4.3	15
1789	Effect of chlorine-repulsive molecular fragments on photocatalytic seawater splitting performance of BiVO4 for oxygen evolution. International Journal of Hydrogen Energy, 2022, , .	3.8	1
1790	Insight into the Effect of Anionic–Anionic Co-Doping on BaTiO3 for Visible Light Photocatalytic Water Splitting: A First-Principles Hybrid Computational Study. Catalysts, 2022, 12, 1672.	1.6	6
1791	Rapid photocatalytic mineralization of glyphosate by Pd@BiVO4/BiOBr nanosheets: Mechanistic studies and degradation pathways. Catalysis Communications, 2023, 174, 106599.	1.6	4
1792	A covalent organic framework constructed from a donor–acceptor–donor motif monomer for photocatalytic hydrogen evolution from water. Journal of Materials Chemistry A, 2023, 11, 4007-4012.	5.2	15
1793	Graphene-Based Derivatives Heterostructured Catalytic Systems for Sustainable Hydrogen Energy via Overall Water Splitting. Catalysts, 2023, 13, 109.	1.6	11
1794	Graphitic Carbon Nitride Based Materials Towards Photoproduction of H ₂ O ₂ . ChemPhotoChem, 2023, 7, .	1.5	8
1795	Bicomponent Zno-Ag janus nanoparticles with high antitumor activity <l>in vitro</l> . Siberian Journal of Oncology, 2023, 21, 99-105.	0.1	0
1796	Charge Steering in Heterojunction Photocatalysis: General Principles, Design, Construction, and Challenges. Small Science, 2023, 3, .	5.8	11
1797	Bimetallic FeO _{<i>x</i>} –MO _{<i>x</i>} Loaded TiO ₂ (M = Cu, Co) Nanocomposite Photocatalysts for Complete Mineralization of Herbicides. Journal of Physical Chemistry C, 2023, 127, 1388-1396.	1.5	3
1798	Cocatalyst Engineering with Robust Tunable Carbonâ€Encapsulated Moâ€Rich Mo/Mo ₂ C Heterostructure Nanoparticle for Efficient Photocatalytic Hydrogen Evolution. Advanced Functional Materials, 2023, 33, .	7.8	18
1799	Advances in photochemical splitting of seawater over semiconductor nano-catalysts for hydrogen production: A critical review. Journal of Industrial and Engineering Chemistry, 2023, 121, 1-14.	2.9	23
1800	Photocatalytic enhancement mechanisms for novel g-C3N4/PVK nanoheterojunction. Materials Chemistry and Physics, 2023, 296, 127275.	2.0	2
1801	Pyro-phototronic effect: An effective route toward self-powered photodetection. Nano Energy, 2023, 107, 108172.	8.2	32
1802	β-O-4 linkage breakage of lignin enabled by TiO2 with off/on switchable defect sites for photocatalysis. Journal of Solid State Chemistry, 2023, 319, 123810.	1.4	6

#	Article	IF	CITATIONS
1803	An Insight into Carbon Nanomaterial-Based Photocatalytic Water Splitting for Green Hydrogen Production. Catalysts, 2023, 13, 66.	1.6	11
1804	Solvothermal Synthesis of g-C3N4/TiO2 Hybrid Photocatalyst with a Broaden Activation Spectrum. Catalysts, 2023, 13, 46.	1.6	1
1805	Development of metal oxide heterostructures for hydrogen production. , 2023, , 501-533.		1
1806	In-situ growth of heterojunction CdS/TiO2 nanofibers monolithic photocatalyst sheet for enhanced hydrogen evolution. Sustainable Energy and Fuels, 0, , .	2.5	0
1807	A critical review on layered double hydroxide (LDH)-derived functional nanomaterials as potential and sustainable photocatalysts. Sustainable Energy and Fuels, 2023, 7, 1145-1186.	2.5	12
1808	Organic Conjugated Trimers with Donor–Acceptor–Donor Structures for Photocatalytic Hydrogen Generation Application. Advanced Functional Materials, 2023, 33, .	7.8	10
1809	Increased Photoelectrochemical Performance of Vanadium Oxide Thin Film by Helium Plasma Treatment with Auxiliary Molybdenum Deposition. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	4
1810	Engineering of graphitic carbon nitride-based heterojunction photocatalysts. , 2023, , 43-57.		0
1811	Insights into Photoinduced Carrier Dynamics and Overall Water Splitting of Z-Scheme van der Waals Heterostructures with Intrinsic Electric Polarization. Journal of Physical Chemistry Letters, 2023, 14, 798-808.	2.1	15
1812	First-principles-driven catalyst design protocol of 2D/2D heterostructures for electro- and photocatalytic nitrogen reduction reaction. Physical Chemistry Chemical Physics, 0, , .	1.3	1
1813	Semiconductor Nanomaterial Photocatalysts for Water-Splitting Hydrogen Production: The Holy Grail of Converting Solar Energy to Fuel. Nanomaterials, 2023, 13, 546.	1.9	21
1814	Two-dimensional Janus monolayers Al ₂ XYZ (X/Y/Z = S, Se, Te, X ≠Y ≠Z): first-principles insight into the photocatalytic and highly adjustable piezoelectric properties. Journal of Materials Chemistry C, 2023, 11, 3262-3274.	2.7	3
1815	Investigation of the influence for ZnSe phase in Ag2ZnSnSe4 and ZnO/Ag2ZnSnSe4 photoanodes on their photoelectrochemical activities in salt water solution. International Journal of Hydrogen Energy, 2023, 48, 15975-15991.	3.8	1
1816	CulnS ₂ Nanosheet Arrays with a MoS ₂ Heterojunction as a Photocathode for PEC Water Splitting. Energy & Fuels, 2023, 37, 2340-2349.	2.5	8
1817	Metal oxide heterostructures for light detector applications. , 2023, , 453-499.		0
1818	Recent advances on g-C ₃ N ₄ -based Z-scheme photocatalysts for organic pollutant removal. Catalysis Science and Technology, 2023, 13, 2877-2898.	2.1	10
1819	Modulating the Schottky barrier of Pt/PbTiO ₃ for efficient piezo-photocatalytic hydrogen evolution. Dalton Transactions, 0, , .	1.6	4
1820	Cocatalysts for Photocatalytic Overall Water Splitting: A Mini Review. Catalysts, 2023, 13, 355.	1.6	13

#	Article	IF	CITATIONS
1821	New Strategy to Improve Photocatalytic Activity and Mechanistic Aspect for Water Splitting. , 0, , .		0
1822	Visible-light promoted hydrogen production by diesel soot derived onion like carbon nanoparticles. Carbon, 2023, 208, 436-442.	5.4	18
1823	Enhancing photocatalytic properties of continuous few-layer MoS2 thin films for hydrogen production by water splitting through defect engineering with Ar plasma treatment. Nano Energy, 2023, 109, 108295.	8.2	7
1824	Photoelectrochemical water oxidation and methylene blue degradation enhanced by Nb doping and CoPi modification for hematite photoanodes. Journal of Alloys and Compounds, 2023, 947, 169673.	2.8	2
1825	Constructing outstanding 1D/2D Co3O4/NiMnO3 heterostructure to promote the PEC efficiency for water pollution remediation. Journal of Alloys and Compounds, 2023, 947, 169411.	2.8	4
1826	A one-step soft-template hydrothermal preparation and piezoelectric catalytic activity of flowers-like Co-doped MoS2 microspheres. Journal of Alloys and Compounds, 2023, 945, 169328.	2.8	8
1827	p-n heterojunction constructed by γ-Fe2O3 covering CuO with CuFe2O4 interface for visible-light-driven photoelectrochemical water oxidation. Journal of Colloid and Interface Science, 2023, 639, 464-471.	5.0	7
1828	A review on semiconductor photocathode in bioelectrochemical systems: Mechanism, limitation, and environmental application. Materials Today Sustainability, 2023, 22, 100349.	1.9	5
1829	Two-dimensional PtI2/Bi2S3 and PtI2/Bi2Se3 heterostructures with high solar-to-hydrogen efficiency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 666, 131286.	2.3	1
1830	Strain-dependent doping and optical absorption in Al-doped graphene-like ZnO monolayer. Solid State Communications, 2023, 365, 115139.	0.9	2
1831	Single-Atom Iridium-Based Catalysts: Synthesis Strategies and Electro(Photo)-Catalytic Applications for Renewable Energy Conversion and Storage. Coordination Chemistry Reviews, 2023, 486, 215143.	9.5	8
1832	Research Progress of Solar Hydrogen Production Technology under Double Carbon Target. Acta Chimica Sinica, 2022, 80, 1629.	0.5	0
1833	Electronic structures and photovoltaic applications of vdW heterostructures based on Janus group-IV monochalcogenides: insights from first-principles calculations. Physical Chemistry Chemical Physics, 2023, 25, 5663-5672.	1.3	3
1834	In-situ CdS nanowires on g-C3N4 nanosheet heterojunction construction in 3D-Optofluidic microreactor for the photocatalytic green hydrogen production. International Journal of Hydrogen Energy, 2023, 48, 15406-15420.	3.8	2
1835	Tuning Catalytic Performance of C ₂ N/GaN Heterostructure for Hydrogen Evolution Reaction by Doping. Advanced Theory and Simulations, 2023, 6, .	1.3	2
1836	Oxide based Heterostructured Photocatalysts for CO ₂ Reduction and Hydrogen Generation. ChemistrySelect, 2023, 8, .	0.7	13
1837	A versatile Topology Optimization Strategy for Devising Lowâ€Dimensional Architectures with Boosted Photocatalytic Activity. Advanced Functional Materials, 2023, 33, .	7.8	8
1838	Photocatalytic membrane reactors (PMRs) for hydrogen production. , 2023, , 19-42.		Ο

#	Article	IF	CITATIONS
1839	The versatile characteristics of Ars/SGaInS van der Waals heterostructures. Physical Chemistry Chemical Physics, 0, , .	1.3	0
1840	Computational Approaches to Materials Design for Enhanced Photocatalytic Activity. , 2023, , 308-330.		Ο
1841	Fractional Thermal Reduction of CuInS ₂ Quantum Dot-Sensitized Bi ₂ MoO ₆ Hierarchical Flowers on S-Doped Biochar for Dual Z-Scheme/Mott–Schottky Heterojunction Construction: A Strategy for Efficient Photocatalytic Biorefineries. ACS Sustainable Chemistry and Engineering, 2023, 11, 5400-5407.	3.2	11
1842	Enhancing effect of NaYF4: Yb, Tm on the photocatalytic performance of BiVO4 under NIR and full spectrum. Journal of Materials Research, 2023, 38, 1894-1908.	1.2	Ο
1843	Boosted visible-light-driven degradation over stable ternary heterojunction as a plasmonic photocatalyst: Mechanism exploration, pathway and toxicity evaluation. Journal of Colloid and Interface Science, 2023, 641, 758-781.	5.0	2
1844	Graphene Enhanced Photoâ€Electrochemical Water Splitting by Diminishing Pt/pâ€&i Photocathode Interfacial Barrier. ChemPhotoChem, 2023, 7, .	1.5	0
1845	High-Pressure Torsion for Highly-Strained and High-Entropy Photocatalysts. KONA Powder and Particle Journal, 2024, 41, 123-139.	0.9	5
1846	Surface modification of titanium dioxide. Journal of Materials Science, 2023, 58, 6887-6930.	1.7	5
1847	Isolated Electron Trapâ€induced Charge Accumulation for Efficient Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2023, 62, .	7.2	55
1848	Isolated Electron Trapâ€Induced Charge Accumulation for Efficient Photocatalytic Hydrogen Production. Angewandte Chemie, 2023, 135, .	1.6	7
1852	Rational Engineering of Photocathodes for Hydrogen Production: Heterostructure, Dye-Sensitized, Perovskite, and Tandem Cells. , 2023, , 297-341.		0
1855	Synthesis of Magnetic Ferrite and TiO2-Based Nanomaterials for Photocatalytic Water Splitting Applications. Composites Science and Technology, 2023, , 293-329.	0.4	0
1863	Polymer-based catalyst for photoelectrochemical water splitting. , 2023, , 41-59.		0
1864	Design and advances of semiconductors for photoelectrochemical water-splitting. , 2023, , 141-156.		0
1883	Photocatalytic applications and modification methods of two-dimensional nanomaterials: a review. Tungsten, 2024, 6, 77-113.	2.0	8
1891	Editorial: Semiconductor Photocatalysts. Crystals, 2023, 13, 1109.	1.0	0
1892	Photocatalytic Seawater Splitting for hydrogen fuel production: Impact of Seawater Components and Accelerating Reagents on the Overall Performance. Sustainable Energy and Fuels, 0, , .	2.5	2
1899	Recent progress of antibacterial hydrogel materials for biomedical applications. Journal of Materials Chemistry C, 2023, 11, 12848-12876.	2.7	Ο

#	Article	IF	CITATIONS
1903	A chemist's guide to photoelectrode development for water splitting – the importance of molecular precursor design. , 2023, 1, 832-873.		2
1907	Metal sulphides and their heterojunctions for photocatalytic degradation of organic dyes-A comprehensive review. Environmental Science and Pollution Research, 2023, 30, 90410-90457.	2.7	13
1923	Recent advances in semiconductor heterojunctions: a detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials. , 2024, 1, 43-69.		3
1932	Photoelectrochemical Water Splitting by Using Nanomaterials: A Review. Journal of Electronic Materials, 2024, 53, 1-15.	1.0	0
1938	Revisiting the Underlying Chemistry Enhancing the Activity of Photoelectro- and Photo-Catalysts Concerning H2 Production. Engineering Materials, 2024, , 119-150.	0.3	0
1946	Introduction of Energy Materials. , 2024, , 1-8.		0
1949	Z-scheme: A Photocatalysis for the Remediation of Environmental Pollutants. , 2023, , 143-155.		0
1958	Enhanced photocatalysis of metal/covalent organic frameworks by plasmonic nanoparticles and homo/hetero-junctions. Materials Horizons, 2024, 11, 1611-1637.	6.4	0
1960	Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting. Nanoscale Advances, 2024, 6, 1286-1330.	2.2	0
1977	Metal–organic framework heterojunctions for photocatalysis. Chemical Society Reviews, 2024, 53, 3002-3035.	18.7	0