Active gel physics

Nature Physics 11, 111-117 DOI: 10.1038/nphys3224

Citation Report

#	Article	IF	CITATIONS
1	Inherently unstable networks collapse to a critical point. Physical Review E, 2015, 92, 012710.	0.8	6
2	Motility of active fluid drops on surfaces. Physical Review E, 2015, 92, 062311.	0.8	26
3	How to Turn an Embryo Inside Out. Physics Magazine, 2015, 8, .	0.1	0
4	Multi-particle collision dynamics algorithm for nematic fluids. Soft Matter, 2015, 11, 5101-5110.	1.2	22
5	Topological mechanics of gyroscopic metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14495-14500.	3.3	611
6	Diverse phenomena, common themes. Nature Physics, 2015, 11, 105-107.	6.5	35
7	Active cell mechanics: Measurement and theory. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3083-3094.	1.9	55
8	Elastic properties of epithelial cells probed by atomic force microscopy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3075-3082.	1.9	46
9	Cortical instability drives periodic supracellular actin pattern formation in epithelial tubes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8620-8625.	3.3	97
10	The Material Basis of Life. Trends in Cell Biology, 2015, 25, 713-716.	3.6	3
11	Fleeting defects line up. Nature Materials, 2015, 14, 1084-1085.	13.3	2
12	When cell biology meets theory. Journal of Cell Biology, 2015, 210, 1041-1045.	2.3	2
13	After the Greeting: Realizing the Potential of Physical Models in Cell Biology. Trends in Cell Biology, 2015, 25, 711-713.	3.6	5
14	Measuring Cell Mechanics. Colloquium Series on Quantitative Cell Biology, 2015, 2, 1-75.	0.5	3
15	Local mechanical properties of bladder cancer cells measured by AFM as a signature of metastatic potential. European Physical Journal Plus, 2015, 130, 1.	1.2	37
16	A local difference in Hedgehog signal transduction increases mechanical cell bond tension and biases cell intercalations along the <i>Drosophila</i> anteroposterior compartment boundary. Development (Cambridge), 2015, 142, 3845-3858.	1.2	31
17	Cortical flow aligns actin filaments to form a furrow. ELife, 2016, 5, .	2.8	144
18	Conformational Properties of Active Semiflexible Polymers. Polymers, 2016, 8, 304.	2.0	95

ATION REDO

#	Article	IF	CITATIONS
19	Physicochemical modeling of tumorigenic homeorhesis: a system-dynamics interpretation of computer simulations. Convergent Science Physical Oncology, 2016, 2, 035001.	2.6	0
20	Measuring shape fluctuations in biological membranes. Journal Physics D: Applied Physics, 2016, 49, 243002.	1.3	89
21	The dynamic mechanical properties of cellularised aggregates. Current Opinion in Cell Biology, 2016, 42, 113-120.	2.6	38
22	Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane. Nature Communications, 2016, 7, 11701.	5.8	147
23	The dynamics of filament assembly define cytoskeletal network morphology. Nature Communications, 2016, 7, 13827.	5.8	24
24	Computational approaches to substrate-based cell motility. Npj Computational Materials, 2016, 2, .	3.5	64
25	Single cell rigidity sensing: A complex relationship between focal adhesion dynamics and large-scale actin cytoskeleton remodeling. Cell Adhesion and Migration, 2016, 10, 554-567.	1.1	47
26	Control of active liquid crystals with a magnetic field. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5498-5502.	3.3	151
27	Focal Adhesion–Independent Cell Migration. Annual Review of Cell and Developmental Biology, 2016, 32, 469-490.	4.0	270
28	Defect-Mediated Morphologies in Growing Cell Colonies. Physical Review Letters, 2016, 117, 048102.	2.9	114
29	Multiciliated cell basal bodies align in stereotypical patterns coordinated by the apical cytoskeleton. Journal of Cell Biology, 2016, 214, 571-586.	2.3	60
30	Cortical Flow-Driven Shapes of Nonadherent Cells. Physical Review Letters, 2016, 116, 028102.	2.9	37
31	Broken Detailed Balance of Filament Dynamics in Active Networks. Physical Review Letters, 2016, 116, 248301.	2.9	65
32	Growth, collapse, and stalling in a mechanical model for neurite motility. Physical Review E, 2016, 93, 032410.	0.8	28
33	Boundaries steer the contraction of active gels. Nature Communications, 2016, 7, 13120.	5.8	50
34	Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer. Scientific Reports, 2016, 6, 20838.	1.6	24
35	Non-equilibrium physics of Rydberg lattices in the presence of noise and dissipative processes. European Physical Journal: Special Topics, 2016, 225, 3019-3036.	1.2	1
36	The mGluR2 Positive Allosteric Modulator, AZD8529, and Cue-Induced Relapse to Alcohol Seeking in Rats. Neuropsychopharmacology, 2016, 41, 2932-2940.	2.8	35

#	Article	IF	CITATIONS
37	Varying the counter ion changes the kinetics, but not the final structure of colloidal gels. Journal of Colloid and Interface Science, 2016, 463, 137-144.	5.0	6
38	Physical Models of Cell Motility. Biological and Medical Physics Series, 2016, , .	0.3	23
39	A chemo-mechanical free-energy-based approach to model durotaxis and extracellular stiffness-dependent contraction and polarization of cells. Interface Focus, 2016, 6, 20150067.	1.5	72
40	Actin flows in cell migration: from locomotion and polarity to trajectories. Current Opinion in Cell Biology, 2016, 38, 12-17.	2.6	74
41	Actomyosin-driven left-right asymmetry: from molecular torques to chiral self organization. Current Opinion in Cell Biology, 2016, 38, 24-30.	2.6	61
42	Modeling cell shape and dynamics on micropatterns. Cell Adhesion and Migration, 2016, 10, 516-528.	1.1	43
43	Fiber networks amplify active stress. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2827-2832.	3.3	143
44	Front–Rear Polarization by Mechanical Cues: From Single Cells to Tissues. Trends in Cell Biology, 2016, 26, 420-433.	3.6	127
45	Dynamics of flexible active Brownian dumbbells in the absence and the presence of shear flow. Soft Matter, 2016, 12, 3737-3749.	1.2	23
46	Cell Locomotion in One Dimension. Biological and Medical Physics Series, 2016, , 135-197.	0.3	2
47	Cell Crawling Driven by Spontaneous Actin Polymerization Waves. Biological and Medical Physics Series, 2016, , 69-93.	0.3	3
48	The Dynamics of Microtubule/Motor-Protein Assemblies in Biology and Physics. Annual Review of Fluid Mechanics, 2016, 48, 487-506.	10.8	79
49	Chromatin as active matter. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, 014001.	0.9	14
50	Cell mechanics: a dialogue. Reports on Progress in Physics, 2017, 80, 036601.	8.1	36
51	Tweezing of Magnetic and Nonâ€Magnetic Objects with Magnetic Fields. Advanced Materials, 2017, 29, 1603516.	11.1	36
52	The Physical Basis of Coordinated Tissue Spreading in Zebrafish Gastrulation. Developmental Cell, 2017, 40, 354-366.e4.	3.1	62
53	Collective cell migration: a physics perspective. Reports on Progress in Physics, 2017, 80, 076601.	8.1	158
54	Self-organizing actin patterns shape membrane architecture but not cell mechanics. Nature Communications, 2017, 8, 14347.	5.8	99

#	Article	IF	CITATIONS
55	Liquid behavior of cross-linked actin bundles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2131-2136.	3.3	106
56	Topological defects in epithelia govern cell death and extrusion. Nature, 2017, 544, 212-216.	13.7	511
57	Hydrodynamic instabilities in active cholesteric liquid crystals. European Physical Journal E, 2017, 40, 50.	0.7	28
58	How Active Mechanics and Regulatory Biochemistry Combine to Form Patterns in Development. Annual Review of Biophysics, 2017, 46, 337-356.	4.5	70
59	Active matter. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, 054002.	0.9	227
60	Internal dynamics of semiflexible polymers with active noise. Journal of Chemical Physics, 2017, 146, 154903.	1.2	74
62	Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres. Nature Communications, 2017, 8, 15817.	5.8	123
63	Transition from turbulent to coherent flows in confined three-dimensional active fluids. Science, 2017, 355, .	6.0	199
64	Imag(in)ing growth and form. Mechanisms of Development, 2017, 145, 13-21.	1.7	2
65	Transmission of cytokinesis forces via E-cadherin dilution and actomyosin flows. Nature, 2017, 545, 103-107.	13.7	125
66	Fluidization and Active Thinning by Molecular Kinetics in Active Gels. Physical Review Letters, 2017, 118, 088002.	2.9	16
67	A bioenergetic mechanism for amoeboid-like cell motility profiles tested in a microfluidic electrotaxis assay. Integrative Biology (United Kingdom), 2017, 9, 844-856.	0.6	3
68	Musings on mechanism: quest for a quark theory of proteins?. FASEB Journal, 2017, 31, 4207-4215.	0.2	3
69	Nonequilibrium mode-coupling theory for dense active systems of self-propelled particles. Soft Matter, 2017, 13, 7609-7616.	1.2	44
70	Viscoelastic Dissipation Stabilizes Cell Shape Changes during Tissue Morphogenesis. Current Biology, 2017, 27, 3132-3142.e4.	1.8	120
71	Active Polymers — Emergent Conformational and Dynamical Properties: A Brief Review. Journal of the Physical Society of Japan, 2017, 86, 101014.	0.7	79
72	Taming active turbulence with patterned soft interfaces. Nature Communications, 2017, 8, 564.	5.8	103
73	Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids. Journal Physics D: Applied Physics, 2017, 50, 434004.	1.3	19

#	Article	IF	CITATIONS
74	Enhanced Dynamics of Confined Cytoskeletal Filaments Driven by Asymmetric Motors. Biophysical Journal, 2017, 113, 1121-1132.	0.2	21
75	Mechanics of active surfaces. Physical Review E, 2017, 96, 032404.	0.8	95
76	Biomechanics of cell rearrangements in Drosophila. Current Opinion in Cell Biology, 2017, 48, 113-124.	2.6	40
77	Active matter at the interface between materials science and cell biology. Nature Reviews Materials, 2017, 2, .	23.3	384
78	Control of active nematics with passive liquid crystals. Molecular Crystals and Liquid Crystals, 2017, 646, 226-234.	0.4	6
79	Biology and the art of abstraction. Biophysical Reviews, 2017, 9, 273-275.	1.5	2
80	Motility of active nematic films driven by "active anchoringâ€: Soft Matter, 2017, 13, 6137-6144.	1.2	18
81	Nonequilibrium dynamics of probe filaments in actin-myosin networks. Physical Review E, 2017, 96, 022408.	0.8	19
82	Systems with Interacting Particles and Soft Matter. The Frontiers Collection, 2017, , 159-180.	0.1	0
83	Self-organizing actin patterns shape cytoskeletal cortex organization. Communicative and Integrative Biology, 2017, 10, e1303591.	0.6	3
84	Review and perspective on soft matter modeling in cellular mechanobiology: cell contact, adhesion, mechanosensing, and motility. Acta Mechanica, 2017, 228, 4095-4122.	1.1	11
85	†The Forms of Tissues, or Cell-aggregates': D'Arcy Thompson's influence and its limits. Development (Cambridge), 2017, 144, 4226-4237.	1.2	33
86	Vortex formation and dynamics of defects in active nematic shells. New Journal of Physics, 2017, 19, 103043.	1.2	37
87	Active nematic gels as active relaxing solids. Physical Review E, 2017, 96, 052603.	0.8	6
88	Control of active turbulence through addressable soft interfaces. Journal of Physics Condensed Matter, 2017, 29, 504003.	0.7	3
89	Cytoskeletal control of B cell responses to antigens. Nature Reviews Immunology, 2017, 17, 621-634.	10.6	107
90	Perspectives on the mathematics of biological patterning and morphogenesis. Journal of the Mechanics and Physics of Solids, 2017, 99, 192-210.	2.3	18
91	Connecting macroscopic dynamics with microscopic properties in active microtubule network contraction. New Journal of Physics, 2017, 19, 125011.	1.2	14

#	Article	IF	CITATIONS
92	A theory that predicts behaviors of disordered cytoskeletal networks. Molecular Systems Biology, 2017, 13, 941.	3.2	100
93	Leaders in collective migration: are front cells really endowed with a particular set of skills?. F1000Research, 2017, 6, 1899.	0.8	57
94	Soft inclusion in a confined fluctuating active gel. Physical Review E, 2018, 97, 032602.	0.8	8
95	Size matters in nanoscale communication. Nature Cell Biology, 2018, 20, 228-230.	4.6	107
96	Optical control of cytoplasmic flows. Nature Cell Biology, 2018, 20, 227-228.	4.6	4
97	Maximal Fluctuations of Confined Actomyosin Gels: Dynamics of the Cell Nucleus. Physical Review Letters, 2018, 120, 098001.	2.9	11
98	Broken detailed balance and non-equilibrium dynamics in living systems: a review. Reports on Progress in Physics, 2018, 81, 066601.	8.1	175
99	Getting in shape and swimming: the role of cortical forces and membrane heterogeneity in eukaryotic cells. Journal of Mathematical Biology, 2018, 77, 595-626.	0.8	13
100	Spontaneous shear flow in confined cellular nematics. Nature Physics, 2018, 14, 728-732.	6.5	148
101	Live streaming. Nature Physics, 2018, 14, 638-639.	6.5	0
102	Active nematic emulsions. Science Advances, 2018, 4, eaao1470.	4.7	51
103	Non-invasive perturbations of intracellular flow reveal physical principles of cell organization. Nature Cell Biology, 2018, 20, 344-351.	4.6	130
104	Long-wavelength instabilities in a system of interacting active particles. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 023201.	0.9	5
105	Dynamically generated patterns in dense suspensions of active filaments. Physical Review E, 2018, 97, 022606.	0.8	46
106	Indentation analysis of active viscoelastic microplasmodia of <i>P. polycephalum</i> . Journal Physics D: Applied Physics, 2018, 51, 024005.	1.3	10
107	Physical principles of intracellular organization via active and passive phase transitions. Reports on Progress in Physics, 2018, 81, 046601.	8.1	319
108	Tensile Forces and Mechanotransduction at Cell–Cell Junctions. Current Biology, 2018, 28, R445-R457.	1.8	301
109	Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 043215.	0.9	157

#	Article	IF	Citations
110	Active Prestress Leads to an Apparent Stiffening ofÂCells through Geometrical Effects. Biophysical Journal, 2018, 114, 419-424.	0.2	25
111	Orchestrated control of filaggrin–actin scaffolds underpins cornification. Cell Death and Disease, 2018, 9, 412.	2.7	42
112	Hydrodynamic theory of active matter. Reports on Progress in Physics, 2018, 81, 076601.	8.1	184
113	Morphology and flow patterns in highly asymmetric active emulsions. Physica A: Statistical Mechanics and Its Applications, 2018, 503, 464-475.	1.2	17
114	Cell membrane biophysics with optical tweezers. European Biophysics Journal, 2018, 47, 499-514.	1.2	65
115	Re-engineering of protein motors to understand mechanisms biasing random motion and generating collective dynamics. Current Opinion in Biotechnology, 2018, 51, 39-46.	3.3	12
116	Entropy production of active particles and for particles in active baths. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 01LT01.	0.7	85
117	Computational modeling of singleâ€cell mechanics and cytoskeletal mechanobiology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1407.	6.6	36
118	Biomechanics in Oncology. Advances in Experimental Medicine and Biology, 2018, , .	0.8	7
119	Unite to divide – how models and biological experimentation have come together to reveal mechanisms of cytokinesis. Journal of Cell Science, 2018, 131, .	1.2	11
120	An Integrated Cytoskeletal Model of Neurite Outgrowth. Frontiers in Cellular Neuroscience, 2018, 12, 447.	1.8	80
121	Assessing the Contribution of Active and Passive Stresses in <i>C. elegans</i> Elongation. Physical Review Letters, 2018, 121, 268102.	2.9	13
122	Mechanical forces in cell monolayers. Journal of Cell Science, 2018, 131, .	1.2	45
123	Population variability and temporal disorder disrupt coherent motion and biological functionality of active matter. Physical Review E, 2018, 98, .	0.8	1
124	Oscillatory fluid flow drives scaling of contraction wave with system size. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10612-10617.	3.3	26
125	Role of hydrodynamic flows in chemically driven droplet division. New Journal of Physics, 2018, 20, 105010.	1.2	26
126	Exactly solvable dynamics of forced polymer loops. New Journal of Physics, 2018, 20, 113005.	1.2	4
127 _	Modeling Cell Migration Mechanics, Advances in Experimental Medicine and Biology, 2018, 1092, 159-187.	0.8	22

#	Article	IF	Citations
128	Active Brownian Filamentous Polymers under Shear Flow. Polymers, 2018, 10, 837.	2.0	22
129	Biological Tissues as Active Nematic Liquid Crystals. Advanced Materials, 2018, 30, e1802579.	11.1	63
130	Activity-dependent self-regulation of viscous length scales in biological systems. Physical Review E, 2018, 97, 052404.	0.8	6
131	Integrating Physical and Molecular Insights on Immune Cell Migration. Trends in Immunology, 2018, 39, 632-643.	2.9	73
132	The Physics of the Metaphase Spindle. Annual Review of Biophysics, 2018, 47, 655-673.	4.5	48
133	Repetitive stretching of giant liposomes utilizing the nematic alignment of confined actin. Communications Physics, 2018, 1, .	2.0	45
134	Active Suspensions have Nonmonotonic Flow Curves and Multiple Mechanical Equilibria. Physical Review Letters, 2018, 121, 018001.	2.9	31
135	Global morphogenetic flow is accurately predicted by the spatial distribution of myosin motors. ELife, 2018, 7, .	2.8	146
136	A disassembly-driven mechanism explains F-actin-mediated chromosome transport in starfish oocytes. ELife, 2018, 7, .	2.8	26
137	FiloGen: A Model-Based Generator of Synthetic 3-D Time-Lapse Sequences of Single Motile Cells With Growing and Branching Filopodia. IEEE Transactions on Medical Imaging, 2018, 37, 2630-2641.	5.4	27
138	Liquid-crystalline nanoarchitectures for tissue engineering. Beilstein Journal of Nanotechnology, 2018, 9, 205-215.	1.5	15
139	The noisy basis of morphogenesis: Mechanisms and mechanics of cell sheet folding inferred from developmental variability. PLoS Biology, 2018, 16, e2005536.	2.6	22
140	A random first-order transition theory for an active glass. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7688-7693.	3.3	63
141	Rolling sound waves. Nature Materials, 2018, 17, 759-760.	13.3	0
142	Arcsine Laws in Stochastic Thermodynamics. Physical Review Letters, 2018, 121, 090601.	2.9	16
143	Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells. Physical Chemistry Chemical Physics, 2018, 20, 23034-23054.	1.3	67
144	Active nematics. Nature Communications, 2018, 9, 3246.	5.8	414
145	The mechanical bidomain model of cardiac muscle with curving fibers. Physical Biology, 2018, 15, 066012.	0.8	3

		CITATION REI	PORT	
#	Article		IF	CITATIONS
146	Fluidization of epithelial sheets by active cell rearrangements. Physical Review E, 2018, 9	98, 022409.	0.8	51
147	Active Brownian particles driven by constant affinity. Europhysics Letters, 2018, 123, 20	0007.	0.7	30
148	<i>Hydra</i> Regeneration: Closing the Loop with Mechanical Processes in Morphogene 2018, 40, e1700204.	2sis. BioEssays,	1.2	35
149	Mechanics of Cell Crawling by Means of Force-free Cyclic Motion. Journal of the Physical Japan, 2018, 87, 044803.	Society of	0.7	12
150	The Mechanics of Leaf Growth on Large Scales. , 2018, , 109-126.			7
151	Differential Activity-Driven Instabilities in Biphasic Active Matter. Physical Review Letters 248003.	s, 2018, 120,	2.9	11
152	Self-organized stress patterns drive state transitions in actin cortices. Science Advances eaar2847.	, 2018, 4,	4.7	46
153	Eukaryotic cell dynamics from crawlers to swimmers. Wiley Interdisciplinary Reviews: Co Molecular Science, 2019, 9, e1376.	mputational	6.2	13
154	The physics of cell-size regulation across timescales. Nature Physics, 2019, 15, 993-100	4.	6.5	99
155	Tissue Regeneration from Mechanical Stretching of Cell–Cell Adhesion. Tissue Engine Methods, 2019, 25, 631-640.	ering - Part C:	1.1	20
156	Cellular Organization: Bulk Actin Network Flows Drive Ooplasm Segregation. Current Bi 29, R758-R761.	ology, 2019,	1.8	1
157	Topological chaos in active nematics. Nature Physics, 2019, 15, 1033-1039.		6.5	53
158	Actin assembly produces sufficient forces for endocytosis in yeast. Molecular Biology of 2019, 30, 2014-2024.	the Cell,	0.9	24
159	Mechanochemical Feedback Loops in Development and Disease. Cell, 2019, 178, 12-25.		13.5	270
160	Computational modeling of active deformable membranes embedded in three-dimensio Physical Review E, 2019, 99, 062418.	nal flows.	0.8	19
161	Tunable corrugated patterns in an active nematic sheet. Proceedings of the National Act Sciences of the United States of America, 2019, 116, 22464-22470.	ademy of	3.3	32
162	Dechlorination of carbon tetrachloride by Nanoscale Nickeled Zeroâ€Valent Iron @ Mult Carbon Nanotubes: Impact of reaction conditions, kinetics and mechanism. Applied Org Chemistry, 2019, 33, e4772.	:iâ€Walled ;anometallic	1.7	6
163	Continuum theory of bending-to-stretching transition. Physical Review E, 2019, 100, 05	1001.	0.8	1

#	Article	IF	CITATIONS
164	Reconfigurable flows and defect landscape of confined active nematics. Communications Physics, 2019, 2, .	2.0	60
165	lmitating nonequilibrium steady states using time-varying equilibrium force in many-body diffusive systems. Physical Review E, 2019, 100, 032104.	0.8	2
166	Topology of Three-Dimensional Active Nematic Turbulence Confined to Droplets. Physical Review X, 2019, 9, .	2.8	19
167	Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature, 2019, 566, 126-130.	13.7	119
168	Emergence of Active Nematic Behavior in Monolayers of Isotropic Cells. Physical Review Letters, 2019, 122, 048004.	2.9	107
169	Fiber plucking by molecular motors yields large emergent contractility in stiff biopolymer networks. Soft Matter, 2019, 15, 1481-1487.	1.2	5
170	Theory of defect motion in 2D passive and active nematic liquid crystals. Soft Matter, 2019, 15, 587-601.	1.2	29
171	Spontaneous spatiotemporal ordering of shape oscillations enhances cell migration. Soft Matter, 2019, 15, 4939-4946.	1.2	4
172	Influence of cross-linking and retrograde flow on formation and dynamics of lamellipodium. PLoS ONE, 2019, 14, e0213810.	1.1	4
173	Dissecting fat-tailed fluctuations in the cytoskeleton with active micropost arrays. Proceedings of the United States of America, 2019, 116, 13839-13846.	3.3	15
174	Modelling fluid deformable surfaces with an emphasis on biological interfaces. Journal of Fluid Mechanics, 2019, 872, 218-271.	1.4	67
175	Self-organizing motors divide active liquid droplets. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11125-11130.	3.3	44
176	Network Contractility during Cytokinesis—From Molecular to Global Views. Biomolecules, 2019, 9, 194.	1.8	31
177	Effects of spatial dimensionality and steric interactions on microtubule-motor self-organization. Physical Biology, 2019, 16, 046004.	0.8	16
178	Bulk Actin Dynamics Drive Phase Segregation in Zebrafish Oocytes. Cell, 2019, 177, 1463-1479.e18.	13.5	39
179	Stress relaxation in epithelial monolayers is controlled by the actomyosin cortex. Nature Physics, 2019, 15, 839-847.	6.5	126
180	Chemotaxis mediated interactions can stabilize the hydrodynamic instabilities in active suspensions. Soft Matter, 2019, 15, 3248-3255.	1.2	12
181	Statistical properties of autonomous flows in 2D active nematics. Soft Matter, 2019, 15, 3264-3272.	1.2	53

		CITATION RE	PORT	
#	Article		IF	CITATIONS
182	Active Fingering Instability in Tissue Spreading. Physical Review Letters, 2019, 122, 088	104.	2.9	56
183	Active matter invasion of a viscous fluid: Unstable sheets and a no-flow theorem. Physic Letters, 2019, 122, 098002.	al Review	2.9	15
184	Attachment of the blastoderm to the vitelline envelope affects gastrulation of insects. N 568, 395-399.	lature, 2019,	13.7	95
185	Exact results for sheared polar active suspensions with variable liquid crystalline order. Jo Chemical Physics, 2019, 150, 104902.	ournal of	1.2	3
186	Stress fluctuations in transient active networks. Soft Matter, 2019, 15, 3520-3526.		1.2	3
187	Active Brownian filaments with hydrodynamic interactions: conformations and dynamic Matter, 2019, 15, 3957-3969.	s. Soft	1.2	38
188	Biophysics in oviduct: Planar cell polarity, cilia, epithelial fold and tube morphogenesis, e Biophysics and Physicobiology, 2019, 16, 89-107.	gg dynamics.	0.5	34
189	The matrix environmental and cell mechanical properties regulate cell migration and cor the invasive phenotype of cancer cells. Reports on Progress in Physics, 2019, 82, 06460	itribute to 2.	8.1	157
190	Topological states in chiral active matter: Dynamic blue phases and active half-skyrmion Chemical Physics, 2019, 150, 064909.	s. Journal of	1.2	24
191	Nonlinear and nonlocal elasticity in coarse-grained differential-tension models of epithel Review E, 2019, 99, 022411.	ia. Physical	0.8	10
192	Spontaneous rotation can stabilise ordered chiral active fluids. Nature Communications	, 2019, 10, 920.	5.8	23
193	Power functional theory for active Brownian particles: General formulation and power su Journal of Chemical Physics, 2019, 150, 074112.	ım rules.	1.2	19
194	Form and function of F-actin during biomineralization revealed from live experiments on foraminifera. Proceedings of the National Academy of Sciences of the United States of A 116, 4111-4116.	america, 2019,	3.3	44
195	Active Brownian ring polymers. Journal of Chemical Physics, 2019, 150, 064913.		1.2	33
196	Encapsulation of the cytoskeleton: towards mimicking the mechanics of a cell. Soft Mat 8425-8436.	ter, 2019, 15,	1.2	71
197	Cooperative ordering of treadmilling filaments in cytoskeletal networks of FtsZ and its c ZapA. Nature Communications, 2019, 10, 5744.	rosslinker	5.8	49
198	Shaping the zebrafish myotome by intertissue friction and active stress. Proceedings of Academy of Sciences of the United States of America, 2019, 116, 25430-25439.	the National	3.3	53
199	Rheology of active polar emulsions: from linear to unidirectional and inviscid flow, and inviscosity. Soft Matter, 2019, 15, 8251-8265.	ntermittent	1.2	21

#	Article		CITATIONS
200	Quantitative Assessment of the Toner and Tu Theory of Polar Flocks. Physical Review Letters, 2019, 123, 218001.	2.9	31
201	Oriented Active Solids. Physical Review Letters, 2019, 123, 238001.	2.9	21
202	Tractionless Self-Propulsion of Active Drops. Physical Review Letters, 2019, 123, 248006.	2.9	18
203	Active gel segment behaving as an active particle. Physical Review E, 2019, 100, 062403.	0.8	4
204	Dynamically asymmetric and bicontinuous morphologies in active emulsions. International Journal of Modern Physics C, 2019, 30, 1941002.	0.8	4
205	Stress-dependent amplification of active forces in nonlinear elastic media. Soft Matter, 2019, 15, 331-338.	1.2	12
206	Unveiling the Active Nature of Living-Membrane Fluctuations and Mechanics. Annual Review of Condensed Matter Physics, 2019, 10, 213-232.	5.2	37
207	Material approaches to active tissue mechanics. Nature Reviews Materials, 2019, 4, 23-44.	23.3	103
208	From Stochastic Thermodynamics to Thermodynamic Inference. Annual Review of Condensed Matter Physics, 2019, 10, 171-192.	5.2	127
209	Active wetting of epithelial tissues. Nature Physics, 2019, 15, 79-88.	6.5	148
210	Physical Models of Collective Cell Migration. Annual Review of Condensed Matter Physics, 2020, 11, 77-101.	5.2	214
211	Microfluidic control over topological states in channel-confined nematic flows. Nature Communications, 2020, 11, 59.	5.8	30
212	"Stochastic Resonance―for Individual Cells. Biophysical Journal, 2020, 118, 533-534.	0.2	1
213	The Actin Cytoskeleton as an Active Adaptive Material. Annual Review of Condensed Matter Physics, 2020, 11, 421-439.	5.2	86
214	Dynamics of active swelling in contractile polymer gels. Journal of the Mechanics and Physics of Solids, 2020, 135, 103807.	2.3	8
215	Nonequilibrium Biophysical Processes Influence the Large-Scale Architecture of the Cell Nucleus. Biophysical Journal, 2020, 118, 2229-2244.	0.2	22
216	Supersonic kinks and solitons in active solids. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190115.	1.6	4
217	A theoretical model of collective cell polarization and alignment. Journal of the Mechanics and Physics of Solids, 2020, 137, 103860.	2.3	25

ARTICLE IF CITATIONS # A continuum model for the growth of dendritic actin networks. Proceedings of the Royal Society A: 218 1.0 0 Mathematical, Physical and Engineering Sciences, 2020, 476, 20200464. Classifying and characterizing active materials. SynthÃ^{se}, 2021, 199, 2007-2026. 0.6 Soft channel formation and symmetry breaking in exotic active emulsions. Scientific Reports, 2020, 10, 220 1.6 11 15936. Shear-Induced Gelation of Self-Yielding Active Networks. Physical Review Letters, 2020, 125, 178003. Dynamics of active nematic defects on the surface of a sphere. Physical Review E, 2020, 102, 012607. 222 0.8 17 Wrinkling Instability in 3D Active Nematics. Nano Letters, 2020, 20, 6281-6288. 4.5 24 Controlling the Microstructure and Phase Behavior of Confined Soft Colloids by Active Interaction 224 2.9 17 Switching. Physical Review Letters, 2020, 125, 078001. Active inter-cellular forces in collective cell motility. Journal of the Royal Society Interface, 2020, 17, 1.5 14 20200312. 226 The physics of active polymers and filaments. Journal of Chemical Physics, 2020, 153, 040901. 1.2 86 Continuum elastic models for force transmission in biopolymer gels. Soft Matter, 2020, 16, 1.2 10781-10808. Scalar Active Mixtures: The Nonreciprocal Cahn-Hilliard Model. Physical Review X, 2020, 10, . 228 2.8 59 Collective chemotaxis of active nematic droplets. Physical Review E, 2020, 102, 020601. Quantum Dot-Driven Stabilization of Liquid-Crystalline Blue Phases. Frontiers in Physics, 2020, 8, . 230 1.0 11 Pattern Formation and Defect Ordering in Active Chiral Nematics. Physical Review Letters, 2020, 125, 098002 Non-Hermitian Band Topology and Skin Modes in Active Elastic Media. Physical Review Letters, 2020, 232 2.9 107 125, 118001. Universal Thinning of Liquid Filaments under Dominant Surface Forces. Physical Review Letters, 2020, 125, 114502. Active microfluidic transport in two-dimensional handlebodies. Soft Matter, 2020, 16, 9230-9241. 234 1.2 23 Chiral Active Hexatics: Giant Number Fluctuations, Waves, and Destruction of Order. Physical Review Letters, 2020, 125, 238005.

#	Article	IF	CITATIONS
236	Spontaneous deformation and fission of oil droplets on an aqueous surfactant solution. Physical Review E, 2020, 102, 042603.	0.8	8
237	Underdamped active Brownian heat engine. Physical Review E, 2020, 102, 060101.	0.8	27
238	Active, self-motile, and driven emulsions. Current Opinion in Colloid and Interface Science, 2020, 49, 16-26.	3.4	12
239	Shape and size changes of adherent elastic epithelia. Soft Matter, 2020, 16, 5282-5293.	1.2	1
240	Hydrodynamics of polymers in an active bath. Physical Review E, 2020, 101, 052612.	0.8	19
241	Dynamic heterogeneity and non-Gaussian statistics for ganglioside GM1s and acetylcholine receptors on live cell membrane. Molecular Biology of the Cell, 2020, 31, 1380-1391.	0.9	3
242	Thin-film modeling of resting and moving active droplets. Physical Review E, 2020, 101, 062802.	0.8	14
243	Mechanics of the cellular actin cortex: From signalling to shape change. Current Opinion in Cell Biology, 2020, 66, 69-78.	2.6	77
244	Gap statistics of two interacting run and tumble particles in one dimension. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 345003.	0.7	9
245	Treadmilling stability of a one-dimensional actin growth model. International Journal of Solids and Structures, 2020, 198, 87-98.	1.3	7
246	Dense active matter model of motion patterns in confluent cell monolayers. Nature Communications, 2020, 11, 1405.	5.8	86
247	The 2020 motile active matter roadmap. Journal of Physics Condensed Matter, 2020, 32, 193001.	0.7	242
248	How many ways a cell can move: the modes of self-propulsion of an active drop. Soft Matter, 2020, 16, 3106-3124.	1.2	12
249	Effective temperature scaled dynamics of a flexible polymer in an active bath. Molecular Physics, 2020, 118, .	0.8	5
250	The Poisson Ratio of the Cellular Actin Cortex Is Frequency Dependent. Biophysical Journal, 2020, 118, 1968-1976.	0.2	28
251	Universal scaling of active nematic turbulence. Nature Physics, 2020, 16, 682-688.	6.5	85
252	Computational models for activeÂmatter. Nature Reviews Physics, 2020, 2, 181-199.	11.9	192
253	Conformation and dynamics of a self-avoiding active flexible polymer. Physical Review E, 2020, 101, 030501.	0.8	34

#	Article	IF	CITATIONS
254	Cytoskeleton polarity is essential in determining orientational order in basal bodies of multi-ciliated cells. PLoS Computational Biology, 2020, 16, e1007649.	1.5	5
255	Active forces shape the metaphase spindle through a mechanical instability. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16154-16159.	3.3	22
256	Shaping Organs: Shared Structural Principles Across Kingdoms. Annual Review of Cell and Developmental Biology, 2020, 36, 385-410.	4.0	35
258	Spontaneous helical flows in active nematics lying on a cylindrical surface. Physical Review E, 2020, 101, 022701.	0.8	14
259	Odd elasticity. Nature Physics, 2020, 16, 475-480.	6.5	142
260	Motility and morphodynamics of confined cells. Physical Review E, 2020, 101, 022404.	0.8	13
261	Contrastive factors of activity and crowding on conformational properties of a flexible polymer. Chemical Physics Letters, 2020, 745, 137213.	1.2	1
262	The stiffness of living tissues and its implications for tissue engineering. Nature Reviews Materials, 2020, 5, 351-370.	23.3	756
263	Active nematics with anisotropic friction: the decisive role of the flow aligning parameter. Soft Matter, 2020, 16, 2065-2074.	1.2	23
264	Steady-state distributions and nonsteady dynamics in nonequilibrium systems. Physical Review E, 2020, 101, 042107.	0.8	7
265	Universality of dissipative self-assembly from quantum dots to human cells. Nature Physics, 2020, 16, 795-801.	6.5	39
266	Quantifying the non-equilibrium activity of an active colloid. Soft Matter, 2020, 16, 7202-7209.	1.2	4
267	Mechanics of active gel spheres under bulk contraction. International Journal of Mechanical Sciences, 2021, 193, 106147.	3.6	8
268	Machine learning forecasting of active nematics. Soft Matter, 2021, 17, 738-747.	1.2	22
269	The Actomyosin Cortex of Cells: A Thin Film of Active Matter. Journal of the Indian Institute of Science, 2021, 101, 97-112.	0.9	0
270	Rayleigh–Plateau instability of anisotropic interfaces. Part 1. An analytical and numerical study of fluid interfaces. Journal of Fluid Mechanics, 2021, 910, .	1.4	10
271	Onsager's variational principle in active soft matter. Soft Matter, 2021, 17, 3634-3653.	1.2	31
273	Maxwell-Boltzmann velocity distribution for noninteracting active matter. Physical Review E, 2021, 103, 012601.	0.8	14

		CITATION [Report	
#	Article		IF	CITATIONS
274	Supramolecular gelation controlled by an iodine clock. Soft Matter, 2021, 17, 1189-11	93.	1.2	12
275	Fluctuations can induce local nematic order and extensile stress in monolayers of moti Matter, 2021, 17, 3068-3073.	le cells. Soft	1.2	9
276	Cell Junction Mechanics beyond the Bounds of Adhesion and Tension. Developmental (202-212.	Cell, 2021, 56,	3.1	33
277	Fingering instability in spreading epithelial monolayers: roles of cell polarisation, substr and contractile stresses. Soft Matter, 2021, 17, 8276-8290.	ate friction	1.2	10
278	Continuum Theory of Active Phase Separation in Cellular Aggregates. Physical Review L 126, 018102.	.etters, 2021,	2.9	18
280	Defects in Active Nematics – Algorithms for Identification and Tracking. Computatio Applied Mathematics, 2021, 21, 683-692.	nal Methods in	0.4	9
281	Viscoelastic control of spatiotemporal order in bacterial active matter. Nature, 2021, 5	90, 80-84.	13.7	83
283	Autonomous materials systems from active liquid crystals. Nature Reviews Materials, 2	021, 6, 437-453.	23.3	53
284	Active Viscoelasticity of Odd Materials. Physical Review Letters, 2021, 126, 138001.		2.9	28
285	Emergence of self-organizational patterning at the mesoscopic scale. Developmental C 719-721.	ell, 2021, 56,	3.1	3
286	Learning active nematics one step at a time. Proceedings of the National Academy of S United States of America, 2021, 118, .	ciences of the	3.3	4
287	Peristalsis by pulses of activity. Physical Review E, 2021, 103, 042411.		0.8	2
288	Collective migrations in an epithelial–cancerous cell monolayer. Acta Mechanica Sini 2021, 37, 773-784.	ca/Lixue Xuebao,	1.5	3
289	Learning physically consistent differential equation models from data using group spar Review E, 2021, 103, 042310.	sity. Physical	0.8	12
290	Activity pulses induce spontaneous flow reversals in viscoelastic environments. Journal Society Interface, 2021, 18, 20210100.	of the Royal	1.5	5
291	Modelling and computation of liquid crystals. Acta Numerica, 2021, 30, 765-851.		6.3	23
292	Modeling cells spreading, motility, and receptors dynamics: a general framework. Acta Sinica/Lixue Xuebao, 2021, 37, 1013-1030.	Mechanica	1.5	10
293	Formation and propagation of solitonlike defect clusters in confined active nematics w anchoring. Physical Review Research, 2021, 3, .	ith chiral	1.3	6

#	Article	IF	CITATIONS
294	Theory and simulation for equilibrium glassy dynamics in cellular Potts model of confluent biological tissue. Physical Review E, 2021, 103, 062403.	0.8	10
295	Chemo-mechanical model of a cell as a stochastic active gel. Journal of the Mechanics and Physics of Solids, 2021, 151, 104381.	2.3	9
296	Physical bioenergetics: Energy fluxes, budgets, and constraints in cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	52
297	Layered Chiral Active Matter: Beyond Odd Elasticity. Physical Review Letters, 2021, 126, 248001.	2.9	14
298	Schrödinger's What Is Life? at 75. Cell Systems, 2021, 12, 465-476.	2.9	4
299	Lab-on-a-chip based mechanical actuators and sensors for single-cell and organoid culture studies. Journal of Applied Physics, 2021, 129, 210905.	1.1	7
300	Thermodynamics of Active Field Theories: Energetic Cost of Coupling to Reservoirs. Physical Review X, 2021, 11, .	2.8	20
301	Tuning the Properties of Active Microtubule Networks by Depletion Forces. Langmuir, 2021, 37, 7919-7927.	1.6	5
302	Active flows and deformable surfaces in development. Seminars in Cell and Developmental Biology, 2021, 120, 44-52.	2.3	12
303	Topology Protects Chiral Edge Currents in Stochastic Systems. Physical Review X, 2021, 11, .	2.8	9
304	Bio-chemo-mechanical theory of active shells. Journal of the Mechanics and Physics of Solids, 2021, 152, 104419.	2.3	18
305	Mechanical Patterning in Animal Morphogenesis. Annual Review of Cell and Developmental Biology, 2021, 37, 469-493.	4.0	14
307	A two species micro–macro model of wormlike micellar solutions and its maximum entropy closure approximations: An energetic variational approach. Journal of Non-Newtonian Fluid Mechanics, 2021, 293, 104559.	1.0	9
309	Odd Viscosity in Active Matter: Microscopic Origin and 3D Effects. Physical Review Letters, 2021, 127, 048001.	2.9	40
312	Optogenetic control of intracellular flows and cell migration: A comprehensive mathematical analysis with a minimal active gel model. Physical Review E, 2021, 104, 024406.	0.8	3
313	Dissecting Organismal Morphogenesis by Bridging Genetics and Biophysics. Annual Review of Genetics, 2021, 55, 209-233.	3.2	5
314	Fuelâ€Driven and Enzymeâ€Regulated Redoxâ€Responsive Supramolecular Hydrogels. Angewandte Chemie - International Edition, 2021, 60, 21062-21068.	7.2	46
315	Brennstoffbetriebene und enzymregulierte redoxresponsive supramolekulare Hydrogele. Angewandte Chemie, 2021, 133, 21231-21238.	1.6	5

#	Article	IF	CITATIONS
316	Behavior of chiral active nematics confined to nanoscopic circular region. European Physical Journal E, 2021, 44, 112.	0.7	3
317	Diversity of non-equilibrium patterns and emergence of activity in confined electrohydrodynamically driven liquids. Science Advances, 2021, 7, eabh1642.	4.7	13
318	A C++ expression system for partial differential equations enables generic simulations of biological hydrodynamics. European Physical Journal E, 2021, 44, 117.	0.7	4
319	Local thermodynamics govern formation and dissolution of <i>Caenorhabditis</i> elegans P granule condensates. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	64
320	Nonlinear rheology of cellular networks. Cells and Development, 2021, 168, 203746.	0.7	19
321	Inertia Drives a Flocking Phase Transition in Viscous Active Fluids. Physical Review X, 2021, 11, .	2.8	10
322	Scaling Regimes of Active Turbulence with External Dissipation. Physical Review X, 2021, 11, .	2.8	18
323	Integrated biology of Physarum polycephalum: cell biology, biophysics, and behavior of plasmodial networks. , 2022, , 453-492.		Ο
324	Rayleigh–Plateau instability of anisotropic interfaces. Part 2. Limited instability of elastic interfaces. Journal of Fluid Mechanics, 2021, 910, .	1.4	6
325	Computational Modeling of Collective Cell Migration: Mechanical and Biochemical Aspects. Advances in Experimental Medicine and Biology, 2019, 1146, 1-11.	0.8	7
326	Continuum Models of Collective Cell Migration. Advances in Experimental Medicine and Biology, 2019, 1146, 45-66.	0.8	24
327	A Model of Integrin and VEGF Receptors Recruitment on Endothelial Cells. Advanced Structured Materials, 2020, , 163-198.	0.3	2
328	Apical Cytoskeletons Help Define the Barrier Functions of Epithelial Cell Sheets in Biological Systems. , 2020, , 31-38.		1
330	Selection mechanism at the onset of active turbulence. Nature Physics, 2019, 15, 362-366.	6.5	66
331	Scaling behaviour in steady-state contracting actomyosin networks. Nature Physics, 2019, 15, 509-516.	6.5	43
332	Collective forces in scalar active matter. Soft Matter, 2020, 16, 2652-2663.	1.2	37
333	Drops and fibers — how biomolecular condensates and cytoskeletal filaments influence each other. Emerging Topics in Life Sciences, 2020, 4, 247-261.	1.1	54
334	Chromatin as an active polymeric material. Emerging Topics in Life Sciences, 2020, 4, 111-118.	1.1	1

#	Article	IF	CITATIONS
335	Design of nematic liquid crystals to control microscale dynamics. Liquid Crystals Reviews, 2020, 8, 59-129.	1.1	22
336	Cortical contraction drives the 3D patterning of epithelial cell surfaces. Journal of Cell Biology, 2020, 219, .	2.3	24
337	Getting around the cell: physical transport in the intracellular world. Physical Biology, 2020, 17, 061003.	0.8	71
338	Designer substrates and devices for mechanobiology study. Journal of Semiconductors, 2020, 41, 041607.	2.0	2
344	Active matter in a viscoelastic environment. Physical Review Fluids, 2020, 5, .	1.0	14
345	Swimmer Suspensions on Substrates: Anomalous Stability and Long-Range Order. Physical Review Letters, 2020, 124, 028002.	2.9	25
346	Dynamics and escape of active particles in a harmonic trap. Physical Review Research, 2020, 2, .	1.3	29
347	Assembly and positioning of actomyosin rings by contractility and planar cell polarity. ELife, 2015, 4, e09206.	2.8	22
348	Active contraction of microtubule networks. ELife, 2015, 4, .	2.8	112
349	Shear-induced damped oscillations in an epithelium depend on actomyosin contraction and E-cadherin cell adhesion. ELife, 2018, 7, .	2.8	19
350	Odd elasticity realized by piezoelectric material with linear feedback. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	6
351	Multi-particle collision dynamics with a non-ideal equation of state. II. Collective dynamics of elongated squirmer rods. Journal of Chemical Physics, 2021, 155, 134904.	1.2	6
352	A Three-Dimensional Numerical Model of an Active Cell Cortex in the Viscous Limit. Frontiers in Physics, 2021, 9, .	1.0	9
353	Realization of active metamaterials with odd micropolar elasticity. Nature Communications, 2021, 12, 5935.	5.8	50
361	Mathematical models with frills. ELife, 2019, 8, .	2.8	0
364	Simulation of microswimmer hydrodynamics with multiparticle collision dynamics*. Chinese Physics B, 2020, 29, 074701.	0.7	9
366	Permeation Instabilities in Active Polar Gels. Physical Review Letters, 2021, 127, 188001.	2.9	6
367	Physics of liquid crystals in cell biology. Trends in Cell Biology, 2022, 32, 140-150.	3.6	24

	C	ITATION REPORT	
#	Article	IF	CITATIONS
368	Coupling Turing stripes to active flows. Soft Matter, 2021, 17, 10716-10722.	1.2	6
369	Multi-scale Integration of Forces during Morphogenesis: Quantification and Mechanical Modeling Approaches. Seibutsu Butsuri, 2020, 60, 037-043.	0.0	0
370	Integrative Models for TGF-β Signaling and Extracellular Matrix. Biology of Extracellular Matrix, 2020, , 209-225.	0.3	2
372	Active Turbulence. Annual Review of Condensed Matter Physics, 2022, 13, 143-170.	5.2	106
375	DNA-Controlled Spatiotemporal Patterning of a Cytoskeletal Active Gel. Journal of the American Chemical Society, 2021, 143, 20022-20026.	6.6	10
376	Irreversibility and Biased Ensembles in Active Matter: Insights from Stochastic Thermodynamics. Annual Review of Condensed Matter Physics, 2022, 13, 215-238.	5.2	43
377	Turbulence-induced clustering in compressible active fluids. Soft Matter, 2021, 17, 10447-10457.	1.2	4
378	How surrogates for cortical forces determine cell shape. International Journal of Non-Linear Mechanics, 2022, 140, 103907.	1.4	3
379	Front speed and pattern selection of a propagating chemical front in an active fluid. Physical Review E, 2022, 105, 014602.	0.8	2
380	Collective durotaxis of cohesive cell clusters on a stiffness gradient. European Physical Journal E, 2022, 45, 7.	0.7	6
381	Rigidity transitions in development and disease. Trends in Cell Biology, 2022, 32, 433-444.	3.6	26
382	Unifying polar and nematic active matter: emergence and co-existence of half-integer and full-integer topological defects. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 094002.	0.7	9
383	Active nematics across scales from cytoskeleton organization to tissue morphogenesis. Current Opinion in Genetics and Development, 2022, 73, 101897.	1.5	18
384	Substrate elasticity and surface tension mediate the spontaneous rotation of active chiral droplet on soft substrates. Journal of the Mechanics and Physics of Solids, 2022, 161, 104788.	2.3	1
385	A gelation transition enables the self-organization of bipolar metaphase spindles. Nature Physics, 2022, 18, 323-331.	6.5	6
386	Stochastic Hydrodynamics of Complex Fluids: Discretisation and Entropy Production. Entropy, 2022, 24, 254.	1.1	7
387	Symmetry, Thermodynamics, and Topology in Active Matter. Physical Review X, 2022, 12, .	2.8	59
388	Dynamics and Stability of the Contractile Actomyosin Ring in the Cell. Physical Review Letters, 2022, 128, 068102.	2.9	2

CITATION REPORT ARTICLE IF CITATIONS A model of actin-driven endocytosis explains differences of endocytic motility in budding and fission 0.9 3 yeast. Molecular Biology of the Cell, 2022, 33, mbcE21070362. Nonequilibrium Green-Kubo relations for hydrodynamic transport from an equilibrium-like 1.3 fluctuation-response equality. Physical Review Résearch, 2021, 3, . Geometric constraints alter the emergent dynamics of an active particle. Physical Review Research, 3 1.3 2022, 4, . Asymptotic stability of contraction-driven cell motion. Physical Review E, 2022, 105, 024403. 0.8 Nano/Micromotors in Active Matter. Micromachines, 2022, 13, 307. 1.4 5 Activity-induced phase transition in a quantum many-body system. Physical Review Research, 2022, 4, . 1.3 Sticking around: Cell adhesion patterning for energy minimization and substrate mechanosensing. 0.2 8 Biophysical Journal, 2022, 121, 1777-1786. Active T1 transitions in cellular networks. European Physical Journal E, 2022, 45, 29. Filopodia rotate and coil by actively generating twist in their actin shaft. Nature Communications, 5.8 21 2022, 13, 1636. Appreciating the role of cell shape changes in the mechanobiology of epithelial tissues. Biophysics 1.0 Reviews, 2022, 3, . Active elastocapillarity in soft solids with negative surface tension. Science Advances, 2022, 8, 4.78 eabk3079. A viscous active shell theory of the cell cortex. Journal of the Mechanics and Physics of Solids, 2022, 2.3 164, 104876. Unified description of compressive modulus revealing multiscale mechanics of living cells. Physical 1.3 5 Review Research, 2021, 3, Active forces modulate collective behaviour and cellular organization. Comptes Rendus - Biologies, 0.1 2021, 344, 325-335. Activity-induced instabilities of brain organoids. European Physical Journal E, 2021, 44, 147. 0.7 4 Convergence Analysis of the Variational Operator Splitting Scheme for a Reaction-Diffusion System with Detailed Balance. SIAM Journal on Numerical Analysis, 2022, 60, 781-803. 1.1 Crosslinking and depletion determine spatial instabilities in cytoskeletal active matter. Soft Matter, 1.2 6 2022, 18, 3793-3800. Quadrupolar active stress induces exotic patterns of defect motion in compressible active nematics.

1.2

Soft Matter, 2022, , .

#

389

391

393

395

397

399

400

404

406

#	Article	IF	CITATIONS
410	Some Recent Advances in Energetic Variational Approaches. Entropy, 2022, 24, 721.	1.1	4
411	Actin Turnover Required for Adhesion-Independent Bleb Migration. Fluids, 2022, 7, 173.	0.8	0
412	Curvature strains as a global orchestrator of morphogenesis. Physical Review Research, 2022, 4, .	1.3	1
413	Mechanical activation drives tenogenic differentiation of human mesenchymal stem cells in aligned dense collagen hydrogels. Biomaterials, 2022, 286, 121606.	5.7	19
414	Bridging microscopic cell dynamics to nematohydrodynamics of cell monolayers. Soft Matter, 0, , .	1.2	1
415	Active-gel theory for multicellular migration of polar cells in the extra-cellular matrix. New Journal of Physics, 2022, 24, 073001.	1.2	1
416	Stability selection enables robust learning of differential equations from limited noisy data. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	4
417	Modeling Receptor Motility along Advecting Lipid Membranes. Membranes, 2022, 12, 652.	1.4	1
418	Computational approaches for simulating luminogenesis. Seminars in Cell and Developmental Biology, 2022, 131, 173-185.	2.3	4
420	Hierarchical Biomechanics: Concepts, Bone as Prominent Example, and Perspectives Beyond. Applied Mechanics Reviews, 2022, 74, .	4.5	6
421	Modeling Active Non-Markovian Oscillations. Physical Review Letters, 2022, 129, .	2.9	5
422	Nematic order condensation and topological defects in inertial active nematics. Physical Review E, 2022, 106, .	0.8	3
423	On continuum modeling of cell aggregation phenomena. Journal of the Mechanics and Physics of Solids, 2022, 167, 105004.	2.3	2
424	Geometric trade-off between contractile force and viscous drag determines the actomyosin-based motility of a cell-sized droplet. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
425	General solutions of linear poro-viscoelastic materials in spherical coordinates. Journal of Fluid Mechanics, 2022, 946, .	1.4	0
427	A Second-Order Accurate, Operator Splitting Scheme for Reaction-Diffusion Systems in an Energetic Variational Formulation. SIAM Journal of Scientific Computing, 2022, 44, A2276-A2301.	1.3	7
428	Selective and collective actuation in active solids. Nature Physics, 2022, 18, 1234-1239.	6.5	34
429	Active gel: A continuum physics perspective. , 2022, , 287-309.		0

	CITATION	KEPORT	
#	Article	IF	Citations
430	Variational methods and deep Ritz method for active elastic solids. Soft Matter, 2022, 18, 6015-6031.	1.2	9
431	Enhanced short time peak in four-point dynamic susceptibility in dense active glass-forming liquids. Soft Matter, 2022, 18, 7309-7316.	1.2	1
432	Curvature-controlled geometrical lensing behavior in self-propelled colloidal particle systems. Soft Matter, 0, , .	1.2	5
433	Theory of nematic and polar active fluid surfaces. Physical Review Research, 2022, 4, .	1.3	11
434	Active Nematic Flows over Curved Surfaces. Physical Review Letters, 2022, 129, .	2.9	14
435	Adhesion regulation and the control of cellular rearrangements: From emulsions to developing tissues. Frontiers in Physics, 0, 10, .	1.0	1
437	Geometry Adaptation of Protrusion and Polarity Dynamics in Confined Cell Migration. Physical Review X, 2022, 12, .	2.8	6
440	Emergence of traveling waves and their stability in a free boundary model of cell motility. Transactions of the American Mathematical Society, 2023, 376, 1799-1844.	0.5	1
441	Network model of active elastic shells swollen by hydrostatic pressure. Soft Matter, 2022, 18, 7981-7989.	1.2	2
443	Self-organization in amoeboid motility. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	6
444	Active nematic gel with quenched disorder. Physical Review E, 2022, 106, .	0.8	0
445	Competing instabilities reveal how to rationally design and control active crosslinked gels. Nature Communications, 2022, 13, .	5.8	5
446	Pattern formation and the mechanics of a motor-driven filamentous system confined by rigid membranes. Physical Review Research, 2022, 4, .	1.3	3
447	Incompressible Polar Active Fluids with Quenched Random Field Disorder in Dimensions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>d</mml:mi><mml:mo>></mml:mo><mml:mn>2</mml:mn>Physical Review Letters, 2022, 129, .</mml:mrow></mml:math 	nrow ^{2,9} /mn	nl:math>.
448	Facilitated dynamics of an active polymer in 2D crowded environments with obstacles. Soft Matter, 2022, 18, 9263-9272.	1.2	5
449	Broken living layers: Dislocations in active smectic liquid crystals. Physical Review E, 2022, 106, .	0.8	2
450	Nonequilibrium dynamical structure factor of a dilute suspension of active particles in a viscoelastic fluid. Physical Review E, 2022, 106, .	0.8	0
451	Active boundary layers in confined active nematics. Nature Communications, 2022, 13, .	5.8	15

#	Article	IF	CITATIONS
452	Active turbulence and spontaneous phase separation in inhomogeneous extensile active gels. Soft Matter, 0, , .	1.2	3
453	On the origin of universal cell shape variability in confluent epithelial monolayers. ELife, 0, 11, .	2.8	7
454	Attachment and detachment of cortical myosin regulates cell junction exchange during cell rearrangement in the Drosophila wing epithelium. Current Biology, 2023, 33, 263-275.e4.	1.8	7
455	Polymer-chain configurations in active and passive baths. Physical Review E, 2022, 106, .	0.8	0
456	Topological defect-mediated morphodynamics of active–active interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
458	Cell size and actin architecture determine force generation in optogenetically activated cells. Biophysical Journal, 2023, 122, 684-696.	0.2	6
459	Heat fluctuations in chemically active systems. Physical Review E, 2023, 107, .	0.8	2
460	Vibration induced by active nematics. Journal of Fluid Mechanics, 2023, 954, .	1.4	0
461	Discontinuous Tension-Controlled Transition between Collective Actuations in Active Solids. Physical Review Letters, 2023, 130, .	2.9	2
462	Fluctuations of entropy production of a run-and-tumble particle. Physical Review E, 2023, 107, .	0.8	4
463	Positive, negative and controlled durotaxis. Soft Matter, 2023, 19, 2993-3001.	1.2	4
464	Emergent organization and polarization due to active fluctuations. Physical Review Research, 2023, 5, .	1.3	4
465	Orientational ordering of active nematics confined to a 2D nanoscopic ring-shaped cavity. Journal of Molecular Liquids, 2023, 377, 121513.	2.3	1
467	Structure and Rheology in Vertex Models under Cell-Shape-Dependent Active Stresses. Physical Review Letters, 2023, 130, .	2.9	3
468	Two-temperature activity induces liquid-crystal phases inaccessible in equilibrium. Physical Review E, 2023, 107, .	0.8	5
469	Morphodynamics of active nematic fluid surfaces. Journal of Fluid Mechanics, 2023, 957, .	1.4	5
470	Two-dimensional long-range uniaxial order in three-dimensional active fluids. Nature Physics, 2023, 19, 733-740.	6.5	1
471	Collective rotational motion of freely expanding T84 epithelial cell colonies. Journal of the Royal Society Interface, 2023, 20, .	1.5	3

#	Article	IF	CITATIONS
472	The effect of futile chemical cycles on chemical-to-mechanical energy conversion in interacting motor protein systems. Physica A: Statistical Mechanics and Its Applications, 2023, 615, 128608.	1.2	0
473	The crucial role of adhesion in the transmigration of active droplets through interstitial orifices. Nature Communications, 2023, 14, .	5.8	4
474	Machine learning phases in swarming systems. Machine Learning: Science and Technology, 2023, 4, 015028.	2.4	1
475	Crystallization and ordered self-organization of soft matter at droplet interface. Scientia Sinica Chimica, 2023, 53, 734-746.	0.2	0
477	Active Nematics: Mesoscale Turbulence and Self-propelled Topological Defects. , 2023, , 88-106.		0
478	Active Transport in Complex Environments. , 2023, , 151-218.		2
479	What is â€~Active Matter'?. , 2023, , 1-31.		0
481	Generic stress rectification in nonlinear elastic media. Soft Matter, 2023, 19, 2970-2976.	1.2	1
482	Active viscoelastic nematics with partial degree of order. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2023, 479, .	1.0	0