The TREAT-NMD DMD Global Database: Analysis of Mo Dystrophy Mutations

Human Mutation 36, 395-402 DOI: 10.1002/humu.22758

Citation Report

#	Article	IF	CITATIONS
1	Advances in genetic therapeutic strategies for Duchenne muscular dystrophy. Experimental Physiology, 2015, 100, 1458-1467.	2.0	61
2	An update on RNA-targeting therapies for neuromuscular disorders. Current Opinion in Neurology, 2015, 28, 515-521.	3.6	18
3	What can Duchenne Connect teach us about treating Duchenne muscular dystrophy?. Current Opinion in Neurology, 2015, 28, 535-541.	3.6	6
4	Night Activity Reduction is a Signature Physiological Biomarker for Duchenne Muscular Dystrophy Dogs. Journal of Neuromuscular Diseases, 2015, 2, 397-407.	2.6	5
5	Looking Forward to New Therapies: A Personal Perspective on the Translational Landscape for Muscular Dystrophies. Journal of Neuromuscular Diseases, 2015, 2, S83-S87.	2.6	1
6	DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations. PLoS ONE, 2015, 10, e0135189.	2.5	109
7	Exon skipping therapy for Duchenne muscular dystrophy. Advanced Drug Delivery Reviews, 2015, 87, 104-107.	13.7	144
8	The Pathogenesis and Therapy of Muscular Dystrophies. Annual Review of Genomics and Human Genetics, 2015, 16, 281-308.	6.2	240
9	The first exon duplication mouse model of Duchenne muscular dystrophy: A tool for therapeutic development. Neuromuscular Disorders, 2015, 25, 827-834.	0.6	27
10	Recent advances in the management of Duchenne muscular dystrophy. Archives of Disease in Childhood, 2015, 100, 1173-1177.	1.9	44
11	Genetic landscape remodelling in spinocerebellar ataxias: the influence of next-generation sequencing. Journal of Neurology, 2015, 262, 2382-2395.	3.6	22
12	Medical genetics and genomic medicine in Greece: achievements and challenges. Molecular Genetics & Genomic Medicine, 2015, 3, 383-390.	1.2	5
13	Disease-proportional proteasomal degradation of missense dystrophins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12414-12419.	7.1	21
14	Can Human Pluripotent Stem Cell-Derived Cardiomyocytes Advance Understanding of Muscular Dystrophies?. Journal of Neuromuscular Diseases, 2016, 3, 309-332.	2.6	13
15	Current and emerging treatment strategies for Duchenne muscular dystrophy. Neuropsychiatric Disease and Treatment, 2016, Volume 12, 1795-1807.	2.2	99
16	Duchenne muscular dystrophy in the Western Cape, South Africa: Where do we come from and where are we going?. South African Medical Journal, 2016, 106, 67.	0.6	6
17	Gene Editing for Duchenne Muscular Dystrophy Using the CRISPR/Cas9 Technology: The Importance of Fine-tuning the Approach. Molecular Therapy, 2016, 24, 1888-1889.	8.2	6
18	The lack of the Celf2a splicing factor converts a Duchenne genotype into a Becker phenotype. Nature Communications, 2016, 7, 10488.	12.8	19

#	Article	IF	CITATIONS
19	Overview of existing initiatives to develop and improve access and data sharing in rare disease registries and biobanks worldwide. Expert Opinion on Orphan Drugs, 2016, 4, 729-739.	0.8	6
20	The emerging role of viral vectors as vehicles for DMD gene editing. Genome Medicine, 2016, 8, 59.	8.2	18
21	How to Identify Pathogenic Mutations among All Those Variations: Variant Annotation and Filtration in the Genome Sequencing Era. Human Mutation, 2016, 37, 1272-1282.	2.5	28
22	Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress. Free Radical Biology and Medicine, 2016, 99, 308-322.	2.9	27
23	A dynamic trinucleotide repeat (TNR) expansion in the DMD gene. Molecular and Cellular Probes, 2016, 30, 254-260.	2.1	3
24	Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells. Scientific Reports, 2016, 6, 37051.	3.3	60
25	Stakeholder cooperation to overcome challenges in orphan medicine development: the example of Duchenne muscular dystrophy. Lancet Neurology, The, 2016, 15, 882-890.	10.2	77
26	The importance of genetic diagnosis for Duchenne muscular dystrophy. Journal of Medical Genetics, 2016, 53, 145-151.	3.2	242
27	Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Research, 2016, 44, 1449-1470.	14.5	63
29	A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells. Cell Stem Cell, 2016, 18, 533-540.	11.1	307
30	Efficient Restoration of the Dystrophin Gene Reading Frame and Protein Structure in DMD Myoblasts Using the CinDel Method. Molecular Therapy - Nucleic Acids, 2016, 5, e283.	5.1	72
31	Dystrophin gene replacement and gene repair therapy for Duchenne muscular dystrophy in 2016. Human Gene Therapy Clinical Development, 0, , .	3.1	0
32	Pathoproteomic profiling of the skeletal muscle matrisome in dystrophinopathy associated myofibrosis. Proteomics, 2016, 16, 345-366.	2.2	40
33	Espectro mutacional de la distrofia muscular de Duchenne en España: estudio de 284 casos. NeurologÃa, 2017, 32, 377-385.	0.7	25
34	Advances in the Treatment of Duchenne Muscular Dystrophy: New and Emerging Pharmacotherapies. Pharmacotherapy, 2017, 37, 492-499.	2.6	58
35	Genetic profile of Brazilian patients with dystrophinopathies. Clinical Genetics, 2017, 92, 199-203.	2.0	13
36	Clinical and mutational characteristics of Duchenne muscular dystrophy patients based on a comprehensive database in South China. Neuromuscular Disorders, 2017, 27, 715-722.	0.6	20
37	Prenatal diagnosis of Duchenne muscular dystrophy in 131 Chinese families with dystrophinopathy. Prenatal Diagnosis, 2017, 37, 356-364.	2.3	17

	Сітаті	CITATION REPORT	
#	Article	IF	Citations
38	Dystrophinopathies and Limb-Girdle Muscular Dystrophies. Neuropediatrics, 2017, 48, 262-272.	0.6	27
39	The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet Journal of Rare Diseases, 2017, 12, 79.	2.7	324
40	Pharmacological advances for treatment in Duchenne muscular dystrophy. Current Opinion in Pharmacology, 2017, 34, 36-48.	3.5	133
41	Drugging Pre-mRNA Splicing. Topics in Medicinal Chemistry, 2017, , 135-176.	0.8	1
42	Faulty RNA splicing: consequences and therapeutic opportunities in brain and muscle disorders. Human Genetics, 2017, 136, 1215-1235.	3.8	15
43	Normal and altered pre-mRNA processing in the DMD gene. Human Genetics, 2017, 136, 1155-1172.	3.8	47
44	Moving towards successful exon-skipping therapy for Duchenne muscular dystrophy. Journal of Human Genetics, 2017, 62, 871-876.	2.3	32
45	DMDtoolkit: a tool for visualizing the mutated dystrophin protein and predicting the clinical severity in DMD. BMC Bioinformatics, 2017, 18, 87.	2.6	5
46	Exon skipping: a first in class strategy for Duchenne muscular dystrophy. Expert Opinion on Biological Therapy, 2017, 17, 225-236.	3.1	97
47	Efficient Skipping of Single Exon Duplications in DMD Patient-Derived Cell Lines Using an Antisense Oligonucleotide Approach. Journal of Neuromuscular Diseases, 2017, 4, 199-207.	2.6	27
48	Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Scientific Reports, 2017, 7, 12575.	3.3	123
49	Recent developments in Duchenne muscular dystrophy: facts and numbers. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 681-685.	7.3	25
50	Mutation-Based Therapy for Duchenne Muscular Dystrophy. Circulation, 2017, 136, 979-981.	1.6	13
51	Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nature Medicine, 2017, 23, 984-989.	30.7	72
52	Mutational spectrum of Duchenne muscular dystrophy in Spain: study of 284 cases. NeurologÃa (English Edition), 2017, 32, 377-385.	0.4	18
53	Efficacy and Safety Profile of Tricyclo-DNA Antisense Oligonucleotides in Duchenne Muscular Dystrophy Mouse Model. Molecular Therapy - Nucleic Acids, 2017, 8, 144-157.	5.1	52
54	Management of neuromuscular diseases and spinal muscular atrophy in Latin America. Gene Therapy, 2017, 24, 578-580.	4.5	5
55	Translational Research in Europe for the Assessment and Treatment for Neuromuscular Disorders (TREAT-NMD). Neuropediatrics, 2017, 48, 211-220.	0.6	9

#	Article	IF	CITATIONS
56	Quantitative Antisense Screening and Optimization for Exon 51 Skipping in Duchenne Muscular Dystrophy. Molecular Therapy, 2017, 25, 2561-2572.	8.2	63
57	Development of Exon Skipping Therapies for Duchenne Muscular Dystrophy: A Critical Review and a Perspective on the Outstanding Issues. Nucleic Acid Therapeutics, 2017, 27, 251-259.	3.6	144
58	Data Quality in Rare Diseases Registries. Advances in Experimental Medicine and Biology, 2017, 1031, 149-164.	1.6	56
59	Copy number variation analysis increases the diagnostic yield in muscle diseases. Neurology: Genetics, 2017, 3, e204.	1.9	17
60	Natural History, Trial Readiness and Gene Discovery: Advances in Patient Registries for Neuromuscular Disease. Advances in Experimental Medicine and Biology, 2017, 1031, 97-124.	1.6	16
61	Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Science Translational Medicine, 2017, 9, .	12.4	188
62	Clinical Outcomes in Duchenne Muscular Dystrophy: A Study of 5345 Patients from the TREAT-NMD DMD Global Database. Journal of Neuromuscular Diseases, 2017, 4, 293-306.	2.6	125
63	Translational development of splice-modifying antisense oligomers. Expert Opinion on Biological Therapy, 2017, 17, 15-30.	3.1	19
64	Consecutive analysis of mutation spectrum in the dystrophin gene of 507 Korean boys with Duchenne/Becker muscular dystrophy in a single center. Muscle and Nerve, 2017, 55, 727-734.	2.2	35
65	Functional correction of dystrophin actin binding domain mutations by genome editing. JCI Insight, 2017, 2, .	5.0	80
66	Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Design, Development and Therapy, 2017, Volume11, 533-545.	4.3	334
67	The New Zealand Neuromuscular Disease Patient Registry; Five Years and a Thousand Patients. Journal of Neuromuscular Diseases, 2017, 4, 183-188.	2.6	7
68	Comprehending the Health Informatics Spectrum: Grappling with System Entropy and Advancing Quality Clinical Research. Frontiers in Public Health, 2017, 5, 224.	2.7	2
69	Brazilian consensus on Duchenne muscular dystrophy. Part 1: diagnosis, steroid therapy and perspectives. Arquivos De Neuro-Psiquiatria, 2017, 75, 104-113.	0.8	16
70	Abnormal Muscle Pathology and Physiology. , 2017, , 65-82.		2
71	Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy. Stem Cells International, 2017, 2017, 1-11.	2.5	30
72	Next-generation mapping: a novel approach for detection of pathogenic structural variants with a potential utility in clinical diagnosis. Genome Medicine, 2017, 9, 90.	8.2	86
73	The Canadian Neuromuscular Disease Registry: Connecting patients to national and international research opportunities. Paediatrics and Child Health, 2018, 23, 20-26.	0.6	11

	CITATION R	EPORT	
#	Article	IF	Citations
74	Systemic administration of the antisense oligonucleotide NS-065/NCNP-01 for skipping of exon 53 in patients with Duchenne muscular dystrophy. Science Translational Medicine, 2018, 10, .	12.4	111
75	A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping. Journal of Human Genetics, 2018, 63, 365-375.	2.3	24
76	Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chemical Reviews, 2018, 118, 1599-1663.	47.7	64
77	CUGC for Duchenne muscular dystrophy (DMD). European Journal of Human Genetics, 2018, 26, 749-757.	2.8	3
78	Phenotypic stratification and genotype–phenotype correlation in a heterogeneous, international cohort of GNE myopathy patients: First report from the GNE myopathy Disease Monitoring Program, registry portion. Neuromuscular Disorders, 2018, 28, 158-168.	0.6	35
79	Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy. Human Molecular Genetics, 2018, 27, 451-462.	2.9	14
80	In Vitro Tissueâ€Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Advanced Healthcare Materials, 2018, 7, e1701498.	7.6	84
81	A retrospective analysis of 237 Chinese families with Duchenne muscular dystrophy history and strategies of prenatal diagnosis. Journal of Clinical Laboratory Analysis, 2018, 32, e22445.	2.1	11
82	Gene Editing and Gene-Based Therapeutics for Cardiomyopathies. Heart Failure Clinics, 2018, 14, 179-188.	2.1	8
83	From gRNA Identification to the Restoration of Dystrophin Expression: A Dystrophin Gene Correction Strategy for Duchenne Muscular Dystrophy Mutations Using the CRISPR-Induced Deletion Method. Methods in Molecular Biology, 2018, 1687, 267-283.	0.9	9
84	Genetic modifiers of <scp>D</scp> uchenne and facioscapulohumeral muscular dystrophies. Muscle and Nerve, 2018, 57, 6-15.	2.2	28
85	The natural history of the patients with Duchenne muscular dystrophy in Taiwan: A medical center experience. Pediatrics and Neonatology, 2018, 59, 176-183.	0.9	17
86	Effective regeneration of dystrophic muscle using autologous iPSC-derived progenitors with CRISPR-Cas9 mediated precise correction. Medical Hypotheses, 2018, 110, 97-100.	1.5	15
87	Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nature Reviews Neurology, 2018, 14, 9-21.	10.1	515
88	Making sense of antisense oligonucleotides: A narrative review. Muscle and Nerve, 2018, 57, 356-370.	2.2	37
89	Neurology Care, Diagnostics, and Emerging Therapies of the Patient With Duchenne Muscular Dystrophy. Pediatrics, 2018, 142, S5-S16.	2.1	16
90	Emerging Strategies in the Treatment of Duchenne Muscular Dystrophy. Neurotherapeutics, 2018, 15, 840-848.	4.4	73
91	Impact of biobanks on research outcomes in rare diseases: a systematic review. Orphanet Journal of Rare Diseases, 2018, 13, 202.	2.7	30

#	Article	IF	CITATIONS
92	Applications of CRISPR/Cas9 for the Treatment of Duchenne Muscular Dystrophy. Journal of Personalized Medicine, 2018, 8, 38.	2.5	48
93	Multiple Exon Skipping in the Duchenne Muscular Dystrophy Hot Spots: Prospects and Challenges. Journal of Personalized Medicine, 2018, 8, 41.	2.5	61
94	A multicenter comparison of quantification methods for antisense oligonucleotide-induced DMD exon 51 skipping in Duchenne muscular dystrophy cell cultures. PLoS ONE, 2018, 13, e0204485.	2.5	14
95	NS-065/NCNP-01: An Antisense Oligonucleotide for Potential Treatment of Exon 53 Skipping in Duchenne Muscular Dystrophy. Molecular Therapy - Nucleic Acids, 2018, 13, 442-449.	5.1	42
96	Embryonic myosin is a regeneration marker to monitor utrophin-based therapies for DMD. Human Molecular Genetics, 2019, 28, 307-319.	2.9	23
97	Muscle membrane integrity in Duchenne muscular dystrophy: recent advances in copolymer-based muscle membrane stabilizers. Skeletal Muscle, 2018, 8, 31.	4.2	41
98	Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes, 2018, 9, 107.	2.4	22
99	CRISPR-Induced Deletion with SaCas9 Restores Dystrophin Expression in Dystrophic Models InÂVitro and InÂVivo. Molecular Therapy, 2018, 26, 2604-2616.	8.2	63
100	Exon 51 Skipping Quantification by Digital Droplet PCR in del52hDMD/mdx Mice. Methods in Molecular Biology, 2018, 1828, 249-262.	0.9	4
101	Systemic Injection of Peptide-PMOs into Humanized DMD Mice and Evaluation by RT-PCR and ELISA. Methods in Molecular Biology, 2018, 1828, 263-273.	0.9	5
102	An Overview of Recent Advances and Clinical Applications of Exon Skipping and Splice Modulation for Muscular Dystrophy and Various Genetic Diseases. Methods in Molecular Biology, 2018, 1828, 31-55.	0.9	45
103	Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science, 2018, 362, 86-91.	12.6	405
104	Exon-skipping advances for Duchenne muscular dystrophy. Human Molecular Genetics, 2018, 27, R163-R172.	2.9	88
105	Current and Emerging Therapies for Duchenne Muscular Dystrophy. Current Treatment Options in Neurology, 2018, 20, 31.	1.8	31
106	Characteristics of Japanese Patients with Becker Muscular Dystrophy and Intermediate Muscular Dystrophy in a Japanese National Registry of Muscular Dystrophy (Remudy): Heterogeneity and Clinical Variation. Journal of Neuromuscular Diseases, 2018, 5, 193-203.	2.6	12
107	Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiological Reviews, 2018, 98, 1205-1240.	28.8	31
108	Personalized gene and cell therapy for Duchenne Muscular Dystrophy. Neuromuscular Disorders, 2018, 28, 803-824.	0.6	45
109	Biomarkers of Duchenne muscular dystrophy: current findings. Degenerative Neurological and Neuromuscular Disease, 2018, Volume 8, 1-13.	1.3	52

#	Article	IF	CITATIONS
110	Comprehensive genetic characteristics of dystrophinopathies in China. Orphanet Journal of Rare Diseases, 2018, 13, 109.	2.7	29
111	Genotype–phenotype correlation in Becker muscular dystrophy in Chinese patients. Journal of Human Genetics, 2018, 63, 1041-1048.	2.3	5
112	Molecular characterization of exonic rearrangements and frame shifts in the dystrophin gene in Duchenne muscular dystrophy patients in a Saudi community. Human Genomics, 2018, 12, 18.	2.9	17
113	Dollars and antisense for Duchenne muscular dystrophy. Neurology, 2018, 90, 1091-1092.	1.1	5
114	The potential of utrophin modulators for the treatment of Duchenne muscular dystrophy. Expert Opinion on Orphan Drugs, 2018, 6, 179-192.	0.8	32
115	Placeboâ€controlled Phase 2 Trial of Drisapersen for Duchenne Muscular Dystrophy. Annals of Clinical and Translational Neurology, 2018, 5, 913-926.	3.7	28
116	A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	63
117	Mutation spectrum analysis of Duchenne/Becker muscular dystrophy in 68 families in Kuwait: The era of personalized medicine. PLoS ONE, 2018, 13, e0197205.	2.5	29
118	<i>DMD</i> genotype correlations from the Duchenne Registry: Endogenous exon skipping is a factor in prolonged ambulation for individuals with a defined mutation subtype. Human Mutation, 2018, 39, 1193-1202.	2.5	65
120	A dystrophic Duchenne mouse model for testing human antisense oligonucleotides. PLoS ONE, 2018, 13, e0193289.	2.5	44
121	Muscle Wasting Diseases: Novel Targets and Treatments. Annual Review of Pharmacology and Toxicology, 2019, 59, 315-339.	9.4	69
122	Consensus on the diagnosis, treatment and follow-up of patients with Duchenne muscular dystrophy. NeurologÃa (English Edition), 2019, 34, 469-481.	0.4	16
123	Molecular and Clinical Characteristics of a National Cohort of Paediatric Duchenne Muscular Dystrophy Patients in Norway. Journal of Neuromuscular Diseases, 2019, 6, 349-359.	2.6	11
124	Ataluren use in patients with nonsense mutation Duchenne muscular dystrophy: patient demographics and characteristics from the STRIDE Registry. Journal of Comparative Effectiveness Research, 2019, 8, 1187-1200.	1.4	29
125	Genetic analysis of 1051 Chinese families with Duchenne/Becker Muscular Dystrophy. BMC Medical Genetics, 2019, 20, 139.	2.1	49
126	Emerging proteomic biomarkers of X-linked muscular dystrophy. Expert Review of Molecular Diagnostics, 2019, 19, 739-755.	3.1	24
127	Molecular and Histopathological Characterization of Patients Presenting with the Duchenne Muscular Dystrophy Phenotype in a Tertiary Care Center in Southern India. Indian Pediatrics, 2019, 56, 556-559.	0.4	8
128	Discovery of Novel Therapeutics for Muscular Dystrophies using Zebrafish Phenotypic Screens. Journal of Neuromuscular Diseases, 2019, 6, 271-287.	2.6	21

#	Article	IF	CITATIONS
129	Phenotype predictions for exon deletions/duplications: A user guide for professionals and clinicians using Becker and Duchenne muscular dystrophy as examples. Human Mutation, 2019, 40, 1630-1633.	2.5	8
130	Targeting RyR Activity Boosts Antisense Exon 44 and 45 Skipping in Human DMD Skeletal or Cardiac Muscle Culture Models. Molecular Therapy - Nucleic Acids, 2019, 18, 580-589.	5.1	15
131	Predominance of Dystrophinopathy Genotypes in Mexican Male Patients Presenting as Muscular Dystrophy with A Normal Multiplex Polymerase Chain Reaction DMD Gene Result: A Study Including Targeted Next-Generation Sequencing. Genes, 2019, 10, 856.	2.4	6
132	Expression profiling in exercised mdx suggests a role for extracellular proteins in the dystrophic muscle immune response. Human Molecular Genetics, 2020, 29, 353-368.	2.9	11
133	Restoring Dystrophin Expression in Duchenne Muscular Dystrophy: Current Status of Therapeutic Approaches. Journal of Personalized Medicine, 2019, 9, 1.	2.5	84
134	Cardiac Pathophysiology and the Future of Cardiac Therapies in Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2019, 20, 4098.	4.1	92
135	Exons 45–55 Skipping Using Mutation-Tailored Cocktails of Antisense Morpholinos in the DMD Gene. Molecular Therapy, 2019, 27, 2005-2017.	8.2	35
136	Importance of muscle biopsy to establish pathogenicity of DMD missense and splice variants. Neuromuscular Disorders, 2019, 29, 913-919.	0.6	19
137	Recent advancements in exon-skipping therapies using antisense oligonucleotides and genome editing for the treatment of various muscular dystrophies. Expert Reviews in Molecular Medicine, 2019, 21, e5.	3.9	20
138	In vivo non-invasive monitoring of dystrophin correction in a new Duchenne muscular dystrophy reporter mouse. Nature Communications, 2019, 10, 4537.	12.8	32
139	Molecular genetic testing and diagnosis strategies for dystrophinopathies in the era of next generation sequencing. Clinica Chimica Acta, 2019, 491, 66-73.	1.1	22
140	Nonclinical Exon Skipping Studies with 2′- <i>O</i> -Methyl Phosphorothioate Antisense Oligonucleotides in <i>mdx</i> and <i>mdx-utrnâ^'/â^'</i> Mice Inspired by Clinical Trial Results. Nucleic Acid Therapeutics, 2019, 29, 92-103.	3.6	9
141	Cardiac profile of the Czech population of Duchenne muscular dystrophy patients: a cardiovascular magnetic resonance study with T1 mapping. Orphanet Journal of Rare Diseases, 2019, 14, 10.	2.7	19
142	New pharmacotherapies for genetic neuromuscular disorders: opportunities and challenges. Expert Review of Clinical Pharmacology, 2019, 12, 757-770.	3.1	12
143	Skipping of an exon with a nonsense mutation in the DMD gene is induced by the conversion of a splicing silencer. Human Genetics, 2019, 138, 771-785.	3.8	12
144	What We Have Learned from 10 Years of DMD Exon-Skipping Trials. , 2019, , 745-758.		0
145	Mutation pattern in 606 Duchenne muscular dystrophy children with a comparison between familial and non-familial forms: a study in an Indian large single-center cohort. Journal of Neurology, 2019, 266, 2177-2185.	3.6	25
146	Therapeutic developments for Duchenne muscular dystrophy. Nature Reviews Neurology, 2019, 15, 373-386.	10.1	265

#	Article	IF	CITATIONS
147	MLPA Analyses Reveal a Spectrum of Dystrophin Gene Deletions/Duplications in Pakistani Patients Suspected of Having Duchenne/Becker Muscular Dystrophy: A Retrospective Study. Genetic Testing and Molecular Biomarkers, 2019, 23, 468-472.	0.7	9
148	An anti-RANKL treatment reduces muscle inflammation and dysfunction and strengthens bone in dystrophic mice. Human Molecular Genetics, 2019, 28, 3101-3112.	2.9	39
149	Female carrier with DMD mutation manifesting only asymptomatic hyper CK emia and psychiatric problems. Neurology and Clinical Neuroscience, 2019, 7, 129-131.	0.4	1
150	Development of CRISPR-Mediated Systems in the Study of Duchenne Muscular Dystrophy. Human Gene Therapy Methods, 2019, 30, 71-80.	2.1	8
151	Effect and safety of treatment with ACE-inhibitor Enalapril and Î ² -blocker metoprolol on the onset of left ventricular dysfunction in Duchenne muscular dystrophy - a randomized, double-blind, placebo-controlled trial. Orphanet Journal of Rare Diseases, 2019, 14, 105.	2.7	21
152	Molecular Basis of Muscle Disease. , 2019, , 13-39.		1
153	CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Science Advances, 2019, 5, eaav4324.	10.3	190
154	Mutation-Based Therapeutic Strategies for Duchenne Muscular Dystrophy: From Genetic Diagnosis to Therapy. Journal of Personalized Medicine, 2019, 9, 16.	2.5	27
155	Do porcine Sertoli cells represent an opportunity for Duchenne muscular dystrophy?. Cell Proliferation, 2019, 52, e12599.	5.3	11
156	Eteplirsen Treatment Attenuates Respiratory Decline in Ambulatory and Non-Ambulatory Patients with Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2019, 6, 213-225.	2.6	68
157	Natural disease history of the <i>D2â€mdx</i> mouse model for Duchenne muscular dystrophy. FASEB Journal, 2019, 33, 8110-8124.	0.5	88
158	Ataluren Pharmacokinetics in Healthy Japanese and Caucasian Subjects. Clinical Pharmacology in Drug Development, 2019, 8, 172-178.	1.6	8
159	Gene therapies in canine models for Duchenne muscular dystrophy. Human Genetics, 2019, 138, 483-489.	3.8	22
160	Engineered transfer RNAs for suppression of premature termination codons. Nature Communications, 2019, 10, 822.	12.8	86
161	Consequences of Making the Inactive Active Through Changes in Antisense Oligonucleotide Chemistries. Frontiers in Genetics, 2019, 10, 1249.	2.3	3
162	Evidence-Based Consensus and Systematic Review on Reducing the Time to Diagnosis of Duchenne Muscular Dystrophy. Journal of Pediatrics, 2019, 204, 305-313.e14.	1.8	24
163	Injection site reactions after long-term subcutaneous delivery of drisapersen: a retrospective study. European Journal of Pediatrics, 2019, 178, 253-258.	2.7	27
164	<i>DMD</i> Openâ€access Variant Explorer (DOVE): A scalable, openâ€access, webâ€based tool to aid in clinical interpretation of genetic variants in the <i>DMD</i> gene. Molecular Genetics & Genomic Medicine, 2019, 7, e00510.	1.2	4

		CITATION REPORT		
#	Article		IF	Citations
165	CRISPR Correction of Duchenne Muscular Dystrophy. Annual Review of Medicine, 2019), 70, 239-255.	12.2	130
166	A Sequel to the Eteplirsen Saga: Eteplirsen Is Approved in the United States but Was N Europe. Nucleic Acid Therapeutics, 2019, 29, 13-15.	ot Approved in	3.6	42
167	Consenso para el diagnÃ ³ stico, tratamiento y seguimiento del paciente con distrofia m Duchenne. NeurologAa, 2019, 34, 469-481.	ıuscular de	0.7	16
168	Genome Editing and Hematologic Malignancy. Annual Review of Medicine, 2020, 71, 7	1-83.	12.2	1
169	Deletion and duplication mutations spectrum in Duchenne muscular dystrophy in the s Iran. Meta Gene, 2020, 23, 100641.	southwest of	0.6	1
170	Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Recepto Molecular Target of the Utrophin Modulator Ezutromid. Angewandte Chemie, 2020, 13		2.0	1
171	Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Recepto Molecular Target of the Utrophin Modulator Ezutromid. Angewandte Chemie - Internat 2020, 59, 2420-2428.		13.8	31
172	Proteomic and cell biological profiling of the renal phenotype of the mdx-4cv mouse m Duchenne muscular dystrophy. European Journal of Cell Biology, 2020, 99, 151059.	odel of	3.6	19
173	Synthesis of SMT022357 enantiomers and inÂvivo evaluation in a Duchenne muscular model. Tetrahedron, 2020, 76, 130819.	dystrophy mouse	1.9	13
174	Splicing Characteristics of Dystrophin Pseudoexons and Identification of a Novel Patho Variant in the DMD Gene. Genes, 2020, 11, 1180.	genic Intronic	2.4	9
175	Base editing: advances and therapeutic opportunities. Nature Reviews Drug Discovery,	2020, 19, 839-859.	46.4	218
176	Mutation-independent Proteomic Signatures of Pathological Progression in Murine Mo Duchenne Muscular Dystrophy. Molecular and Cellular Proteomics, 2020, 19, 2047-20	dels of 68.	3.8	25
177	Advances in the Genetic Testing of Neuromuscular Diseases. Neurologic Clinics, 2020,	38, 519-528.	1.8	3
178	Muscle and cardiac therapeutic strategies for Duchenne muscular dystrophy: past, pre- future. Pharmacological Reports, 2020, 72, 1227-1263.	sent, and	3.3	46
179	A novel mouse model of Duchenne muscular dystrophy carrying a multi-exonic <i>Dmo exhibits progressive muscular dystrophy and early-onset cardiomyopathy. DMM Diseas Mechanisms, 2020, 13, .</i>	l<∕i> deletion e Models and	2.4	17
180	Novel free-circulating and extracellular vesicle-derived miRNAs dysregulated in Duchen dystrophy. Epigenomics, 2020, 12, 1899-1915.	ne muscular	2.1	4
181	Genotype–Phenotype Correlations in Duchenne and Becker Muscular Dystrophy Pat Canadian Neuromuscular Disease Registry. Journal of Personalized Medicine, 2020, 10,		2.5	20
182	Morpholino Oligomer-Induced Dystrophin Isoforms to Map the Functional Domains in Protein. Molecular Therapy - Nucleic Acids, 2020, 22, 263-272.	the Dystrophin	5.1	9

#	Article	IF	CITATIONS
183	Targeting translational readâ€ŧhrough of premature termination mutations in <i>BMPR2</i> with PTC124 for pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-14.	1.7	8
184	Therapeutic Strategies for Duchenne Muscular Dystrophy: An Update. Genes, 2020, 11, 837.	2.4	82
185	Duchenne Muscular Dystrophy: recent advances in protein biomarkers and the clinical application. Expert Review of Proteomics, 2020, 17, 365-375.	3.0	16
186	A Comprehensive Analysis of 2013 Dystrophinopathies in China: A Report From National Rare Disease Center. Frontiers in Neurology, 2020, 11, 572006.	2.4	9
187	Restorative treatments of dystrophin expression in Duchenne muscular dystrophy: A systematic review. Annals of Clinical and Translational Neurology, 2020, 7, 1738-1752.	3.7	27
188	Longâ€read wholeâ€genome sequencing for the genetic diagnosis of dystrophinopathies. Annals of Clinical and Translational Neurology, 2020, 7, 2041-2046.	3.7	22
189	Pathological evaluation of rats carrying in-frame mutations in the dystrophin gene: A new model of Becker muscular dystrophy. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	6
190	Advances in Genetic Characterization and Genotype–Phenotype Correlation of Duchenne and Becker Muscular Dystrophy in the Personalized Medicine Era. Journal of Personalized Medicine, 2020, 10, 111.	2.5	21
191	The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement. International Journal of Molecular Sciences, 2020, 21, 6429.	4.1	17
192	X-linked muscular dystrophy in a Labrador Retriever strain: phenotypic and molecular characterisation. Skeletal Muscle, 2020, 10, 23.	4.2	12
193	Current Genetic Survey and Potential Gene-Targeting Therapeutics for Neuromuscular Diseases. International Journal of Molecular Sciences, 2020, 21, 9589.	4.1	13
194	Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biology, 2020, 18, 1-14.	3.1	2
195	Duchenne Muscular Dystrophy- Where Genetic Testing is Inevitable and Vital!. Indian Journal of Pediatrics, 2020, 87, 487-488.	0.8	0
196	Clinical Phenotypes of DMD Exon 51 Skip Equivalent Deletions: A Systematic Review. Journal of Neuromuscular Diseases, 2020, 7, 217-229.	2.6	18
197	Combining genetics, neuropsychology and neuroimaging to improve understanding of brain involvement in Duchenne muscular dystrophy - a narrative review. Neuromuscular Disorders, 2020, 30, 437-442.	0.6	43
198	EMQN best practice guidelines for genetic testing in dystrophinopathies. European Journal of Human Genetics, 2020, 28, 1141-1159.	2.8	35
199	The First Comprehensive Cohort of the Duchenne Muscular Dystrophy in Iranian Population: Mutation Spectrum of 314 Patients and Identifying Two Novel Nonsense Mutations. Journal of Molecular Neuroscience, 2020, 70, 1565-1573.	2.3	7
200	Evaluating a Stone of Hope: ICER's 2019 Review of Treatments for Duchenne Muscular Dystrophy. Journal of Managed Care & Specialty Pharmacy, 2020, 26, 366-368.	0.9	0

#	Article	IF	CITATIONS
201	Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing. Molecular Therapy, 2020, 28, 2044-2055.	8.2	51
202	Advances in Stem Cell Modeling of Dystrophin-Associated Disease: Implications for the Wider World of Dilated Cardiomyopathy. Frontiers in Physiology, 2020, 11, 368.	2.8	9
203	Update on Muscular Dystrophies with Focus on Novel Treatments and Biomarkers. Current Neurology and Neuroscience Reports, 2020, 20, 14.	4.2	22
204	Safety, Tolerability, and Efficacy of Viltolarsen in Boys With Duchenne Muscular Dystrophy Amenable to Exon 53 Skipping. JAMA Neurology, 2020, 77, 982.	9.0	169
205	Comprehensive genetic analysis of 961 unrelated Duchenne Muscular Dystrophy patients: Focus on diagnosis, prevention and therapeutic possibilities. PLoS ONE, 2020, 15, e0232654.	2.5	14
206	In Vivo Genome Engineering for the Treatment of Muscular Dystrophies. Current Stem Cell Reports, 2020, 6, 52-66.	1.6	2
207	Rare intronic mutation between Exon 62 and 63 (c.9225–285A>G) of the dystrophin gene associated with atypical BMD phenotype. Neuromuscular Disorders, 2020, 30, 680-684.	0.6	2
208	Molecular diagnosis of dystrophinopathies in Morocco and report of six novel mutations. Clinica Chimica Acta, 2020, 506, 28-32.	1.1	2
209	New and emerging pharmacotherapy for duchenne muscular dystrophy: a focus on synthetic therapeutics. Expert Opinion on Pharmacotherapy, 2020, 21, 841-851.	1.8	11
210	The Genetic Landscape of Dystrophin Mutations in Italy: A Nationwide Study. Frontiers in Genetics, 2020, 11, 131.	2.3	49
211	In vitro metabolism, reaction phenotyping, enzyme kinetics, CYP inhibition and induction potential of ataluren. Pharmacology Research and Perspectives, 2020, 8, e00576.	2.4	10
212	Suitability of external controls for drug evaluation in Duchenne muscular dystrophy. Neurology, 2020, 95, e1381-e1391.	1.1	27
213	Metabolism and Disposition of Ataluren after Oral Administration to Mice, Rats, Dogs, and Humans. Drug Metabolism and Disposition, 2020, 48, 317-325.	3.3	7
214	The 10th Oligonucleotide Therapy Approved: Golodirsen for Duchenne Muscular Dystrophy. Nucleic Acid Therapeutics, 2020, 30, 67-70.	3.6	82
215	Proteomic profiling of fatty acid binding proteins in muscular dystrophy. Expert Review of Proteomics, 2020, 17, 137-148.	3.0	11
216	Enhanced CRISPR-Cas9 correction of Duchenne muscular dystrophy in mice by a self-complementary AAV delivery system. Science Advances, 2020, 6, eaay6812.	10.3	114
217	Natural products, PGC-1 , and Duchenne muscular dystrophy. Acta Pharmaceutica Sinica B, 2020, 10, 734-745.	12.0	48
218	DMD carrier model with mosaic dystrophin expression in the heart reveals complex vulnerability to myocardial injury. Human Molecular Genetics, 2020, 29, 944-954.	2.9	5

#	Article	IF	CITATIONS
219	Safety and effectiveness of ataluren: comparison of results from the STRIDE Registry and CINRG DMD Natural History Study. Journal of Comparative Effectiveness Research, 2020, 9, 341-360.	1.4	82
220	Human and mouse skeletal muscle stem and progenitor cells in health and disease. Seminars in Cell and Developmental Biology, 2020, 104, 93-104.	5.0	48
221	Duchenne muscular dystrophy animal models for high-throughput drug discovery and precision medicine. Expert Opinion on Drug Discovery, 2020, 15, 443-456.	5.0	21
222	Mutation Spectrum of Dystrophinopathies in India: Implications for Therapy. Indian Journal of Pediatrics, 2020, 87, 495-504.	0.8	13
223	Global FKRP Registry: observations in more than 300 patients with Limb Girdle Muscular Dystrophy R9. Annals of Clinical and Translational Neurology, 2020, 7, 757-766.	3.7	20
224	High-Capacity Adenoviral Vectors Permit Robust and Versatile Testing of DMD Gene Repair Tools and Strategies in Human Cells. Cells, 2020, 9, 869.	4.1	19
225	Common therapeutic advances for Duchenne muscular dystrophy (DMD). International Journal of Neuroscience, 2021, 131, 370-389.	1.6	22
226	Promising therapeutic approaches using CRISPR/Cas9 genome editing technology in the treatment of Duchenne muscular dystrophy. Genes and Diseases, 2021, 8, 146-156.	3.4	23
227	Developments in reading frame restoring therapy approaches for Duchenne muscular dystrophy. Expert Opinion on Biological Therapy, 2021, 21, 343-359.	3.1	20
229	Ixazomib, an oral proteasome inhibitor, exhibits potential effect in dystrophinâ€deficient mdx mice. International Journal of Experimental Pathology, 2021, 102, 11-21.	1.3	4
230	Iranian Registry of Duchenne and Becker Muscular Dystrophies: Characterization and Preliminary Data. Journal of Neuromuscular Diseases, 2021, 8, 251-259.	2.6	1
231	Alternative splicing transitions associate with emerging atrophy phenotype during denervationâ€induced skeletal muscle atrophy. Journal of Cellular Physiology, 2021, 236, 4496-4514.	4.1	11
232	PDE10A Inhibition Reduces the Manifestation of Pathology in DMD Zebrafish and Represses the Genetic Modifier PITPNA. Molecular Therapy, 2021, 29, 1086-1101.	8.2	9
233	Current and emerging therapies for Duchenne muscular dystrophy and spinal muscular atrophy. , 2021, 220, 107719.		60
234	Overview of gene therapy in spinal muscular atrophy and Duchenne muscular dystrophy. Pediatric Pulmonology, 2021, 56, 710-720.	2.0	31
235	The Canadian Neuromuscular Disease Registry 2010–2019: A Decade of Facilitating Clinical Research Througha Nationwide, Pan-NeuromuscularDisease Registry. Journal of Neuromuscular Diseases, 2021, 8, 53-61.	2.6	15
236	WGS and RNA Studies Diagnose Noncoding <i>DMD</i> Variants in Males With High Creatine Kinase. Neurology: Genetics, 2021, 7, e554.	1.9	21
237	What percentage of patients with duchene muscular dystrophy are potentially treatable with gene therapies?. Annals of Indian Academy of Neurology, 2021, 24, 601.	0.5	0

#	Article	IF	CITATIONS
238	A Genotype-Phenotype Correlation Study of Exon Skip-Equivalent In-Frame Deletions and Exon Skip-Amenable Out-of-Frame Deletions across the DMD Gene to Simulate the Effects of Exon-Skipping Therapies: A Meta-Analysis. Journal of Personalized Medicine, 2021, 11, 46.	2.5	9
239	Expanding mad hatter's shakes: Peripheral nerve hyperexcitability syndrome with artefactual-looking lung lesions. Annals of Indian Academy of Neurology, 2021, 24, 601-603.	0.5	0
240	Gene editing and modulation for Duchenne muscular dystrophy. Progress in Molecular Biology and Translational Science, 2021, 182, 225-255.	1.7	7
241	Duchenne muscular dystrophy. Nature Reviews Disease Primers, 2021, 7, 13.	30.5	448
242	Mitochondrial hydrogen sulfide supplementation improves health in the <i>C. elegans</i> Duchenne muscular dystrophy model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
243	Prenatal Diagnosis of Dystrophinopathy and Cytogenetic Analysis in 303 Chinese Families. Maternal-Fetal Medicine, 2021, Publish Ahead of Print, .	0.8	0
244	Proteomic profiling of the interface between the stomach wall and the pancreas in dystrophinopathy. European Journal of Translational Myology, 2021, 31, .	1.7	7
245	Proteomic profiling of the interface between the stomach wall and the pancreas in dystrophinopathy. European Journal of Translational Myology, 0, , .	1.7	2
246	ActRIIB:ALK4-Fc alleviates muscle dysfunction and comorbidities in murine models of neuromuscular disorders. Journal of Clinical Investigation, 2021, 131, .	8.2	19
247	The Limitless Future of RNA Therapeutics. Frontiers in Bioengineering and Biotechnology, 2021, 9, 628137.	4.1	296
248	Targeted genome editing <i>in vivo</i> corrects a <i>Dmd</i> duplication restoring wildâ€ŧype dystrophin expression. EMBO Molecular Medicine, 2021, 13, e13228.	6.9	18
249	Duchenne Muscular Dystrophy Animal Models. , 0, , .		2
250	Whole-Exome Sequencing Identifies Small Mutations in Pakistani Muscular Dystrophy Patients. Genetic Testing and Molecular Biomarkers, 2021, 25, 218-226.	0.7	0
251	RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays. Molecules, 2021, 26, 2263.	3.8	21
252	Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Science Advances, 2021, 7, .	10.3	127
253	Empowering Muscle Stem Cells for the Treatment of Duchenne Muscular Dystrophy. Cells Tissues Organs, 2022, 211, 641-654.	2.3	18
254	Age-Dependent Dysregulation of Muscle Vasculature and Blood Flow Recovery after Hindlimb Ischemia in the mdx Model of Duchenne Muscular Dystrophy. Biomedicines, 2021, 9, 481.	3.2	12
255	Muscular dystrophy: Experimental animal models and therapeutic approaches (Review). Experimental and Therapeutic Medicine, 2021, 21, 610.	1.8	5

#	Article	IF	CITATIONS
256	Therapeutic Approaches for Duchenne Muscular Dystrophy: Old and New. Seminars in Pediatric Neurology, 2021, 37, 100877.	2.0	17
257	CRISPR technologies for the treatment of Duchenne muscular dystrophy. Molecular Therapy, 2021, 29, 3179-3191.	8.2	31
258	Genotype characterization and delayed loss of ambulation by glucocorticoids in a large cohort of patients with Duchenne muscular dystrophy. Orphanet Journal of Rare Diseases, 2021, 16, 188.	2.7	16
259	Sequence and Structure Characteristics of 22 Deletion Breakpoints in Intron 44 of the DMD Gene Based on Long-Read Sequencing. Frontiers in Genetics, 2021, 12, 638220.	2.3	5
260	Toward the correction of muscular dystrophy by gene editing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	46
261	Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science. Annual Review of Biomedical Engineering, 2021, 23, 493-516.	12.3	4
262	Altered visual processing in the mdx52 mouse model of Duchenne muscular dystrophy. Neurobiology of Disease, 2021, 152, 105288.	4.4	4
263	Dystrophie musculaire de DuchenneÂ: état actuel et perspectives thérapeutiques. Bulletin De L'Academie Nationale De Medecine, 2021, 205, 509-518.	0.0	0
264	Genetic identification of pathogenic variations of the DMD gene: a retrospective study from 10,481 neonatal patients based on next-generation sequencing data. Annals of Translational Medicine, 2021, 9, 766-766.	1.7	5
265	eSkip-Finder: a machine learning-based web application and database to identify the optimal sequences of antisense oligonucleotides for exon skipping. Nucleic Acids Research, 2021, 49, W193-W198.	14.5	13
266	Plasma lipidomic analysis shows a disease progression signature in mdx mice. Scientific Reports, 2021, 11, 12993.	3.3	7
267	Aberrant NLRP3 Inflammasome Activation Ignites the Fire of Inflammation in Neuromuscular Diseases. International Journal of Molecular Sciences, 2021, 22, 6068.	4.1	5
268	Guidelines for genetic testing of muscle and neuromuscular junction disorders. Muscle and Nerve, 2021, 64, 255-269.	2.2	8
269	Anti-inflammatory nanoparticles significantly improve muscle function in a murine model of advanced muscular dystrophy. Science Advances, 2021, 7, .	10.3	28
270	The nonsense mutation stop+4 model correlates with motor changes in Duchenne muscular dystrophy. Neuromuscular Disorders, 2021, 31, 479-488.	0.6	0
271	Emerging Oligonucleotide Therapeutics for Rare Neuromuscular Diseases. Journal of Neuromuscular Diseases, 2021, 8, 869-884.	2.6	19
272	Advances of Antisense Oligonucleotide Technology in the Treatment of Hereditary Neurodegenerative Diseases. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-9.	1.2	2
273	Restoring Protein Expression in Neuromuscular Conditions: A Review Assessing the Current State of Exon Skipping/Inclusion and Gene Therapies for Duchenne Muscular Dystrophy and Spinal Muscular Atrophy. BioDrugs, 2021, 35, 389-399.	4.6	11

#	Article	IF	CITATIONS
274	Analysis of NHEJ-Based DNA Repair after CRISPR-Mediated DNA Cleavage. International Journal of Molecular Sciences, 2021, 22, 6397.	4.1	26
275	Clinical and genetic spectra in patients with dystrophinopathy in Korea: A single-center study. PLoS ONE, 2021, 16, e0255011.	2.5	4
276	Induced pluripotent stem cells from urine of Duchenne muscular dystrophy patients. Pediatrics International, 2021, 63, 1038-1047.	0.5	1
277	Development of a Clinical Global Impression of Change (CGI-C) and a Caregiver Global Impression of Change (CaGI-C) measure for ambulant individuals with Duchenne muscular dystrophy. Health and Quality of Life Outcomes, 2021, 19, 184.	2.4	6
278	Absence of Significant Off-Target Splicing Variation with a U7snRNA Vector Targeting <i>DMD</i> Exon 2 Duplications. Human Gene Therapy, 2021, 32, 1346-1359.	2.7	8
279	MLPA followed by targetâ€NGS to detect mutations in the dystrophin gene of Peruvian patients suspected of DMD/DMB. Molecular Genetics & Genomic Medicine, 2021, 9, e1759.	1.2	5
280	New diagnostic and therapeutic modalities in neuromuscular disorders in children. Current Problems in Pediatric and Adolescent Health Care, 2021, 51, 101033.	1.7	9
281	Animal models for researching approaches to therapy of Duchenne muscular dystrophy. Transgenic Research, 2021, 30, 709-725.	2.4	13
282	Restoration of dystrophin expression in mice by suppressing a nonsense mutation through the incorporation of unnatural amino acids. Nature Biomedical Engineering, 2022, 6, 195-206.	22.5	26
283	Contractile Activity of Myotubes Derived from Human Induced Pluripotent Stem Cells: A Model of Duchenne Muscular Dystrophy. Cells, 2021, 10, 2556.	4.1	4
284	Muscle Regeneration and RNA: New Perspectives for Ancient Molecules. Cells, 2021, 10, 2512.	4.1	6
285	Long term treatment with ataluren—the Swedish experience. BMC Musculoskeletal Disorders, 2021, 22, 837.	1.9	7
286	Macrophages in Skeletal Muscle Dystrophies, An Entangled Partner. Journal of Neuromuscular Diseases, 2022, 9, 1-23.	2.6	17
287	Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Archiv European Journal of Physiology, 2021, 473, 1813-1839.	2.8	25
288	An anti-ADAMTS1 treatment relieved muscle dysfunction and fibrosis in dystrophic mice. Life Sciences, 2021, 281, 119756.	4.3	1
289	A 20-year Clinical and Genetic Neuromuscular Cohort Analysis in Lebanon: An International Effort. Journal of Neuromuscular Diseases, 2022, 9, 193-210.	2.6	17
290	Genetic Profile of the Dystrophin Gene Reveals New Mutations in Colombian Patients Affected with Muscular Dystrophinopathy. The Application of Clinical Genetics, 2021, Volume 14, 399-408.	3.0	4
291	Genome editing in large animal models. Molecular Therapy, 2021, 29, 3140-3152.	8.2	18

#	Article	IF	CITATIONS
292	CRISPR/Cas correction of muscular dystrophies. Experimental Cell Research, 2021, 408, 112844.	2.6	11
293	Molecular and Genetic Therapies. , 2022, , 225-246.		0
294	Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing. RNA Biology, 2021, 18, 1048-1062.	3.1	24
295	From diagnosis to therapy in Duchenne muscular dystrophy. Biochemical Society Transactions, 2020, 48, 813-821.	3.4	19
296	Lack of miR-378 attenuates muscular dystrophy in mdx mice. JCI Insight, 2020, 5, .	5.0	22
297	Correction of muscular dystrophies by CRISPR gene editing. Journal of Clinical Investigation, 2020, 130, 2766-2776.	8.2	60
298	The Dystrophinopathies. CONTINUUM Lifelong Learning in Neurology, 2019, 25, 1619-1639.	0.8	10
299	Ethnicity-related DMD Genotype Landscapes in European and Non-European Countries. Neurology: Genetics, 2021, 7, e536.	1.9	13
300	Advances in gene therapy for muscular dystrophies. F1000Research, 2016, 5, 2030.	1.6	14
301	Detailed genetic and functional analysis of the hDMDdel52/mdx mouse model. PLoS ONE, 2020, 15, e0244215.	2.5	15
302	Transâ€generational epigenetic regulation associated with the amelioration of Duchenne Muscular Dystrophy. EMBO Molecular Medicine, 2020, 12, e12063.	6.9	11
303	Repurposing Pathogenic Variants of <i>DMD</i> Gene and its Isoforms for DMD Exon Skipping Intervention. Current Genomics, 2020, 20, 519-530.	1.6	12
304	The advances and challenges of Gene Therapy for Duchenne Muscular Dystrophy. , 2017, 1, 019-036.		4
305	Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). International Journal of Molecular Medicine, 2020, 46, 521-534.	4.0	19
307	Sertoli Cells Improve Myogenic Differentiation, Reduce Fibrogenic Markers, and Induce Utrophin Expression in Human DMD Myoblasts. Biomolecules, 2021, 11, 1504.	4.0	2
308	RNA Targeting in Inherited Neuromuscular Disorders: Novel Therapeutic Strategies to Counteract Mis-Splicing. Cells, 2021, 10, 2850.	4.1	3
309	Gene-editing, immunological and iPSCs based therapeutics for muscular dystrophy. European Journal of Pharmacology, 2021, 912, 174568.	3.5	2
311	Early Diagnosis and Treatment – The Use of Ataluren in the Effective Management of Duchenne Muscular Dystrophy. European Neurological Review, 2018, 13, 31.	0.5	2

	Сітат	tion Report	
#	Article	IF	CITATIONS
312	Duchenne Muscular Dystrophy and Exercise: Structural, Functional, and Biochemical Effects of Exercise Modality in the Skeletal Muscles. Korean Journal of Sport Studies, 2018, 57, 321-333.	0.0	0
315	Newer advances in the treatment of Duchenne muscular dystrophy and spinal muscular atrophy. Journal of Current Research in Scientific Medicine, 2019, 5, 78.	0.1	0
316	Alternate Translational Initiation of Dystrophin: A Novel Therapeutic Approach. , 2019, , 371-382.		0
317	Development of a Duchenne Muscular Dystrophy registry for children in South Africa to optimize care. Journal of International Child Neurology Association, 0, , .	0.0	0
318	Gene therapy approaches to the duchenne muscular dystrophy theatment. Genes and Cells, 2019, 14, 6-18.	0.2	0
319	Current diagnosis and treatment of Duchenne muscular dystrophy. Kazan Medical Journal, 2020, 101, 530-537.	0.2	3
320	iPSCs for modeling Duchenne muscular dystrophy. , 2020, , 103-129.		0
321	Genetic correction strategies for Duchenne muscular dystrophy and their impact on the heart. Progress in Pediatric Cardiology, 2021, 63, 101460.	0.4	4
322	Dystrophin-deficient large animal models: translational research and exon skipping. American Journal of Translational Research (discontinued), 2015, 7, 1314-31.	0.0	38
323	Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy: from discovery to clinical trials. American Journal of Translational Research (discontinued), 2016, 8, 2471-89.	0.0	57
324	Coagulation disorders in Duchenne muscular dystrophy? Results of a registry-based online survey. Acta Myologica, 2020, 39, 2-12.	1.5	5
327	A novel DMD intronic alteration: a potentially disease-causing variant of an intermediate muscular dystrophy phenotype. Acta Myologica, 2021, 40, 93-100.	1.5	0
328	Using insights from genomics to increase possibilities for treatment of genetic diseases. , 2022, , 309-358.		1
329	Pharmacology and toxicology of eteplirsen and SRP-5051 for DMD exon 51 skipping: an update. Archives of Toxicology, 2022, 96, 1-9.	s 4.2	21
330	Ataluren delays loss of ambulation and respiratory decline in nonsense mutation Duchenne muscular dystrophy patients. Journal of Comparative Effectiveness Research, 2022, 11, 139-155.	1.4	29
331	A Dystrophin Exon-52 Deleted Miniature Pig Model of Duchenne Muscular Dystrophy and Evaluation of Exon Skipping. International Journal of Molecular Sciences, 2021, 22, 13065.	4.1	9
333	Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurological Research and Practice, 2022, 4, 2.	2.0	27
334	Diversity of Dystrophin Gene Mutations and Disease Progression in a Contemporary Cohort of Duchenne Muscular Dystrophy. Pediatric Cardiology, 2022, 43, 855-867.	1.3	5

#	Article	IF	CITATIONS
335	Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 1551.	4.1	5
336	CRISPR Therapeutics for Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 1832.	4.1	14
338	In Vitro Delivery of PMOs in Myoblasts by Electroporation. Methods in Molecular Biology, 2022, 2434, 191-205.	0.9	3
339	The importance of direct genetic testing to determine female carriers in dystrophinopathies. Vojnosanitetski Pregled, 2022, , 30-30.	0.2	0
341	CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy. Neurotherapeutics, 2022, 19, 931-941.	4.4	17
342	Development of DG9 peptide-conjugated single- and multi-exon skipping therapies for the treatment of Duchenne muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
344	Intron mutations and early transcription termination in Duchenne and Becker muscular dystrophy. Human Mutation, 2022, 43, 511-528.	2.5	16
345	Therapeutic Strategies for Dystrophin Replacement in Duchenne Muscular Dystrophy. Frontiers in Medicine, 2022, 9, 859930.	2.6	21
346	Transiently expressed CRISPR/Cas9 induces wild-type dystrophin in vitro in DMD patient myoblasts carrying duplications. Scientific Reports, 2022, 12, 3756.	3.3	4
347	Tamoxifen treatment ameliorates contractile dysfunction of Duchenne muscular dystrophy stem cell-derived cardiomyocytes on bioengineered substrates. Npj Regenerative Medicine, 2022, 7, 19.	5.2	7
348	Dystrophin genetic variants and autism. Discover Mental Health, 2022, 2, 1.	2.0	0
350	Elevated numbers of infiltrating eosinophils accelerate the progression of Duchenne muscular dystrophy pathology in <i>mdx</i> mice. Development (Cambridge), 2022, 149, .	2.5	4
351	Non-Invasive Optical Motion Tracking Allows Monitoring of Respiratory Dynamics in Dystrophin-Deficient Mice. Cells, 2022, 11, 918.	4.1	3
353	Long-term maintenance of dystrophin expression and resistance to injury of skeletal muscle in gene edited DMD mice. Molecular Therapy - Nucleic Acids, 2022, 28, 154-167.	5.1	12
354	The impact of genotype on outcomes in individuals with Duchenne muscular dystrophy: A systematic review. Muscle and Nerve, 2022, 65, 266-277.	2.2	1
355	Diagnostic Value of Dystrophin Immunostaining in the Diagnosis of Duchenne and Becker Muscular Dystrophy Patients. Open Access Macedonian Journal of Medical Sciences, 2021, 9, 1137-1141.	0.2	0
356	Lessons Learned From Translational Research in Neuromuscular Diseases: Impact on Study Design, Outcome Measures and Managing Expectation. Frontiers in Genetics, 2021, 12, .	2.3	1
357	Phenotypic Spectrum of Dystrophinopathy Due to Duchenne Muscular Dystrophy Exon 2 Duplications. Neurology, 2022, 98, .	1.1	6

#	Article	IF	CITATIONS
358	Integrating Whole-Genome Sequencing in Clinical Genetics: A Novel Disruptive Structural Rearrangement Identified in the Dystrophin Gene (DMD). International Journal of Molecular Sciences, 2022, 23, 59.	4.1	3
359	Functional analysis of variants in DMD exon/intron 10 predicted to affect splicing. Journal of Human Genetics, 2022, 67, 495-501.	2.3	1
360	WT-PE: Prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal Transduction and Targeted Therapy, 2022, 7, 108.	17.1	25
373	CRISPR/Cas9-based genome editing for the modification of multiple duplications that cause Duchenne muscular dystrophy. Gene Therapy, 2022, 29, 730-737.	4.5	3
374	Efficient suppression of endogenous CFTR nonsense mutations using anticodon-engineered transfer RNAs. Molecular Therapy - Nucleic Acids, 2022, 28, 685-701.	5.1	29
375	A Chinese boy with familial Duchenne muscular dystrophy owing to a novel hemizygous nonsense mutation (c.6283C>T) in an exon of the <i>DMD</i> gene. SAGE Open Medical Case Reports, 2022, 10, 2050313X2211008.	0.3	0
376	Prime Editing Permits the Introduction of Specific Mutations in the Gene Responsible for Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 6160.	4.1	16
377	Development of Therapeutic RNA Manipulation for Muscular Dystrophy. Frontiers in Genome Editing, 0, 4, .	5.2	5
378	Long-Term Functional Efficacy and Safety of Viltolarsen in Patients with Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2022, 9, 493-501.	2.6	31
379	Comparing Deflazacort and Prednisone in Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2022, 9, 463-476.	2.6	10
380	Genetically modified animal models of hereditary diseases for testing of gene-directed therapy. Research Results in Pharmacology, 2022, 8, 11-26.	0.4	1
381	Incidence of Duchenne muscular dystrophy in the modern era; an Australian study. European Journal of Human Genetics, 2022, 30, 1398-1404.	2.8	8
382	Systemic delivery of an AAV9 exon-skipping vector significantly improves or prevents features of Duchenne muscular dystrophy in the Dup2 mouse. Molecular Therapy - Methods and Clinical Development, 2022, 26, 279-293.	4.1	15
383	Current Outline of Exon Skipping Trials in Duchenne Muscular Dystrophy. Genes, 2022, 13, 1241.	2.4	16
384	Emerging therapies for Duchenne muscular dystrophy. Lancet Neurology, The, 2022, 21, 814-829.	10.2	35
385	Drug development progress in duchenne muscular dystrophy. Frontiers in Pharmacology, 0, 13, .	3.5	26
386	Promising therapeutic approaches of utrophin replacing dystrophin in the treatment of Duchenne muscular dystrophy. Fundamental Research, 2022, 2, 885-893.	3.3	3
387	<scp>CRISPR</scp> applications for Duchenne muscular dystrophy: From animal models to potential therapies. WIREs Mechanisms of Disease, 2023, 15, .	3.3	6

#	Article	IF	CITATIONS
388	Proteomic profiling of impaired excitation–contraction coupling and abnormal calcium handling in muscular dystrophy. Proteomics, 2022, 22, .	2.2	10
389	Tandem duplication within the DMD gene in Labrador retrievers with a mild clinical phenotype. Neuromuscular Disorders, 2022, 32, 836-841.	0.6	5
390	LTBP4, SPP1, and CD40 Variants: Genetic Modifiers of Duchenne Muscular Dystrophy Analyzed in Serbian Patients. Genes, 2022, 13, 1385.	2.4	2
391	Duchenne expert physician perspectives on Duchenne newborn screening and early Duchenne care. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2022, 190, 162-168.	1.6	5
392	Enhanced exon skipping and prolonged dystrophin restoration achieved by TfR1-targeted delivery of antisense oligonucleotide using FORCE conjugation in <i>mdx</i> mice. Nucleic Acids Research, 2022, 50, 11401-11414.	14.5	25
393	A humanized knockin mouse model of Duchenne muscular dystrophy and its correction by CRISPR-Cas9 therapeutic gene editing. Molecular Therapy - Nucleic Acids, 2022, 29, 525-537.	5.1	13
394	Neuromuscular disorders: finding the missing genetic diagnoses. Trends in Genetics, 2022, 38, 956-971.	6.7	4
395	CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives. Cells, 2022, 11, 2964.	4.1	8
396	Patient demographics and characteristics from an ambispective, observational study of patients with duchenne muscular dystrophy in Saudi Arabia. Frontiers in Pediatrics, 0, 10, .	1.9	1
397	Cognitive and neurobehavioral patterns in a sample of Egyptian patients genetically diagnosed with Duchenne muscular dystrophy. Middle East Current Psychiatry, 2022, 29, .	1.2	2
398	Perspectives on the advances in the pharmacotherapeutic management of Duchenne muscular dystrophy. Expert Opinion on Pharmacotherapy, 2022, 23, 1701-1710.	1.8	2
399	Prime editing optimized RTT permits the correction of the c.8713C>T mutation in DMD gene. Molecular Therapy - Nucleic Acids, 2022, 30, 272-285.	5.1	13
400	Identification and characterization of two DMD pedigrees with large inversion mutations based on a long-read sequencing pipeline. European Journal of Human Genetics, 2023, 31, 504-511.	2.8	3
401	Gene Analysis of Three Generations with Pseudohypertrophy Muscular Dystrophy Family and Literature Review. Advances in Clinical Medicine, 2022, 12, 9648-9655.	0.0	0
402	Specificities of the DMD Gene Mutation Spectrum in Russian Patients. International Journal of Molecular Sciences, 2022, 23, 12710.	4.1	0
404	Advances in CRISPR therapeutics. Nature Reviews Nephrology, 2023, 19, 9-22.	9.6	41
405	Dystrophinopathy and the brain: A parent project muscular dystrophy (PPMD) meeting report November 11-12, 2021, New York City, NY. Neuromuscular Disorders, 2022, 32, 935-944.	0.6	3
406	CRISPR-mediated correction of skeletal muscle Ca2+ handling in a novel DMD patient-derived pluripotent stem cell model. Neuromuscular Disorders, 2022, , .	0.6	1

#	Article	IF	CITATIONS
407	Clinical, muscle imaging, and genetic characteristics of dystrophinopathies with deep-intronic DMD variants. Journal of Neurology, 2023, 270, 925-937.	3.6	5
408	Restoring Dystrophin Expression with Exon 44 and 53 Skipping in the DMD Gene in Immortalized Myotubes. Methods in Molecular Biology, 2023, , 125-139.	0.9	1
409	Viltolarsen: From Preclinical Studies to FDA Approval. Methods in Molecular Biology, 2023, , 31-41.	0.9	9
410	Current Strategies of Muscular Dystrophy Therapeutics: An Overview. Methods in Molecular Biology, 2023, , 3-30.	0.9	2
411	Retinal dystrophins and the retinopathy of Duchenne muscular dystrophy. Progress in Retinal and Eye Research, 2023, 95, 101137.	15.5	2
412	Newborn screening and genomic analysis of duchenne muscular dystrophy in Henan, China. Clinica Chimica Acta, 2023, 539, 90-96.	1.1	3
413	Correction of DMD in human iPSC-derived cardiomyocytes by base-editing-induced exon skipping. Molecular Therapy - Methods and Clinical Development, 2023, 28, 40-50.	4.1	8
414	Duchenne Muscular Dystrophy Gene Therapy. Current Gene Therapy, 2024, 24, 17-28.	2.0	3
415	T Cell Responses to Dystrophin in a Natural History Study of Duchenne Muscular Dystrophy. Human Gene Therapy, 2023, 34, 439-448.	2.7	5
416	The Dystrophinopathies. CONTINUUM Lifelong Learning in Neurology, 2022, 28, 1678-1697.	0.8	1
418	CONVENTIONAL APPROACHES TO THE THERAPY OF HEREDITARY MYOPATHIES. Farmatsiya I Farmakologiya, 2022, 10, 416-431.	0.6	0
419	Gene therapy review: Duchenne muscular dystrophy case study. Revue Neurologique, 2023, 179, 90-105.	1.5	1
420	Is the fundamental pathology in Duchenne's muscular dystrophy caused by a failure of glycogenolysis–glycolysis in costameres?. Journal of Genetics, 2023, 102, .	0.7	0
421	Orai1 as a potential "fits-all approach―therapeutic target for the treatment of DMD. Journal of General Physiology, 2023, 155, .	1.9	0
422	Eccentric contraction-induced strength loss in dystrophin-deficient muscle: Preparations, protocols, and mechanisms. Journal of General Physiology, 2023, 155, .	1.9	1
423	Duchenne Muscular Dystrophy in Kazakhstan: A Journey from Diagnosis to the Treatment, the Biases and Achievements. Journal of Neuromuscular Diseases, 2023, 10, 263-269.	2.6	1
424	TRF2 rescues telomere attrition and prolongs cell survival in Duchenne muscular dystrophy cardiomyocytes derived fromÂhuman iPSCs. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	7
425	A manifesting female carrier of Duchenne muscular dystrophy: Importance of genetics for the dystrophinopathies. Singapore Medical Journal, 2023, 64, 81.	0.6	3

#	Article	IF	CITATIONS
426	Gene therapy for selected neuromuscular and trinucleotide repeat disorders – An insight to subsume South Asia for multicenter clinical trials. IBRO Neuroscience Reports, 2023, 14, 146-153.	1.6	4
427	<i>DMD</i> Genotypes and Motor Function in Duchenne Muscular Dystrophy. Neurology, 2023, 100, .	1.1	7
429	Delivery challenges for CRISPR—Cas9 genome editing for Duchenne muscular dystrophy. Biophysics Reviews, 2023, 4, .	2.7	2
430	High-capacity adenovector delivery of forced CRISPR-Cas9 heterodimers fosters precise chromosomal deletions in human cells. Molecular Therapy - Nucleic Acids, 2023, 31, 746-762.	5.1	2
431	Sarcoplasmic Reticulum Ca2+ Buffer Proteins: A Focus on the Yet-To-Be-Explored Role of Sarcalumenin in Skeletal Muscle Health and Disease. Cells, 2023, 12, 715.	4.1	3
432	The Dilemma of Choice for Duchenne Patients Eligible for Exon 51 Skipping The European Experience. Journal of Neuromuscular Diseases, 2023, 10, 315-325.	2.6	2
433	Full-length human dystrophin on human artificial chromosome compensates for mouse dystrophin deficiency in a Duchenne muscular dystrophy mouse model. Scientific Reports, 2023, 13, .	3.3	0
434	The Future of Exon Skipping for Duchenne Muscular Dystrophy. Human Gene Therapy, 2023, 34, 372-378.	2.7	6
435	Change in the spectrum of detected mutations in the <i>DMD</i> gene depending on the methodological capabilities of the laboratory. Nervno-Myshechnye Bolezni, 2023, 13, 33-43.	0.4	1
436	Clinical and genetic characteristics and an algorithm for the differential diagnosis of progressive muscular dystrophies that manifest after a period of normal motor development. Nervno-Myshechnye Bolezni, 2023, 13, 44-51.	0.4	0
437	Efficacy and Safety of Viltolarsen in Boys With Duchenne Muscular Dystrophy: Results From the Phase 2, Open-Label, 4-Year Extension Study. Journal of Neuromuscular Diseases, 2023, 10, 439-447.	2.6	13
438	Promising Treatments for Duchenne Muscular Dystrophy: Restoring Dystrophin Protein Expression Using Nucleic Acid Therapeutics. , 0, , .		0
439	Systemic administration of the antisense oligonucleotide <scp>NS</scp> â€089/ <scp>NCNP</scp> â€02 for skipping of exon 44 in patients with Duchenne muscular dystrophy: Study protocol for a phase I/ <scp>II</scp> clinical trial. Neuropsychopharmacology Reports, 2023, 43, 277-286.	2.3	0
440	CRISPR-Editing Therapy for Duchenne Muscular Dystrophy. Human Gene Therapy, 2023, 34, 379-387.	2.7	7
441	Single-swap editing for the correction of common Duchenne muscular dystrophy mutations. Molecular Therapy - Nucleic Acids, 2023, 32, 522-535.	5.1	3
442	Types of neuromuscular disease. , 2023, , 3-22.		0
443	Results of a genetic study of children with Duchenne myodystrophy in Kazakhstan. Journal of Neurosciences in Rural Practice, 0, 14, 389-390.	0.8	0
444	Advances in CRISPR/Cas9 Genome Editing for the Treatment of Muscular Dystrophies. Human Gene Therapy, 2023, 34, 388-403.	2.7	6

~		~	
(11		REPO	דסר
\sim	IAL	IL PU	ואכ

#	Article	IF	CITATIONS
445	Microdystrophin Gene Addition Significantly Improves Muscle Functionality and Diaphragm Muscle Histopathology in a Fibrotic Mouse Model of Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2023, 24, 8174.	4.1	3
446	Prime editing strategies to mediate exon skipping in DMD gene. Frontiers in Medicine, 0, 10, .	2.6	0
447	Noncanonical Amino Acid Incorporation in Mice. Methods in Molecular Biology, 2023, , 265-284.	0.9	0
448	Production of Duchenne muscular dystrophy cellular model using CRISPR-Cas9 exon deletion strategy. Molecular and Cellular Biochemistry, 0, , .	3.1	1
449	CRISPR-Cas9 correction in the DMD mouse model is accompanied by upregulation of Dp71f protein. Molecular Therapy - Methods and Clinical Development, 2023, 30, 161-180.	4.1	2
450	Consensus concept of modern effective therapy for Duchenne muscular dystrophy. Nervno-Myshechnye Bolezni, 2023, 13, 10-19.	0.4	0
451	Comparison of In-Frame Deletion, Homology-Directed Repair, and Prime Editing-Based Correction of Duchenne Muscular Dystrophy Mutations. Biomolecules, 2023, 13, 870.	4.0	1
452	Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Frontiers in Physiology, 0, 14, .	2.8	14
453	Cardiac therapies for Duchenne muscular dystrophy. Therapeutic Advances in Neurological Disorders, 2023, 16, .	3.5	3
454	Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules, 2023, 13, 1108.	4.0	5
455	Prevention of early-onset cardiomyopathy in Dmd exon 52–54 deletion mice by CRISPR-Cas9-mediated exon skipping. Molecular Therapy - Methods and Clinical Development, 2023, 30, 246-258.	4.1	1
457	Sodium hydrosulfide moderately alleviates the hallmark symptoms of Duchenne muscular dystrophy in mdx mice. European Journal of Pharmacology, 2023, 955, 175928.	3.5	3
458	Spatial transcriptomics reveal markers of histopathological changes in Duchenne muscular dystrophy mouse models. Nature Communications, 2023, 14, .	12.8	3
459	CRISPR-Cas9 homology-independent targeted integration of exons 1–19 restores full-length dystrophin in mice. Molecular Therapy - Methods and Clinical Development, 2023, 30, 486-499.	4.1	0
460	Therapeutic approaches for Duchenne muscular dystrophy. Nature Reviews Drug Discovery, 2023, 22, 917-934.	46.4	8
461	Mimicking sarcolemmal damage in vitro: a contractile 3D model of skeletal muscle for drug testing in Duchenne muscular dystrophy. Biofabrication, 2023, 15, 045024.	7.1	0
462	Gene therapy for Duchenne muscular dystrophy: an update on the latest clinical developments. Expert Review of Neurotherapeutics, 2023, 23, 905-920.	2.8	2
463	RNA-Based Strategies for Cancer Therapy: In Silico Design and Evaluation of ASOs for Targeted Exon Skipping. International Journal of Molecular Sciences, 2023, 24, 14862.	4.1	1

#	Article	IF	CITATIONS
464	Case report: a novel deep intronic splice-altering variant in DMD as a cause of Becker muscular dystrophy. Frontiers in Genetics, 0, 14, .	2.3	0
465	Dual CRISPR-Cas3 system for inducing multi-exon skipping in DMD patient-derived iPSCs. Stem Cell Reports, 2023, 18, 1753-1765.	4.8	1
466	<i>DMD</i> antisense oligonucleotide mediated exon skipping efficiency correlates with flanking intron retention time and target position within the exon. RNA Biology, 2023, 20, 693-702.	3.1	1
467	DMD-Associated Dilated Cardiomyopathy: Genotypes, Phenotypes, and Phenocopies. Circulation Genomic and Precision Medicine, 2023, 16, 421-430.	3.6	2
468	Lessons learned from the first national population-based genetic carrier-screening program for Duchenne muscular dystrophy. Genetics in Medicine, 2023, 25, 100981.	2.4	0
469	Retrospective analysis of persistent HyperCKemia with or without muscle weakness in a case series from Greece highlights vast <i>DMD</i> variant heterogeneity. Expert Review of Molecular Diagnostics, 2023, 23, 999-1010.	3.1	0
470	269th ENMC international workshop: 10 years of clinical trials in Duchenne muscular dystrophy – What have we learned? 9–11 December 2022, Hoofddorp, The Netherlands. Neuromuscular Disorders, 2023, 33, 897-910.	0.6	0
471	Does the registry speak your language? A case study of the Global Angelman Syndrome Registry. Orphanet Journal of Rare Diseases, 2023, 18, .	2.7	0
472	Myopathologic trajectory in Duchenne muscular dystrophy (DMD) reveals lack of regeneration due to senescence in satellite cells. Acta Neuropathologica Communications, 2023, 11, .	5.2	3
473	Efficacy of exon-skipping therapy for DMD cardiomyopathy with mutations in actin binding domain 1. Molecular Therapy - Nucleic Acids, 2023, , 102060.	5.1	0
474	Türkiye'de Duchenne/Becker Musküler Distrofisi Kohortunda Distrofin Gen Delesyonları ve Duplikasyonlarının Dağılımı. Osmangazİ Journal of Medicine, 2024, 46, 9-16.	0.1	0
475	Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review. BioDrugs, 2024, 38, 95-119.	4.6	1
476	Proteome Profiling of the Dystrophic mdx Mice Diaphragm. Biomolecules, 2023, 13, 1648.	4.0	2
477	Application of long read sequencing in rare diseases: The longer, the better?. European Journal of Medical Genetics, 2023, 66, 104871.	1.3	0
478	A novel splicing mutation identified in a DMD patient: a case report. Frontiers in Pediatrics, 0, 11, .	1.9	1
479	Cryptic exon activation caused by a novel deepâ€intronic spliceâ€altering variant in Becker muscular dystrophy. Journal of Clinical Laboratory Analysis, 2023, 37, .	2.1	0
480	Prevalence of Adeno-Associated Virus-9 Neutralizing Antibody in Chinese Patients with Duchenne Muscular Dystrophy. Human Gene Therapy, 0, , .	2.7	0
481	Mutational spectrum and phenotypic variability of Duchenne muscular dystrophy and related disorders in a Bangladeshi population. Scientific Reports, 2023, 13, .	3.3	1

#	Article	IF	CITATIONS
482	Networking to Optimize Dmd exon 53 Skipping in the Brain of mdx52 Mouse Model. Biomedicines, 2023, 11, 3243.	3.2	0
483	Bibliometric analysis of global research trends in adeno-associated virus vector for gene therapy (1991-2022). Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	1
484	Higher Prevalence of Nonsense Pathogenic DMD Variants in a Single-Center Cohort from Brazil: A Genetic Profile Study That May Guide the Choice of Disease-Modifying Treatments. Brain Sciences, 2023, 13, 1521.	2.3	1
485	Uncovering the true features of dystrophin gene rearrangement and improving the molecular diagnosis of Duchenne and Becker muscular dystrophies. IScience, 2023, 26, 108365.	4.1	1
486	enOsCas12f1-mediated exon skipping for Duchenne muscular dystrophy therapy in humanized mouse model. Journal of Genetics and Genomics, 2024, 51, 256-259.	3.9	0
487	A new pseudoexon activation due to ultrarare branch point formation in Duchenne muscular dystrophy. Neuromuscular Disorders, 2024, 35, 8-12.	0.6	0
488	Edad de diagnóstico de distrofia muscular de Duchenne en Perú 2023: un estudio transversal. , 2023, 1, 5-10.		0
490	Cardioprotective Effects of Hydrogen Sulfide and Its Potential Therapeutic Implications in the Amelioration of Duchenne Muscular Dystrophy Cardiomyopathy. Cells, 2024, 13, 158.	4.1	0
491	Title-molecular diagnostics of dystrophinopathies in Sri Lanka towards phenotype predictions: an insight from a South Asian resource limited setting. European Journal of Medical Research, 2024, 29, .	2.2	0
493	Dynamics of the course of Duchenne muscular dystrophy in patients taking ataluren and concomitant drug and non-drug therapy. Nervno-Myshechnye Bolezni, 2024, 13, 49-55.	0.4	0
494	The Clinical Development of Taldefgrobep Alfa: An Anti-Myostatin Adnectin for the Treatment of Duchenne Muscular Dystrophy. Neurology and Therapy, 2024, 13, 183-219.	3.2	0
495	How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction?. Proteomes, 2024, 12, 4.	3.5	0
498	Dystrophinopathies. Current Clinical Neurology, 2023, , 11-36.	0.2	0
499	Molecular Genetic Therapies in the Muscular Dystrophies. Current Clinical Neurology, 2023, , 281-302.	0.2	0
501	A review on mechanistic insights into structure and function of dystrophin protein in pathophysiology and therapeutic targeting of Duchenne muscular dystrophy. International Journal of Biological Macromolecules, 2024, 264, 130544.	7.5	0
502	Cell-mediated exon skipping normalizes dystrophin expression and muscle function in a new mouse model ofÂDuchenne Muscular Dystrophy. EMBO Molecular Medicine, 2024, 16, 927-944.	6.9	0
503	Stages of research and development of therapeutic approaches for Duchenne myodystrophy. Part I: the period before etiotropic approaches introduction. Nervno-Myshechnye Bolezni, 2024, 14, 51-62.	0.4	0
504	Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Frontiers in Pharmacology, 0, 15, .	3.5	0

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
505	Increase in Full-Length Dystrophin by Exon Skipping in Duchenne Muscular Dystrophy Single Exon Duplications: An Open-label Study. Journal of Neuromuscular Diseases, 20	Patients with 24, 11, 679-685.	2.6	0
506	Clinical and genetic interpretation of uncertain DMD missense variants: evidence from protein studies. Orphanet Journal of Rare Diseases, 2024, 19, .	mRNA and	2.7	Ο
507	Longitudinal data of serum creatine kinase levels and motor, pulmonary, and cardiac fr patients with Duchenne muscular dystrophy. Muscle and Nerve, 2024, 69, 604-612.	unctions in 337	2.2	0