Systems genetics identifies Sestrin 3 as a regulator of a phuman epileptic hippocampus

Nature Communications 6, 6031 DOI: 10.1038/ncomms7031

Citation Report

#	ARTICLE	IF	CITATIONS
1	MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy – comparison with human epileptic samples. Scientific Reports, 2015, 5, 14143.	1.6	101
2	Genetic mutations associated with status epilepticus. Epilepsy and Behavior, 2015, 49, 104-110.	0.9	27
3	Pyruvate dehydrogenase complex deficiency and its relationship with epilepsy frequency – An overview. Epilepsy Research, 2015, 116, 40-52.	0.8	36
4	Identifying the biological pathways underlying human focal epilepsy: from complexity to coherence to centrality. Human Molecular Genetics, 2015, 24, 4306-4316.	1.4	45
5	Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nature Communications, 2015, 6, 10025.	5.8	122
6	P2X purinoceptors as a link between hyperexcitability and neuroinflammation in status epilepticus. Epilepsy and Behavior, 2015, 49, 8-12.	0.9	42
7	Differential gene expression in dentate granule cells in mesial temporal lobe epilepsy with and without hippocampal sclerosis. Epilepsia, 2016, 57, 376-385.	2.6	25
8	Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery. Genome Biology, 2016, 17, 245.	3.8	75
9	From integrative genomics to systems genetics in the rat to link genotypes to phenotypes. DMM Disease Models and Mechanisms, 2016, 9, 1097-1110.	1.2	27
10	Preventing epileptogenesis: A realistic goal?. Pharmacological Research, 2016, 110, 96-100.	3.1	47
11	A transcriptional signature of Alzheimer's disease is associated with a metastable subproteome at risk for aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4753-4758.	3.3	74
12	Computational approaches for innovative antiepileptic drug discovery. Expert Opinion on Drug Discovery, 2016, 11, 1001-1016.	2.5	13
13	MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurology, The, 2016, 15, 1368-1376.	4.9	200
14	Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. Journal of Neuroscience, 2016, 36, 5920-5932.	1.7	127
15	Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease. Nature Neuroscience, 2016, 19, 223-232.	7.1	131
16	Human brain slices for epilepsy research: Pitfalls, solutions and future challenges. Journal of Neuroscience Methods, 2016, 260, 221-232.	1.3	50
17	Building a zebrafish toolkit for investigating the pathobiology of epilepsy and identifying new treatments for epileptic seizures. Journal of Neuroscience Methods, 2016, 260, 91-95.	1.3	35
18	Identifying new antiepileptic drugs through genomics-based drug repurposing. Human Molecular Genetics, 2017, 26, ddw410.	1.4	37

#	Article	IF	CITATIONS
19	RNA sequencing of synaptic and cytoplasmic Upf1-bound transcripts supports contribution of nonsense-mediated decay to epileptogenesis. Scientific Reports, 2017, 7, 41517.	1.6	16
20	The State of Systems Genetics in 2017. Cell Systems, 2017, 4, 7-15.	2.9	29
21	Spatiotemporal progression of ubiquitin-proteasome system inhibition after status epilepticus suggests protective adaptation against hippocampal injury. Molecular Neurodegeneration, 2017, 12, 21.	4.4	23
22	Genome-wide analysis of differential RNA editing in epilepsy. Genome Research, 2017, 27, 440-450.	2.4	73
23	Genetic regulation of gene expression in the epileptic human hippocampus. Human Molecular Genetics, 2017, 26, 1759-1769.	1.4	20
24	Microglial positron emission tomography (PET) imaging in epilepsy: Applications, opportunities and pitfalls. Seizure: the Journal of the British Epilepsy Association, 2017, 44, 42-47.	0.9	28
25	Whole-transcriptome screening reveals the regulatory targets and functions of long non-coding RNA H19 in epileptic rats. Biochemical and Biophysical Research Communications, 2017, 489, 262-269.	1.0	19
26	Advances in epilepsy gene discovery and implications for epilepsy diagnosis and treatment. Current Opinion in Neurology, 2017, 30, 193-199.	1.8	72
27	WONOEP appraisal: Development of epilepsy biomarkers—What we can learn from our patients?. Epilepsia, 2017, 58, 951-961.	2.6	13
28	Potent Anti-seizure Effects of Locked Nucleic Acid Antagomirs Targeting miR-134 in Multiple Mouse and Rat Models of Epilepsy. Molecular Therapy - Nucleic Acids, 2017, 6, 45-56.	2.3	62
29	Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease. Methods in Molecular Biology, 2017, 1488, 337-362.	0.4	11
30	Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatrica, 2017, 29, 1-16.	1.0	105
31	Recent Insights into the Biological Functions of Sestrins in Health and Disease. Cellular Physiology and Biochemistry, 2017, 43, 1731-1741.	1.1	57
32	Systematic review and meta-analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy. Scientific Reports, 2017, 7, 11592.	1.6	44
33	Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. Nature Communications, 2017, 8, 428.	5.8	74
34	The 16p11.2 homologs fam57ba and doc2a generate certain brain and body phenotypes. Human Molecular Genetics, 2017, 26, 3699-3712.	1.4	37
35	Zebrafish Models of Epilepsy and Epileptic Seizures. , 2017, , 369-384.		12
36	An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci. PLoS Computational Biology, 2017, 13, e1005537.	1.5	12

#	Article	IF	CITATIONS
37	The Big Picture: Systems Biology Approach to Antiepileptic Drug Discovery. Epilepsy Currents, 2017, 17, 232-234.	0.4	0
38	Manipulating MicroRNAs in Murine Models: Targeting the Multi-Targeting in Epilepsy. Epilepsy Currents, 2017, 17, 43-47.	0.4	17
39	<scp>SRR</scp> intronic variation inhibits expression of its neighbouring <scp>SMG</scp> 6 gene and protects against temporal lobe epilepsy. Journal of Cellular and Molecular Medicine, 2018, 22, 1883-1893.	1.6	5
40	Silencing rno-miR-155-5p in rat temporal lobe epilepsy model reduces pathophysiological features and cell apoptosis by activating Sestrin-3. Brain Research, 2018, 1689, 109-122.	1.1	44
41	Review: Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathology and Applied Neurobiology, 2018, 44, 112-129.	1.8	121
42	Integrated systems analysis reveals conserved gene networks underlying response to spinal cord injury. ELife, 2018, 7, .	2.8	29
43	Sestrins are Gatekeepers in the Way from Stress to Aging and Disease. Molecular Biology, 2018, 52, 823-835.	0.4	12
44	The treatment value of IL-1β monoclonal antibody under the targeting location of alpha-methyl-l-tryptophan and superparamagnetic iron oxide nanoparticles in an acute temporal lobe epilepsy model. Journal of Translational Medicine, 2018, 16, 337.	1.8	16
45	A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target. Nature Communications, 2018, 9, 3561.	5.8	75
46	WONOEP APPRAISAL: The many facets of epilepsy networks. Epilepsia, 2018, 59, 1475-1483.	2.6	27
47	Integrated systemsâ€genetic analyses reveal a network target for delaying glioma progression. Annals of Clinical and Translational Neurology, 2019, 6, 1616-1638.	1.7	8
48	WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling. Nature Communications, 2019, 10, 3616.	5.8	44
49	Emerging Roles of Sestrins in Neurodegenerative Diseases: Counteracting Oxidative Stress and Beyond. Journal of Clinical Medicine, 2019, 8, 1001.	1.0	39
51	Gene networks and microRNAs: Promises and challenges for treating epilepsies and their comorbidities. Epilepsy and Behavior, 2021, 121, 106488.	0.9	4
52	Shared Molecular Signatures Across Neurodegenerative Diseases and Herpes Virus Infections Highlights Potential Mechanisms for Maladaptive Innate Immune Responses. Scientific Reports, 2019, 9, 8795.	1.6	29
53	Transcriptomic and genetic analyses reveal potential causal drivers for intractable partial epilepsy. Brain, 2019, 142, 1616-1630.	3.7	47
54	Calcium Channel Subunit α2Î′4 Is Regulated by Early Growth Response 1 and Facilitates Epileptogenesis. Journal of Neuroscience, 2019, 39, 3175-3187.	1.7	24
55	High-Dimensional Bayesian Network Inference From Systems Genetics Data Using Genetic Node Ordering. Frontiers in Genetics, 2019, 10, 1196.	1.1	14

#	Article	IF	CITATIONS
56	A systems approach identifies Enhancer of Zeste Homolog 2 (EZH2) as a protective factor in epilepsy. PLoS ONE, 2019, 14, e0226733.	1.1	12
57	Sestrin2: Its Potential Role and Regulatory Mechanism in Host Immune Response in Diseases. Frontiers in Immunology, 2019, 10, 2797.	2.2	49
58	Ethnicity-Specific Skeletal Muscle Transcriptional Signatures and Their Relevance to Insulin Resistance in Singapore. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 465-486.	1.8	4
59	Abnormal temporal lobe morphology in asymptomatic relatives of patients with hippocampal sclerosis: A replication study. Epilepsia, 2019, 60, e1-e5.	2.6	12
60	Gene expression profiling in a mouse model of Dravet syndrome. Experimental Neurology, 2019, 311, 247-256.	2.0	33
61	Systems-level analysis identifies key regulators driving epileptogenesis in temporal lobe epilepsy. Genomics, 2020, 112, 1768-1780.	1.3	15
62	A systems-level framework for anti-epilepsy drug discovery. Neuropharmacology, 2020, 170, 107868.	2.0	15
63	Sestrin family – the stem controlling healthy ageing. Mechanisms of Ageing and Development, 2020, 192, 111379.	2.2	15
64	Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis. EBioMedicine, 2020, 57, 102878.	2.7	56
65	Genetics of Epileptic Networks: from Focal to Generalized Genetic Epilepsies. Current Neurology and Neuroscience Reports, 2020, 20, 46.	2.0	12
66	Genetic deletion of microRNA-22 blunts the inflammatory transcriptional response to status epilepticus and exacerbates epilepsy in mice. Molecular Brain, 2020, 13, 114.	1.3	18
67	The Natural History of Epilepsy. , 2020, , 1-13.		Ο
68	Challenges in Identifying Medication-Resistant Epilepsy. , 2020, , 14-19.		0
69	International League Against Epilepsy's Definition of Medication-Resistant Epilepsy. , 2020, , 20-26.		Ο
70	The Economic Impact of Medication-Resistant Epilepsy. , 2020, , 27-33.		0
71	Social Consequences of Medication-Resistant Epilepsy. , 2020, , 34-38.		0
72	Mortality and Morbidity of Medication-Resistant Epilepsy. , 2020, , 39-50.		0
73	Models for Medication-Resistant Epilepsy. , 2020, , 51-61.		0

#	Article	IF	CITATIONS
74	Neurobiology of Medication-Resistant Epilepsy. , 2020, , 62-68.		0
75	Genetic Causes of Medication-Resistant Epilepsy. , 2020, , 69-78.		0
76	Malformations of Cortical Development as Causes of Medication-Resistant Epilepsy. , 2020, , 79-86.		0
77	Hippocampal Sclerosis as a Cause of Medication-Resistant Epilepsy. , 2020, , 87-99.		0
78	Autoimmune Causes of Medication-Resistant Epilepsy. , 2020, , 100-117.		0
79	Medication-Resistant Epilepsy Syndromes in Children. , 2020, , 118-157.		0
80	Medication-Resistant Epilepsy in Adults. , 2020, , 158-170.		1
81	Approach to the Treatment of Medication-Resistant Epilepsy. , 2020, , 171-178.		0
82	Pharmacotherapy for Medication-Resistant Epilepsy. , 2020, , 179-186.		2
83	Reproductive Health for Women with Medication-Resistant Epilepsy. , 2020, , 187-197.		0
84	Resective Surgery for Medication-Resistant Epilepsy. , 2020, , 198-209.		0
85	Ablative Surgery for Medication-Resistant Epilepsy. , 2020, , 210-218.		0
86	Stimulation Treatment for Medication-Resistant Epilepsy. , 2020, , 219-240.		0
87	Diet Therapy for Medication-Resistant Epilepsy. , 2020, , 241-247.		0
88	Botanical Treatments for Medication-Resistant Epilepsy. , 2020, , 248-255.		0
89	Psychiatric Comorbidities in Medication-Resistant Epilepsy. , 2020, , 256-268.		0
90	SESTRINs: Emerging Dynamic Stress-Sensors in Metabolic and Environmental Health. Frontiers in Cell and Developmental Biology, 2020, 8, 603421.	1.8	15
91	Seizing the moment: Zebrafish epilepsy models. Neuroscience and Biobehavioral Reviews, 2020, 116, 1-20.	2.9	59

#	Article	IF	Citations
92	DNA Methylation-Mediated Modulation of Endocytosis as Potential Mechanism for Synaptic Function Regulation in Murine Inhibitory Cortical Interneurons. Cerebral Cortex, 2020, 30, 3921-3937.	1.6	42
93	Sestrin3 enhances macrophage-mediated generation of T helper 1 and T helper 17 cells in a mouse colitis model. International Immunology, 2020, 32, 421-432.	1.8	12
94	Polyadenylation of mRNA as a novel regulatory mechanism of gene expression in temporal lobe epilepsy. Brain, 2020, 143, 2139-2153.	3.7	11
95	A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15977-15988.	3.3	41
96	Risk of epilepsy in rheumatoid arthritis: a meta-analysis of population based studies and bioinformatics analysis. Therapeutic Advances in Chronic Disease, 2020, 11, 204062231989930.	1.1	3
97	Heritability of alpha and sensorimotor network changes in temporal lobe epilepsy. Annals of Clinical and Translational Neurology, 2020, 7, 667-676.	1.7	13
98	The Sodium Channel B4-Subunits are Dysregulated in Temporal Lobe Epilepsy Drug-Resistant Patients. International Journal of Molecular Sciences, 2020, 21, 2955.	1.8	11
99	Systematic analysis to identify transcriptome-wide dysregulation of Alzheimer's disease in genes and isoforms. Human Genetics, 2021, 140, 609-623.	1.8	13
100	Febrile Seizure-Related miR-148a-3p Exerts Neuroprotection by Promoting the Proliferation of Hippocampal Neurons in Children with Temporal Lobe Epilepsy. Developmental Neuroscience, 2021, 43, 312-320.	1.0	7
101	Genetic Effects of the Schizophrenia-Related Gene DTNBP1 in Temporal Lobe Epilepsy. Frontiers in Genetics, 2021, 12, 553974.	1.1	2
103	Antiepileptogenesis and disease modification: Progress, challenges, and the path forward—Report of the Preclinical Working Group of the 2018 NINDSâ€sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open, 2021, 6, 276-296.	1.3	24
104	Hippocampus chronic deep brain stimulation induces reversible transcript changes in a macaque model of mesial temporal lobe epilepsy. Chinese Medical Journal, 2021, 134, 1845-1854.	0.9	2
105	MicroRNA 223 Targeting ATG16L1 Affects Microglial Autophagy in the Kainic Acid Model of Temporal Lobe Epilepsy. Frontiers in Neurology, 2021, 12, 704550.	1.1	8
106	Application of Thermodynamics and Protein–Protein Interaction Network Topology for Discovery of Potential New Treatments for Temporal Lobe Epilepsy. Applied Sciences (Switzerland), 2021, 11, 8059.	1.3	2
107	Potential Roles of Sestrin2 in Alzheimer's Disease: Antioxidation, Autophagy Promotion, and Beyond. Biomedicines, 2021, 9, 1308.	1.4	3
108	Distinct gene-set burden patterns underlie common generalized and focal epilepsies. EBioMedicine, 2021, 72, 103588.	2.7	7
109	Increased Sestrin3 Contributes to Post-ischemic Seizures in the Diabetic Condition. Frontiers in Neuroscience, 2020, 14, 591207.	1.4	4
110	Implication of sestrin3 in epilepsy and its comorbidities. Brain Communications, 2021, 3, fcaa130.	1.5	5

_			_	
C	ITAT	ION	REP	ORT

#	Article	IF	CITATIONS
111	Models for discovery of targeted therapy in genetic epileptic encephalopathies. Journal of Neurochemistry, 2017, 143, 30-48.	2.1	38
113	Systems genetics identifies a macrophage cholesterol network associated with physiological wound healing. JCI Insight, 2019, 4, .	2.3	12
114	Network science for the identification of novel therapeutic targets in epilepsy. F1000Research, 2016, 5, 893.	0.8	11
115	Sestrin 2 suppresses cells proliferation through AMPK/mTORC1 pathway activation in colorectal cancer. Oncotarget, 2017, 8, 49318-49328.	0.8	37
116	Diagnostic Biomarkers of Epilepsy. Current Pharmaceutical Biotechnology, 2018, 19, 440-450.	0.9	20
117	A trans-eQTL network regulates osteoclast multinucleation and bone mass. ELife, 2020, 9, .	2.8	24
129	The Clinical Significance of miR-135b-5p and Its Role in the Proliferation and Apoptosis of Hippocampus Neurons in Children with Temporal Lobe Epilepsy. Developmental Neuroscience, 2020, 42, 187-194.	1.0	8
130	Gene Therapy Repairs for the Epileptic Brain: Potential for Treatment and Future Directions. Current Gene Therapy, 2020, 19, 367-375.	0.9	7
132	Modeling the Human Brain With ex vivo Slices and in vitro Organoids for Translational Neuroscience. Frontiers in Neuroscience, 2022, 16, 838594.	1.4	16
133	Identification of Ion Channel-Related Genes and miRNA-mRNA Networks in Mesial Temporal Lobe Epilepsy. Frontiers in Genetics, 2022, 13, 853529.	1.1	7
134	Network Preservation Analysis Reveals Dysregulated Synaptic Modules and Regulatory Hubs Shared Between Alzheimer's Disease and Temporal Lobe Epilepsy. Frontiers in Genetics, 2022, 13, 821343.	1.1	7
137	An Integrated Multi-Omic Network Analysis Identifies Seizure-Associated Dysregulated Pathways in the GAERS Model of Absence Epilepsy. International Journal of Molecular Sciences, 2022, 23, 6063.	1.8	6
138	The Role of Sestrins in the Regulation of the Cellular Response to Stress. Biology Bulletin Reviews, 2022, 12, 347-364.	0.3	0
139	Aquatic Freshwater Vertebrate Models of Epilepsy Pathology: Past Discoveries and Future Directions for Therapeutic Discovery. International Journal of Molecular Sciences, 2022, 23, 8608.	1.8	1
140	Prioritization ofÂCandidate Genes Through Boolean Networks. Lecture Notes in Computer Science, 2022, , 89-121.	1.0	2
141	Potentials of miR-9-5p in promoting epileptic seizure and improving survival of gliomaÂpatients. Acta Epileptologica, 2022, 4, .	0.4	2
142	Reactive oxygen species in status epilepticus. Epilepsia Open, 2023, 8, .	1.3	3
143	Systems Biology Approaches to the Genetic Complexity of Epilepsy. , 2022, , 5-18.		0

ARTICLE IF CITATIONS # Single-cell sequencing combined with machine learning reveals the mechanism of interaction between 2.2 144 4 epilepsy and stress cardiomyopathy. Frontiers in Immunology, 0, 14, . MicroRNAs in mouse and rat models of experimental epilepsy and potential therapeutic targets. Neural Regeneration Research, 2023, 18, 2108. 145 1.6 multiWGCNA: an R package for deep mining gene co-expression networks in multi-trait expression data. 146 1.2 3 BMC Bioinformatics, 2023, 24, . Specificity and sensitivity of the SeLECT score in predicting late seizures in patients undergoing intravenous thrombolytic treatment and the effect of diabetes mellitus and leukoaraiosis. Arquivos De Neuro-Psiquiatria, 2023, 81, 217-224.