Programming colloidal phase transitions with DNA stra

Science 347, 639-642 DOI: 10.1126/science.1259762

Citation Report

#	Article	IF	CITATIONS
3	Biomolecule-assisted Hydrothermal Synthesis and Electrochemical Properties of Copper Sulfide Hollow Spheres. Chemistry Letters, 2015, 44, 1321-1323.	0.7	5
4	Design strategies for self-assembly of discrete targets. Journal of Chemical Physics, 2015, 143, 044905.	1.2	19
5	Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions. Nature Materials, 2015, 14, 840-847.	13.3	126
6	Programmable materials and the nature of the DNA bond. Science, 2015, 347, 1260901.	6.0	1,141
7	A Simple RNA-DNA Scaffold Templates the Assembly of Monofunctional Virus-Like Particles. Journal of the American Chemical Society, 2015, 137, 7584-7587.	6.6	34
8	Flip-flop lattices. Nature Materials, 2015, 14, 751-752.	13.3	5
9	Exploiting shape complementarity. Nature Materials, 2015, 14, 752-754.	13.3	3
10	Exploiting weak interactions in DNA self-assembly. Science, 2015, 347, 1417-1418.	6.0	10
11	Programmable competitive binding. Nature Materials, 2015, 14, 368-368.	13.3	3
12	Crystal-Templated Colloidal Clusters Exhibit Directional DNA Interactions. ACS Nano, 2015, 9, 10817-10825.	7.3	38
13	Acoustic field controlled patterning and assembly of anisotropic particles. Extreme Mechanics Letters, 2015, 5, 37-46.	2.0	71
14	Mutation at Expanding Front of Self-Replicating Colloidal Clusters. Physical Review Letters, 2016, 117, 238004.	2.9	8
15	On the formation of equilibrium gels via a macroscopic bond limitation. Journal of Chemical Physics, 2016, 145, 074906.	1.2	37
16	Communication: Free energy of ligand-receptor systems forming multimeric complexes. Journal of Chemical Physics, 2016, 144, 161104.	1.2	19
17	DNA-programmable particle superlattices: Assembly, phases, and dynamic control. MRS Bulletin, 2016, 41, 381-387.	1.7	19
18	Nanoparticle assembly: from fundamentals to applications: concluding remarks. Faraday Discussions, 2016, 186, 529-537.	1.6	14
19	Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10485-10490.	3.3	61
20	Effect of Nonionic Surfactant on Association/Dissociation Transition of DNA-Functionalized Colloids. Langmuir, 2016, 32, 10017-10025.	1.6	7

# 21	ARTICLE Melting transition in lipid vesicles functionalised by mobile DNA linkers. Soft Matter, 2016, 12, 7804-7817.	IF 1.2	Citations 30
22	Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews, 2016, 116, 11220-11289.	23.0	1,485
23	Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals. Journal of the American Chemical Society, 2016, 138, 8722-8725.	6.6	55
24	Oligonucleotide-based recognition in colloidal systems - opportunities and challenges. Current Opinion in Colloid and Interface Science, 2016, 26, 75-83.	3.4	4
25	Stochastic disks that roll. Physical Review E, 2016, 94, 052112.	0.8	6
26	Assembly and phase transitions of colloidal crystals. Nature Reviews Materials, 2016, 1, .	23.3	184
27	Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nature Reviews Materials, 2016, 1, .	23.3	281
28	Melting of Colloidal Crystals. Advanced Functional Materials, 2016, 26, 8903-8919.	7.8	19
29	Re-entrant DNA gels. Nature Communications, 2016, 7, 13191.	5.8	69
30	Capillary Bridging as a Tool for Assembling Discrete Clusters of Patchy Particles. Journal of the American Chemical Society, 2016, 138, 14948-14953.	6.6	53
31	In situ microscopy of the self-assembly of branched nanocrystals in solution. Nature Communications, 2016, 7, 11213.	5.8	91
32	Thermal Regulation of Colloidal Materials Architecture through Orthogonal Functionalizable Patchy Particles. Chemistry of Materials, 2016, 28, 3984-3989.	3.2	46
33	Relaxation dynamics of functionalized colloids on attractive substrates. Soft Matter, 2016, 12, 1550-1557.	1.2	14
34	Critical Undercooling in DNA-Mediated Nanoparticle Crystallization. ACS Nano, 2016, 10, 1363-1368.	7.3	19
35	Self-Assembly of Structures with Addressable Complexity. Journal of the American Chemical Society, 2016, 138, 2457-2467.	6.6	73
36	Lattice engineering through nanoparticle–DNA frameworks. Nature Materials, 2016, 15, 654-661.	13.3	198
37	Controlling Self-Assembly Kinetics of DNA-Functionalized Liposomes Using Toehold Exchange Mechanism. ACS Nano, 2016, 10, 2392-2398.	7.3	80
38	Theory and simulation of DNA-coated colloids: a guide for rational design. Physical Chemistry Chemical Physics, 2016, 18, 6373-6393.	1.3	55

#	Article	IF	CITATIONS
39	Diamond family of nanoparticle superlattices. Science, 2016, 351, 582-586.	6.0	331
40	Transmutable nanoparticles with reconfigurable surface ligands. Science, 2016, 351, 579-582.	6.0	150
41	Modes of surface premelting in colloidal crystals composed of attractive particles. Nature, 2016, 531, 485-488.	13.7	69
42	Segregation of "isotope―particles within colloidal molecules. Soft Matter, 2016, 12, 2868-2876.	1.2	13
43	Reversible switching of structural and plasmonic properties of liquid-crystalline gold nanoparticle assemblies. Nanoscale, 2016, 8, 2656-2663.	2.8	26
44	Membrane Adhesion through Bridging by Multimeric Ligands. Langmuir, 2017, 33, 1139-1146.	1.6	30
45	Condensation and Demixing in Solutions of DNA Nanostars and Their Mixtures. ACS Nano, 2017, 11, 2094-2102.	7.3	28
46	Melting upon cooling and freezing upon heating: fluid–solid phase diagram for Åvejk–HaÅjek model of dimerizing hard spheres. Soft Matter, 2017, 13, 1156-1160.	1.2	4
47	Colloidal alloys with preassembled clusters andÂspheres. Nature Materials, 2017, 16, 652-657.	13.3	164
48	Directed assembly of particles using directional DNA interactions. Current Opinion in Colloid and Interface Science, 2017, 30, 34-44.	3.4	26
49	Sequential self-assembly of DNA functionalized droplets. Nature Communications, 2017, 8, 21.	5.8	63
50	Core–Shell and Layerâ€byâ€Layer Assembly of 3D DNA Crystals. Advanced Materials, 2017, 29, 1701019.	11.1	17
51	Dynamic and programmable self-assembly of micro-rafts at the air-water interface. Science Advances, 2017, 3, e1602522.	4.7	87
52	Molecular control over colloidal assembly. Chemical Communications, 2017, 53, 4414-4428.	2.2	33
53	Using active colloids as machines to weave and braid on the micrometer scale. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 257-262.	3.3	19
54	Self-Assembly of Mesophases from Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 5053-5058.	2.1	30
55	Evolutionary optimization of self-assembly in a swarm of bio-micro-robots. , 2017, , .		4
56	Interaction Heterogeneity can Favorably Impact Colloidal Crystal Nucleation. Physical Review Letters, 2017, 119, 178002.	2.9	6

#	Article	IF	CITATIONS
57	Deterministic Symmetry Breaking of Plasmonic Nanostructures Enabled by DNA-Programmable Assembly. Nano Letters, 2017, 17, 5830-5835.	4.5	19
58	<i>Colloquium</i> : Toward living matter with colloidal particles. Reviews of Modern Physics, 2017, 89, .	16.4	34
59	Flexible regulation of DNA displacement reaction through nucleic acid-recognition enzyme and its application in keypad lock system and biosensing. Scientific Reports, 2017, 7, 10017.	1.6	4
60	Four-Analog Computation Based on DNA Strand Displacement. ACS Omega, 2017, 2, 4143-4160.	1.6	26
61	Molecular Recognition in the Colloidal World. Accounts of Chemical Research, 2017, 50, 2756-2766.	7.6	59
62	Shape changing thin films powered by DNA hybridization. Nature Nanotechnology, 2017, 12, 41-47.	15.6	51
63	A Nucleotide-Level Computational Approach to DNA-Based Materials. , 2017, , 71-90.		0
64	Derivation of nearest-neighbor DNA parameters in magnesium from single molecule experiments. Nucleic Acids Research, 2017, 45, 12921-12931.	6.5	39
65	Recent Advances in Multicomponent Particle Assembly. Chemistry - A European Journal, 2018, 24, 16196-16208.	1.7	11
66	DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development. Annual Review of Analytical Chemistry, 2018, 11, 171-195.	2.8	93
67	Tools and Functions of Reconfigurable Colloidal Assembly. Langmuir, 2018, 34, 11205-11219.	1.6	29
68	Light induced assembly and self-sorting of silica microparticles. Scientific Reports, 2018, 8, 1271.	1.6	11
69	Programmed Coassembly of One-Dimensional Binary Superstructures by Liquid Soft Confinement. Journal of the American Chemical Society, 2018, 140, 18-21.	6.6	34
70	Using DNA strand displacement to control interactions in DNA-grafted colloids. Soft Matter, 2018, 14, 969-984.	1.2	22
71	Designing hierarchical molecular complexity: icosahedra of addressable icosahedra. Molecular Physics, 2018, 116, 2954-2964.	0.8	5
72	Hydrogen Bonding Directed Colloidal Selfâ€Assembly of Nanoparticles into 2D Crystals, Capsids, and Supracolloidal Assemblies. Advanced Functional Materials, 2018, 28, 1704328.	7.8	53
73	Binary Superlattice Design by Controlling DNA-Mediated Interactions. Langmuir, 2018, 34, 991-998.	1.6	22
74	DNA-Coated Microspheres and Their Colloidal Superstructures. Macromolecular Research, 2018, 26, 1085-1094.	1.0	13

#	Article	IF	CITATIONS
75	Transition of Dielectrophoresis-Assembled 2D Crystals to Interlocking Structures under a Magnetic Field. Langmuir, 2018, 34, 12412-12418.	1.6	4
76	Amphiphilic-DNA Platform for the Design of Crystalline Frameworks with Programmable Structure and Functionality. Journal of the American Chemical Society, 2018, 140, 15384-15392.	6.6	39
77	Modular DNA strand-displacement controllers for directing material expansion. Nature Communications, 2018, 9, 3766.	5.8	82
78	Modeling the relative dynamics of DNA-coated colloids. Soft Matter, 2018, 14, 8147-8159.	1.2	15
79	Radiation damage during <i>in situ</i> electron microscopy of DNA-mediated nanoparticle assemblies in solution. Nanoscale, 2018, 10, 12674-12682.	2.8	14
80	Rock-Paper-Scissors Game Based on Two-Domain DNA Strand Displacement. Communications in Computer and Information Science, 2018, , 331-340.	0.4	Ο
81	Assembly of three-dimensional binary superlattices from multi-flavored particles. Soft Matter, 2018, 14, 6303-6312.	1.2	15
82	Multivalent, multiflavored droplets by design. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9086-9091.	3.3	29
83	Non-Cross-Linking Aggregation of DNA-Carrying Polymer Micelles Triggered by Duplex Formation. Langmuir, 2018, 34, 14899-14910.	1.6	15
84	The neuronal perceptron with DNA strand displacement. , 2018, , .		0
84 85	The neuronal perceptron with DNA strand displacement. , 2018, , . Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA. ACS Nano, 2018, 12, 7093-7099.	7.3	0
	Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA.	7.3	
85	Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA. ACS Nano, 2018, 12, 7093-7099.	7.3	61
85 86	Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA. ACS Nano, 2018, 12, 7093-7099. N-dimensional matrices operation based on DNA strand displacement. , 2018, , . Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces. Reports		61 0
85 86 87	 Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA. ACS Nano, 2018, 12, 7093-7099. N-dimensional matrices operation based on DNA strand displacement. , 2018, , . Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces. Reports on Progress in Physics, 2019, 82, 116601. DNA functionalization of colloidal particles via physisorption of azide-functionalized diblock 	8.1	61 0 39
85 86 87 88	 Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA. ACS Nano, 2018, 12, 7093-7099. N-dimensional matrices operation based on DNA strand displacement., 2018,,. Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces. Reports on Progress in Physics, 2019, 82, 116601. DNA functionalization of colloidal particles via physisorption of azide-functionalized diblock copolymers. Soft Matter, 2019, 15, 6930-6933. Thermal cycling of DNA devices via associative strand displacement. Nucleic Acids Research, 2019, 47, 	8.1	61 0 39 1
85 86 87 88 89	 Programming Chemical Reaction Networks Using Intramolecular Conformational Motions of DNA. ACS Nano, 2018, 12, 7093-7099. N-dimensional matrices operation based on DNA strand displacement. , 2018, , . Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces. Reports on Progress in Physics, 2019, 82, 116601. DNA functionalization of colloidal particles via physisorption of azide-functionalized diblock copolymers. Soft Matter, 2019, 15, 6930-6933. Thermal cycling of DNA devices via associative strand displacement. Nucleic Acids Research, 2019, 47, 10968-10975. Fabrication and Biomedical Applications of &CoePolymer-Like&-Nucleic Acids Enzymatically Produced by 	8.1 1.2 6.5	61 0 39 1 11

#	ARTICLE	IF	CITATIONS
93	Controlling Matter at the Molecular Scale with DNA Circuits. Annual Review of Biomedical Engineering, 2019, 21, 469-493.	5.7	45
94	Modelling and simulation of DNA-mediated self-assembly for superlattice design. Molecular Simulation, 2019, 45, 1203-1210.	0.9	7
95	Understanding the Self-Assembly of DNA-Coated Colloids via Theory and Simulations. Frontiers of Nanoscience, 2019, 13, 87-123.	0.3	3
96	Achieving Selective Targeting Using Engineered Nanomaterials. Series in Bioengineering, 2019, , 147-182.	0.3	2
97	Thermodynamics and Biophysics of Biomedical Nanosystems. Series in Bioengineering, 2019, , .	0.3	6
98	New frontiers for the materials genome initiative. Npj Computational Materials, 2019, 5, .	3.5	312
99	Surface-triggered cascade reactions between DNA linkers direct the self-assembly of colloidal crystals of controllable thickness. Nanoscale, 2019, 11, 5450-5459.	2.8	9
100	Designing Superlattice Structure via Self-Assembly of One-Component Polymer-Grafted Nanoparticles. Journal of Physical Chemistry B, 2019, 123, 2157-2168.	1.2	16
101	Crystal engineering with DNA. Nature Reviews Materials, 2019, 4, 201-224.	23.3	178
102	Alchemical molecular dynamics for inverse design. Molecular Physics, 2019, 117, 3968-3980.	0.8	8
103	Linker-Mediated Phase Behavior of DNA-Coated Colloids. Physical Review X, 2019, 9, .	2.8	13
104	Translational and rotational dynamics of colloidal particles interacting through reacting linkers. Physical Review E, 2019, 100, 060601.	0.8	15
105	Two-Photon Lithographic Patterning of DNA-Coated Single-Microparticle Surfaces. Nano Letters, 2019, 19, 618-625.	4.5	25
106	DNAâ€Based Chemical Reaction Networks. ChemBioChem, 2019, 20, 1105-1114.	1.3	10
107	In Situ Atomic Force Microscopy of the Reconfiguration of Onâ€5urface Selfâ€Assembled DNAâ€Nanoparticle Superlattices. Advanced Functional Materials, 2019, 29, 1806924.	7.8	12
108	Control and optical mapping of mechanical transitions in polymer networks and DNA-based soft materials. Current Opinion in Colloid and Interface Science, 2019, 40, 1-13.	3.4	6
109	Graphene oxide-based NET strategy for enhanced colorimetric sensing of miRNA. Sensors and Actuators B: Chemical, 2019, 282, 861-867.	4.0	35
110	Modulating and addressing interactions in polymer colloids using light. Materials Horizons, 2020, 7, 586-591.	6.4	1

#	Article	IF	CITATIONS
111	Duplex DNA-functionalized graphene oxide: A versatile platform for miRNA sensing. Sensors and Actuators B: Chemical, 2020, 305, 127471.	4.0	26
112	A mean-field model of linker-mediated colloidal interactions. Journal of Chemical Physics, 2020, 153, 124901.	1.2	11
113	Reconfigurable Transitions between One- and Two-Dimensional Structures with Bifunctional DNA-Coated Janus Colloids. ACS Nano, 2020, 14, 15786-15792.	7.3	20
114	Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells. Chemical Society Reviews, 2020, 49, 8439-8468.	18.7	44
115	ATP-powered molecular recognition to engineer transient multivalency and self-sorting 4D hierarchical systems. Nature Communications, 2020, 11, 3658.	5.8	47
116	Assembly of Linked Nanocrystal Colloids by Reversible Covalent Bonds. Chemistry of Materials, 2020, 32, 10235-10245.	3.2	27
117	DNA-Mediated Three-Dimensional Assembly of Hollow Au–Ag Alloy Nanocages as Plasmonic Crystals. ACS Applied Nano Materials, 2020, 3, 8068-8074.	2.4	8
118	Protein ontrolled Actuation of Dynamic Nucleic Acid Networks by Using Synthetic DNA Translators**. Angewandte Chemie, 2020, 132, 20758-20762.	1.6	5
119	Proteinâ€Controlled Actuation of Dynamic Nucleic Acid Networks by Using Synthetic DNA Translators**. Angewandte Chemie - International Edition, 2020, 59, 20577-20581.	7.2	18
120	Adaptable DNA interactions regulate surface triggered self assembly. Nanoscale, 2020, 12, 18616-18620.	2.8	7
121	Self-assembly of finite-sized colloidal aggregates. Soft Matter, 2020, 16, 5915-5924.	1.2	4
122	Linker-mediated self-assembly of mobile DNA-coated colloids. Science Advances, 2020, 6, eaaz6921.	4.7	20
123	Sequence-based engineering of dynamic functions of micrometer-sized DNA droplets. Science Advances, 2020, 6, eaba3471.	4.7	85
124	Powering DNA strand-displacement reactions with a continuous flow reactor. Natural Computing, 2021, 20, 821-827.	1.8	2
125	Programming colloidal bonding using DNA strand-displacement circuitry. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5617-5623.	3.3	27
126	Reconfigurable Self-Assembly and Kinetic Control of Multiprogrammed DNA-Coated Particles. ACS Nano, 2020, 14, 4595-4600.	7.3	23
127	Programmable patterns in a DNA-based reaction–diffusion system. Soft Matter, 2020, 16, 3555-3563.	1.2	17
128	Programming Diffusion and Localization of DNA Signals in 3Dâ€Printed DNAâ€Functionalized Hydrogels. Small, 2020, 16, e2001815.	5.2	20

#	Article	IF	CITATIONS
129	Reversible Colloidal Crystallization. MRS Advances, 2020, 5, 2111-2119.	0.5	1
130	Self-Assembly and Crystallization of DNA-Coated Colloids via Linker-Encoded Interactions. Langmuir, 2020, 36, 7100-7108.	1.6	13
131	Reducing control alphabet size for the control of right linear grammars with unknown behaviors. Theoretical Computer Science, 2021, 862, 193-213.	0.5	1
132	Structure and luminescence of DNA-templated silver clusters. Nanoscale Advances, 2021, 3, 1230-1260.	2.2	55
133	Dynamic Behavior Analysis of DNA Subtraction Gate with Stochastic Disturbance and Time Delay. Lecture Notes in Computer Science, 2021, , 547-556.	1.0	0
134	Fast and Ample Light Controlled Actuation of Monodisperse Allâ€ÐNA Microgels. Advanced Functional Materials, 2021, 31, 2010396.	7.8	11
135	Temperature-Controlled Reconfigurable Nanoparticle Binary Superlattices. ACS Nano, 2021, 15, 8466-8473.	7.3	7
136	Microchemomechanical devices using DNA hybridization. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
137	Programming Self-Assembled Materials With DNA-Coated Colloids. Frontiers in Physics, 2021, 9, .	1.0	8
138	From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chemical Society Reviews, 2021, 50, 5898-5951.	18.7	232
139	Variational design principles for nonequilibrium colloidal assembly. Journal of Chemical Physics, 2021, 154, 014107.	1.2	17
141	Pragmatic Approach To Drug Discovery Through Biophysical Perspective. International Journal of Medical Science and Clinical Invention, 0, , .	0.1	0
142	Amphiphilic DNA nanostructures for bottom-up synthetic biology. Chemical Communications, 2021, 57, 12725-12740.	2.2	24
143	DNA self-organization controls valence in programmable colloid design. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
144	Dynamics and phase behavior of two-dimensional size-asymmetric binary mixtures of core-softened colloids. Journal of Chemical Physics, 2021, 155, 214901.	1.2	8
145	A two-stage energy tuning strategy <i>via</i> salt and glycine programmed DNA-engineered crystals. Chemical Communications, 2021, 57, 13578-13581.	2.2	0
146	Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chemical Society Reviews, 2021, 50, 13410-13440.	18.7	20
147	Dynamic tracking of p21 mRNA in living cells by sticky-flares for the visual evaluation of the tumor treatment effect. Nanoscale, 2022, 14, 1733-1741.	2.8	4

#	Article	IF	CITATIONS
148	How fluorescent labels affect the kinetics of the toehold-mediated DNA strand displacement reaction. Chemical Communications, 2022, 58, 5849-5852.	2.2	5
149	Self-assembly of photonic crystals by controlling the nucleation and growth of DNA-coated colloids. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	28
150	Comprehensive view of microscopic interactions between DNA-coated colloids. Nature Communications, 2022, 13, 2304.	5.8	14
151	Monotone Control of R Systems. New Generation Computing, 2022, 40, 623-657.	2.5	1
152	Quantitative Analysis of <i>In Situ</i> Locked Nucleic Acid and DNA Competitive Displacement Events on Microspheres. Langmuir, 0, , .	1.6	2
153	Anomeric DNA Strand Displacement with αâ€D Oligonucleotides as Invaders and Ethidium Bromide as Fluorescence Sensor for Duplexes with α/βâ€, β/β―and α/αâ€D Configuration. Chemistry - A European Journal, 28, .	20 22,	4
154	Programming Directed Motion with DNA-Grafted Particles. ACS Nano, 2022, 16, 9195-9202.	7.3	3
155	Dual nature of magnetic nanoparticle dispersions enables control over short-range attraction and long-range repulsion interactions. Communications Chemistry, 2022, 5, .	2.0	8
156	Self-Assembly of DNA-Grafted Colloids: A Review of Challenges. Micromachines, 2022, 13, 1102.	1.4	10
157	Self-assembly in binary mixtures of spherical colloids. Advances in Colloid and Interface Science, 2022, 308, 102748.	7.0	5
158	Engineering Programmable DNA Particles and Capsules Using Catechol-Functionalized DNA Block Copolymers. Chemistry of Materials, 2022, 34, 7468-7480.	3.2	9
159	Tools for the quantification of the dynamic assembly of colloidal chains of ellipsoidal particles. Colloids and Interface Science Communications, 2022, 50, 100661.	2.0	Ο
160	Dynamics of equilibrium-linked colloidal networks. Journal of Chemical Physics, 2022, 157, .	1.2	4
161	Biomolecule-Based Optical Metamaterials: Design and Applications. Biosensors, 2022, 12, 962.	2.3	2
162	Cyclic transitions of DNA origami dimers driven by thermal cycling. Nanotechnology, 2023, 34, 065601.	1.3	3
163	Gravity-resisting colloidal collectives. Science Advances, 2022, 8, .	4.7	16
164	Optimization of non-equilibrium self-assembly protocols using Markov state models. Journal of Chemical Physics, 2022, 157, .	1.2	4
165	DNA Droplets: Intelligent, Dynamic Fluid. Advanced Biology, 2023, 7, .	1.4	11

#	Article	IF	CITATIONS
166	Toehold clipping: A mechanism for remote control of DNA strand displacement. Nucleic Acids Research, 2023, 51, 4055-4063.	6.5	4
167	DNA-enabled fluorescent-based nanosensors monitoring tumor-related RNA toward advanced cancer diagnosis: A review. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	0
168	DNA: structure, strand displacement and reaction network. Scientia Sinica Chimica, 2023, 53, 721-733.	0.2	0
169	Polymorphic crystalline wetting layers on crystal surfaces. Nature Physics, 0, , .	6.5	1
170	Avoiding Kinetic Trapping in the Self-Assembly of DNA-Functionalized Gold Nanoparticles by Using an Enthalpy-Mediated Strategy. Macromolecules, 0, , .	2.2	1
177	DNA-mediated regioselective encoding of colloids for programmable self-assembly. Chemical Society Reviews, 2023, 52, 5684-5705.	18.7	2