Extracellular matrix regulation in the muscle satellite c

Connective Tissue Research 56, 1-8 DOI: 10.3109/03008207.2014.947369

Citation Report

#	Article	IF	CITATIONS
1	Pax7-Positive Cells/Satellite Cells in Human Extraocular Muscles. , 2015, 56, 6132.		11
2	Extracellular matrix remodeling and its contribution to protective adaptation following lengthening contractions in human muscle. FASEB Journal, 2015, 29, 2894-2904.	0.2	107
3	The Importance of Extracellular Matrix in Skeletal Muscle Development and Function. , 0, , .		17
4	Developmental Biology and Regenerative Medicine: Addressing the Vexing Problem of Persistent Muscle Atrophy in the Chronically Torn Human Rotator Cuff. Physical Therapy, 2016, 96, 722-733.	1.1	12
5	KLF7 Regulates Satellite Cell Quiescence in Response to Extracellular Signaling. Stem Cells, 2016, 34, 1310-1320.	1.4	33
6	Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Reviews and Reports, 2016, 12, 421-437.	5.6	27
7	Influence of exercise and aging on extracellular matrix composition in the skeletal muscle stem cell niche. Journal of Applied Physiology, 2016, 121, 1053-1058.	1.2	59
8	Metamorphosis of the Drosophila visceral musculature and its role in intestinal morphogenesis and stem cell formation. Developmental Biology, 2016, 420, 43-59.	0.9	25
9	Decreased Satellite Cell Number and Function in Humans and Mice With Type 1 Diabetes Is the Result of Altered Notch Signaling. Diabetes, 2016, 65, 3053-3061.	0.3	36
10	Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults. Physiological Reports, 2016, 4, e12785.	0.7	52
11	Regulation of myokine expression: Role of exercise and cellular stress. Free Radical Biology and Medicine, 2016, 98, 78-89.	1.3	99
12	Control of the Proliferation/Differentiation Balance in Skeletal Myoblasts by Integrin and Syndecan Targeting Peptides. ACS Biomaterials Science and Engineering, 2016, 2, 415-425.	2.6	3
13	Engineered matrices for skeletal muscle satellite cell engraftment and function. Matrix Biology, 2017, 60-61, 96-109.	1.5	30
14	Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage. Journal of Physiology, 2017, 595, 4857-4873.	1.3	46
15	A novel fish collagen scaffold as dural substitute. Materials Science and Engineering C, 2017, 80, 346-351.	3.8	33
16	The Satellite Cell Niche in Skeletal Muscle. , 2017, , 145-166.		2
17	The synergistic effect of type I collagen and hyaluronic acid on the biological properties of Col/HA-multilayer-modified titanium coatings: an in vitro and in vivo study. RSC Advances, 2017, 7, 25828-25837.	1.7	6
18	ÂÂÂMechanosensitivity of aged muscle stem cells. Journal of Orthopaedic Research, 2018, 36, 632-641.	1.2	29

#	Article	IF	Citations
19	ECMâ€Related Myopathies and Muscular Dystrophies: Pros and Cons of Protein Therapies. , 2017, 7, 1519-1536.		13
20	The role of mechanobiology in progression of rotator cuff muscle atrophy and degeneration. Journal of Orthopaedic Research, 2018, 36, 546-556.	1.2	21
22	Silk fibroin scaffolds with muscle-like elasticity support in vitro differentiation of human skeletal muscle cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3178-3192.	1.3	31
23	HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway. Skeletal Muscle, 2017, 7, 20.	1.9	40
24	The Effect of the Wooden Breast Myopathy on Sarcomere Structure and Organization. Avian Diseases, 2018, 62, 28-35.	0.4	40
25	Recapitulation of Extracellular LAMININ Environment Maintains Stemness of Satellite Cells InÂVitro. Stem Cell Reports, 2018, 10, 568-582.	2.3	30
26	Dynamic changes in copper homeostasis and post-transcriptional regulation of <i>Atp7a</i> during myogenic differentiation. Metallomics, 2018, 10, 309-322.	1.0	22
27	A triple co-culture method to investigate the effect of macrophages and fibroblasts on myoblast proliferation and migration. BioTechniques, 2018, 64, 52-58.	0.8	25
28	Cardiac Cell Culture Technologies. , 2018, , .		2
29	Pluripotent and Mesenchymal Stem Cells—Challenging Sources for Derivation of Myoblast. , 2018, , 109-154.		2
30	Silencing of gelatinase expression delays myoblast differentiation in vitro. Cell Biology International, 2018, 42, 373-382.	1.4	7
31	Role of Stem Cells and Extracellular Matrix in the Regeneration of Skeletal Muscle. , 2018, , .		4
32	Multifaceted Interweaving Between Extracellular Matrix, Insulin Resistance, and Skeletal Muscle. Cells, 2018, 7, 148.	1.8	50
33	Recreating stem-cell niches using self-assembling biomaterials. , 2018, , 421-454.		1
34	Prepubertal skeletal muscle growth requires Pax7-expressing satellite cell-derived myonuclear contribution. Development (Cambridge), 2018, 145, .	1.2	95
35	Combined use of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and platelet rich plasma (PRP) stimulates proliferation and differentiation of myoblasts in vitro: new therapeutic perspectives for skeletal muscle repair/regeneration. Cell and Tissue Research, 2018, 372, 549-570.	1.5	51
36	Characteristic properties of muscular-derived extracellular matrix and its application in rat abdominal wall defects. Regenerative Medicine, 2018, 13, 503-517.	0.8	7
37	Starring or Supporting Role? Satellite Cells and Skeletal Muscle Fiber Size Regulation. Physiology, 2018, 33, 26-38.	1.6	107

#	Article	IF	CITATIONS
38	Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. International Journal of Molecular Sciences, 2018, 19, 745.	1.8	327
39	COPD is accompanied by co-ordinated transcriptional perturbation in the quadriceps affecting the mitochondria and extracellular matrix. Scientific Reports, 2018, 8, 12165.	1.6	27
40	Fibromodulin modulates myoblast differentiation by controlling calcium channel. Biochemical and Biophysical Research Communications, 2018, 503, 580-585.	1.0	16
41	Decellularized extracellular matrix gelloids support mesenchymal stem cell growth and function in vitro. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1830-1842.	1.3	13
42	Elevated H3K27ac in aged skeletal muscle leads to increase in extracellular matrix and fibrogenic conversion of muscle satellite cells. Aging Cell, 2019, 18, e12996.	3.0	35
43	Morphological evidence for telocytes as stromal cells supporting satellite cell activation in eccentric contraction-induced skeletal muscle injury. Scientific Reports, 2019, 9, 14515.	1.6	34
44	Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. International Journal of Molecular Sciences, 2019, 20, 5545.	1.8	32
45	Aligned nanofibers of decellularized muscle ECM support myogenic activity in primary satellite cells <i>in vitro</i> . Biomedical Materials (Bristol), 2019, 14, 035010.	1.7	54
46	Genome-wide DNA methylation profiles in Tibetan and Yorkshire pigs under high-altitude hypoxia. Journal of Animal Science and Biotechnology, 2019, 10, 25.	2.1	29
47	Engineering Biomimetic Materials for Skeletal Muscle Repair and Regeneration. Advanced Healthcare Materials, 2019, 8, e1801168.	3.9	90
48	Influence of Platelet-Rich and Platelet-Poor Plasma on endogenous mechanisms of skeletal muscle repair/regeneration. International Journal of Molecular Sciences, 2019, 20, 683.	1.8	54
49	Sunitinib promotes myogenic regeneration and mitigates disease progression in the mdx mouse model of Duchenne muscular dystrophy. Human Molecular Genetics, 2019, 28, 2120-2132.	1.4	14
50	Genetic manipulation of CCN2/CTGF unveils cellâ€specific ECMâ€remodeling effects in injured skeletal muscle. FASEB Journal, 2019, 33, 2047-2057.	0.2	38
51	ACVR1 ^{R206H} FOP mutation alters mechanosensing and tissue stiffness during heterotopic ossification. Molecular Biology of the Cell, 2019, 30, 17-29.	0.9	30
52	Exogenous skeletal muscle satellite cells promote the repair of levator palpebrae superioris mechanical damage in rat. Connective Tissue Research, 2019, 60, 128-135.	1.1	0
53	Manufacturing considerations for producing and assessing decellularized extracellular matrix hydrogels. Methods, 2020, 171, 20-27.	1.9	31
54	Skeletal muscle explants: ex-vivo models to study cellular behavior in a complex tissue environment. Connective Tissue Research, 2020, 61, 248-261.	1.1	10
55	Orofacial Muscles: Embryonic Development and Regeneration after Injury. Journal of Dental Research, 2020, 99, 125-132.	2.5	25

#	Article	IF	CITATIONS
56	Next-Generation Biomaterials for Culture and Manipulation of Stem Cells. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035691.	2.3	10
57	Estrogen Receptor β Controls Muscle Growth and Regeneration in Young Female Mice. Stem Cell Reports, 2020, 15, 577-586.	2.3	40
58	Syndecan-4–/– Mice Have Smaller Muscle Fibers, Increased Akt/mTOR/S6K1 and Notch/HES-1 Pathways, and Alterations in Extracellular Matrix Components. Frontiers in Cell and Developmental Biology, 2020, 8, 730.	1.8	17
59	The application of bone marrow mesenchymal stem cells and biomaterials in skeletal muscle regeneration. Regenerative Therapy, 2020, 15, 285-294.	1.4	21
60	Ageâ€related changes to the satellite cell niche are associated with reduced activation following exercise. FASEB Journal, 2020, 34, 8975-8989.	0.2	15
61	Three-dimensional niche stiffness synergizes with Wnt7a to modulate the extent of satellite cell symmetric self-renewal divisions. Molecular Biology of the Cell, 2020, 31, 1703-1713.	0.9	26
62	EDMD-Causing Emerin Mutant Myogenic Progenitors Exhibit Impaired Differentiation Using Similar Mechanisms. Cells, 2020, 9, 1463.	1.8	1
63	Laminin and Integrin in LAMA2-Related Congenital Muscular Dystrophy: From Disease to Therapeutics. Frontiers in Molecular Neuroscience, 2020, 13, 1.	1.4	64
64	Fibrogenesis in LAMA2-Related Muscular Dystrophy Is a Central Tenet of Disease Etiology. Frontiers in Molecular Neuroscience, 2020, 13, 3.	1.4	18
65	SIX1 and SIX4 homeoproteins regulate PAX7+ progenitor cell properties during fetal epaxial myogenesis. Development (Cambridge), 2020, 147, .	1.2	6
66	Impaired ECM Remodeling and Macrophage Activity Define Necrosis and Regeneration Following Damage in Aged Skeletal Muscle. International Journal of Molecular Sciences, 2020, 21, 4575.	1.8	34
67	Syndecan-4 is a Novel Therapeutic Target for Intervertebral Disc Degeneration via Suppressing JNK/p53 Pathway. International Journal of Biological Sciences, 2020, 16, 766-776.	2.6	13
68	TGF-β Regulates Collagen Type I Expression in Myoblasts and Myotubes via Transient Ctgf and Fgf-2 Expression. Cells, 2020, 9, 375.	1.8	44
69	The secretome of skeletal muscle cells: A systematic review. Osteoarthritis and Cartilage Open, 2020, 2, 100019.	0.9	32
70	Effects of Graphene Oxide Nanofilm and Chicken Embryo Muscle Extract on Muscle Progenitor Cell Differentiation and Contraction. Molecules, 2020, 25, 1991.	1.7	11
71	Extracellular matrix at the muscle – tendon interface: functional roles, techniques to explore and implications for regenerative medicine. Connective Tissue Research, 2021, 62, 53-71.	1.1	18
72	Tissue repair with natural extracellular matrix (ECM) scaffolds. , 2021, , 11-37.		1
73	Molecular and phenotypic analysis of rodent models reveals conserved and species-specific modulators of human sarcopenia. Communications Biology, 2021, 4, 194.	2.0	43

#	Article	IF	CITATIONS
74	Aged Skeletal Muscle Retains the Ability to Remodel Extracellular Matrix for Degradation of Collagen Deposition after Muscle Injury. International Journal of Molecular Sciences, 2021, 22, 2123.	1.8	22
75	Injury-mediated stiffening persistently activates muscle stem cells through YAP and TAZ mechanotransduction. Science Advances, 2021, 7, .	4.7	63
76	Direct measurement of the direction-dependent mechanical behaviour of skeletal muscle extracellular matrix. Acta Biomaterialia, 2021, 122, 249-262.	4.1	12
78	Insights into muscle stem cell dynamics during postnatal development. FEBS Journal, 2022, 289, 2710-2722.	2.2	26
79	Dynamic transcriptome and histomorphology analysis of developmental traits of hindlimb thigh muscle from Odorrana tormota and its adaptability to different life history stages. BMC Genomics, 2021, 22, 369.	1.2	1
80	Telocytes: An Emerging Component of Stem Cell Niche Microenvironment. Journal of Histochemistry and Cytochemistry, 2021, 69, 795-818.	1.3	28
81	Matrisome, innervation and oxidative metabolism affected in older compared with younger males with similar physical activity. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 1214-1231.	2.9	7
82	Immunomodulation and Biomaterials: Key Players to Repair Volumetric Muscle Loss. Cells, 2021, 10, 2016.	1.8	8
83	Transcriptomic profile of leg muscle during early growth and development in Haiyang yellow chicken. Archives Animal Breeding, 2021, 64, 405-416.	0.5	6
86	Age-Related Changes in the Matrisome of the Mouse Skeletal Muscle. International Journal of Molecular Sciences, 2021, 22, 10564.	1.8	18
87	Increased satellite cell apoptosis in vastus lateralis muscle after anterior cruciate ligament reconstruction. Journal of Rehabilitation Medicine, 2021, 53, jrm00153.	0.8	2
88	Collagens and Muscle Diseases: A Focus on Collagen VI. Biology of Extracellular Matrix, 2021, , 199-256.	0.3	2
89	Isolation and Characterization of Compounds from Glycyrrhiza uralensis as Therapeutic Agents for the Muscle Disorders. International Journal of Molecular Sciences, 2021, 22, 876.	1.8	21
90	Plasticity of the Muscle Stem Cell Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1041, 141-169.	0.8	28
92	Hyaluronan keeps mesenchymal stem cells quiescent and maintains the differentiation potential over time. Aging Cell, 2017, 16, 451-460.	3.0	36
93	A Genome-Wide mRNA Screen and Functional Analysis Reveal FOXO3 as a Candidate Gene for Chicken Growth. PLoS ONE, 2015, 10, e0137087.	1.1	44
94	Transcriptomic profile of leg muscle during early growth in chicken. PLoS ONE, 2017, 12, e0173824.	1.1	60
95	MBP-FGF2-Immobilized Matrix Maintains Self-Renewal and Myogenic Differentiation Potential of Skeletal Muscle Stem Cells. International Journal of Stem Cells, 2019, 12, 360-366.	0.8	3

#	Article	IF	CITATIONS
96	Anti-Age Activity and Tolerance Evaluation of Collagen Micro-Injection Treatment Associated to Topical Application of a Cosmetic Formulation (Investigator-Initiated Multicentre Trial). Journal of Clinical & Experimental Dermatology Research, 2017, 08, .	0.1	6
97	Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. ELife, 2016, 5, .	2.8	5
98	Transcriptome for the breast muscle of Jinghai yellow chicken at early growth stages. PeerJ, 2020, 8, e8950.	0.9	16
99	Mapping and modeling the genomic basis of differential RNA isoform expression at single-cell resolution with LR-Split-seq. Genome Biology, 2021, 22, 286.	3.8	26
100	Fibrin with Laminin-Nidogen Reduces Fibrosis and Improves Soft Palate Regeneration Following Palatal Injury. Biomolecules, 2021, 11, 1547.	1.8	2
102	The convergence of nanotechnologyâ€stem cell, nanotopographyâ€mechanobiology, and bioticâ€abiotic interfaces: Nanoscale tools for tackling the top killer, arteriosclerosis, strokes, and heart attacks. Nano Select, 2021, 2, 655-687.	1.9	13
103	Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Experimental Cell Research, 2022, 411, 112906.	1.2	22
104	Mechano-active materials for musculoskeletal tissue engineering. , 2022, , 243-274.		Ο
105	Cell and Tissue Nanomechanics: From Early Development to Carcinogenesis. Biomedicines, 2022, 10, 345.	1.4	3
106	The jam session between muscle stem cells and the extracellular matrix in the tissue microenvironment. Npj Regenerative Medicine, 2022, 7, 16.	2.5	32
107	RNA-Seq analysis of a Pax3-expressing myoblast clone in-vitro and effect of culture surface stiffness on differentiation. Scientific Reports, 2022, 12, 2841.	1.6	0
108	Myoblast deactivation within engineered human skeletal muscle creates a transcriptionally heterogeneous population of quiescent satellite-like cells. Biomaterials, 2022, 284, 121508.	5.7	8
109	Decellularized skeletal muscle: A versatile biomaterial in tissue engineering and regenerative medicine. Biomaterials, 2022, 283, 121436.	5.7	20
114	Myostatin and its Regulation: A Comprehensive Review of Myostatin Inhibiting Strategies. Frontiers in Physiology, 0, 13, .	1.3	19
115	3D in vitro Models of Pathological Skeletal Muscle: Which Cells and Scaffolds to Elect?. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
116	Electrospun Polymeric Substrates for Tissue Engineering: Viewpoints on Fabrication, Application, and Challenges. , 0, , .		0
118	Emulsion-templated microparticles with tunable stiffness and topology: Applications as edible microcarriers for cultured meat. Biomaterials, 2022, 287, 121669.	5.7	28
119	Characterisation of Progressive Skeletal Muscle Fibrosis in the Mdx Mouse Model of Duchenne Muscular Dystrophy: An In Vivo and In Vitro Study. International Journal of Molecular Sciences, 2022, 23. 8735.	1.8	8

#	Article	IF	CITATIONS
120	Development of high resilience spiral wound suture-embedded gelatin/PCL/heparin nanofiber membrane scaffolds for tendon tissue engineering. International Journal of Biological Macromolecules, 2022, 221, 314-333.	3.6	9
122	Identification of underexplored mesenchymal and vascular-related cell populations in human skeletal muscle. American Journal of Physiology - Cell Physiology, 2022, 323, C1586-C1600.	2.1	5
123	3D printed biomimetic flexible blood vessels with iPS cell-laden hierarchical multilayers. Biomedical Engineering Advances, 2022, 4, 100065.	2.2	4
124	Unravelling the Effects of Syndecan-4 Knockdown on Skeletal Muscle Functions. International Journal of Molecular Sciences, 2023, 24, 6933.	1.8	3
125	Actin crosslinking by α-actinin averts viscous dissipation of myosin force transmission in stress fibers. IScience, 2023, 26, 106090.	1.9	0
126	An Update on the Clinical Efficacy and Safety of Collagen Injectables for Aesthetic and Regenerative Medicine Applications. Polymers, 2023, 15, 1020.	2.0	5
127	Hox11-expressing interstitial cells contribute to adult skeletal muscle at homeostasis. Development (Cambridge), 2023, 150, .	1.2	4
129	Myoscaffolds reveal laminin scarring is detrimental for stem cell function while sarcospan induces compensatory fibrosis. Npj Regenerative Medicine, 2023, 8, .	2.5	5
138	Decellularized Extracellular Matrix-Derived Hydrogels: a Powerful Class of Biomaterials for Skeletal Muscle Regenerative Engineering Applications. Regenerative Engineering and Translational Medicine, 0, , .	1.6	0
143	Muscle stem cell niche dynamics during muscle homeostasis and regeneration. Current Topics in Developmental Biology, 2024, , .	1.0	0