An HD-domain phosphodiesterase mediates cooperativ bacterial growth and virulence

Proceedings of the National Academy of Sciences of the Unite 112, E747-56

DOI: 10.1073/pnas.1416485112

Citation Report

#	Article	IF	CITATIONS
1	A jack of all trades: the multiple roles of the unique essential second messenger cyclic diâ€< scp>AMP. Molecular Microbiology, 2015, 97, 189-204.	1.2	121
2	Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis. Frontiers in Microbiology, 2015, 6, 908.	1.5	57
3	Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems. PLoS Pathogens, 2015, 11, e1005232.	2.1	107
4	V-cGAPs: attenuators of 3′3′-cGAMP signaling. Cell Research, 2015, 25, 529-530.	5.7	5
5	The PAMP c-di-AMP Is Essential for Listeria monocytogenes Growth in Rich but Not Minimal Media due to a Toxic Increase in (p)ppGpp. Cell Host and Microbe, 2015, 17, 788-798.	5.1	131
6	Chemical proteomics reveals a second family of cyclic-di-AMP hydrolases. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1921-1922.	3.3	1
7	Structural Insights into the Distinct Binding Mode of Cyclic Di-AMP with <i>Sa</i> CpaA_RCK. Biochemistry, 2015, 54, 4936-4951.	1.2	48
8	Functional Analysis of a c-di-AMP-specific Phosphodiesterase MsPDE from <i>Mycobacterium smegmatis</i> . International Journal of Biological Sciences, 2015, 11, 813-824.	2.6	70
9	RNA quaternary structure and global symmetry. Trends in Biochemical Sciences, 2015, 40, 211-220.	3.7	40
10	An Essential Poison: Synthesis and Degradation of Cyclic Di-AMP in Bacillus subtilis. Journal of Bacteriology, 2015, 197, 3265-3274.	1.0	105
11	Molecular basis for the recognition of cyclicâ€diâ€ <scp>AMP</scp> by PstA, a P _{II} â€like signal transduction protein. MicrobiologyOpen, 2015, 4, 361-374.	1.2	40
12	Oligoribonuclease is the primary degradative enzyme for pCpG in <i>Pseudomonas aeruginosa</i> that is required for cyclic-di-GMP turnover. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5048-57.	3.3	117
13	Cutting Edge: cGAS Is Required for Lethal Autoimmune Disease in the Trex1-Deficient Mouse Model of Aicardi–GoutiÔres Syndrome. Journal of Immunology, 2015, 195, 1939-1943.	0.4	293
14	The Characterization of Escherichia coli CpdB as a Recombinant Protein Reveals that, besides Having the Expected 3´-Nucleotidase and 2´,3´-Cyclic Mononucleotide Phosphodiesterase Activities, It Is Also Active as Cyclic Dinucleotide Phosphodiesterase. PLoS ONE, 2016, 11, e0157308.	1.1	11
15	Cyclic diâ€AMP mediates biofilm formation. Molecular Microbiology, 2016, 99, 945-959.	1.2	126
16	Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in <scp><i>S</i></scp> <i>treptococcus mutans</i> . Environmental Microbiology, 2016, 18, 904-922.	1.8	72
17	New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus. Journal of Biological Chemistry, 2016, 291, 26970-26986.	1.6	87
18	Cyclic Dinucleotides in the Scope of the Mammalian Immune System. Handbook of Experimental Pharmacology, 2016, 238, 269-289.	0.9	4

#	Article	IF	CITATIONS
19	Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria. Current Genetics, 2016, 62, 731-738.	0.8	31
20	Old concepts, new molecules and current approaches applied to the bacterial nucleotide signalling field. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150503.	1.8	10
21	Cyclic diâ€AMP targets the cystathionine betaâ€synthase domain of the osmolyte transporter OpuC. Molecular Microbiology, 2016, 102, 233-243.	1.2	89
22	The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in <i>Staphylococcus aureus</i> . Science Signaling, 2016, 9, ra81.	1.6	87
23	Inhibition of cyclic diadenylate cyclase, DisA, by polyphenols. Scientific Reports, 2016, 6, 25445.	1.6	24
24	Cyclicâ€diâ€ <scp>AMP</scp> synthesis by the diadenylate cyclase <scp>CdaA</scp> is modulated by the peptidoglycan biosynthesis enzyme <scp>ClmM</scp> in <scp><i>L</i></scp> <i>actococcus lactis</i> . Molecular Microbiology, 2016, 99, 1015-1027.	1.2	61
25	Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Chemical Communications, 2016, 52, 9327-9342.	2.2	78
26	Combating chronic bacterial infections by manipulating cyclic nucleotide-regulated biofilm formation. Future Medicinal Chemistry, 2016, 8, 949-961.	1.1	6
27	Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers. Journal of Bacteriology, 2016, 198, 15-26.	1.0	127
28	Nuclease-Resistant c-di-AMP Derivatives That Differentially Recognize RNA and Protein Receptors. Biochemistry, 2016, 55, 837-849.	1.2	16
29	Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of <i>Thermotoga maritima</i> HD-GYP. Biochemistry, 2016, 55, 970-979.	1.2	17
30	Too much of a good thing: regulated depletion of c-di-AMP in the bacterial cytoplasm. Current Opinion in Microbiology, 2016, 30, 22-29.	2.3	80
31	Potent inhibition of cyclic diadenylate monophosphate cyclase by the antiparasitic drug, suramin. Chemical Communications, 2016, 52, 3754-3757.	2.2	19
32	Structural and Biochemical Insight into the Mechanism of Rv2837c from Mycobacterium tuberculosis as a c-di-NMP Phosphodiesterase. Journal of Biological Chemistry, 2016, 291, 3668-3681.	1.6	67
33	Structure–activity relationship studies of c-di-AMP synthase inhibitor, bromophenol-thiohydantoin. Tetrahedron, 2016, 72, 3554-3558.	1.0	7
34	Binding of Cyclic Di-AMP to the Staphylococcus aureus Sensor Kinase KdpD Occurs via the Universal Stress Protein Domain and Downregulates the Expression of the Kdp Potassium Transporter. Journal of Bacteriology, 2016, 198, 98-110.	1.0	97
35	Cyclic Dinucleotide-Controlled Regulatory Pathways in Streptomyces Species. Journal of Bacteriology, 2016, 198, 47-54.	1.0	31
36	Fluorescent analogs of cyclic and linear dinucleotides as phosphodiesterase and oligoribonuclease activity probes. RSC Advances, 2017, 7, 5421-5426.	1.7	11

#	Article	IF	CITATIONS
37	<scp>c</scp> â€diâ€ <scp>AMP</scp> modulates <scp><i>L</i></scp> <i>isteria monocytogenes</i> central metabolism to regulate growth, antibiotic resistance and osmoregulation. Molecular Microbiology, 2017, 104, 212-233.	1.2	121
38	A Novel Phosphodiesterase of the GdpP Family Modulates Cyclic di-AMP Levels in Response to Cell Membrane Stress in Daptomycin-Resistant Enterococci. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	24
39	Cyclic di-GMP: second messenger extraordinaire. Nature Reviews Microbiology, 2017, 15, 271-284.	13.6	706
40	5-Benzylidene-4-oxazolidinones potently inhibit biofilm formation in Methicillin-resistant Staphylococcus aureus. Chemical Communications, 2017, 53, 7353-7356.	2.2	21
41	Non-canonical Cyclic Nucleotides. Handbook of Experimental Pharmacology, 2017, , .	0.9	2
42	Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2′,3′-Phosphoesterase HD Domain and a C-Terminal 5′-OH Polynucleotide Kinase Domain. Journal of Bacteriology, 2017, 199, .	1.0	6
43	New mechanistic insights into the motile-to-sessile switch in various bacteria with particular emphasis on <i>Bacillus subtilis</i> and <i>Pseudomonas aeruginosa</i> : a review. Biofouling, 2017, 33, 306-326.	0.8	21
44	Versatile modes of cellular regulation via cyclic dinucleotides. Nature Chemical Biology, 2017, 13, 350-359.	3.9	99
45	Progress in Understanding the Molecular Basis Underlying Functional Diversification of Cyclic Dinucleotide Turnover Proteins. Journal of Bacteriology, 2017, 199, .	1.0	41
46	Structural and Biophysical Analysis of the Soluble DHH/DHHA1-Type Phosphodiesterase TM1595 from Thermotoga maritima. Structure, 2017, 25, 1887-1897.e4.	1.6	21
47	STING Senses Microbial Viability to Orchestrate Stress-Mediated Autophagy of the Endoplasmic Reticulum. Cell, 2017, 171, 809-823.e13.	13.5	248
48	Plant Polyphenols as Antioxidant and Antibacterial Agents for Shelf‣ife Extension of Meat and Meat Products: Classification, Structures, Sources, and Action Mechanisms. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 1243-1268.	5.9	344
49	Listeria monocytogenes PdeE, a phosphodiesterase that contributes to virulence and has hydrolytic activity against cyclic mononucleotides and cyclic dinucleotides. Microbial Pathogenesis, 2017, 110, 399-408.	1.3	2
50	Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7226-E7235.	3.3	44
51	Phase I study of veliparib in combination with gemcitabine. Cancer Chemotherapy and Pharmacology, 2017, 80, 631-643.	1.1	11
52	Computational and NMR spectroscopy insights into the conformation of cyclic di-nucleotides. Scientific Reports, 2017, 7, 16550.	1.6	15
53	<i>Listeria monocytogenes</i> cytosolic metabolism promotes replication, survival, and evasion of innate immunity. Cellular Microbiology, 2017, 19, e12762.	1.1	36
54	Utilization of glycerophosphodiesters by <i><scp>S</scp>taphylococcus aureus</i> . Molecular Microbiology, 2017, 103, 229-241.	1.2	21

#	Article	IF	CITATIONS
55	c-di-AMP: An Essential Molecule in the Signaling Pathways that Regulate the Viability and Virulence of Gram-Positive Bacteria. Genes, 2017, 8, 197.	1.0	97
56	Identification of the Components Involved in Cyclic Di-AMP Signaling in Mycoplasma pneumoniae. Frontiers in Microbiology, 2017, 8, 1328.	1.5	42
57	Coping with an Essential Poison: a Genetic Suppressor Analysis Corroborates a Key Function of c-di-AMP in Controlling Potassium Ion Homeostasis in Gram-Positive Bacteria. Journal of Bacteriology, 2018, 200, .	1.0	22
58	Cyclic di-AMP Acts as an Extracellular Signal That Impacts <i>Bacillus subtilis</i> Biofilm Formation and Plant Attachment. MBio, 2018, 9, .	1.8	69
59	Cyclic di-AMP in host–pathogen interactions. Current Opinion in Microbiology, 2018, 41, 21-28.	2.3	44
60	A Subset of Exoribonucleases Serve as Degradative Enzymes for pGpG in c-di-GMP Signaling. Journal of Bacteriology, 2018, 200, .	1.0	24
61	A metabolic checkpoint protein GlmR is important for diverting carbon into peptidoglycan biosynthesis in Bacillus subtilis. PLoS Genetics, 2018, 14, e1007689.	1.5	39
62	Biological and Biochemical Roles of Two Distinct Cyclic Dimeric Adenosine 3′,5′-Monophosphate- Associated Phosphodiesterases in Streptococcus mutans. Frontiers in Microbiology, 2018, 9, 2347.	1.5	20
63	Novel Mechanism for Cyclic Dinucleotide Degradation Revealed by Structural Studies of Vibrio Phosphodiesterase V-cGAP3. Journal of Molecular Biology, 2018, 430, 5080-5093.	2.0	13
64	Identification of Inhibitors of the dNTP Triphosphohydrolase SAMHD1 Using a Novel and Direct High-Throughput Assay. Biochemistry, 2018, 57, 6624-6636.	1.2	12
65	High-throughput interaction screens illuminate the role of c-di-AMP in cyanobacterial nighttime survival. PLoS Genetics, 2018, 14, e1007301.	1.5	39
66	Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant. PLoS Genetics, 2018, 14, e1007574.	1.5	61
67	Homeostasis of Second Messenger Cyclic-di-AMP Is Critical for Cyanobacterial Fitness and Acclimation to Abiotic Stress. Frontiers in Microbiology, 2018, 9, 1121.	1.5	21
68	Deinococcus radiodurans HD-Pnk, a Nucleic Acid End-Healing Enzyme, Abets Resistance to Killing by Ionizing Radiation and Mitomycin C. Journal of Bacteriology, 2018, 200, .	1.0	4
69	Bioinformatic Exploration of Metal-Binding Proteome of Zoonotic Pathogen Orientia tsutsugamushi. Frontiers in Genetics, 2019, 10, 797.	1.1	12
70	Structure-Function Analysis of the Phosphoesterase Component of the Nucleic Acid End-Healing Enzyme Runella slithyformis HD-Pnk. Journal of Bacteriology, 2019, 201, .	1.0	0
71	SLC19A1 transports immunoreactive cyclic dinucleotides. Nature, 2019, 573, 434-438.	13.7	230
72	Inhibition of the Staphylococcus aureus c-di-AMP cyclase DacA by direct interaction with the phosphoglucosamine mutase GlmM. PLoS Pathogens, 2019, 15, e1007537.	2.1	35

#	Article	IF	CITATIONS
73	A c-di-AMP riboswitch controlling kdpFABC operon transcription regulates the potassium transporter system in Bacillus thuringiensis. Communications Biology, 2019, 2, 151.	2.0	31
74	The Second Messenger c-di-AMP Regulates Diverse Cellular Pathways Involved in Stress Response, Biofilm Formation, Cell Wall Homeostasis, SpeB Expression, and Virulence in Streptococcus pyogenes. Infection and Immunity, 2019, 87, .	1.0	36
75	Towards Exploring Toxin-Antitoxin Systems in Geobacillus: A Screen for Type II Toxin-Antitoxin System Families in a Thermophilic Genus. International Journal of Molecular Sciences, 2019, 20, 5869.	1.8	4
76	Making and Breaking of an Essential Poison: the Cyclases and Phosphodiesterases That Produce and Degrade the Essential Second Messenger Cyclic di-AMP in Bacteria. Journal of Bacteriology, 2019, 201, .	1.0	90
77	Increased Intracellular Cyclic di-AMP Levels Sensitize Streptococcus gallolyticus subsp. gallolyticus to Osmotic Stress and Reduce Biofilm Formation and Adherence on Intestinal Cells. Journal of Bacteriology, 2019, 201, .	1.0	29
78	Secretion of c-di-AMP by Listeria monocytogenes Leads to a STING-Dependent Antibacterial Response during Enterocolitis. Infection and Immunity, 2020, 88, .	1.0	11
79	c-di-AMP Accumulation Impairs Muropeptide Synthesis in Listeria monocytogenes. Journal of Bacteriology, 2020, 202, .	1.0	20
80	A STING-based biosensor affords broad cyclic dinucleotide detection within single living eukaryotic cells. Nature Communications, 2020, 11, 3533.	5.8	27
81	Crystal structures of SAMHD1 inhibitor complexes reveal the mechanism of water-mediated dNTP hydrolysis. Nature Communications, 2020, 11, 3165.	5.8	25
82	Survival of the Fittest: The Relationship of (p)ppGpp With Bacterial Virulence. Frontiers in Microbiology, 2020, 11, 601417.	1.5	24
83	Type III-A CRISPR-associated protein Csm6 degrades cyclic hexa-adenylate activator using both CARF and HEPN domains. Nucleic Acids Research, 2020, 48, 9204-9217.	6.5	28
84	The second messenger c-di-AMP mediates bacterial exopolysaccharide biosynthesis: a review. Molecular Biology Reports, 2020, 47, 9149-9157.	1.0	11
85	(p)ppGpp and c-di-AMP Homeostasis Is Controlled by CbpB in Listeria monocytogenes. MBio, 2020, 11, .	1.8	28
86	The Many Roles of the Bacterial Second Messenger Cyclic di-AMP in Adapting to Stress Cues. Journal of Bacteriology, 2020, 203, .	1.0	22
87	Cyclic Di-adenosine Monophosphate Regulates Metabolism and Growth in the Oral Commensal Streptococcus mitis. Microorganisms, 2020, 8, 1269.	1.6	9
88	(p)ppGpp: Magic Modulators of Bacterial Physiology and Metabolism. Frontiers in Microbiology, 2020, 11, 2072.	1.5	72
89	The HD-Domain Metalloprotein Superfamily: An Apparent Common Protein Scaffold with Diverse Chemistries. Catalysts, 2020, 10, 1191.	1.6	18
90	A decade of research on the second messenger c-di-AMP. FEMS Microbiology Reviews, 2020, 44, 701-724.	3.9	74

		CITATION REPORT		
#	ARTICLE		IF	CITATIONS
91	The World of Cyclic Dinucleotides in Bacterial Behavior. Molecules, 2020, 25, 2462.		1.7	21
92	HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the Biochemistry, 2020, 59, 2340-2350.	e HD-GYP Family.	1.2	14
93	Cyclic di-AMP Signaling in Bacteria. Annual Review of Microbiology, 2020, 74, 159-179		2.9	106
94	Cyclic di-AMP, a second messenger of primary importance: tertiary structures and bind Nucleic Acids Research, 2020, 48, 2807-2829.	ing mechanisms.	6.5	66
95	Identification and Characterization of a Redox Sensor Phosphodiesterase from <i>Ferro PN-J185 Containing Bacterial Hemerythrin and HD-GYP Domains. Biochemistry, 2020, 5</i>		1.2	10
96	c-di-AMP hydrolysis by the phosphodiesterase AtaC promotes differentiation of multice Proceedings of the National Academy of Sciences of the United States of America, 202	ellular bacteria. 0, 117, 7392-7400.	3.3	32
97	An extracytoplasmic protein and a moonlighting enzyme modulate synthesis of <scp>< <i>Listeria monocytogenes</i>. Environmental Microbiology, 2020, 22, 2771-2791.</scp>	:â€diâ€AMP in	1.8	20
98	Increased Excess Intracellular Cyclic di-AMP Levels Impair Growth and Virulence of Baci anthracis. Journal of Bacteriology, 2020, 202, .	llus	1.0	15
99	A Luminescenceâ€Based Coupled Enzyme Assay Enables Highâ€Throughput Quantifica Second Messenger 3'3'â€Cyclicâ€Diâ€AMP. ChemBioChem, 2021, 22, 1030-1	ation of the Bacterial 041.	1.3	2
100	Assessment of Diadenylate Cyclase and c-di-AMP-phosphodiesterase Activities Using T Exchange Chromatography. Bio-protocol, 2021, 11, e3870.	nin-layer and Ion	0.2	1
102	A meet-up of two second messengers: the c-di-AMP receptor DarB controls (p)ppGpp s Bacillus subtilis. Nature Communications, 2021, 12, 1210.	ynthesis in	5.8	35
105	The Diadenylate Cyclase CdaA Is Critical for Borrelia turicatae Virulence and Physiology Immunity, 2021, 89, .	. Infection and	1.0	6
107	Chemical evolution of cyclic dinucleotides: Perspective of the analogs and their prepara Tetrahedron, 2021, 87, 132096.	ation.	1.0	10
108	Applications of Fruit Polyphenols and Their Functionalized Nanoparticles Against Food A Mini Review. Molecules, 2021, 26, 3447.	borne Bacteria:	1.7	24
110	BusR senses bipartite DNA binding motifs by a unique molecular ruler architecture. Nuc Research, 2021, 49, 10166-10177.	cleic Acids	6.5	11
111	Regulatory Themes and Variations by the Stress-Signaling Nucleotide Alarmones (p)pp Annual Review of Genetics, 2021, 55, 115-133.	Gpp in Bacteria.	3.2	46
112	Molecular mechanisms and applications of tea polyphenols: A narrative review. Journal Biochemistry, 2021, 45, e13910.	of Food	1.2	30
113	c-di-AMP Is Essential for the Virulence of <i>Enterococcus faecalis</i> . Infection and Im 89, e0036521.	imunity, 2021,	1.0	9

#	Article	IF	CITATIONS
114	Pan-proteome profiling of emerging and re-emerging zoonotic pathogen Orientia tsutsugamushi for getting insight into microbial pathogenesis. Microbial Pathogenesis, 2021, 158, 105103.	1.3	7
115	A Rationally Designed c-di-AMP Förster Resonance Energy Transfer Biosensor To Monitor Nucleotide Dynamics. Journal of Bacteriology, 2021, 203, e0008021.	1.0	1
116	A conserved scaffold with heterogeneous metal ion binding site: the multifaceted example of HD-GYP proteins. Coordination Chemistry Reviews, 2022, 450, 214228.	9.5	4
117	Essentiality of c-di-AMP in Bacillus subtilis: Bypassing mutations converge in potassium and glutamate homeostasis. PLoS Genetics, 2021, 17, e1009092.	1.5	28
118	Targeting Cyclic Dinucleotide Signaling with Small Molecules. , 2020, , 577-591.		2
119	Structural and biochemical characterization of the catalytic domains of GdpP reveals a unified hydrolysis mechanism for the DHH/DHHA1 phosphodiesterase. Biochemical Journal, 2018, 475, 191-205.	1.7	35
120	Structures of c-di-GMP/cGAMP degrading phosphodiesterase VcEAL: identification of a novel conformational switch and its implication. Biochemical Journal, 2019, 476, 3333-3353.	1.7	11
122	Intracellular Concentrations of Borrelia burgdorferi Cyclic Di-AMP Are Not Changed by Altered Expression of the CdaA Synthase. PLoS ONE, 2015, 10, e0125440.	1.1	22
123	Structural basis for the inhibition of the Bacillus subtilis c-di-AMP cyclase CdaA by the phosphoglucomutase GlmM. Journal of Biological Chemistry, 2021, 297, 101317.	1.6	10
124	NrnA Is a Linear Dinucleotide Phosphodiesterase with Limited Function in Cyclic Dinucleotide Metabolism in Listeria monocytogenes. Journal of Bacteriology, 2022, 204, JB0020621.	1.0	7
128	A Unified Catalytic Mechanism for Cyclic di-NMP Hydrolysis by DHH–DHHA1 Phosphodiesterases. , 2020, , 79-92.		0
129	CyclicÂdi-AMP in Bacillus subtilis Biofilm Formation. , 2020, , 277-291.		1
131	Cyclic di-AMP in Mycobacterium tuberculosis. , 2020, , 443-454.		1
132	Enzymatic Degradation of Linear Dinucleotide Intermediates of Cyclic Dinucleotides. , 2020, , 93-104.		0
136	The Potential Binding Interaction and Hydrolytic Mechanism of Carbaryl with the Novel Esterase PchA in <i>Pseudomonas</i> sp. PS21. Journal of Agricultural and Food Chemistry, 2022, 70, 2136-2145.	2.4	6
137	Metal Dependence and Functional Diversity of Type I Cas3 Nucleases. Biochemistry, 2022, 61, 327-338.	1.2	4
138	Sequence Conservation, Domain Architectures, and Phylogenetic Distribution of the HD-GYP Type c-di-GMP Phosphodiesterases. Journal of Bacteriology, 2022, 204, jb0056121.	1.0	15
139	细èŒc-di-AMP特å¼,性磷é,二é⁻é¶çš,,ç"ç©¶èį›å±•. Chinese Science Bulletin, 2022, , .	0.4	0

#	Article	IF	CITATIONS
140	Thymidine starvation promotes c-di-AMP-dependent inflammation during pathogenic bacterial infection. Cell Host and Microbe, 2022, 30, 961-974.e6.	5.1	10
145	Genome Mining Shows Ubiquitous Presence and Extensive Diversity of Toxin-Antitoxin Systems in Pseudomonas syringae. Frontiers in Microbiology, 2021, 12, 815911.	1.5	5
146	Porphyromonas gingivalis Tyrosine Kinase Is a Fitness Determinant in Polymicrobial Infections. Infection and Immunity, 2022, 90, e0017022.	1.0	3
148	Genome-wide protein–DNA interaction site mapping in bacteria using a double-stranded DNA-specific cytosine deaminase. Nature Microbiology, 2022, 7, 844-855.	5.9	12
149	Structure-Function Relationship in C-Di-Amp Synthase (Msdisa) from Mycobacterium Smegmatis. SSRN Electronic Journal, 0, , .	0.4	0
150	<i>Vibrio cholerae</i> V-cGAP3 Is an HD-GYP Phosphodiesterase with a Metal Tunable Substrate Selectivity. Biochemistry, 2022, 61, 1801-1809.	1.2	2
151	Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis. Viruses, 2022, 14, 1622.	1.5	4
152	In Vivo Detection of Cyclic-di-AMP in <i>Staphylococcus aureus</i> . ACS Omega, 2022, 7, 32749-32753.	1.6	3
153	Signaling nucleotides in bacteria. , 2023, , 35-48.		0
154	c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by <i>Clostridioides difficile</i> . Science Signaling, 2022, 15, .	1.6	15
155	Cyclic di-AMP, a multifaceted regulator of central metabolism and osmolyte homeostasis in <i>Listeria monocytogenes</i> . MicroLife, 2023, 4, .	1.0	3
156	Biochemical and molecular regulatory mechanism of the <i>pgpH</i> gene on biofilm formation in <i>Listeria monocytogenes</i> . Journal of Applied Microbiology, 2023, 134, .	1.4	1
158	Comparative analysis of five type II TA systems identified in Pseudomonas aeruginosa reveals their contributions to persistence and intracellular survival. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	4
159	Osmotic stress responses and the biology of the second messenger c-di-AMP in <i>Streptomyces</i> . MicroLife, 2023, 4, .	1.0	1