From monomers to polymers from renewable resources

Progress in Polymer Science 48, 1-39 DOI: 10.1016/j.progpolymsci.2014.11.002

Citation Report

ARTICLE

Instantaneous stereocomplex driven self-assembly of enantiomeric poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 747 Td (alcohol)-gra

1	195-204.	1.8	5
2	Synthesis of Unsaturated Polyester Resins from Various Bio-Derived Platform Molecules. International Journal of Molecular Sciences, 2015, 16, 14912-14932.	1.8	98
3	Renewable Polymers from Itaconic Acid by Polycondensation and Ring-Opening-Metathesis Polymerization. Macromolecules, 2015, 48, 1398-1403.	2.2	106
4	Environmentally benign synthesis of saturated and unsaturated aliphatic polyesters via enzymatic polymerization of biobased monomers derived from renewable resources. Polymer Chemistry, 2015, 6, 5451-5463.	1.9	81
5	Polymerizability of <i>Exo</i> â€methyleneâ€lactide toward vinyl addition and ring opening. Journal of Polymer Science Part A, 2015, 53, 1523-1532.	2.5	22
6	Enzymatic Polymerization of Furan-2,5-Dicarboxylic Acid-Based Furanic-Aliphatic Polyamides as Sustainable Alternatives to Polyphthalamides. Biomacromolecules, 2015, 16, 3674-3685.	2.6	113
7	Sustainable, eco-friendly polyesters synthesized from renewable resources: preparation and thermal characteristics of poly(dimethyl-propylene furanoate). Polymer Chemistry, 2015, 6, 8284-8296.	1.9	60
8	Bio-based thermosetting resins composed of aliphatic polyol-derived polymaleimides and allyleugenol. Reactive and Functional Polymers, 2015, 97, 69-76.	2.0	12
9	Crystallization and Polymorphism of Poly(ethylene furanoate). Crystal Growth and Design, 2015, 15, 5505-5512.	1.4	94
10	Biopolyester-Based Systems Containing Naturally Occurring Compounds with Enhanced Thermo-Oxidative Stability. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 455-462.	0.7	10
11	Composite Coatings Based on Renewable Resources Synthesized by Advanced Laser Techniques. , 2016, , .		1
12	Types of Biodegradable Polymers. , 2016, , 81-151.		17
13	Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers, 2016, 8, 243.	2.0	181
14	Ring-Opening Polymerization. , 2016, , .		3
15	Structure and properties relationship of melt reacted polyamide 6/malenized soybean oil. Journal of Applied Polymer Science, 2016, 133, .	1.3	12
16	Catalytic dehydration of bioethanol to ethylene. Catalysis in Industry, 2016, 8, 152-167.	0.3	31
17	Tailoring soy protein film properties by selecting casting or compression as processing methods. European Polymer Journal, 2016, 85, 499-507.	2.6	34
18	Lipase immobilized on rosin-based functional polymers as a biocatalyst for the synthesis of ethyl dodecanoate. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S106-S113.	1.8	3

#	Article	IF	Citations
20	Sustainable polymers from renewable resources. Nature, 2016, 540, 354-362.	13.7	1,902
21	Biomass trans-anethole-based heat-resistant copolymer microspheres: Preparation and thermostability. Materials Today Communications, 2016, 9, 60-66.	0.9	11
22	Non-isocyanate route to biobased polyurethanes and polyureas via AB-type self-polycondensation. European Polymer Journal, 2016, 84, 837-848.	2.6	14
23	(Nano)plastics in the environment – Sources, fates and effects. Science of the Total Environment, 2016, 566-567, 15-26.	3.9	725
24	Syringyl Methacrylate, a Hardwood Lignin-Based Monomer for High- <i>T</i> _g Polymeric Materials. ACS Macro Letters, 2016, 5, 574-578.	2.3	82
25	Rapidly-cured isosorbide-based cross-linked polycarbonate elastomers. Polymer Chemistry, 2016, 7, 2639-2644.	1.9	31
26	Application of the electron radiation and triallyl isocyanurate for production of aliphatic-aromatic co-polyester of modified properties. International Journal of Advanced Manufacturing Technology, 2016, 87, 3307-3314.	1.5	13
27	A minimalist furan–maleimide AB-type monomer and its thermally reversible Diels–Alder polymerization. RSC Advances, 2016, 6, 45696-45700.	1.7	13
28	Polylactides—Methods of synthesis and characterization. Advanced Drug Delivery Reviews, 2016, 107, 3-16.	6.6	135
29	Self-curing furan-based elastic thermosets derived from citric acid. Green Chemistry, 2016, 18, 6320-6328.	4.6	19
30	Phase behavior of novel triacylglycerols derived from metathesis modified plant oils. Industrial Crops and Products, 2016, 94, 431-444.	2.5	7
31	Biobased Plastics and Elastomers from Renewable Rosin via "Living―Ring-Opening Metathesis Polymerization. Macromolecules, 2016, 49, 7155-7164.	2.2	59
32	Thermal and mechanical properties of bio-based polymer networks by thiol-ene photopolymerizations of gallic acid and pyrogallol derivatives. Journal of Polymer Research, 2016, 23, 1.	1.2	49
33	The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways. Journal of the American Chemical Society, 2016, 138, 14326-14337.	6.6	132
34	Polymer-Based Organic Batteries. Chemical Reviews, 2016, 116, 9438-9484.	23.0	919
35	Advances in the synthesis of bio-based aromatic polyesters: novel copolymers derived from vanillic acid and Îμ-caprolactone. Polymer Chemistry, 2016, 7, 5396-5406.	1.9	46
36	Activities of industrial alumina based catalysts in the dehydration of ethanol to ethylene. Catalysis in Industry, 2016, 8, 134-138.	0.3	7
37	Molecular Dynamics of Poly(ethyleneâ€2,5â€furanoate) (PEF) as a Function of the Degree of Crystallinity by Dielectric Spectroscopy and Calorimetry. Macromolecular Chemistry and Physics, 2016, 217, 2056-2062.	1.1	40

#	Article	IF	CITATIONS
39	Potential applications of crude glycerol in polymer technology–Current state and perspectives. Renewable and Sustainable Energy Reviews, 2016, 66, 449-475.	8.2	109
40	Production of bio-based 2,5-furan dicarboxylate polyesters: Recent progress and critical aspects in their synthesis and thermal properties. European Polymer Journal, 2016, 83, 202-229.	2.6	359
41	Terpene Based Sustainable Elastomer for Low Rolling Resistance and Improved Wet Grip Application: Synthesis, Characterization and Properties of Poly(styrene- <i>co</i> -myrcene). ACS Sustainable Chemistry and Engineering, 2016, 4, 5462-5474.	3.2	75
42	Semi-bio-based aromatic polyamides from 2,5-furandicarboxylic acid: toward high-performance polymers from renewable resources. RSC Advances, 2016, 6, 87013-87020.	1.7	55
43	Renewability is not Enough: Recent Advances in the Sustainable Synthesis of Biomassâ€Đerived Monomers and Polymers. Chemistry - A European Journal, 2016, 22, 11510-11521.	1.7	228
44	Novel fully biobased poly(butylene 2,5-furanoate/diglycolate) copolymers containing ether linkages: Structure-property relationships. European Polymer Journal, 2016, 81, 397-412.	2.6	88
45	Sustainable Aromatic Copolyesters via Ring Opening Polymerization: Poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 4965-4973.	10 Tf 50 5 3.2	507 Td (2,5-fu 55
46	Progress in the synthesis of sustainable polymers from terpenes and terpenoids. Green Materials, 2016, 4, 115-134.	1.1	89
47	Bacterial Production of Pinene by a Laboratory-Evolved Pinene-Synthase. ACS Synthetic Biology, 2016, 5, 1011-1020.	1.9	79
48	A Sustainable Route to a Terephthalic Acid Precursor. ChemSusChem, 2016, 9, 942-945.	3.6	26
49	Thermal degradation of biobased polyesters: Kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols. Journal of Analytical and Applied Pyrolysis, 2016, 117, 162-175.	2.6	59
50	Enzymatic catalysis as a versatile tool for the synthesis of multifunctional, bio-based oligoester resins. Green Chemistry, 2016, 18, 1923-1929.	4.6	13
51	Oneâ€Component Thiolâ€Alkene Functional Oligoester Resins Utilizing Lipase Catalysis. Macromolecular Chemistry and Physics, 2016, 217, 1335-1341.	1.1	7
52	Soybean and coconut oil based unsaturated polyester resins: Thermomechanical characterization. Industrial Crops and Products, 2016, 85, 403-411.	2.5	30
53	Poly(alkylene 2,5-furandicarboxylate)s (PEF and PBF) by ring opening polymerization. Polymer, 2016, 87, 148-158.	1.8	111
54	Metathesized palm oil: Fractionation strategies for improving functional properties of lipid-based polyols and derived polyurethane foams. Industrial Crops and Products, 2016, 84, 273-283.	2.5	23
55	Redox-controlled upper critical solution temperature behaviour of a nitroxide containing polymer in alcohol–water mixtures. Polymer Chemistry, 2016, 7, 1088-1095.	1.9	22
56	Synthesis of new photoactive urethane carbohydrates and their behavior in UV or femtosecond laser-induced two-photon polymerization. Designed Monomers and Polymers, 2016, 19, 12-23.	0.7	5

#	Article	IF	CITATIONS
57	Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydrate Polymers, 2016, 137, 1-8.	5.1	91
58	Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chemical Reviews, 2016, 116, 1637-1669.	23.0	610
59	Novel bio-based epoxidized cardanol/cenosphere syntactic foams. High Performance Polymers, 2017, 29, 785-796.	0.8	7
60	Morphology and isothermal crystallization of graphene oxide reinforced biodegradable poly(butylene succinate). Polymer Testing, 2017, 59, 1-9.	2.3	19
61	Improving the Thermal Properties of Poly(2,5â€ f urandicarboxylate)s Using Cyclohexylene Moieties: A Comparative Study. Macromolecular Chemistry and Physics, 2017, 218, 1600492.	1.1	28
63	Sustainable, Stereoregular, and Optically Active Polyamides via Cationic Polymerization of ε-Lactams Derived from the Terpene I²-Pinene. Macromolecular Rapid Communications, 2017, 38, 1600787.	2.0	35
64	2,5-Furandicarboxylic Acid- and Itaconic Acid-Derived Fully Biobased Unsaturated Polyesters and Their Cross-Linked Networks. Industrial & Engineering Chemistry Research, 2017, 56, 2650-2657.	1.8	58
65	Step-Growth Polymers from Cashew Nut Shell Liquid (CNSL)-Based Aromatic Difunctional Monomers. , 2017, , 163-214.		6
66	Preparation of cardanol based epoxy plasticizer by click chemistry and its action on poly(vinyl) Tj ETQq0 0 0 rgB	T /Qverloct 1:3	a 19 Tf 50 422
67	High-Power-Density Organic Radical Batteries. Topics in Current Chemistry, 2017, 375, 19.	3.0	77
68	CO ₂ -Driven stereochemical inversion of sugars to create thymidine-based polycarbonates by ring-opening polymerisation. Polymer Chemistry, 2017, 8, 1714-1721.	1.9	43
69	A two-step efficient preparation of a renewable dicarboxylic acid monomer 5,5′-[oxybis(methylene)]bis[2-furancarboxylic acid] from <scp>d</scp> -fructose and its application in polyester synthesis. Green Chemistry, 2017, 19, 1570-1575.	4.6	26
70	Bio-based adenine-containing high performance polyimide. Polymer, 2017, 119, 59-65.	1.8	46
71	Itaconic acid used as a versatile building block for the synthesis of renewable resourceâ€based resins and polyesters for future prospective: a review. Polymer International, 2017, 66, 1349-1363.	1.6	89
72	Synthesis of isohexide-di(ether-ene)s and ADMET polymerization. Green Materials, 2017, 5, 63-73.	1.1	4
73	Structure and biocompatibility of highly oriented poly(lactic acid) film produced by biaxial solid hot stretching. Journal of Industrial and Engineering Chemistry, 2017, 52, 338-348.	2.9	25
74	Fully bio-based aromatic–aliphatic copolyesters: poly(butylene furandicarboxylate-co-succinate)s obtained by ring opening polymerization. Polymer Chemistry, 2017, 8, 748-760.	1.9	59
75	Sustainable Elastomers from Renewable Biomass. Accounts of Chemical Research, 2017, 50, 1762-1773.	7.6	172

#	Article	IF	Citations
76	Chemically recyclable polymers: a circular economy approach to sustainability. Green Chemistry, 2017, 19, 3692-3706.	4.6	557
78	Terpene based sustainable methacrylate copolymer series by emulsion polymerization: Synthesis and structureâ€property relationship. Journal of Polymer Science Part A, 2017, 55, 2639-2649.	2.5	31
79	Structure-properties relationships in isosorbide-based polyacetals: Influence of linear or cyclic architecture on polymer physicochemical properties. European Polymer Journal, 2017, 93, 795-804.	2.6	13
80	Coordination Polymerization of Renewable 3â€Methylenecyclopentene with Rareâ€Earthâ€Metal Precursors. Angewandte Chemie - International Edition, 2017, 56, 4560-4564.	7.2	25
81	Monomer design strategies to create natural product-based polymer materials. Natural Product Reports, 2017, 34, 433-459.	5.2	128
82	Polymers from sugars and CO ₂ : ring-opening polymerisation and copolymerisation of cyclic carbonates derived from 2-deoxy- <scp>d</scp> -ribose. Polymer Chemistry, 2017, 8, 2093-2104.	1.9	65
83	High Performance and Thermal Processable Dicarboxylic Acid Cured Epoxidized Plant Oil Resins through Dynamic Vulcanization with Poly(lactic acid). ACS Sustainable Chemistry and Engineering, 2017, 5, 1938-1947.	3.2	51
84	Sustainable Synthetic Approaches for the Preparation of Plant Oilâ€Based Thermosets. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 169-186.	0.8	46
85	Curing behavior of epoxidized soybean oil with biobased dicarboxylic acids. Polymer Testing, 2017, 57, 281-287.	2.3	74
86	Polymerisation of a terpene-derived lactone: a bio-based alternative to $\hat{l}\mu$ -caprolactone. Polymer Chemistry, 2017, 8, 833-837.	1.9	55
87	Redox-Active Polymers for Energy Storage Nanoarchitectonics. Joule, 2017, 1, 739-768.	11.7	400
88	All natural cork composites with suberin-based polyester and lignocellulosic residue. Industrial Crops and Products, 2017, 109, 843-849.	2.5	20
89	Stereoselective polymerization of biosourced terpenes \hat{l}^2 -myrcene and \hat{l}^2 -ocimene and their copolymerization with styrene promoted by titanium catalysts. Polymer, 2017, 131, 151-159.	1.8	46
90	Mechanoresponsive lipid-protein nanoglobules facilitate reversible fibre formation in velvet worm slime. Nature Communications, 2017, 8, 974.	5.8	35
91	Mono-BHT heteroleptic magnesium complexes: synthesis, molecular structure and catalytic behavior in the ring-opening polymerization of cyclic esters. Dalton Transactions, 2017, 46, 12132-12146.	1.6	53
92	Nonisothermal crystallization kinetics of bio-based semi-aromatic polyamides. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1021-1030.	2.0	11
93	Topochemical analyses of furfuryl alcohol-modified radiata pine (<i>Pinus radiata</i>) by UMSP, light microscopy and SEM. Holzforschung, 2017, 71, 821-831.	0.9	21
94	Increasing the solubility range of polyesters by tuning their microstructure with comonomers. Polymer Chemistry, 2017, 8, 4696-4706.	1.9	16

#	Article	IF	Citations
95	Fate of So alled Biodegradable Polymers in Seawater and Freshwater. Global Challenges, 2017, 1, 1700048.	1.8	202
96	Enzyme- and Metal-Catalyzed Synthesis of a New Biobased Polyester. Organic Process Research and Development, 2017, 21, 1245-1252.	1.3	5
97	Rigid, bio-based polyamides from galactaric acid derivatives with elevated glass transition temperatures and their characterization. Polymer, 2017, 124, 252-262.	1.8	14
98	Coordination Polymerization of Renewable 3â€Methylenecyclopentene with Rareâ€Earthâ€Metal Precursors. Angewandte Chemie, 2017, 129, 4631-4635.	1.6	9
100	Thiol–Ene (Click) Reactions as Efficient Tools for Terpene Modification. Asian Journal of Organic Chemistry, 2017, 6, 1702-1714.	1.3	29
101	Cutin from agro-waste as a raw material for the production of bioplastics. Journal of Experimental Botany, 2017, 68, 5401-5410.	2.4	69
102	Trends in Emulsion Polymerization Processes from an Industrial Perspective. Advances in Polymer Science, 2017, , 195-214.	0.4	13
103	Bio-based additives as renewable alternatives for polyvinylchloride formulations and application in paper coatings. RSC Advances, 2017, 7, 31428-31432.	1.7	2
104	Rigid Polyurethanes, Polyesters, and Polycarbonates from Renewable Ketal Monomers. Macromolecules, 2017, 50, 5346-5352.	2.2	42
105	New bio-based monomers: tuneable polyester properties using branched diols from biomass. Faraday Discussions, 2017, 202, 61-77.	1.6	44
106	Preparation of L-lactide of polymerization purity with removal of impurities by fractional melting. Russian Journal of Applied Chemistry, 2017, 90, 415-422.	0.1	3
107	Intrinsic Hydrophobic Antibacterial Thin Film from Renewable Resources: Application in the Development of Anti-Biofilm Urinary Catheters. ACS Sustainable Chemistry and Engineering, 2017, 5, 436-449.	3.2	30
108	Biobased Thermosets Prepared from Rigid Isosorbide and Flexible Soybean Oil Derivatives. ACS Sustainable Chemistry and Engineering, 2017, 5, 774-783.	3.2	84
109	High-performance bio-based thermosetting bismaleimide resins utilizing difurfurylidenecyclopentanone and dicinnamylidene cyclopentanone. Polymer Bulletin, 2017, 74, 1949-1963.	1.7	7
110	Metathesis polymerization of cystine-based macrocycles. Polymer Chemistry, 2017, 8, 366-369.	1.9	19
111	Microwave-assisted synthesis of isosorbide-derived diols for the preparation of thermally stable thermoplastic polyurethane. Designed Monomers and Polymers, 2017, 20, 547-563.	0.7	9
112	Degradable Thermosets Derived from an Isosorbide/Succinic Anhydride Monomer and Glycerol. ACS Sustainable Chemistry and Engineering, 2017, 5, 9185-9190.	3.2	42
113	Catalyst Influence on Undesired Side Reactions in the Polycondensation of Fully Bio-Based Polyester Itaconates. Polymers, 2017, 9, 693.	2.0	34

			_
#	ARTICLE	IF	CITATIONS
114	Bioâ \in Based Polyurethanes from Carbohydrate Monomers. , 0, , .		1
115	Conductive Polymer Composites Synthesized from Diacetylene-Functionalized Linseed Oil and MWCNT: Gamma Irradiation and Organic Vapor Sensing. Journal of Renewable Materials, 2017, 5, 132-144.	1.1	1
116	Polyol Preparation by Liquefaction of Technical Lignins in Crude Glycerol. Journal of Renewable Materials, 2017, 5, 67-80.	1.1	17
117	Partially bioâ€based aromatic polyimides derived from 2,5â€furandicarboxylic acid with high thermal and mechanical properties. Journal of Polymer Science Part A, 2018, 56, 1058-1066.	2.5	17
118	Bio-based polymer networks by thiol-ene photopolymerization of allylated l-glutamic acids and l-tyrosines. European Polymer Journal, 2018, 101, 151-158.	2.6	15
119	Renewable polymers: Synthesis and characterization of poly(levulinic acid–pentaerythritol). Journal of Polymer Science Part A, 2018, 56, 955-958.	2.5	22
120	Two-step Conversion of Crude Glycerol Generated by Biodiesel Production into Biopolyols: Synthesis, Structural and Physical Chemical Characterization. Journal of Polymers and the Environment, 2018, 26, 3334-3344.	2.4	12
121	Itaconate based polyesters: Selectivity and performance of esterification catalysts. European Polymer Journal, 2018, 103, 370-377.	2.6	28
122	Renewable resource-based elastomer nanocomposite derived from myrcene, ethanol, itaconic acid and nanosilica: Design, preparation and properties. European Polymer Journal, 2018, 106, 1-8.	2.6	16
123	Synthesis and crystallization of new fully renewable resources-based copolyesters: Poly(1,4-cyclohexanedimethanol-co-isosorbide 2,5-furandicarboxylate). Polymer Degradation and Stability, 2018, 152, 177-190.	2.7	34
124	Controllable synthesis of bioâ€based polylactide diols using an organocatalyst in solventâ€free conditions. Journal of Polymer Science Part A, 2018, 56, 968-976.	2.5	7
125	Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polymer Testing, 2018, 66, 319-326.	2.3	83
126	Bacterial cellulose-based scaffold materials for bone tissue engineering. Applied Materials Today, 2018, 11, 34-49.	2.3	208
127	Renewable epoxidized cardanolâ€based acrylate as a reactive diluent for UVâ€curable resins. Polymers for Advanced Technologies, 2018, 29, 1852-1860.	1.6	25
128	Exploiting Feedstock Diversity To Tune the Chemical and Tribological Properties of Lignin-Inspired Polymer Coatings. ACS Sustainable Chemistry and Engineering, 2018, 6, 6856-6866.	3.2	23
129	Bio-based reactive diluents as sustainable replacements for styrene in MAESO resin. RSC Advances, 2018, 8, 13780-13788.	1.7	31
130	Biocatalytic Routes to Lactone Monomers for Polymer Production. Biochemistry, 2018, 57, 1997-2008.	1.2	33
131	In-depth study of the synthesis of polyamides in the melt using biacetal derivatives of galactaric acid. Polymer Degradation and Stability, 2018, 151, 114-125.	2.7	5

#	Article	IF	CITATIONS
132	Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels-Alder reaction and its drug delivery. International Journal of Biological Macromolecules, 2018, 114, 381-391.	3.6	44
133	Enzymatic degradation of poly-[(R)-3-hydroxybutyrate]: Mechanism, kinetics, consequences. International Journal of Biological Macromolecules, 2018, 112, 156-162.	3.6	22
134	Multiblock Polyesters Demonstrating High Elasticity and Shape Memory Effects. Macromolecules, 2018, 51, 2466-2475.	2.2	71
135	Reaction kinetics of polyfurfuryl alcohol bioresin and nanoparticles by ¹ Hâ€NMR transverse relaxation measurements. Polymer Composites, 2018, 39, 3280-3288.	2.3	6
136	Consecutive Production of Hydroalcoholic Extracts, Carbohydrates Derivatives and Silica Nanoparticles from Equisetum arvense. Waste and Biomass Valorization, 2018, 9, 1993-2002.	1.8	8
137	Catalysis as an Enabling Science for Sustainable Polymers. Chemical Reviews, 2018, 118, 839-885.	23.0	669
138	Dimethyl carbonate: a versatile reagent for a sustainable valorization of renewables. Green Chemistry, 2018, 20, 288-322.	4.6	204
139	Sustainable rubbers and rubber additives. Journal of Applied Polymer Science, 2018, 135, 45701.	1.3	70
140	Fast pyrolysis bioâ€oil as precursor of thermosetting epoxy resins. Polymer Engineering and Science, 2018, 58, 1296-1307.	1.5	13
141	Preparation of eugenol-based polyurethane. IOP Conference Series: Materials Science and Engineering, 2018, 322, 022030.	0.3	3
142	Biobased Vanillic Acid and Ricinoleic Acid: Building Blocks for Fully Renewable Copolyesters. Journal of Renewable Materials, 2018, 6, 126-135.	1.1	32
143	Semi-Interpenetrating Novolac-Epoxy Thermoset Polymer Networks Derived from Plant Biomass. Journal of Renewable Materials, 2018, 6, 724-736.	1.1	6
144	Vanillin derived a carbonate dialdehyde and a carbonate diol: novel platform monomers for sustainable polymers synthesis. RSC Advances, 2018, 8, 34297-34303.	1.7	15
145	Aqueous cationic homo- and co-polymerizations of β-myrcene and styrene: a green route toward terpene-based rubbery polymers. Polymer Chemistry, 2018, 9, 5690-5700.	1.9	49
146	Development of hyperbranched crosslinkers from bio-derived platform molecules for the synthesis of epoxidised soybean oil based thermosets. RSC Advances, 2018, 8, 37267-37276.	1.7	7
147			

#	Article	IF	CITATIONS
150	Sustainable poly(ether amide)s from ligninâ€derived precursors. Journal of Polymer Science Part A, 2018, 56, 2154-2160.	2.5	4
151	Poly(urea-urethane) nanoparticles using mono- and diacylglycerol from glycerolysis of castor oil as biopolyol and stabilizer. European Polymer Journal, 2018, 108, 529-535.	2.6	11
152	Fully Biobased Composites of an Itaconic Acid Derived Unsaturated Polyester Reinforced with Cotton Fabrics. ACS Sustainable Chemistry and Engineering, 2018, 6, 15056-15063.	3.2	42
153	Polyurethanes from Recovered and Depolymerized Lignins. , 2018, , 85-117.		1
154	Conclusions and Future Perspectives. , 2018, , 159-162.		0
155	An Integrated Approach for Added-Value Products from Lignocellulosic Biorefineries. , 2018, , .		13
156	Fully Biobased Polyesters Based on an Isosorbide Monomer for Coil Coating Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 14125-14134.	3.2	30
157	Rigid polyurethane foams from unrefined crude glycerol and technical lignins. Polymers From Renewable Resources, 2018, 9, 111-132.	0.8	8
158	PEG-modified poly(10,11-dihydroxyundecanoic acid) amphiphilic copolymers. Grafting versus macromonomer copolymerization approaches using CALB. European Polymer Journal, 2018, 109, 179-190.	2.6	13
159	Photo-thermally cured eugenol-derived epoxy resins by simultaneous thiol-ene/thiol-epoxy/thiol-maleimide triple "click―reactions. Journal of Polymer Research, 2018, 25, 1.	1.2	10
160	Tailoring Acrylated Soybean Oil-Containing Terpolymers through Emulsion Polymerization. Colloids and Interfaces, 2018, 2, 46.	0.9	7
161	Polymers from Renewable Resources. Polymers and Polymeric Composites, 2018, , 1-27.	0.6	0
162	Petroleum Sorbers Based on Renewable Alkyd Resin and Lignin. Macromolecular Symposia, 2018, 380, 1800116.	0.4	6
163	Pinene: reichlich vorhandene und erneuerbare Bausteine für eine Vielzahl an nachhaltigen Polymeren. Angewandte Chemie, 2018, 130, 14560-14569.	1.6	10
164	The Aqueous Barbier Polycondensation of Biomassâ€Derived 5â€Chloromethylfurfural: A Proof of Concept Study to Access Functional Polymers. Macromolecular Chemistry and Physics, 2018, 219, 1800087.	1.1	13
165	Hydroxyl functionalized renewable polyesters derived from 10-undecenoic acid: Polymer structure and post-polymerization modification. European Polymer Journal, 2018, 105, 68-78.	2.6	9
166	Cellulose-based platform chemical: The path to application. Current Opinion in Green and Sustainable Chemistry, 2018, 14, 14-18.	3.2	32
167	Gas phase heterogeneous partial oxidation reactions. , 2018, , 211-286.		7

#	Article	IF	CITATIONS
168	High Performance Low Dielectric Constant Polymer with Good Filmâ€Forming Ability Developed from Renewable Plant Oil (Anethole). Macromolecular Chemistry and Physics, 2018, 219, 1800133.	1.1	16
169	Application of Chitin/Chitosan and Their Derivatives in the Papermaking Industry. Polymers, 2018, 10, 389.	2.0	77
170	Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polymer Chemistry, 2018, 9, 4258-4287.	1.9	156
171	Advances in biopolymer-based membrane preparation and applications. Journal of Membrane Science, 2018, 564, 562-586.	4.1	255
172	Solid-State Polymerization of Poly(Ethylene Furanoate) Biobased Polyester, II: An Efficient and Facile Method to Synthesize High Molecular Weight Polyester Appropriate for Food Packaging Applications. Polymers, 2018, 10, 471.	2.0	43
173	Partially Renewable Poly(butylene 2,5-furandicarboxylate-co-isophthalate) Copolyesters Obtained by ROP. Polymers, 2018, 10, 483.	2.0	12
174	Starch nanoparticle incorporation in latex-based adhesives. European Polymer Journal, 2018, 106, 128-138.	2.6	24
175	Competition and miscibility of isodimorphism and their effects on band spherulites and mechanical properties of poly(butylene succinate-co-cis-butene succinate) unsaturated aliphatic copolyesters. Polymer, 2018, 150, 52-63.	1.8	30
176	Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers. Angewandte Chemie - International Edition, 2018, 57, 14362-14371.	7.2	96
177	Highly efficient strategies toward sustainable monomers and polymers derived from fatty acids <i>via</i> tetramethylguanidine promoted esterification. Polymer Chemistry, 2018, 9, 2880-2886.	1.9	5
178	A Novel Bio-based Polyaspartic Acid Copolymer: Synthesis, Structure and Performance of Degradation. Journal of Polymers and the Environment, 2018, 26, 4201-4210.	2.4	4
179	Copolymerization of ethylene brassylate with δ-valerolactone towards isodimorphic random copolyesters with continuously tunable mechanical properties. European Polymer Journal, 2018, 102, 90-100.	2.6	26
180	Synthesis and characterization of novel poly(ethylene furanoate-co-adipate) random copolyesters with enhanced biodegradability. Polymer Degradation and Stability, 2018, 156, 32-42.	2.7	60
181	Glycerinâ€Based Polyurethane Obtained by Inverse Emulsion: Comparison Between Magnetic Induction and Conventional Heating. Macromolecular Symposia, 2018, 380, 1800091.	0.4	8
182	Enhancing Production of Pinene in Escherichia coli by Using a Combination of Tolerance, Evolution, and Modular Co-culture Engineering. Frontiers in Microbiology, 2018, 9, 1623.	1.5	91
183	Insights into postâ€polymerisation modification of bioâ€based unsaturated itaconate and fumarate polyesters via azaâ€michael addition: Understanding the effects of CC isomerisation. Journal of Polymer Science Part A, 2018, 56, 1935-1945.	2.5	32
184	Preparation and characterization of natural rosin stabilized nanoparticles via miniemulsion polymerization and their pressure-sensitive adhesive applications. Industrial Crops and Products, 2018, 124, 244-253.	2.5	29
185	Facile Esterification of Degraded and Nonâ€Degraded Starch. Macromolecular Chemistry and Physics, 2018, 219, 1800231.	1.1	13

#	Article	IF	CITATIONS
186	Modified α,α′-trehalose and <scp>d</scp> -glucose: green monomers for the synthesis of vinyl copolymers. Royal Society Open Science, 2018, 5, 171313.	1.1	4
187	Effect of chain length of comonomeric diols on competition and miscibility of isodimorphism: A comparative study of poly(butylene glutarate-co-butylene azelate) and poly(octylene) Tj ETQq1 1 0.784314 rgB1	- /Qve rlock	: 106Tf 50 69
188	Effect of 2-aminobenzothiazole on antimicrobial activity of waterborne polyurethane dispersions (WPUDs). Polymer Bulletin, 2019, 76, 1899-1914.	1.7	8
189	Current approaches to waste polymer utilization and minimization: a review. Journal of Chemical Technology and Biotechnology, 2019, 94, 8-21.	1.6	160
190	Tunable Conducting Polymers: Toward Sustainable and Versatile Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 14321-14340.	3.2	94
191	Bio-based Unsaturated Polyesters. , 2019, , 515-555.		5
192	Stereochemical enhancement of polymer properties. Nature Reviews Chemistry, 2019, 3, 514-535.	13.8	188
193	A facile strategy to achieve fully bio-based epoxy thermosets from eugenol. Green Chemistry, 2019, 21, 4475-4488.	4.6	95
194	Investigation the sustainable additive influence, obtained from milk protein, in the chemical and physical properties of Portland cement. Composites Part B: Engineering, 2019, 175, 107148.	5.9	6
195	Copolymerization of vegetable oils and bio-based monomers with elemental sulfur: A new promising route for bio-based polymers. Sustainable Chemistry and Pharmacy, 2019, 13, 100158.	1.6	33
196	Improving the Post-polymerization Modification of Bio-Based Itaconate Unsaturated Polyesters: Catalyzing Aza-Michael Additions With Reusable Iodine on Acidic Alumina. Frontiers in Chemistry, 2019, 7, 501.	1.8	11
197	Synthesis of glycomonomers via biocatalytic methods. Methods in Enzymology, 2019, 627, 215-247.	0.4	6
198	An ambient-cured coating film obtained via a Knoevenagel and Michael addition reactions based on modified acetoacetylated castor oil prepared by a thiol-ene coupling reaction. Progress in Organic Coatings, 2019, 135, 510-516.	1.9	16
199	Biomass derived epoxy systems: From reactivity to final properties. Materials Today Communications, 2019, 21, 100683.	0.9	17
200	Insoluble and Thermostable Polyhydroxyesters From a Renewable Natural Occurring Polyhydroxylated Fatty Acid. Frontiers in Chemistry, 2019, 7, 643.	1.8	6
201	Enhancing the properties of poly(propylene succinate) by the incorporation of crystallizable symmetrical amido diols. European Polymer Journal, 2019, 120, 109195.	2.6	15
202	Synthesis of Furanic Polyamides and Composite Coatings from Plant Biomass. Key Engineering Materials, 2019, 816, 84-89.	0.4	1
203	Kinetics and mechanism of the solid-acid catalyzed one-pot conversion of d-fructose to 5, 5′-[oxybis(methylene)]bis[2-furaldehyde] in dimethyl sulfoxide. SN Applied Sciences, 2019, 1, 1.	1.5	5

	Сітат	tion Report	
#	Article	IF	CITATIONS
204	Designing and Synthesizing Materials with Appropriate Lifetimes. , 2019, , 483-511.		0
205	Radiation-Thermal Degradation of Waste Plastics. High Energy Chemistry, 2019, 53, 365-370.	0.2	4
206	Partially bio-based and tough polyesters, poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 667 Td (2,5 Polymer Letters, 2019, 13, 938-947.	5-thiophenedicarbo 1.1	oxylate-co-1 15
207	Radical polymerization of biobased monomers in aqueous dispersed media. Green Chemistry, 2019, 21, 36-53.	4.6	69
208	A green method for the production of an efficient bioimaging nanotool. Nanoscale Advances, 2019, 1, 1193-1199.	2.2	3
209	Renewable Resource-Based Polymers. , 2019, , 1-28.		5
210	Fundamentals of Polymers Science Applied in Pharmaceutical Product Development. , 2019, , 85-112.		3
211	Biodegradable Block Copolymers and Their Applications for Drug Delivery. , 2019, , 401-447.		8
212	Block Copolyesters Containing 2,5-Furan and trans-1,4-Cyclohexane Subunits with Outstanding Gas Barrier Properties. International Journal of Molecular Sciences, 2019, 20, 2187.	1.8	28
213	Coating Architects: Manipulating Multiscale Structures To Optimize Interfacial Properties for Coating Applications. ACS Applied Polymer Materials, 2019, 1, 2249-2266.	2.0	23
214	Investigation on Synthesis and Application Performance of Elastomers with Biogenic Myrcene. Industrial & Engineering Chemistry Research, 2019, 58, 12845-12853.	1.8	20
215	Conversion of renewable vanillin into high performance polyimides via an asymmetric aromatic diamine derivation. Polymer Degradation and Stability, 2019, 167, 67-76.	2.7	12
216	Biobased long-chain aliphatic polyesters of 1,12-dodecanedioic acid with a variety of diols: Odd-even effect and mechanical properties. Materials Today Communications, 2019, 19, 450-458.	0.9	33
217	Cationic copolymerization of isosorbide towards value-added poly(vinyl ethers). Polymer Chemistry, 2019, 10, 3514-3524.	1.9	8
218	Sustainable Synthesis of Renewable Terpenoid-Based (Meth)acrylates Using the CHEM21 Green Metrics Toolkit. ACS Sustainable Chemistry and Engineering, 2019, 7, 11633-11639.	3.2	39
219	Eugenol: A Promising Building Block for Synthesis of Radically Polymerizable Monomers. Macromolecular Chemistry and Physics, 2019, 220, 1900179.	1.1	36
220	Advances in Rosin-Based Chemicals: the Latest Recipes, Applications and Future Trends. Molecules, 2019, 24, 1651.	1.7	65
221	Towards High-performance Materials Based on Carbohydrate-Derived Polyamide Blends. Polymers, 2019, 11, 413.	2.0	3

#	Article	IF	Citations
222	Kinetic studies of biocatalyzed copolyesters of poly(butylene succinate) (PBS) containing fully bio-based dilinoleic diol. European Polymer Journal, 2019, 116, 515-525.	2.6	14
223	A cardanol-based surface-active dithiocarbamate and its application in emulsion polymerization. IOP Conference Series: Materials Science and Engineering, 0, 490, 022009.	0.3	3
224	Efficient synthesis of diallyl esters of the furan series from fructose and preparation of copolymers on their basis. Russian Chemical Bulletin, 2019, 68, 570-577.	0.4	3
225	Ultra-strong long-chain polyamide elastomers with programmable supramolecular interactions and oriented crystalline microstructures. Nature Communications, 2019, 10, 1315.	5.8	131
226	Surface modification of cellulose via conventional and controlled radiation-induced grafting. Radiation Physics and Chemistry, 2019, 160, 1-8.	1.4	40
227	Fluoro-containing Polysiloxane Thermoset with Good Thermostability and Acid Resistance Based on the Renewable Multifunctional Vanillin. ACS Sustainable Chemistry and Engineering, 2019, 7, 7304-7311.	3.2	34
228	Chemo-enzymatic pathways toward pinene-based renewable materials. Green Chemistry, 2019, 21, 2720-2731.	4.6	37
229	Synthesis, characterization and chemical degradation of poly(ester-triazole)s derived from d-galactose. RSC Advances, 2019, 9, 9860-9869.	1.7	10
230	Fully alternating sustainable polyesters from epoxides and cyclic anhydrides: economical and metal-free dual catalysis. Green Chemistry, 2019, 21, 2469-2477.	4.6	61
231	Polymers from Renewable Resources. Polymers and Polymeric Composites, 2019, , 45-71.	0.6	0
232	Polyurethane Coatings Based on Renewable White Dextrins and Isocyanate Trimers. Macromolecular Rapid Communications, 2019, 40, 1800874.	2.0	7
233	Polymerization of cystine-derived monomers. Polymer Chemistry, 2019, 10, 1636-1641.	1.9	18
234	Development of Self-Healable Organic/Inorganic Hybrid Materials Containing a Biobased Copolymer via Diels–Alder Chemistry and Their Application in Electromagnetic Interference Shielding. Polymers, 2019, 11, 1755.	2.0	12
235	Studying the catalytic activity of DBU and TBD upon water-initiated ROP of ε-caprolactone under different thermodynamic conditions. Polymer Chemistry, 2019, 10, 6047-6061.	1.9	17
236	Synthesis of Resins Using Epoxies and Humins as Building Blocks: A Mechanistic Study Based on In-Situ FT-IR and NMR Spectroscopies. Molecules, 2019, 24, 4110.	1.7	13
237	Bacterial Cellulose and Emulsified AESO Biocomposites as an Ecological Alternative to Leather. Nanomaterials, 2019, 9, 1710.	1.9	11
238	Phenolic Building Blocks for the Assembly of Functional Materials. Angewandte Chemie - International Edition, 2019, 58, 1904-1927.	7.2	302
239	Phenolische Bausteine für die Assemblierung von Funktionsmaterialien. Angewandte Chemie, 2019, 131, 1920-1945.	1.6	34

#	Article	IF	CITATIONS
240	Synthesis, microstructure and mechanical properties of partially biobased biodegradable poly(ethylene brassylate-co-ε-caprolactone) copolyesters. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 255-265.	1.5	13
241	Plant-Based Nonactivated Olefins: A New Class of Renewable Monomers for Controlled Radical Polymerization. ACS Sustainable Chemistry and Engineering, 2019, 7, 2751-2762.	3.2	16
242	Biocompatible thermoresponsive polyurethane bionanocomposites with chitin nanocrystals. Journal of Applied Polymer Science, 2019, 136, 47430.	1.3	12
243	Sustaining our Passion for Sustainability. Polymer International, 2019, 68, 5-6.	1.6	0
244	Biocompatible thermo- and magneto-responsive shape-memory polyurethane bionanocomposites. Materials Science and Engineering C, 2019, 97, 658-668.	3.8	28
245	1,3-Propanediol and its Application in Bio-Based Polyesters for Resin Applications. Chemistry Africa, 2019, 2, 215-221.	1.2	20
246	Toward Infinitely Recyclable Plastics Derived from Renewable Cyclic Esters. CheM, 2019, 5, 284-312.	5.8	239
247	From Bugs to Bioplastics: Total (+)â€Dihydrocarvide Biosynthesis by Engineered <i>Escherichia coli</i> . ChemBioChem, 2019, 20, 785-792.	1.3	13
248	Dispersion Characteristics and Curing Behaviour of Waterborne UV Crosslinkable Polyurethanes Based on Renewable Dimer Fatty Acid Polyesters. Journal of Polymers and the Environment, 2019, 27, 189-197.	2.4	12
249	Isosorbideâ€based polysebacates as polymeric components for development of in situ forming implants. Polymers for Advanced Technologies, 2019, 30, 1072-1082.	1.6	5
250	Preparation of mussel-inspired biopolyester adhesive and comparative study of effects of meta- or para-hydroxyphenylpropionic acid segments on their properties. Polymer, 2019, 165, 152-162.	1.8	12
251	Synthesis and characterization of two new biobased poly(pentylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 5	50 312 Td 2.7	(2,5-furandic 21
	Polymer Degradation and Stability, 2019, 160, 242-263.		
252	Multiple industrial uses of non-wood pine products. Industrial Crops and Products, 2019, 130, 248-258.	2.5	60
253	Biobased polymer networks by the thiol-ene photopolymerization of allylated p-coumaric and caffeic acids. Polymer Journal, 2019, 51, 461-470.	1.3	11
254	Preparation of novel bio-elastomers with enhanced interaction with silica filler for low rolling resistance and improved wet grip. Journal of Cleaner Production, 2019, 208, 1622-1630.	4.6	24
255	Bio-based polyester itaconates as binder resins for UV-curing offset printing inks. Journal of Coatings Technology Research, 2019, 16, 689-697.	1.2	16
256	Food Sweetener Saccharin in Binary Organocatalyst for Bulk Ringâ€Opening Polymerization of Lactide. Advanced Synthesis and Catalysis, 2019, 361, 1335-1347.	2.1	19
257	Biobased polyester obtained from bifunctional monomers through metathesis of fatty acids as precursor to synthesis of polyurethanes. Journal of Applied Polymer Science, 2019, 136, 47095.	1.3	4

#	Article	IF	CITATIONS
258	Nanoengineered biomaterials for bone/dental regeneration. , 2019, , 13-38.		5
259	Synthesis and characterization of high bio-based content unsaturated polyester resin for wood coating from itaconic acid: Effect of various reactive diluents as an alternative to styrene. Journal of Dispersion Science and Technology, 2019, 40, 756-765.	1.3	22
260	Polymer Electrode Materials for Highâ€Performance Lithium/Sodiumâ€Ion Batteries: A Review. Energy Technology, 2019, 7, 1800759.	1.8	35
261	Development of a Glycerol Based Polymer for Additive Manufacturing. Waste and Biomass Valorization, 2019, 10, 3115-3124.	1.8	2
262	Modern biopolyamide-based materials: synthesis and modification. Polymer Bulletin, 2020, 77, 501-528.	1.7	44
263	Biobased odd–odd poly(propylene dicarboxylate)s. Journal of Thermal Analysis and Calorimetry, 2020, 140, 199-211.	2.0	2
264	Fundamental Theory and Molecular Design of Thermoresponsive Polymers Expandable to Sustainable and Smart Materials. , 2020, , 351-372.		2
265	Partially biobased polymers: The synthesis of polysilylethers via dehydrocoupling catalyzed by an anionic iridium complex. Chinese Chemical Letters, 2020, 31, 1197-1200.	4.8	13
266	Interfacial reinforcement mechanism in poly(lactic acid)/natural fiber biocomposites featuring ZnO nanowires at the interface. Materials and Design, 2020, 186, 108332.	3.3	21
269	Synthesis and characterization of light-degradable bromocoumarin functionalized polycarbonates. Polymer Chemistry, 2020, 11, 721-733.	1.9	10
270	A biobased aliphatic polyester derived from 10-hydroxydecanoic acid: Molecular weight dependence of physical properties. Polymer Testing, 2020, 82, 106295.	2.3	8
271	Introducing the Tishchenko reaction into sustainable polymer chemistry. Green Chemistry, 2020, 22, 1542-1547.	4.6	12
273	Sustainable polymers from biomass: Bridging chemistry with materials and processing. Progress in Polymer Science, 2020, 101, 101197.	11.8	208
274	Preparation and adsorption characteristics of rosin-based polymer microspheres for berberine hydrochloride and separation of total alkaloids from coptidis rhizoma. Chemical Engineering Journal, 2020, 392, 123707.	6.6	38
275	Bio-based polyether from limonene oxide catalytic ROP as green polymeric plasticizer for PLA. Polymer, 2020, 210, 123003.	1.8	27
276	Substituted glycolides from natural sources: preparation, alcoholysis and polymerization. Polymer Chemistry, 2020, 11, 6890-6902.	1.9	5
277	Reactive Diluent Derived from Ferulic Acid for the Preparation of a Fully Biobased Unsaturated Polyester Resin. ACS Sustainable Chemistry and Engineering, 2020, 8, 17379-17386.	3.2	14
278	Conversion of biomass lignin to high-value polyurethane: A review. Journal of Bioresources and Bioproducts, 2020, 5, 163-179.	11.8	115

#	Article	IF	CITATIONS
279	Progress Toward Sustainable Reversible Deactivation Radical Polymerization. Macromolecular Rapid Communications, 2020, 41, e2000266.	2.0	33
280	Chitosan-derived biochars obtained at low pyrolysis temperatures for potential application in electrochemical energy storage devices. International Journal of Biological Macromolecules, 2020, 164, 1825-1831.	3.6	18
281	Bio-based polyesters synthesized by ring-opening copolymerizations of eugenyl glycidyl ether and cyclic anhydrides using a binuclear [OSSO]CrCl complex. Green Chemistry, 2020, 22, 5742-5750.	4.6	17
282	Effect of methyl as the simplest C–H side group on the significant variation of physical properties of biodegradable poly(ethylene succinate). Polymer Testing, 2020, 90, 106755.	2.3	11
283	Exploration of mandelic <scp>acidâ€based</scp> polymethacrylates: Synthesis, properties, and stereochemical effects. Journal of Polymer Science, 2020, 58, 3349-3357.	2.0	2
284	Scale-up of non-toxic poly(butylene adipate-co-terephthalate)-Chitin based nanocomposite articles by injection moulding and 3D printing. International Journal of Biological Macromolecules, 2020, 165, 3145-3155.	3.6	10
285	Recent advances in the use of catalysts based on natural products for the conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2020, 22, 7665-7706.	4.6	110
286	Preparation, carbon black dispersibility and performances of novel biobased integral solution-polymerized styrene–butadiene rubber with β-myrcene bottlebrush segments. Journal of Materials Science, 2020, 55, 16544-16560.	1.7	3
287	Thermal crossâ€link between 2,5â€furandicarboxylic acidâ€based polyimides and bismaleimide via Diels–Alder reaction. Journal of Polymer Science, 2020, 58, 2951-2962.	2.0	7
288	Evaluation of properties of sulfur-based polymers obtained by inverse vulcanization: Techniques and challenges. Polymers and Polymer Composites, 2021, 29, 1333-1352.	1.0	26
289	Production of Environmentally Friendly Polyester by Hydrogenation of Poly(butylene terephthalate) over Rh–Pt Catalysts Supported on Carbon Black and Recovery by a Compressed CO2 Antisolvent Technique. Industrial & Engineering Chemistry Research, 2020, 59, 21333-21346.	1.8	5
290	Green Pathways for the Enzymatic Synthesis of Furan-Based Polyesters and Polyamides. ACS Symposium Series, 2020, , 3-29.	0.5	6
291	Recent trends in the development of biomass-based polymers from renewable resources and their environmental applications. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115, 293-303.	2.7	45
292	Synthesis and characterization of castor oil-derived oxidation-responsive amphiphilic block copolymers: Poly(ethylene glycol)-b-poly(11-((2-hydroxyethyl)thio)undecanoate). European Polymer Journal, 2020, 133, 109736.	2.6	2
293	Preparation of Nanoscale Semi-IPNs with an Interconnected Microporous Structure via Cationic Polymerization of Bio-Based Tung Oil in a Homogeneous Solution of Poly(Îμ-caprolactone). ACS Omega, 2020, 5, 9977-9984.	1.6	8
294	Terpene Based Elastomers: Synthesis, Properties, and Applications. Processes, 2020, 8, 553.	1.3	55
295	Introducing the reversible chemistry of CO ₂ with diols mediated by organic superbases into polycarbonate synthesis. Green Chemistry, 2020, 22, 4871-4877.	4.6	10
296	Advanced Thermosets from Sulfur and Renewable Benzoxazine and Ionones via Inverse Vulcanization. ACS Sustainable Chemistry and Engineering, 2020, 8, 9145-9155.	3.2	39

#	Article	IF	Citations
297	Tröger's Base (TB)-containing polyimide membranes derived from bio-based dianhydrides for gas separations. Journal of Membrane Science, 2020, 610, 118255.	4.1	31
298	Radical Aqueous Emulsion Copolymerization of Eugenol-Derived Monomers for Adhesive Applications. Biomacromolecules, 2020, 21, 4514-4521.	2.6	19
299	Carbohydrates as Hard Segments for Sustainable Elastomers: Carbohydrates Direct the Self-Assembly and Mechanical Properties of Fully Bio-Based Block Copolymers. Macromolecules, 2020, 53, 5408-5417.	2.2	24
300	Woodâ€Đerived Functional Polymeric Materials. Advanced Materials, 2021, 33, e2001135.	11.1	85
301	Biosourced terpenoids for the development of sustainable acrylic pressure-sensitive adhesives <i>via</i> emulsion polymerisation. Green Chemistry, 2020, 22, 4561-4569.	4.6	40
302	Radiolysis as a Powerful Tool for Polymer Waste Recycling. High Energy Chemistry, 2020, 54, 194-204.	0.2	9
303	Bio-Based Polyesters with High Glass-Transition Temperatures and Gas Barrier Properties Derived from Renewable Rigid Tricyclic Diacid or Tetracyclic Anhydride. Macromolecules, 2020, 53, 5475-5486.	2.2	23
304	Recent advances of stable Blatter radicals: synthesis, properties and applications. Materials Chemistry Frontiers, 2020, 4, 3433-3443.	3.2	61
305	Synthesis of Poly(Ethylene 2,5-Furanoate): I. Kinetics of 2,5-Dimethyl Ester of Furandicarboxylic Acid Transesterification. Materials Science Forum, 0, 992, 311-316.	0.3	1
306	100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. ACS Macro Letters, 2020, 9, 476-493.	2.3	105
307	Direct Synthesis of Polar Functionalized Polyethylene Thermoplastic Elastomer. Macromolecules, 2020, 53, 2539-2546.	2.2	87
308	Triply Biobased Thermoplastic Composites of Polylactide/Succinylated Lignin/Epoxidized Soybean Oil. Polymers, 2020, 12, 632.	2.0	15
309	The contribution of bisfurfurylamine to the development and properties of polyureas. Polymer International, 2020, 69, 688-692.	1.6	6
310	Polymers from sugars and unsaturated fatty acids: ADMET polymerisation of monomers derived from <scp>d</scp> -xylose, <scp>d</scp> -mannose and castor oil. Polymer Chemistry, 2020, 11, 2681-2691.	1.9	35
311	Chain-End Functional di-Sorbitan Oleate Monomer Obtained from Renewable Resources as Precursors for Bio-Based Polyurethanes. Journal of Polymers and the Environment, 2020, 28, 1406-1419.	2.4	3
312	Biological upgrading of 3,6-anhydro- <scp>l</scp> -galactose from agarose to a new platform chemical. Green Chemistry, 2020, 22, 1776-1785.	4.6	15
313	Bio-Based Polymer Electrolytes for Electrochemical Devices: Insight into the Ionic Conductivity Performance. Materials, 2020, 13, 838.	1.3	78
314	Selective Catalytic Synthesis of 1,2―and 8,9 yclic Limonene Carbonates as Versatile Building Blocks for Novel Hydroxyurethanes. Chemistry - A European Journal, 2020, 26, 7405-7415.	1.7	31

#	Article	IF	CITATIONS
315	End-capped biobased saturated polyesters as effective plasticizers for PVC. Polymer Testing, 2020, 85, 106406.	2.3	18
316	Synthesis, Molecular Docking Simulation, and Enzymatic Degradation of AB-Type Indole-Based Polyesters with Improved Thermal Properties. Biomacromolecules, 2020, 21, 1078-1090.	2.6	13
318	4-Carboalkoxylated Polyvalerolactones from Malic Acid: Tough and Degradable Polyesters. Macromolecules, 2020, 53, 3194-3201.	2.2	17
319	Galactose-derived poly(amide-triazole)s. Degradation, deprotection and derivatization studies. European Polymer Journal, 2020, 130, 109653.	2.6	2
320	Pine Resin Derivatives as Sustainable Additives to Improve the Mechanical and Thermal Properties of Injected Moulded Thermoplastic Starch. Applied Sciences (Switzerland), 2020, 10, 2561.	1.3	29
321	The use of lignin in emulsion-based pressure-sensitive adhesives. International Journal of Adhesion and Adhesives, 2020, 100, 102598.	1.4	16
322	Bio-Based Aromatic Copolyesters: Influence of Chemical Microstructures on Thermal and Crystalline Properties. Polymers, 2020, 12, 829.	2.0	4
323	Cellulose Nanocrystal (CNC)–Latex Nanocomposites: Effect of CNC Hydrophilicity and Charge on Rheological, Mechanical, and Adhesive Properties. Macromolecular Rapid Communications, 2021, 42, e2000448.	2.0	22
324	Preparation of biobased poly(propylene 2,5â€furandicarboxylate) fibers: Mechanical, thermal and hydrolytic degradation properties. Journal of Applied Polymer Science, 2021, 138, app50345.	1.3	10
325	Sustainable polymer reaction engineering: Are we there yet?. Canadian Journal of Chemical Engineering, 2021, 99, 31-60.	0.9	16
326	Polymerization of terpenes and terpenoids using metal catalysts. Advances in Organometallic Chemistry, 2021, , 55-93.	0.5	5
327	Synthesis and characterization of fully biobased polyesters with tunable branched architectures. Polymer Chemistry, 2021, 12, 991-1001.	1.9	7
328	Insight into the reversible conversion–(de)incorporation of redox-active dopants within a polymer-based electrode. Chemical Communications, 2021, 57, 6780-6783.	2.2	2
329	Living polymerization of naturally renewable butyrolactone-based vinylidenes mediated by a frustrated Lewis pair. Polymer Chemistry, 2021, 12, 5548-5555.	1.9	11
330	Separation of alkaloids and their analogs in HPLC using rosin-based polymer microspheres as stationary phases. New Journal of Chemistry, 2021, 45, 6856-6864.	1.4	6
331	Strategies for the synthesis of block copolymers with biodegradable polyester segments. Polymer Chemistry, 2021, 12, 783-806.	1.9	37
332	Biomass- and calcium carbide-based recyclable polymers. Green Chemistry, 2021, 23, 2487-2495.	4.6	20
333	Bio-based and Biodegradable Plastic Materials: Life Cycle Assessment. , 2021, , 3689-3706.		0

#	Article	IF	Citations
334	Manufacturing of bio-based polymers and composites. , 2021, , 113-149.		1
336	Ionic Charge Storage in Diketopyrrolopyrrole-Based Redox-Active Conjugated Polymers. Journal of Physical Chemistry C, 2021, 125, 4449-4457.	1.5	16
338	Water Vapor Sorption and Diffusivity in Bio-Based Poly(ethylene vanillate)—PEV. Polymers, 2021, 13, 524.	2.0	8
339	Advances, Challenges, and Opportunities of Poly(γ-butyrolactone)-Based Recyclable Polymers. ACS Macro Letters, 2021, 10, 284-296.	2.3	40
340	Synthesis and Characterization of Sustainable Inverse Vulcanized Copolymers from Nonâ€Edible Oil. ChemistrySelect, 2021, 6, 1180-1190.	0.7	14
341	Vanillin based polymers: V. <i>Poly</i> (hydrovanilloin–urethane). Polymers From Renewable Resources, 2021, 12, 35-45.	0.8	2
342	A novel, facile and straightforward approach to achieve high-performance and efficient utilization of sustainable tyrosine cyclic peptide. Polymer, 2021, 217, 123417.	1.8	4
343	Castor Oil-Based Bioplastics via Polyesterification: Synthesis, Characterization, and Functionalization. ACS Applied Polymer Materials, 2021, 3, 2054-2062.	2.0	5
344	Blending of cyclic carbonate based on soybean oil and glycerol: a non-isocyanate approach towards the synthesis of polyurethane with high performance. Journal of Polymer Research, 2021, 28, 1.	1.2	5
345	Improved dynamic properties of thermoplastic polyurethanes made from <scp>coâ€monomeric</scp> polyester polyol soft segments based on azelaic acid. Journal of Applied Polymer Science, 2021, 138, 50815.	1.3	7
346	INTRODUCING BIOBASED NONPOLAR BOTTLEBRUSH Î ² -MYRCENE SEGMENTS TO IMPROVE SILICA DISPERSION FOR SUSTAINABLE SSBR/SILICA NANOCOMPOSITES. Rubber Chemistry and Technology, 2021, 94, 213-233.	0.6	1
347	Effect of different lengths of side groups on the thermal, crystallization and mechanical properties of novel biodegradable poly(ethylene succinate) copolymers. Polymer Degradation and Stability, 2021, 187, 109542.	2.7	10
348	Quasiliving Cationic Polymerization of Anethole: Accessing High-Performance Plastic from the Biomass-Derived Monomer. ACS Sustainable Chemistry and Engineering, 2021, 9, 6841-6854.	3.2	10
349	Bio-based organic-inorganic hybrid UV-curable hydrophobic coating prepared from epoxidized vegetable oils. Industrial Crops and Products, 2021, 163, 113331.	2.5	18
350	Prospects of Using Biocatalysis for the Synthesis and Modification of Polymers. Molecules, 2021, 26, 2750.	1.7	16
351	Preparation and Properties of Biobased, Cationic, Waterborne Polyurethanes Dispersions from Castor Oil and Poly (Caprolactone) Diol. Applied Sciences (Switzerland), 2021, 11, 4784.	1.3	5
352	Composition and Properties of Protective Coatings Made of Biologically-Derived Polyester Reactive Binder. Polymers, 2021, 13, 1700.	2.0	2
353	UV-Curable Bio-Based Polymers Derived from Industrial Pulp and Paper Processes. Polymers, 2021, 13, 1530.	2.0	25

#	Article	IF	CITATIONS
354	Furfuryl alcohol/tung oil matrix-based composites reinforced with bacterial cellulose fibres. Cellulose, 2021, 28, 7109-7121.	2.4	9
355	Biobased acrylic pressure-sensitive adhesives. Progress in Polymer Science, 2021, 117, 101396.	11.8	41
356	Dimethyl 2,5-furandicarboxylate synthesis from 2,5-furanodicarboxylic acid and dimethyl carbonate in presence of MgO-Al2O3 and tetrabutylammonium bromide. Molecular Catalysis, 2021, 510, 111707.	1.0	0
357	The effect of copolymerization of cyclic dioxolane moieties on polyamide properties. Polymer, 2021, 226, 123799.	1.8	2
358	Fully biodegradable polylactide foams with ultrahigh expansion ratio and heat resistance for green packaging. International Journal of Biological Macromolecules, 2021, 183, 222-234.	3.6	21
359	Dienes Polymerization: Where We Are and What Lies Ahead. Macromolecules, 2021, 54, 5879-5914.	2.2	57
360	Synthesis and Catalytic Activity of Gallium Schiffâ€base Complexes in the Ringâ€Opening Homo―and Copolymerization of Cyclic Esters. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1594-1601.	0.6	1
361	Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. International Journal of Biological Macromolecules, 2021, 183, 1514-1539.	3.6	16
362	Printability of paper and paperboard surface treatment with gum rosin and derivatives. Pigment and Resin Technology, 2021, ahead-of-print, .	0.5	0
363	Poly (glycerol adipate) (PGA) backbone modifications with a library of functional diols: Chemical and physical effects. Polymer, 2021, 228, 123912.	1.8	18
364	Structure-properties relationships of cellular materials from biobased polyurethane foams. Materials Science and Engineering Reports, 2021, 145, 100608.	14.8	112
365	Recent Advances of Furan and Its Derivatives Based Semiconductor Materials for Organic Photovoltaics. Small Methods, 2021, 5, e2100493.	4.6	49
366	Protective paints from natural resources: composition and properties. Polimery, 2021, 66, .	0.4	1
367	Fully biobased UV-cured thiol-ene coatings. Progress in Organic Coatings, 2021, 157, 106295.	1.9	12
368	Dual-initiating and living frustrated Lewis pairs: expeditious synthesis of biobased thermoplastic elastomers. Nature Communications, 2021, 12, 4874.	5.8	28
370	Achieving morphological evolution and interfacial enhancement in fully degradable and supertough polylactide/polyurethane elastomer blends by interfacial stereocomplexation. Applied Surface Science, 2022, 572, 151393.	3.1	14
371	Bio-based polyesters: Recent progress and future prospects. Progress in Polymer Science, 2021, 120, 101430.	11.8	165
372	Sustainable polysaccharides from Malvaceae family: Structure and functionality. Food Hydrocolloids, 2021, 118, 106749.	5.6	5

	CHATION K	EPORT	
#	Article	lF	CITATIONS
373	Biomaterials Printing for Sustainability. Springer Tracts in Additive Manufacturing, 2022, , 15-28.	0.2	1
374	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues. Advanced Materials, 2021, 33, e2102520.	11.1	50
375	Cobalt Carbonyls Stabilized by N,Pâ€Ligands: Synthesis, Structure, and Catalytic Property for Ethylene Oxide Hydroalkoxycarbonylation. Chemistry - an Asian Journal, 2021, 16, 3453-3461.	1.7	4
376	Mechanically versatile isosorbideâ€based thermoplastic copolyetherâ€esters with a poly(ethylene glycol) soft segment. Journal of Polymer Science, 0, , .	2.0	2
377	Bio-based polymers with performance-advantaged properties. Nature Reviews Materials, 2022, 7, 83-103.	23.3	268
378	The role of plastic concerning the sustainable development goals: The literature point of view. Cleaner and Responsible Consumption, 2021, 3, 100020.	1.6	35
379	Furan platform chemicals beyond fuels and plastics. Green Chemistry, 2021, 23, 7458-7487.	4.6	43
380	Modification of cellulose through physisorption of cationic bio-based nanolatexes – comparing emulsion polymerization and RAFT-mediated polymerization-induced self-assembly. Green Chemistry, 2021, 23, 2113-2122.	4.6	8
381	Solid-State ¹³ C NMR Delineates the Architectural Design of Biopolymers in Native and Genetically Altered Tomato Fruit Cuticles. Biomacromolecules, 2016, 17, 215-224.	2.6	25
382	CO2 and Organic Carbonates for the Sustainable Valorization of Renewable Compounds. RSC Green Chemistry, 2019, , 319-342.	0.0	2
383	Recent Developments in Polyurethane Foams Containing Low-Cost and Pro-Ecological Modifiers. Chemistry and Chemical Technology, 2016, 10, 571-580.	0.2	1
384	EFFECT OF CHITIN SOURCE AND CONTENT ON PROPERTIES OF CHITIN NANOWHISKERS FILLED POLYLACTIC ACID COMPOSITES. IIUM Engineering Journal, 2020, 21, 239-255.	0.5	6
385	The aliphatic counterpart of PET, PPT and PBT aromatic polyesters: effect of the molecular structure on thermo-mechanical properties. AIMS Molecular Science, 2016, 3, 32-51.	0.3	16
387	Designing and Synthesizing Materials with Appropriate Lifetimes. , 2018, , 1-29.		0
388	Nanoplastics in the Environment. Issues in Environmental Science and Technology, 2018, , 82-105.	0.4	4
389	Synthesis and Conductivity Studies of Tetraarylphosphonium Salts As Potential Electrolytes in Advanced Batteries. International Journal for Innovation Education and Research, 2018, 6, 116-123.	0.0	2
390	Bacterial nano cellulose as non-active pharmaceutical ingredient. Advances and perspectives. MOJ Drug Design Development & Therapy, 2018, 2, 230-233.	0.1	0
391	Influence of Noncovalent Interactions in Catalytic Ring-opening Polymerization Processes. RSC Catalysis Series, 2019, , 415-439.	0.1	0

#	Article	IF	CITATIONS
392	Cationic polymerization of β-pinene in the presence of alkylaluminum chlorides as catalysts. Journal of the Belarusian State University Chemistry, 2020, , 98-107.	0.1	0
393	Design and synthesis of some new biologically active amidoalkyl naphthols in the presence of sulfonic acid functionalized silica-coated Fe3O4 nanoparticles. Research on Chemical Intermediates, 0, , 1.	1.3	3
394	Solvent-Free Design of Biobased Non-isocyanate Polyurethanes with Ferroelectric Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 14946-14958.	3.2	11
395	Synthesis of isoeugenol biobased epoxy polymer by forming αâ€hydroxyl ester and degradation studies. Journal of Applied Polymer Science, 2022, 139, 51830.	1.3	4
396	Bio-based and Biodegradable Plastic Materials: Life Cycle Assessment. , 2020, , 1-18.		0
397	Photo-curing 3D printing of micro-scale bamboo fibers reinforced palm oil-based thermosets composites. Composites Part A: Applied Science and Manufacturing, 2022, 152, 106676.	3.8	16
398	Emulsion Polymerization of Plant Oil-Based Acrylic Monomers: Resourceful Platform for Biobased Waterborne Materials. ACS Symposium Series, 2020, , 27-66.	0.5	2
399	Controlling polymer stereochemistry in ring-opening polymerization: a decade of advances shaping the future of biodegradable polyesters. Chemical Society Reviews, 2021, 50, 13587-13608.	18.7	62
400	Sustainable Bioplastic Made from Biomass DNA and Ionomers. Journal of the American Chemical Society, 2021, 143, 19486-19497.	6.6	50
401	Effect of Kraft lignin and palm kernel oil as substitutes of petroleum-based polyols on the properties of viscoelastic polyurethane foams. Journal of Polymer Research, 2021, 28, .	1.2	8
402	<i>Trans</i> -2-Butene-1,4-Diol as an Olefinic Building Block to Prepare Biobased Unsaturated Copolyesters with High Molecular Weight: Synthesis, Characterization, and Physical Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 16699-16708.	3.2	9
403	Significantly Enhanced Crystallization of Poly(ethylene succinate-co-1,2-propylene succinate) by Cellulose Nanocrystals as an Efficient Nucleating Agent. Polymers, 2022, 14, 224.	2.0	4
404	Furan Polymers: State of the Art and Perspectives. Macromolecular Materials and Engineering, 2022, 307, .	1.7	31
405	Fully Biobased Vitrimers: Future Direction toward Sustainable Crossâ€Linked Polymers. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	36
406	Versatile Chemical Recycling Strategies: Valueâ€Added Chemicals from Polyester and Polycarbonate Waste. ChemSusChem, 2022, 15, .	3.6	24
407	Synthesis and solution properties of poly(p,α dimethylstyrene-co-maleic anhydride): The use of a monomer potentially obtained from renewable sources as a substitute of styrene in amphiphilic copolymers. Reactive and Functional Polymers, 2022, 172, 105204.	2.0	1
408	Fully Chemical Recyclable Poly(Î ³ -butyrolactone)-based Copolymers with Tunable Structures and Properties. Chinese Journal of Polymer Science (English Edition), 2022, 40, 456-461.	2.0	4
409	Biobased Thermosetting Polyester Resin for High-Performance Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 3442-3454.	3.2	25

#	Article	IF	CITATIONS
411	Chitosan Hydrogels Based on the Diels–Alder Click Reaction: Rheological and Kinetic Study. Polymers, 2022, 14, 1202.	2.0	13
412	Back to the Future with Biorefineries: Bottomâ€Up and Topâ€Down Approaches toward Polymers and Monomers. Macromolecular Chemistry and Physics, 0, , 2200017.	1.1	5
413	Greener <scp>extractionâ€chemical modificationâ€polymerization</scp> pipeline of vernolic acid from Ethiopian ironweed plant. Journal of Polymer Science, 0, , .	2.0	1
414	Boronâ€Based Lewis Pairs Catalyzed Living, Regioselective, and Topologyâ€Controlled Polymerization of (<i>E</i> , <i>E</i>)â€Alkyl Sorbates. Macromolecular Rapid Communications, 2022, 43, e2200088.	2.0	13
415	Glycerol-based enzymatically synthesized renewable polyesters: Control of molecular weight, degree of branching and functional endgroups. European Polymer Journal, 2022, 170, 111173.	2.6	8
416	Vegetable oil-based, coumarin-containing antibacterial thermosets with improved thermal stability via copper-free thermal azide-alkyne click polymerization. Industrial Crops and Products, 2022, 182, 114870.	2.5	12
417	Cationic UV Curing of Bioderived Epoxy Furan-Based Coatings: Tailoring the Final Properties by In Situ Formation of Hybrid Network and Addition of Monofunctional Monomer. ACS Sustainable Chemistry and Engineering, 2021, 9, 17403-17412.	3.2	17
418	Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives. Molecules, 2022, 27, 159.	1.7	19
419	Production of Feather-Based Biopolymers as a Direct Alternative to Synthetic Plastics. ACS Sustainable Chemistry and Engineering, 2022, 10, 486-494.	3.2	1
420	Renewable Polysaccharide and Biomedical Application of Nanomaterials. Journal of Nanomaterials, 2022, 2022, 1-16.	1.5	10
421	Crossâ€Linking of Biobased Monofunctional Furan Epoxy Monomer by Two Steps Process, UV Irradiation and Thermal Treatment. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	7
441	Zinc Aryl/Alkyl β-diketiminates: Balancing Accessibility and Stability for High-Activity Ring-Opening Polymerization of <i>rac</i> -Lactide. ACS Catalysis, 2022, 12, 5585-5594.	5.5	14
442	Synthesis of a fire-retardant and high Tg biobased polyester from 2,5-furandicarboxylic acid. Polymer Journal, 2022, 54, 995-1008.	1.3	3
443	Recent Advances in RO(CO)P of Bio-Based Monomers. Sustainable Chemistry, 2022, 3, 259-285.	2.2	6
444	Closing the Carbon Loop in the Circular Plastics Economy. Macromolecular Rapid Communications, 2022, 43, .	2.0	21
445	Conductive Polymers in Green Analytical Chemistry. ACS Symposium Series, 0, , 1-37.	0.5	3
446	Highly Bioâ€Based Unsaturated Polyester Resins with Improved Performance by Incorporating Isosorbide into the Polyester Prepolymer. Macromolecular Materials and Engineering, 2022, 307, .	1.7	3
447	Glycerol: Its properties, polymer synthesis, and applications in starch based films. European Polymer Journal, 2022, 175, 111377.	2.6	34

#	Article	IF	CITATIONS
448	Discovery and characterization of new crystal forms of bio-based nylon 4F salt. CrystEngComm, 2022, 24, 5642-5652.	1.3	3
449	Metal-Free Click Modification of Triple Bond-Containing Polyester with Azide-Functionalized Vegetable Oil: Plasticization and Tunable Solvent Adsorption. ACS Omega, 2022, 7, 23332-23341.	1.6	5
450	Polymerization of Myrcene in Both Conventional and Renewable Solvents: Postpolymerization Modification via Regioselective Photoinduced Thiol–Ene Chemistry for Use as Carbon Renewable Dispersants. ACS Sustainable Chemistry and Engineering, 2022, 10, 9654-9664.	3.2	10
451	Preparation of Ultrathin and Degradable Polymeric Films by Electropolymerization of 3â€Aminoâ€ <scp>l</scp> â€ŧyrosine. Macromolecular Rapid Communications, 2023, 44, .	2.0	3
452	Poly (vinyl ethers) based on the biomass-derived compound, eugenol, and their one-component, ambient-cured surface coatings. Progress in Organic Coatings, 2022, 170, 106996.	1.9	7
453	Effect of plant tannin and glycerol on thermoplastic starch: Mechanical, structural, antimicrobial and biodegradable properties. Carbohydrate Polymers, 2022, 295, 119869.	5.1	11
454	Biopolymer coating for particle surface engineering and their biomedical applications. Materials Today Bio, 2022, 16, 100407.	2.6	9
455	GFRP biocomposites produced with a novel high-performance bio-based unsaturated polyester resin. Composites Part A: Applied Science and Manufacturing, 2022, 161, 107098.	3.8	13
456	Sustainable ABA triblock methacrylate copolymers incorporating both high and low Tg terpene-derived monomers. European Polymer Journal, 2022, 179, 111567.	2.6	7
457	Biobased Low- <i>k</i> Polymers at High Frequency Derived from Isoeugenol. ACS Applied Polymer Materials, 2022, 4, 7173-7181.	2.0	6
458	Bio-Based Polymer Electrolytes for Supercapacitor Applications. , 2022, , 1-7.		0
459	Preparation of bio-based elastomer and its nanocomposites based on dimethyl itaconate with versatile properties. Composites Part B: Engineering, 2023, 248, 110383.	5.9	12
460	Biobased Bifunctional Monomers toward Functionalizable Polycarbonates and Poly(cyclic olefin)s with Tunable Properties. Macromolecules, 2022, 55, 9232-9241.	2.2	10
461	Biobased, Creep-Resistant Covalent Adaptable Networks Based on β-Amino Ester Chemistry. ACS Sustainable Chemistry and Engineering, 2022, 10, 14045-14052.	3.2	5
462	Bio-based poly(decylene terephthalate-co-decylene furandicarboxylate)s derived from 2,5-furandicarboxylic acid (FDCA): Synthesis and properties. Reactive and Functional Polymers, 2022, 181, 105446.	2.0	2
463	Temperature-Dependent Polymorphic Crystallization and Crystalline Structure of Unsaturated Polyesters Derived from <i>cis</i> -2-Butene-1,4-diol. Macromolecules, 2022, 55, 10522-10533.	2.2	1
464	Influence of Gamma-Irradiation on Mechanical and Structural Characteristics of ABS Plastic Based on High-Molecular-Weight Technical Acrylonitrile–Butadiene–Styrene Polymer. High Energy Chemistry, 2022, 56, 423-428.	0.2	1
465	Fully biodegradable composites from poly (butylene succinate) modified with poly(3-hydroxybutyrate-co-4-hydroxybutyrate): fabrication and properties. Journal of Polymer Research, 2023, 30, .	1.2	1

#	Article	IF	CITATIONS
466	Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-co-Glycolide)/Poly(Isosorbide Sebacate) Fibers. International Journal of Molecular Sciences, 2023, 24, 1190.	1.8	3
467	Propiolated Castor Oil: A Novel and Highly Versatile Bio-Based Platform for Extremely Fast, Catalyst-, and Solvent-Free Amino-yne Click Reactions. ACS Sustainable Chemistry and Engineering, 2023, 11, 831-841.	3.2	7
468	Citronella-based polyesters by organocatalyzed ring-opening polymerization and their recyclable crosslinked films. European Polymer Journal, 2023, 185, 111803.	2.6	1
469	Preparation of all biomass lignin-based thermoplastic elastomers by ARGET ATRP. Industrial Crops and Products, 2023, 193, 116236.	2.5	5
470	Biobased polymers from lignocellulosic sources. Green Chemistry Letters and Reviews, 2023, 16, .	2.1	3
471	Palladium-catalyzed synthesis of oil-based functionalized polyolefins. Polymer Chemistry, 2023, 14, 1103-1109.	1.9	7
472	Application of Vegetable Oil-Based Monomers in the Synthesis of Acrylic Latexes via Emulsion Polymerization. Coatings, 2023, 13, 262.	1.2	4
474	The greener side of polymers in the light of d-block metal complexes as precatalysts. Coordination Chemistry Reviews, 2023, 484, 215122.	9.5	3
475	Pultruded carbon fibre reinforced polymer strips produced with a novel bio-based thermoset polyester for structural strengthening. Composites Science and Technology, 2023, 234, 109936.	3.8	6
476	Fully Bioâ€based Poly(ketalâ€ester)s by Ringâ€opening Polymerization of a Bicylcic Lactone from Glycerol and Levulinic Acid. Chemistry - an Asian Journal, 2023, 18, .	1.7	1
477	Trends in Polyester Upcycling for Diversifying a Problematic Waste Stream. Macromolecules, 2023, 56, 1747-1758.	2.2	12
478	ReaxFF molecular dynamics simulation of the thermal decomposition reaction of bio-based polyester materials. Physical Chemistry Chemical Physics, 2023, 25, 9445-9453.	1.3	2
479	Eugenol-DOPO: A Bio-Based Phosphorous-Containing Monomer for Thiol-ene Photocurable Thermosets. Journal of Polymers and the Environment, 2023, 31, 3259-3271.	2.4	6
480	Kilogram-Scale Preparation of Poly(ethylene oxalate) toward Marine-Degradable Plastics. Macromolecules, 2023, 56, 3149-3159.	2.2	6
483	Enzyme-catalyzed synthesis of polyesters, polyamides, and poly(ester-co-amide)s: a promising approach toward a greener synthetic pathway. , 2023, , 21-71.		0
486	Coatings, adhesives, and sealants from polyester polyurethanes. , 2023, , 195-213.		1
487	Recent advances in radical polymerization of bio-based monomers in aqueous dispersed media. , 2023, 1, 788-813.		1
516	Bio-based hyperbranched epoxy resins: synthesis and recycling. Chemical Society Reviews, 0, , .	18.7	3

#	Article	IF	CITATIONS
530	Exploring the potential of Durian skin fibre based biocomposites as sustainable 3D printable filament. AIP Conference Proceedings, 2023, , .	0.3	0