<scp>ILâ€17A</scp> produced by both <i>γÎ′</i> T and <scp>RANTES</scp>â€mediated leukocyte infiltration

Journal of Pathology 235, 79-89

DOI: 10.1002/path.4430

Citation Report

#	Article	IF	CITATIONS
1	Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism. Kidney International, 2015, 88, 776-784.	2.6	84
2	CX3CL1–CX3CR1 Interaction Increases the Population of Ly6Câ^'CX3CR1hi Macrophages Contributing to Unilateral Ureteral Obstruction–Induced Fibrosis. Journal of Immunology, 2015, 195, 2797-2805.	0.4	59
3	Chop deficiency prevents UUO-induced renal fibrosis by attenuating fibrotic signals originated from Hmgb1/TLR4/NFIºB/IL-1β signaling. Cell Death and Disease, 2015, 6, e1847-e1847.	2.7	84
4	Immune Cells and Inflammation in Diabetic Nephropathy. Journal of Diabetes Research, 2016, 2016, 1-10.	1.0	79
5	Endoplasmic reticulum stress in bone marrow-derived cells prevents acute cardiac inflammation and injury in response to angiotensin II. Cell Death and Disease, 2016, 7, e2258-e2258.	2.7	12
6	Depletion of CD8+ T Cells Exacerbates CD4+ T Cell–Induced Monocyte-to-Fibroblast Transition in Renal Fibrosis. Journal of Immunology, 2016, 196, 1874-1881.	0.4	33
7	Role of chemokine RANTES in the regulation of perivascular inflammation, Tâ€eell accumulation, and vascular dysfunction in hypertension. FASEB Journal, 2016, 30, 1987-1999.	0.2	185
8	IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: compensatory role of natural killer cells in athymic rats. American Journal of Physiology - Renal Physiology, 2017, 312, F385-F397.	1.3	68
9	IL-36 Signaling Facilitates Activation of the NLRP3 Inflammasome and IL-23/IL-17 Axis in Renal Inflammation and Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 2022-2037.	3.0	121
10	Inhibition of T-cell activation by the CTLA4-Fc Abatacept is sufficient to ameliorate proteinuric kidney disease. American Journal of Physiology - Renal Physiology, 2017, 312, F748-F759.	1.3	22
11	CSN5 promotes renal cell carcinoma metastasis and EMT by inhibiting ZEB1 degradation. Biochemical and Biophysical Research Communications, 2017, 488, 101-108.	1.0	37
12	Depletion of circulating monocytes suppresses IL-17 and HMGB1 expression in mice with LPS-induced acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L231-L242.	1.3	43
13	\hat{l}^2 -Aminoisobutyric acid ameliorates the renal fibrosis in mouse obstructed kidneys via inhibition of renal fibroblast activation and fibrosis. Journal of Pharmacological Sciences, 2017, 133, 203-213.	1.1	29
14	T cells and autoimmune kidney disease. Nature Reviews Nephrology, 2017, 13, 329-343.	4.1	106
15	The role of interleukin-17A in the pathogenesis of kidney diseases. Pathology, 2017, 49, 247-258.	0.3	78
16	Immune system involvement in specific pain conditions. Molecular Pain, 2017, 13, 174480691772455.	1.0	94
17	Immunity and Fibrogenesis: The Role of Th $17/IL-17$ Axis in HBV and HCV-induced Chronic Hepatitis and Progression to Cirrhosis. Frontiers in Immunology, 2017, 8, 1195.	2.2	63
18	Age-related changes of CD4+ T cell migration and cytokine expression in germ-free and SPF mice periodontium. Archives of Oral Biology, 2018, 87, 72-78.	0.8	11

#	Article	IF	CITATIONS
19	Tissue-Resident Lymphocytes in the Kidney. Journal of the American Society of Nephrology: JASN, 2018, 29, 389-399.	3.0	69
20	Inflammation and fibrosis. Matrix Biology, 2018, 68-69, 106-121.	1.5	325
21	Role of interleukin 17 in TGF- \hat{l}^2 signaling-mediated renal interstitial fibrosis. Cytokine, 2018, 106 , 80 - 88 .	1.4	37
22	Complement C3 Produced by Macrophages Promotes Renal Fibrosis via IL-17A Secretion. Frontiers in Immunology, 2018, 9, 2385.	2.2	67
23	IL-17 Receptor Signaling Negatively Regulates the Development of Tubulointerstitial Fibrosis in the Kidney. Mediators of Inflammation, 2018, 2018, 1-14.	1.4	22
24	Imbalance between T helper 17 and regulatory T cell subsets plays a significant role in the pathogenesis of systemic sclerosis. Biomedicine and Pharmacotherapy, 2018, 108, 177-183.	2.5	39
25	Effector $\hat{l}^3\hat{l}'$ T cells in human renal fibrosis and chronic kidney disease. Nephrology Dialysis Transplantation, 2019, 34, 40-48.	0.4	22
26	Inflammatory Mediators and Renal Fibrosis. Advances in Experimental Medicine and Biology, 2019, 1165, 381-406.	0.8	75
27	Shared and distinct mechanisms of fibrosis. Nature Reviews Rheumatology, 2019, 15, 705-730.	3.5	331
28	Kidney injury in response to crystallization of calcium oxalate leads to rearrangement of the intrarenal T cell receptor delta immune repertoire. Journal of Translational Medicine, 2019, 17, 278.	1.8	9
29	Interleukin 17A Participates in Renal Inflammation Associated to Experimental and Human Hypertension. Frontiers in Pharmacology, 2019, 10, 1015.	1.6	36
30	Astaxanthin protects against renal fibrosis through inhibiting myofibroblast activation and promoting CD8+ T cell recruitment. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1360-1370.	1.1	20
31	MMPâ€9â€positive neutrophils are essential for establishing profibrotic microenvironment in the obstructed kidney of UUO mice. Acta Physiologica, 2019, 227, e13317.	1.8	34
32	Interleukin-17 pathways in systemic sclerosis-associated fibrosis. Rheumatology International, 2019, 39, 1135-1143.	1.5	31
33	T Cells in Autoimmune Diseases. , 2019, , 29-36.		0
34	Vasoactive intestinal peptide inhibits the activation of murine fibroblasts and expression of interleukin 17 receptor C. Cell Biology International, 2019, 43, 770-780.	1.4	6
35	Interleukin-17A blockade reduces albuminuria andÂkidney injury in an accelerated model of diabetic nephropathy. Kidney International, 2019, 95, 1418-1432.	2.6	78
36	FKN Facilitates HK-2 Cell EMT and Tubulointerstitial Lesions via the Wnt/ \hat{l}^2 -Catenin Pathway in a Murine Model of Lupus Nephritis. Frontiers in Immunology, 2019, 10, 784.	2.2	21

#	Article	IF	CITATIONS
37	Interleukin-17: Friend or foe in organ fibrosis. Cytokine, 2019, 120, 282-288.	1.4	39
38	Breaking down chronic inflammatory diseases: the role of biglycan in promoting a switch between inflammation and autophagy. FEBS Journal, 2019, 286, 2965-2979.	2.2	52
39	Neutralization of interleukin-17A alleviates burn-induced intestinal barrier disruption via reducing pro-inflammatory cytokines in a mouse model. Burns and Trauma, 2019, 7, 37.	2.3	19
40	Transcriptional modulation of the T helper 17/interleukin 17 axis ameliorates renal ischemia-reperfusion injury. Nephrology Dialysis Transplantation, 2019, 34, 1481-1498.	0.4	31
41	A complex auxiliary: IL-17/Th17 signaling during type 1 diabetes progression. Molecular Immunology, 2019, 105, 16-31.	1.0	14
42	Deficiency of CRTH2, a Prostaglandin D2 Receptor, Aggravates Bleomycin-induced Pulmonary Inflammation and Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 289-298.	1.4	15
43	Interleukin-17A induces renal fibrosis through the ERK and Smad signaling pathways. Biomedicine and Pharmacotherapy, 2020, 123, 109741.	2.5	25
44	Personal exposure to fine particulate matter and renal function in children: A panel study. Environmental Pollution, 2020, 266, 115129.	3.7	17
45	Tamibarotene inhibit the accumulation of fibrocyte and alleviate renal fibrosis by IL-17A. Renal Failure, 2020, 42, 1173-1183.	0.8	4
46	Interleukin-36 Cytokine/Receptor Signaling: A New Target for Tissue Fibrosis. International Journal of Molecular Sciences, 2020, 21, 6458.	1.8	16
47	TGF- \hat{l}^2 in renal fibrosis: triumphs and challenges. Future Medicinal Chemistry, 2020, 12, 853-866.	1.1	33
48	Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy. International Journal of Molecular Sciences, 2020, 21, 3798.	1.8	142
49	Loss of IL-27Rα Results in Enhanced Tubulointerstitial Fibrosis Associated with Elevated Th17 Responses. Journal of Immunology, 2020, 205, 377-386.	0.4	12
50	T Cells in Fibrosis and Fibrotic Diseases. Frontiers in Immunology, 2020, 11, 1142.	2.2	163
51	Targeting the progression of chronic kidney disease. Nature Reviews Nephrology, 2020, 16, 269-288.	4.1	428
52	Role of interleukin-23/interleukin-17 axis in T-cell-mediated actions in hypertension. Cardiovascular Research, 2021, 117, 1274-1283.	1.8	19
53	Twist1 in T Lymphocytes Augments Kidney Fibrosis after Ureteral Obstruction. Kidney360, 2021, 2, 784-794.	0.9	1
54	Mesenchymal Stem Cell Protects Injured Renal Tubular Epithelial Cells by Regulating mTOR-Mediated Th17/Treg Axis. Frontiers in Immunology, 2021, 12, 684197.	2.2	17

#	ARTICLE	IF	CITATIONS
55	Bioinformatics Analysis Reveals Crosstalk Among Platelets, Immune Cells, and the Glomerulus That May Play an Important Role in the Development of Diabetic Nephropathy. Frontiers in Medicine, 2021, 8, 657918.	1.2	6
56	The Mechanism of CD8+ T Cells for Reducing Myofibroblasts Accumulation during Renal Fibrosis. Biomolecules, 2021, 11, 990.	1.8	8
57	RORC gene polymorphism is associated with acute kidney injury following cardiac surgery. Acta Anaesthesiologica Scandinavica, 2021, 65, 1397-1403.	0.7	2
58	Unconventional T cells and kidney disease. Nature Reviews Nephrology, 2021, 17, 795-813.	4.1	24
59	MHC class II in renal tubules plays an essential role in renal fibrosis. Cellular and Molecular Immunology, 2021, 18, 2530-2540.	4.8	11
60	Lymphocytes: Versatile Participants in Acute Kidney Injury and Progression to Chronic Kidney Disease. Frontiers in Physiology, 2021, 12, 729084.	1.3	15
61	The Th17/IL-17 Axis and Kidney Diseases, With Focus on Lupus Nephritis. Frontiers in Medicine, 2021, 8, 654912.	1.2	30
62	T cells in kidney injury and regeneration. , 2022, , 69-91.		0
63	Role of placental inflammatory mediators and growth factors in patients with rheumatic diseases with a focus on systemic sclerosis. Rheumatology, 2021, 60, 3307-3316.	0.9	6
64	Deletion of deltaâ€like 1 homologue accelerates renal inflammation by modulating the Th17 immune response. FASEB Journal, 2021, 35, e21213.	0.2	5
65	CCL20 secreted from IgA1-stimulated human mesangial cells recruits inflammatory Th17 cells in IgA nephropathy. PLoS ONE, 2017, 12, e0178352.	1.1	20
66	Two identified subsets of CD8 T cells in obstructed kidneys play different roles in inflammation and fibrosis. Aging, 2020, 12, 17528-17540.	1.4	6
67	Neutrophil Gelatinase-Associated Lipocalin From Macrophages Plays a Critical Role in Renal Fibrosis Via the CCL5 (Chemokine Ligand 5)-Th2 Cells-IL4 (Interleukin 4) Pathway. Hypertension, 2022, 79, 352-364.	1.3	13
68	The role of anticomplement therapy in lupus nephritis. Translational Research, 2022, 245, 1-17.	2.2	2
69	The relationship between B-cell lymphoma 2, interleukin- $1\hat{l}^2$, interleukin-17, and interleukin-33 and the development of diabetic nephropathy. Molecular Biology Reports, 2022, 49, 3803-3809.	1.0	6
70	IL-17A in diabetic kidney disease: protection or damage. International Immunopharmacology, 2022, 108, 108707.	1.7	3
71	Skin $\hat{I}^3\hat{I}'$ T Cells and Their Function in Wound Healing. Frontiers in Immunology, 2022, 13, 875076.	2.2	20
78	A comprehensive network map of IL-17A signaling pathway. Journal of Cell Communication and Signaling, 2023, 17, 209-215.	1.8	10

#	Article	IF	CITATIONS
79	Inflammation in kidney repair: Mechanism and therapeutic potential., 2022, 237, 108240.		30
80	Mesenchymal stem cells in fibrotic diseasesâ€"the two sides of the same coin. Acta Pharmacologica Sinica, 2023, 44, 268-287.	2.8	19
81	Interleukin 17 and Its Involvement in Renal Cell Carcinoma. Journal of Clinical Medicine, 2022, 11, 4973.	1.0	3
82	Ubiquitin-like protein FAT10 promotes renal fibrosis by stabilizing USP7 to prolong CHK1-mediated G2/M arrest in renal tubular epithelial cells. Aging, 2022, 14, 7527-7546.	1.4	3
83	Molecular mechanisms of histone deacetylases and inhibitors in renal fibrosis progression. Frontiers in Molecular Biosciences, $0,9,.$	1.6	9
84	Ion channels as a therapeutic target for renal fibrosis. Frontiers in Physiology, 0, 13, .	1.3	6
86	RANTES Concentration at the Time of Surgery Is Associated With Postoperative Stiffness in Patients Undergoing ACL Reconstruction. American Journal of Sports Medicine, 2022, 50, 3838-3843.	1.9	1
87	T cells and their products in diabetic kidney disease. Frontiers in Immunology, 0, 14, .	2.2	5
88	Immune Response in COVID-19-associated Acute Kidney Injury and Maladaptive Kidney Repair., 2023, 10, .		0
89	Relaxin in fibrotic ligament diseases: Its regulatory role and mechanism. Frontiers in Cell and Developmental Biology, 0, 11 , .	1.8	1