An overview of nanoparticles commonly used in fluores

Chemical Society Reviews 44, 4743-4768 DOI: 10.1039/c4cs00392f

Citation Report

#	Article	IF	CITATIONS
2	Mannose-displaying fluorescent framboidal nanoparticles containing phenylboronic acid groups as a potential drug carrier for macrophage targeting. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1174-1181.	2.5	9
3	The modified upconversion nanomaterials (UCNMs) for multimodal imaging and therapies. Biomedical Spectroscopy and Imaging, 2015, 4, 391-412.	1.2	5
4	Selfâ€Assembly of Antimicrobial Peptides on Gold Nanodots: Against Multidrugâ€Resistant Bacteria and Woundâ€Healing Application. Advanced Functional Materials, 2015, 25, 7189-7199.	7.8	249
5	Multiple Temperature-Sensing Behavior of Green and Red Upconversion Emissions from Stark Sublevels of Er3+. Sensors, 2015, 15, 30981-30990.	2.1	51
6	Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Mikrochimica Acta, 2015, 182, 1567-1589.	2.5	96
7	Bioorthogonal fluorescent labels: a review on combined forces. Methods and Applications in Fluorescence, 2015, 3, 042001.	1.1	50
8	Study on the Intermixing of Core and Shell in NaEuF ₄ /NaGdF ₄ Core/Shell Nanocrystals. Chemistry of Materials, 2015, 27, 8375-8386.	3.2	41
9	Simultaneous fluoroimmunoassay of two tumor markers based on CdTe quantum dots and gold nanocluster coated-silica nanospheres as labels. RSC Advances, 2015, 5, 105992-105998.	1.7	11
10	Long-wavelength analyte-sensitive luminescent probes and optical (bio)sensors. Methods and Applications in Fluorescence, 2015, 3, 042005.	1.1	39
11	Polymeric multifunctional nanomaterials for theranostics. Journal of Materials Chemistry B, 2015, 3, 6856-6870.	2.9	140
12	One-pot synthesis of Au/Ag bimetallic nanoparticles to modulate the emission of CdSe/CdS quantum dots. RSC Advances, 2015, 5, 58163-58170.	1.7	7
13	Poly-(allylamine hydrochloride)-coated but not poly(acrylic acid)-coated upconversion nanoparticles induce autophagy and apoptosis in human blood cancer cells. Journal of Materials Chemistry B, 2015, 3, 5769-5776.	2.9	18
14	Quantum dots in nanomedicine: recent trends, advances and unresolved issues. Biochemical and Biophysical Research Communications, 2015, 468, 419-427.	1.0	87
15	Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale, 2015, 7, 11486-11508.	2.8	485
16	Heteroatom substituted and decorated graphene: preparation and applications. Physical Chemistry Chemical Physics, 2015, 17, 32077-32098.	1.3	64
17	Tailoring Cellular Uptake of Conjugated Polymer Nanoparticles Using Modular Amphiphilic Peptide Capping Ligands. Chemistry of Materials, 2015, 27, 6879-6889.	3.2	25
18	Analysing the effect of the crystal structure on upconversion luminescence in Yb ³⁺ ,Er ³⁺ -co-doped NaYF ₄ nanomaterials. Journal of Materials Chemistry C, 2015, 3, 11228-11238.	2.7	90
19	Tailoring Oxygen Sensitivity with Halide Substitution in Difluoroboron Dibenzoylmethane Polylactide Materials. ACS Applied Materials & Interfaces, 2015, 7, 23633-23643.	4.0	72

#	Article	IF	CITATIONS
20	Functionalized bismuth ferrite harmonic nanoparticles for cancer cells labeling and imaging. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	12
21	Oleyl-hyaluronan micelles loaded with upconverting nanoparticles for bio-imaging. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	4
22	Upconversion luminescent nanoparticles in physical sensing and in monitoring physical processes in biological samples. Methods and Applications in Fluorescence, 2015, 3, 042002.	1.1	24
23	Development of an Optical Nanosensor Incorporating a pH-Sensitive Quencher Dye for Potassium Imaging. Analytical Chemistry, 2015, 87, 10684-10687.	3.2	25
24	Efficient control of coulomb enhanced second harmonic generation from excitonic transitions in quantum dot ensembles. Physical Chemistry Chemical Physics, 2015, 17, 23938-23946.	1.3	26
25	One-step facile synthesis of fluorescent gold nanoclusters for rapid bio-imaging of cancer cells and small animals. RSC Advances, 2015, 5, 63821-63826.	1.7	29
26	Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chemical Reviews, 2015, 115, 10530-10574.	23.0	864
27	A Pd ₈ Tetrafacial Molecular Barrel as Carrier for Water Insoluble Fluorophore. Journal of the American Chemical Society, 2015, 137, 11916-11919.	6.6	140
28	Biopolymer-mediated Green Synthesis of Noble Metal Nanostructures. , 0, , .		4
29	The Large-Scale Synthesis of Vinyl-Functionalized Silicon Quantum Dot and Its Application in Miniemulsion Polymerization. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	6
30	Nanoscale "fluorescent stone― Luminescent Calcium Fluoride Nanoparticles as Theranostic Platforms. Theranostics, 2016, 6, 2380-2393.	4.6	41
31	Upconversion Nanoparticles for Bioimaging and Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2016, 4, 47.	2.0	76
32	Analysis of the Changes in Expression Levels of Sialic Acid on Influenza-Virus-Infected Cells Using Lectin-Tagged Polymeric Nanoparticles. Frontiers in Microbiology, 2016, 7, 1147.	1.5	5
33	Dye-Doped Fluorescent Silica Nanoparticles for Live Cell and In Vivo Bioimaging. Nanomaterials, 2016, 6, 81.	1.9	64
34	Self-Activated Fluorescent Hydroxyapatite Nanoparticles: A Promising Agent for Bioimaging and Biolabeling. ACS Biomaterials Science and Engineering, 2016, 2, 1257-1264.	2.6	72
35	Widefield imaging of upconverting nanoparticles on epifluorescence microscopes adapted for laser illumination with top-hat profile. Journal of Biomedical Optics, 2016, 21, 056007.	1.4	4
36	Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. Small, 2016, 12, 1968-1992.	5.2	487
37	Prolonged Dye Release from Mesoporous Silica-Based Imaging Probes Facilitates Long-Term Optical Tracking of Cell Populations In Vivo. Small, 2016, 12, 1578-1592.	5.2	26

#	Article	IF	CITATIONS
38	Supramolecular Polymeric Fluorescent Nanoparticles Based on Quadruple Hydrogen Bonds. Advanced Functional Materials, 2016, 26, 5483-5489.	7.8	105
39	Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. Advanced Materials, 2016, 28, 6052-6074.	11.1	335
40	Synthesis of Ultrathin MnS Shell on ZnS: Mn Nanorods by One‣tep Coating and Doping for MRI and Fluorescent Imaging. Advanced Optical Materials, 2016, 4, 1115-1123.	3.6	11
41	Achievement of linear response for competitive bioaffinity assays of ligands: criteria of optimized interaction systems. RSC Advances, 2016, 6, 110858-110865.	1.7	1
42	Super-resolution microscopy reveals a golden kiss of death to mitochondria. Cell Death Discovery, 2016, 2, 16038.	2.0	1
43	Multifunctional Polymeric Platform of Magnetic Ferrite Colloidal Superparticles for Luminescence, Imaging, and Hyperthermia Applications. ACS Applied Materials & Interfaces, 2016, 8, 35059-35070.	4.0	40
44	AlE-active conjugated polymer nanoparticles with red-emission for in vitro and in vivo imaging. RSC Advances, 2016, 6, 114580-114586.	1.7	12
46	Gadolinium chloride elicits apoptosis in human osteosarcoma U-2 OS cells through extrinsic signaling, intrinsic pathway and endoplasmic reticulum stress. Oncology Reports, 2016, 36, 3421-3426.	1.2	11
47	High-resolution fast ion microscopy of single whole biological cells. Applied Physics Reviews, 2016, 3, .	5.5	9
48	Highly stable and blue-emitting copper nanocluster dispersion prepared by magnetron sputtering over liquid polymer matrix. RSC Advances, 2016, 6, 105030-105034.	1.7	13
49	Multi-modal imaging of HeLa cells using a luminescent ZnS:Mn/NaGdF ₄ :Yb:Er nanocomposite with enhanced upconversion red emission. RSC Advances, 2016, 6, 33569-33579.	1.7	10
50	Nanoprobes for optical bioimaging. Optical Materials Express, 2016, 6, 1262.	1.6	13
51	Polymer-Based and pH-Sensitive Nanobiosensors for Imaging and Therapy of Acidic Pathological Areas. Pharmaceutical Research, 2016, 33, 2358-2372.	1.7	18
52	Non-coordinating anions assemble cyanine amphiphiles into ultra-small fluorescent nanoparticles. Chemical Communications, 2016, 52, 7962-7965.	2.2	14
53	Synthesis and characterization of metallo-supramolecular polymers. Chemical Society Reviews, 2016, 45, 5311-5357.	18.7	332
54	Inorganic nanoparticles for optical bioimaging. Advances in Optics and Photonics, 2016, 8, 1.	12.1	175
55	Biocompatible glutathione-capped gold nanoclusters for dual fluorescent sensing and imaging of copper(II) and temperature in human cells and bacterial cells. Mikrochimica Acta, 2016, 183, 2185-2195.	2.5	54
56	The Research and Applications of Quantum Dots as Nano-Carriers for Targeted Drug Delivery and Cancer Therapy. Nanoscale Research Letters, 2016, 11, 207.	3.1	134

#	Article	IF	CITATIONS
57	Study of a Strong Luminescent Core Shell Nanocomposite of Europium Complex Coated on Gold Nanoparticles: Synthesis and Properties. Journal of Electronic Materials, 2016, 45, 4400-4406.	1.0	5
58	Multifunctional Liposome Nanocarriers Combining Upconverting Nanoparticles and Anticancer Drugs. Journal of Physical Chemistry B, 2016, 120, 4992-5001.	1.2	58
59	Antibacterial, Antiviral, and Oxygen-Sensing Nanoparticles Prepared from Electrospun Materials. ACS Applied Materials & Interfaces, 2016, 8, 25127-25136.	4.0	39
60	A New Generation of Primary Luminescent Thermometers Based on Silicon Nanoparticles and Operating in Different Media. Particle and Particle Systems Characterization, 2016, 33, 740-748.	1.2	29
61	Lanthanide (Gd3+ and Yb3+) functionalized gold nanoparticles for inÂvivo imaging and therapy. Biomaterials, 2016, 108, 35-43.	5.7	67
62	Two-Photon Luminescent Bone Imaging Using Europium Nanoagents. CheM, 2016, 1, 438-455.	5.8	51
63	Glucose dithiocarbamate derivatives as capping ligands of water-soluble CdSeS/ZnS quantum dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 656-665.	2.3	5
64	Synthesis of a UCNPs@SiO ₂ @gadofullerene nanocomposite and its application in UCL/MR bimodal imaging. RSC Advances, 2016, 6, 98968-98974.	1.7	13
65	Sulforhodamine Nanothermometer for Multiparametric Fluorescence Lifetime Imaging Microscopy. Analytical Chemistry, 2016, 88, 10566-10572.	3.2	55
66	Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chemical Society Reviews, 2016, 45, 6597-6626.	18.7	1,483
67	5 Synergistic Effects in Organic-Coated Upconversion Nanoparticles. Nanomaterials and Their Applications, 2016, , 101-138.	0.0	5
68	Cytotoxicity and imaging studies of β-NaGdF ₄ :Yb ³⁺ Er ³⁺ @PEG-Mo nanorods. RSC Advances, 2016, 6, 95633-95643.	1.7	12
69	Overcoming Autofluorescence: Longâ€Lifetime Infrared Nanoparticles for Timeâ€Gated In Vivo Imaging. Advanced Materials, 2016, 28, 10188-10193.	11.1	108
70	Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. Journal of Materials Chemistry B, 2016, 4, 7204-7219.	2.9	396
71	Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5′-triphosphate with unmodified gold nanoparticles. Biosensors and Bioelectronics, 2016, 86, 978-984.	5.3	72
72	MnO ₂ -induced synthesis of fluorescent polydopamine nanoparticles for reduced glutathione sensing in human whole blood. Nanoscale, 2016, 8, 15604-15610.	2.8	87
73	Measuring Protein Binding to Individual Hydrogel Nanoparticles with Single-Nanoparticle Surface Plasmon Resonance Imaging Microscopy. Journal of Physical Chemistry C, 2016, 120, 16843-16849.	1.5	25
74	Intravital Correlative Microscopy: Imaging Life at the Nanoscale. Trends in Cell Biology, 2016, 26, 848-863.	3.6	86

#	Article	IF	CITATIONS
75	Magnetic nanomaterials and sensors for biological detection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2459-2473.	1.7	50
76	Synthesis of red fluorescent graphene quantum dot-europium complex composites as a viable bioimaging platform. Mikrochimica Acta, 2016, 183, 2605-2613.	2.5	21
77	Synthesis and chemosensory properties of two-arm truxene-functionalized conjugated polyfluorene containing terpyridine moiety. RSC Advances, 2016, 6, 87680-87689.	1.7	12
78	Development of stained polymeric nanocapsules loaded with model drugs: Use of a fluorescent poly(phenyleneethynylene). Colloids and Surfaces B: Biointerfaces, 2016, 147, 442-449.	2.5	8
79	Twoâ€Photon Excitation Temperature Nanosensors Based on a Conjugated Fluorescent Polymer Doped with a Europium Probe. Advanced Optical Materials, 2016, 4, 1854-1859.	3.6	33
80	Celluloseâ€Based Solid Fluorescent Materials. Advanced Optical Materials, 2016, 4, 2044-2050.	3.6	81
81	Metal-based quantum dots: synthesis, surface modification, transport and fate in aquatic environments and toxicity to microorganisms. RSC Advances, 2016, 6, 78595-78610.	1.7	101
82	Proteinâ€Sized Bright Fluorogenic Nanoparticles Based on Crossâ€Linked Calixarene Micelles with Cyanine Corona. Angewandte Chemie, 2016, 128, 16116-16120.	1.6	12
83	Proteinâ€Sized Bright Fluorogenic Nanoparticles Based on Crossâ€Linked Calixarene Micelles with Cyanine Corona. Angewandte Chemie - International Edition, 2016, 55, 15884-15888.	7.2	45
84	A water-soluble and biocompatible polymeric nanolabel based on naphthalimide grafted poly(acrylic) Tj ETQq1 Biointerfaces, 2016, 148, 293-298.	1 0.784314 2.5	rgBT /Overlo 11
84 85			0
	Biointerfaces, 2016, 148, 293-298. Cellulosic micelles as nanocapsules of liposoluble CdSe/ZnS quantum dots for bioimaging. Journal of	2.5	11
85	Biointerfaces, 2016, 148, 293-298. Cellulosic micelles as nanocapsules of liposoluble CdSe/ZnS quantum dots for bioimaging. Journal of Materials Chemistry B, 2016, 4, 6454-6461. Targeted Stealth Polymer Capsules Encapsulating Ln ³⁺ -Doped LaVO ₄	2.5 2.9	28
85 86	 Biointerfaces, 2016, 148, 293-298. Cellulosic micelles as nanocapsules of liposoluble CdSe/ZnS quantum dots for bioimaging. Journal of Materials Chemistry B, 2016, 4, 6454-6461. Targeted Stealth Polymer Capsules Encapsulating Ln³⁺-Doped LaVO₄ Nanoparticles for Bioimaging Applications. ACS Biomaterials Science and Engineering, 2016, 2, 1330-1340. Acidophilic S-doped carbon quantum dots derived from cellulose fibers and their fluorescence sensing performance for metal ions in an extremely strong acid environment. Journal of Materials 	2.5 2.9 2.6	11 28 26
85 86 87	 Biointerfaces, 2016, 148, 293-298. Cellulosic micelles as nanocapsules of liposoluble CdSe/ZnS quantum dots for bioimaging. Journal of Materials Chemistry B, 2016, 4, 6454-6461. Targeted Stealth Polymer Capsules Encapsulating Ln³⁺-Doped LaVO₄ Nanoparticles for Bioimaging Applications. ACS Biomaterials Science and Engineering, 2016, 2, 1330-1340. Acidophilic S-doped carbon quantum dots derived from cellulose fibers and their fluorescence sensing performance for metal ions in an extremely strong acid environment. Journal of Materials Chemistry A, 2016, 4, 12841-12849. Autofluorescent gelatin nanoparticles as imaging probes to monitor matrix metalloproteinase 	2.5 2.9 2.6 5.2	11 28 26 138
85 86 87 88	 Biointerfaces, 2016, 148, 293-298. Cellulosic micelles as nanocapsules of liposoluble CdSe/ZnS quantum dots for bioimaging. Journal of Materials Chemistry B, 2016, 4, 6454-6461. Targeted Stealth Polymer Capsules Encapsulating Ln³⁺-Doped LaVO₄ Nanoparticles for Bioimaging Applications. ACS Biomaterials Science and Engineering, 2016, 2, 1330-1340. Acidophilic S-doped carbon quantum dots derived from cellulose fibers and their fluorescence sensing performance for metal ions in an extremely strong acid environment. Journal of Materials Chemistry A, 2016, 4, 12841-12849. Autofluorescent gelatin nanoparticles as imaging probes to monitor matrix metalloproteinase metabolism of cancer cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 2854-2860. A Versatile and Clearable Nanocarbon Theranostic Based on Carbon Dots and Gadolinium 	2.5 2.9 2.6 5.2 2.1	11 28 26 138 25
85 86 87 88 88	 Biointerfaces, 2016, 148, 293-298. Cellulosic micelles as nanocapsules of liposoluble CdSe/ZnS quantum dots for bioimaging. Journal of Materials Chemistry B, 2016, 4, 6454-6461. Targeted Stealth Polymer Capsules Encapsulating Ln³⁺-Doped LaVO₄ Nanoparticles for Bioimaging Applications. ACS Biomaterials Science and Engineering, 2016, 2, 1330-1340. Acidophilic S-doped carbon quantum dots derived from cellulose fibers and their fluorescence sensing performance for metal ions in an extremely strong acid environment. Journal of Materials Chemistry A, 2016, 4, 12841-12849. Autofluorescent gelatin nanoparticles as imaging probes to monitor matrix metalloproteinase metabolism of cancer cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 2854-2860. A Versatile and Clearable Nanocarbon Theranostic Based on Carbon Dots and Gadolinium Metallofullerene Nanocrystals. Advanced Healthcare Materials, 2016, 5, 2283-2294. 	2.5 2.9 2.6 5.2 2.1 3.9	11 28 26 138 25 26

#	Article	IF	CITATIONS
93	Fluorescein-labeled fluoroapatite nanocrystals codoped with Yb(III) and Ho(III) for trimodal (downconversion, upconversion and magnetic resonance) imaging of cancer cells. Mikrochimica Acta, 2016, 183, 3209-3219.	2.5	10
94	PEGylated silica-enzyme nanoconjugates: a new frontier in large scale separation of α-amylase. Scientific Reports, 2016, 5, 18221.	1.6	16
95	Dye-doped silica nanoparticle probes for fluorescence lifetime imaging of reductive environments in living cells. RSC Advances, 2016, 6, 104164-104172.	1.7	12
96	Green synthesis of Ag nanoparticles in large quantity by cryomilling. RSC Advances, 2016, 6, 111380-111388.	1.7	40
97	Intraperitoneal Administration of Biointerfaceâ€Camouflaged Upconversion Nanoparticles for Contrast Enhanced Imaging of Pancreatic Cancer. Advanced Functional Materials, 2016, 26, 8631-8642.	7.8	23
98	Hydrophobic Carbon Nanodots with Rapid Cell Penetrability and Tunable Photoluminescence Behavior for in Vitro and in Vivo Imaging. Langmuir, 2016, 32, 12221-12229.	1.6	45
99	Plasmonic Nanoprobes for Stimulated Emission Depletion Nanoscopy. ACS Nano, 2016, 10, 10454-10461.	7.3	29
100	Influence of complexing ion on the fluorescence sensitization efficiency for oxazine dyes in nanoparticles of Sc, Eu, Sm, and Lu diketonates. Optics and Spectroscopy (English Translation of) Tj ETQq1 1 0	.784314 rg	BT2Overlock
101	Template synthesis, structure, optical and catalytic properties derived from novel cadmium tungstates. Polyhedron, 2016, 113, 102-108.	1.0	9
102	Visible-light excitable highly luminescent molecular plastic materials derived from Eu3+-biphenyl based β-diketonate ternary complex and poly(methylmethacrylate). Journal of Photochemistry and Photobiology A: Chemistry, 2016, 328, 171-181.	2.0	21
103	Droplet Enhanced Fluorescence for Ultrasensitive Detection Using Inkjet. Analytical Chemistry, 2016, 88, 6135-6139.	3.2	13
104	Expansion of bioorthogonal chemistries towards site-specific polymer–protein conjugation. Polymer Chemistry, 2016, 7, 4584-4598.	1.9	19
105	Förster resonance energy transfer properties of a new type of near-infrared excitation PDT photosensitizer: CuInS ₂ /ZnS quantum dots-5-aminolevulinic acid conjugates. RSC Advances, 2016, 6, 55568-55576.	1.7	17
106	Construction of fluorescent polymeric nano-thermometers for intracellular temperature imaging: A review. Biosensors and Bioelectronics, 2016, 85, 403-413.	5.3	71
107	Photoactivation of Luminescent Centers in Single SiO2 Nanoparticles. Nano Letters, 2016, 16, 4312-4316.	4.5	29
108	Photoactivation of Diiodido–Pt(IV) Complexes Coupled to Upconverting Nanoparticles. Molecular Pharmaceutics, 2016, 13, 2346-2362.	2.3	29
109	Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances and future perspectives. Nano Today, 2016, 11, 309-329.	6.2	211
110	A Pd/silica composite with highly uniform Pd nanoparticles on silica lamella via layered silicate. Chemical Physics Letters, 2016, 658, 88-91.	1.2	6

#	Article	IF	CITATIONS
111	One-step green synthetic approach for the preparation of multicolor emitting copper nanoclusters and their applications in chemical species sensing and bioimaging. Biosensors and Bioelectronics, 2016, 80, 243-248.	5.3	101
112	Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horizons, 2016, 1, 168-184.	4.1	527
113	In-situ hydrothermal synthesis of molecularly imprinted polymers coated carbon dots for fluorescent detection of bisphenol A. Sensors and Actuators B: Chemical, 2016, 228, 302-307.	4.0	120
114	Characterization of multifunctional β-NaEuF ₄ /NaGdF ₄ core–shell nanoparticles with narrow size distribution. Nanoscale, 2016, 8, 2832-2843.	2.8	12
115	Highly selective luminescent nanostructures for mitochondrial imaging and targeting. Nanoscale, 2016, 8, 3350-3361.	2.8	38
116	Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors. Carbon, 2016, 100, 386-394.	5.4	76
117	Recognition of MCF-7 human breast carcinoma cells using silica-encapsulated fluorescent nanoparticles modified with aminophenylboronic acid. Mikrochimica Acta, 2016, 183, 1115-1122.	2.5	10
118	One-pot synthesis of a photostable green fluorescent probe for biological imaging. Journal of Materials Science, 2016, 51, 2972-2979.	1.7	9
119	A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Mikrochimica Acta, 2016, 183, 519-542.	2.5	510
120	Nanosensors for neurotransmitters. Analytical and Bioanalytical Chemistry, 2016, 408, 2727-2741.	1.9	45
121	Reducing background noise in near-infrared medical imaging: Routes to activated fluorescing. , 2016, , .		0
122	Enhanced sensing ability of fluorescent chemosensors with triphenylamine-functionalized conjugated polyfluorene. Sensors and Actuators B: Chemical, 2016, 231, 399-411.	4.0	11
123	Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(II). Mikrochimica Acta, 2016, 183, 1611-1618.	2.5	82
124	Multicolor nanoprobes based on silica-coated gadolinium oxide nanoparticles with highly reduced toxicity. RSC Advances, 2016, 6, 19758-19762.	1.7	26
125	Fluorescence optical imaging in anticancer drug delivery. Journal of Controlled Release, 2016, 226, 168-181.	4.8	107
126	Size Optimization of Iron Oxide@Noble Metal Core–Shell Nanohybrids for Photothermal Applications. Journal of Physical Chemistry C, 2016, 120, 5630-5639.	1.5	24
127	A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Advances, 2016, 6, 21624-21661.	1.7	127
128	Ion-Selective Optical Nanosensors Based on Solvatochromic Dyes of Different Lipophilicity: From Bulk Partitioning to Interfacial Accumulation. ACS Sensors, 2016, 1, 516-520.	4.0	46

#	Article	IF	CITATIONS
129	Solvatofluorochromic, non-centrosymmetric π-expanded diketopyrrolopyrrole. Organic and Biomolecular Chemistry, 2016, 14, 2025-2033.	1.5	12
130	Intrinsic fluorescence of selenium nanoparticles for cellular imaging applications. Nanoscale, 2016, 8, 3376-3385.	2.8	39
131	Microwave-assisted synthesis of N,P-doped carbon dots for fluorescent cell imaging. Mikrochimica Acta, 2016, 183, 821-826.	2.5	97
132	Fluorescent Block Copolymer Micelles That Can Self-Report on Their Assembly and Small Molecule Encapsulation. Macromolecules, 2016, 49, 653-662.	2.2	35
133	X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators. Inorganic Chemistry, 2016, 55, 803-809.	1.9	105
134	Highly Sensitive Laser Scanning of Photon-Upconverting Nanoparticles on a Macroscopic Scale. Analytical Chemistry, 2016, 88, 1835-1841.	3.2	35
135	Cadmium sulfide quantum dots modified with the human transferrin protein siderophiline for targeted imaging of breast cancer cells. Mikrochimica Acta, 2016, 183, 67-71.	2.5	22
136	SERS-fluorescence dual mode nanotags for cervical cancer detection using aptamers conjugated to gold-silver nanorods. Mikrochimica Acta, 2016, 183, 249-256.	2.5	51
137	Fluorescence research in Ukraine. Methods and Applications in Fluorescence, 2017, 5, 010201.	1.1	0
138	Hydrophobicity determines the fate of self-assembled fluorescent nanoparticles in cells. Chemical Communications, 2017, 53, 1626-1629.	2.2	7
139	High-energy milled, Eu3+-doped fresnoite glass-ceramic powders: Structural characterization and luminescent properties. Journal of Non-Crystalline Solids, 2017, 460, 81-89.	1.5	10
140	Fluorescent Lead(IV) Sulfide Nanoparticles Synthesized by Idiomarina sp. Strain PR58-8 for Bioimaging Applications. Applied and Environmental Microbiology, 2017, 83, .	1.4	33
141	Nitrogen-doped carbon quantum dot/graphene hybrid nanocomposite as an efficient catalyst support for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 2931-2942.	3.8	47
142	Luminescent Difluoroboron β-Diketonate PLA–PEG Nanoparticle. Biomacromolecules, 2017, 18, 551-561.	2.6	30
143	Fluorescent RAFT polymers bearing a nitrilotriacetic acid (NTA) ligand at the α-chain-end for the site-specific labeling of histidine-tagged proteins. Polymer Chemistry, 2017, 8, 1611-1615.	1.9	16
144	Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale, 2017, 9, 2718-2722.	2.8	74
145	Fluorescent Gold Clusters as Logic Gates for the Detection of Different Metal Ions. Journal of the Chinese Chemical Society, 2017, 64, 133-137.	0.8	4
146	Carbon Dot Nanothermometry: Intracellular Photoluminescence Lifetime Thermal Sensing. ACS Nano, 2017, 11, 1432-1442.	7.3	243

#	Article	IF	CITATIONS
147	Environmentally friendly and facile synthesis of Rh nanoparticles at room temperature by alkaline ethanol solution and their application for ethanol electrooxidation. RSC Advances, 2017, 7, 3161-3169.	1.7	11
148	Building block magneto-luminescent nanomaterials of iron-oxide/ZnS@LaF ₃ :Ce ³⁺ ,Gd ³⁺ ,Tb ³⁺ with green emission. Journal of Materials Chemistry C, 2017, 5, 2282-2290.	2.7	25
149	Dendrimers for fluorescenceâ€based bioimaging. Journal of Chemical Technology and Biotechnology, 2017, 92, 1157-1166.	1.6	13
150	Microwave-assisted synthesis of fluorescent carbon quantum dots from an A ₂ /B ₃ monomer set. RSC Advances, 2017, 7, 12663-12669.	1.7	60
151	Submicron sized fluorescent silica particles characterization. Nuclear Instruments & Methods in Physics Research B, 2017, 411, 78-84.	0.6	5
152	Supramolecular fluorescent nanoparticles functionalized with controllable physical properties and temperature-responsive release behavior. Polymer Chemistry, 2017, 8, 2292-2298.	1.9	21
153	In vitro cytotoxicity study of dual drug loaded chitosan/palladium nanocomposite towards HT-29 cancer cells. Materials Science and Engineering C, 2017, 75, 1399-1410.	3.8	49
154	Peptide-directed synthesis of fluorescent gold nanoparticles for mitochondria-targeted confocal imaging of temperature. Mikrochimica Acta, 2017, 184, 1215-1221.	2.5	10
155	Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes. Analytical Biochemistry, 2017, 523, 32-38.	1.1	58
156	New advances on the marrying of UCNPs and photothermal agents for imaging-guided diagnosis and the therapy of tumors. Journal of Materials Chemistry B, 2017, 5, 2209-2230.	2.9	82
157	Nanomaterial-based electrochemical sensors and optical probes for detection and imaging of peroxynitrite: a review. Mikrochimica Acta, 2017, 184, 649-675.	2.5	21
158	Dually emissive P,N-co-doped carbon dots for fluorescent and photoacoustic tissue imaging in living mice. Mikrochimica Acta, 2017, 184, 1117-1125.	2.5	83
159	Poly(vinyl alcohol) as a water protecting agent for silver nanoparticles: the role of polymer size and structure. Physical Chemistry Chemical Physics, 2017, 19, 8742-8756.	1.3	97
160	Self-assemble nanoparticles based on polypeptides containing C-terminal luminescent Pt-cysteine complex. Scientific Reports, 2017, 7, 41991.	1.6	13
161	In Vivo Biosensing: Progress and Perspectives. ACS Sensors, 2017, 2, 327-338.	4.0	149
162	A fluorescent dithiadiazolyl radical: structure and optical properties of phenanthrenyl dithiadiazolyl in solution and polymer composites. Journal of Materials Chemistry C, 2017, 5, 2794-2799.	2.7	23
163	Highly luminescent, heteroatom-doped carbon quantum dots for ultrasensitive sensing of glucosamine and targeted imaging of liver cancer cells. Journal of Materials Chemistry B, 2017, 5, 2190-2197.	2.9	77
164	How gold nanoparticles can be used to probe the structural changes of a pH-responsive hydrogel. Physical Chemistry Chemical Physics, 2017, 19, 5102-5112.	1.3	4

	Сітатіо	on Report	
#	Article	IF	CITATIONS
165	Multifunctional Magnetic Nanostructures: Exchange Bias Model and Applications. , 2017, , 225-280.		3
166	Kinetic Requirements for Spatiotemporal Chemical Imaging with Fluorescent Nanosensors. ACS Nano, 2017, 11, 4017-4027.	7.3	31
167	The interaction of fluorescent nanodiamond probes with cellular media. Mikrochimica Acta, 2017, 184, 1001-1009.	2.5	69
168	pH-Triggered Disaggregation-Induced Emission (DIE) probe for sensoring minor-pH changes in near infrared fluorescence region. Talanta, 2017, 170, 185-192.	2.9	12
169	Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. Mikrochimica Acta, 2017, 184, 2429-2438.	2.5	67
170	One-pot synthesis of silver nanoparticles using folic acid as a reagent for colorimetric and fluorimetric detections of 6-mercaptopurine at nanomolar concentration. Sensors and Actuators B: Chemical, 2017, 249, 30-38.	4.0	41
171	Surfactant-Free Aqueous Synthesis of Novel Ba ₂ GdF ₇ :Yb ³⁺ , Er ³⁺ @PEG Upconversion Nanoparticles for in Vivo Trimodality Imaging. ACS Applied Materials & Interfaces, 2017, 9, 15096-15102.	4.0	32
172	Plasmonic enhancement ofÂthe upconversion luminescence inÂa Yb3+ and Ho3+ co-doped gold-ZnO nanocomposite for use in multimodal imaging. Mikrochimica Acta, 2017, 184, 2255-2264.	2.5	13
173	Effects of poly(propylene carbonate) additive prepared from carbon dioxide on the tensile properties of polypropylene. Journal of Applied Polymer Science, 2017, 134, 45266.	1.3	2
174	Novel agents for sperm purification, sorting, and imaging. Molecular Reproduction and Development, 2017, 84, 832-841.	1.0	34
175	Uptake of fluorescent iron oxide nanoparticles in C6 glioma cells. Biomedical Physics and Engineering Express, 2017, 3, 035007.	0.6	5
176	Nanoparticle–Protein Interactions: Therapeutic Approaches and Supramolecular Chemistry. Accounts of Chemical Research, 2017, 50, 1383-1390.	7.6	131
177	Silica passivated conjugated polymer nanoparticles for biological imaging applications. Proceedings of SPIE, 2017, , .	0.8	1
178	Optically Switchable Luminescent Hydrogel by Synergistically Intercalating Photochromic Molecular Rotor into Inorganic Clay. Advanced Optical Materials, 2017, 5, 1700149.	3.6	33
179	Tannic Acid Stabilised Copper Nanocluster Developed Through Microwave Mediated Synthesis as a Fluorescent Probe for the Turn on Detection of Dopamine. Journal of Cluster Science, 2017, 28, 2223-2238.	1.7	22
180	Stimulated Raman scattering of polymer nanoparticles for multiplexed live-cell imaging. Chemical Communications, 2017, 53, 6187-6190.	2.2	40
181	NIR upconversion fluorescence glucose sensing and glucose-responsive insulin release of carbon dot-immobilized hybrid microgels at physiological pH. Nanoscale, 2017, 9, 509-516.	2.8	42
182	Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnology Advances, 2017, 35, 105-134.	6.0	361

#	Article	IF	CITATIONS
183	Size dependent studies of metal nanoparticles with bio-fluorophores. , 2017, , .		0
184	Development and validation of an HPLC-fluorescence method for the quantification of IR780-oleyl dye in lipid nanoparticles. International Journal of Pharmaceutics, 2017, 532, 779-789.	2.6	10
185	Polymeric nanocarriers for cancer theranostics. Polymers for Advanced Technologies, 2017, 28, 1572-1582.	1.6	14
186	Sub–100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA. Science Advances, 2017, 3, e1602128.	4.7	58
187	Preparation of CdTe nanocrystals doped fluorescent silica spheres by sol-gel method and their surface modification via thiol-ene chemistry. Chemical Research in Chinese Universities, 2017, 33, 327-332.	1.3	1
188	A new AIE multi-block polyurethane copolymer material for subcellular microfilament imaging in living cells. Chemical Communications, 2017, 53, 7541-7544.	2.2	38
189	A co-precipitation strategy for making a ratiometric pH nanosensor for intracellular imaging. Sensors and Actuators B: Chemical, 2017, 250, 484-490.	4.0	10
190	Perspectives on dendritic architectures and their biological applications: From core to cell. Journal of Photochemistry and Photobiology B: Biology, 2017, 173, 61-83.	1.7	13
191	Fluorescent Nanoparticles with Tissue-Dependent Affinity for Live Zebrafish Imaging. ACS Applied Materials & Interfaces, 2017, 9, 18557-18565.	4.0	39
192	Ratiometric Fluorescent Probes for the Detection of Reactive Oxygen Species. Chemistry - A European Journal, 2017, 23, 13549-13573.	1.7	104
193	Amineâ€Functionalized Silica Nanoparticles Incorporating Covalently Linked Visibleâ€Lightâ€Excitable Eu ³⁺ Complexes: Synthesis, Characterization, and Cellâ€Uptake Studies. European Journal of Inorganic Chemistry, 2017, 2017, 3205-3213.	1.0	11
194	Fabrication of Polymeric Micelles with Aggregation-Induced Emission and Forster Resonance Energy Transfer for Anticancer Drug Delivery. Bioconjugate Chemistry, 2017, 28, 1944-1954.	1.8	36
195	Onion derived carbon nanodots for live cell imaging and accelerated skin wound healing. Journal of Materials Chemistry B, 2017, 5, 6579-6592.	2.9	98
196	Sensors and bioassays powered by upconverting materials. Advances in Colloid and Interface Science, 2017, 249, 66-87.	7.0	29
197	Cellular imaging by green luminescence of Tb(III)-doped aminomodified silica nanoparticles. Materials Science and Engineering C, 2017, 76, 551-558.	3.8	32
198	Complex Magnetic Nanostructures. , 2017, , .		6
199	Laser-induced fabrication of gold nanoparticles on shellac-driven peptide nanostructures. Materials Research Express, 2017, 4, 035036.	0.8	10
200	Estimation of microscope drift using fluorescent nanodiamonds as fiducial markers. Journal of Microscopy, 2017, 266, 298-306.	0.8	26

#	Article	IF	CITATIONS
201	Versatile Polymer Nanoparticles as Twoâ€Photonâ€Triggered Photosensitizers for Simultaneous Cellular, Deepâ€Tissue Imaging, and Photodynamic Therapy. Advanced Healthcare Materials, 2017, 6, 1601431.	3.9	35
202	Particle-Size-Dependent Förster Resonance Energy Transfer from Upconversion Nanoparticles to Organic Dyes. Analytical Chemistry, 2017, 89, 4868-4874.	3.2	161
203	Aggregation induced emission enhancement (AIEE) characteristics of quinoline based compound — A versatile fluorescent probe for pH, Fe(III) ion, BSA binding and optical cell imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 182, 58-66.	2.0	17
204	Encapsulation of TOPO stabilized NaYF4:Er3+,Yb3+ nanoparticles in biocompatible nanocarriers: Synthesis, optical properties and colloidal stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 556-563.	2.3	12
205	Multicolor bioimaging with biosynthetic zinc nanoparticles and their application in tumor detection. Scientific Reports, 2017, 7, 45313.	1.6	12
206	Cucurbit[6]uril-based polymer nanocapsules as a non-covalent and modular bioimaging platform for multimodal in vivo imaging. Materials Horizons, 2017, 4, 450-455.	6.4	38
207	Efficient extraction and separation of palladium (Pd) and ruthenium (Ru) from simulated HLLW by photoreduction. Separation and Purification Technology, 2017, 182, 9-18.	3.9	29
208	Photoconversionâ€Tunable Fluorophore Vesicles for Wavelengthâ€Dependent Photoinduced Cancer Therapy. Advanced Materials, 2017, 29, 1606690.	11.1	180
209	Carbon dots codoped with nitrogen and sulfur are viable fluorescent probes for chromium(VI). Mikrochimica Acta, 2017, 184, 1547-1553.	2.5	60
210	Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Materials Chemistry Frontiers, 2017, 1, 807-822.	3.2	118
211	Structure and Optical Properties of Carbon Nanoparticles Generated by Laser Treatment of Graphite in Liquids. ChemPhysChem, 2017, 18, 1074-1083.	1.0	38
212	Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Mikrochimica Acta, 2017, 184, 343-368.	2.5	264
213	TEMPO-oxidized bacterial cellulose nanofibers-supported gold nanoparticles with superior catalytic properties. Carbohydrate Polymers, 2017, 160, 34-42.	5.1	65
214	Recent Advances in Inorganic Nanoparticle-Based NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles. Bioconjugate Chemistry, 2017, 28, 115-123.	1.8	69
215	Nanomaterials for In Vivo Imaging. Chemical Reviews, 2017, 117, 901-986.	23.0	879
216	Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Advances, 2017, 7, 5251-5261.	1.7	115
217	Degradable fluorescent single-chain nanoparticles based on metathesis polymers. Chemical Communications, 2017, 53, 775-778.	2.2	49
218	Cyanine5-doped silica nanoparticles as ultra-bright immunospecific labels for model circulating tumour cells in flow cytometry and microscopy. Biosensors and Bioelectronics, 2017, 91, 190-198.	5.3	22

#	Article	IF	CITATIONS
219	Polyacrylamide Nanoparticles with Visible and Near-Infrared Autofluorescence. Particle and Particle Systems Characterization, 2017, 34, 1700222.	1.2	6
220	Facile Synthesis of Sulfobetaine-Stabilized Cu ₂ 0 Nanoparticles and Their Biomedical Potential. ACS Biomaterials Science and Engineering, 2017, 3, 3183-3194.	2.6	19
221	Bioconjugated fluorescent organic nanoparticles targeting EGFR-overexpressing cancer cells. Nanoscale, 2017, 9, 18094-18106.	2.8	14
222	Valenceâ€Engineering of Quantum Dots Using Programmable DNA Scaffolds. Angewandte Chemie, 2017, 129, 16293-16297.	1.6	6
223	MoS ₂ -Based multipurpose theranostic nanoplatform: realizing dual-imaging-guided combination phototherapy to eliminate solid tumor <i>via</i> a liquefaction necrosis process. Journal of Materials Chemistry B, 2017, 5, 9015-9024.	2.9	54
224	Multi-Parametric Live Cell Microscopy of 3D Tissue Models. Advances in Experimental Medicine and Biology, 2017, , .	0.8	12
225	Three-Dimensional Tissue Models and Available Probes for Multi-Parametric Live Cell Microscopy: A Brief Overview. Advances in Experimental Medicine and Biology, 2017, 1035, 49-67.	0.8	10
226	Luminescent Carrageenan Hydrogels Containing Lanthanopolyoxometalates. European Journal of Inorganic Chemistry, 2017, 2017, 4976-4981.	1.0	5
227	Synthesis, characterization, photophysical properties of new fluorescent boron Schiff bases (BOSCHIBAs) and their application as cytoplasm staining dyes inÂvitro. Journal of Organometallic Chemistry, 2017, 852, 64-73.	0.8	19
228	Simple and Green Synthesis of Boron-, Sulfur-, and Nitrogen-Co-Doped Carbon Dots as Fluorescent Probe for Selective and Sensitive Detection of Sunset Yellow. Nano, 2017, 12, 1750123.	0.5	17
229	Nanoprobe Synthesized by Magnetotactic Bacteria, Detecting Fluorescence Variations under Dissociation of Rhodamine B from Magnetosomes following Temperature, pH Changes, or the Application of Radiation. ACS Applied Materials & Interfaces, 2017, 9, 36561-36572.	4.0	15
230	Valenceâ€Engineering of Quantum Dots Using Programmable DNA Scaffolds. Angewandte Chemie - International Edition, 2017, 56, 16077-16081.	7.2	56
231	Temperature Dependent Synthesis of Tryptophan-Functionalized Gold Nanoparticles and Their Application in Imaging Human Neuronal Cells. ACS Sustainable Chemistry and Engineering, 2017, 5, 7678-7689.	3.2	32
232	Nanomaterials in Cancer Theranostics. Nanomedicine and Nanotoxicology, 2017, , 173-206.	0.1	0
233	Triple-BODIPY organic nanoparticles with particular fluorescence emission. Dyes and Pigments, 2017, 147, 241-245.	2.0	10
234	Multifunctional Yolk–Shell Nanostructure as a Superquencher for Fluorescent Analysis of Potassium Ion Using Guanine-Rich Oligonucleotides. ACS Applied Materials & Interfaces, 2017, 9, 30406-30413.	4.0	16
235	An aluminium-based fluorinated counterion for enhanced encapsulation and emission of dyes in biodegradable polymer nanoparticles. Materials Chemistry Frontiers, 2017, 1, 2309-2316.	3.2	19
236	Delayed Fluorescence of Dyes Sensitized by Eu3+ Chelate Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 19958-19965.	1.5	5

#	Article	IF	CITATIONS
237	Microwave-assisted Synthesis of Fluorescent Polymer Dots from Hyperbranched Polyethylenimine and Glycerol. Chemistry Letters, 2017, 46, 1463-1465.	0.7	2
238	Flavonol based surface modification of doped chalcogenide nanoflakes as an ultrasensitive fluorescence probe for Al 3+ ion. Analytica Chimica Acta, 2017, 992, 94-104.	2.6	16
239	In vivo multimodal tumor imaging and photodynamic therapy with novel theranostic agents based on the porphyrazine framework-chelated gadolinium (III) cation. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3120-3130.	1.1	29
240	Fluorescent nanobiosensors for the targeted detection of foodborne bacteria. TrAC - Trends in Analytical Chemistry, 2017, 97, 120-135.	5.8	86
241	Luminescent CdSe@ZnS nanocrystals embedded in liposomes: a cytotoxicity study in HeLa cells. Toxicology Research, 2017, 6, 947-957.	0.9	9
242	Designed Microdevices for In Vitro Diagnostics. Small Methods, 2017, 1, 1700196.	4.6	43
243	Enhanced cell uptake of fluorescent drug-loaded nanoparticles via an implantable photothermal fibrous patch for more effective cancer cell killing. Journal of Materials Chemistry B, 2017, 5, 7504-7511.	2.9	18
244	A method for estimating intracellular ion concentration using optical nanosensors and ratiometric imaging. Scientific Reports, 2017, 7, 10819.	1.6	28
245	Organometallic phosphors as building blocks in sol–gel chemistry: luminescent organometallo-silica materials. Journal of Materials Chemistry C, 2017, 5, 9721-9732.	2.7	17
246	Cancer-targeted Nucleic Acid Delivery and Quantum Dot Imaging Using EGF Receptor Aptamer-conjugated Lipid Nanoparticles. Scientific Reports, 2017, 7, 9474.	1.6	54
247	Meta-Alkoxy-Substituted Difluoroboron Dibenzoylmethane Complexes as Environment-Sensitive Materials. ACS Applied Materials & Interfaces, 2017, 9, 32008-32017.	4.0	45
248	Mitochondrial impairment and oxidative stress mediated apoptosis induced by α-Fe2O3nanoparticles in Saccharomyces cerevisiae. Toxicology Research, 2017, 6, 719-728.	0.9	14
249	[4]Helicene–Squalene Fluorescent Nanoassemblies for Specific Targeting of Mitochondria in Live ell Imaging. Advanced Functional Materials, 2017, 27, 1701839.	7.8	32
250	Developmental toxicity of Fe 3 O 4 nanoparticles on cysts and three larval stages of Artemia salina. Environmental Pollution, 2017, 230, 683-691.	3.7	40
251	Spectroscopic Investigation and Theoretical Modeling of Benzothiadiazole-Based Charge-Transfer Chromophores: From Solution to Nanoaggregates. Journal of Physical Chemistry C, 2017, 121, 17466-17478.	1.5	26
252	PEGylation controls attachment and engulfment of monodisperse magnetic poly(2-hydroxyethyl) Tj ETQq1	1 0.784314 rgB	T /Overlock
253	Nitrogen-doped carbon quantum dots as fluorescent probe for "off-on―detection of mercury ions, l-cysteine and iodide ions. Journal of Colloid and Interface Science, 2017, 506, 373-378.	5.0	118
254	Simple Microwave-Assisted Synthesis of Amphiphilic Carbon Quantum Dots from A ₃ /B ₂ Polyamidation Monomer Set. ACS Applied Materials & Interfaces, 2017, 9, 27883-27893.	4.0	50

#	Article	IF	CITATIONS
255	Femtogram Level Sensitivity achieved by Surface Engineered Silica Nanoparticles in the Early Detection of HIV Infection. Scientific Reports, 2017, 7, 7149.	1.6	28
256	Core@shell Fe ₃ O ₄ @Mn ²⁺ -doped NaYF ₄ :Yb/Tm nanoparticles for triple-modality T ₁ /T ₂ -weighted MRI and NIR-to-NIR upconversion luminescence imaging agents. RSC Advances, 2017, 7, 37929-37937.	1.7	21
258	Combining Cytotoxicity Assessment and Xenopus laevis Phenotypic Abnormality Assay as a Predictor of Nanomaterial Safety. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2017, 73, 20.13.1-20.13.33.	1.1	3
259	6â€Mercaptopurineâ€Induced Fluorescence Quenching of Monolayer MoS ₂ Nanodots: Applications to Glutathione Sensing, Cellular Imaging, and Glutathione‣timulated Drug Delivery. Advanced Functional Materials, 2017, 27, 1702452.	7.8	69
260	Boronic acid functionalized nitrogen doped carbon dots for fluorescent turn-on detection of dopamine. Mikrochimica Acta, 2017, 184, 4081-4090.	2.5	54
261	Fluorescent Polymer Nanoparticles for Cell Barcoding In Vitro and In Vivo. Small, 2017, 13, 1701582.	5.2	95
262	Ratiometric fluorescent detection of acidic pH in lysosome with carbon nanodots. Chinese Chemical Letters, 2017, 28, 1969-1974.	4.8	37
263	Facile Designing of a Colorimetric Plasmonic Gold Nanosensor for Selective Detection of Cysteine over Other Biothiols. ChemistrySelect, 2017, 2, 11200-11205.	0.7	6
264	Cu(II)-Doped Polydopamine-Coated Gold Nanorods for Tumor Theranostics. ACS Applied Materials & Interfaces, 2017, 9, 44293-44306.	4.0	45
265	Luminescent gold nanocluster-based sensing platform for accurate H2S detection in vitro and in vivo with improved anti-interference. Light: Science and Applications, 2017, 6, e17107-e17107.	7.7	85
267	Hybridizing Carbon Nitride Colloids with a Shell of Water-Soluble Conjugated Polymers for Tunable Full-Color Emission and Synergistic Cell Imaging. ACS Applied Materials & Interfaces, 2017, 9, 43966-43974.	4.0	26
268	AlE-active florescent polymers: The design, synthesis and the cell imaging application. Polymer, 2017, 133, 151-159.	1.8	12
269	Nanoparticles and Their Applications. Springer Handbooks, 2017, , 335-361.	0.3	14
270	Perspectives and challenges of photon-upconversion nanoparticles - Part II: bioanalytical applications. Analytical and Bioanalytical Chemistry, 2017, 409, 5875-5890.	1.9	68
271	Characterizing Single Polymeric and Protein Nanoparticles with Surface Plasmon Resonance Imaging Measurements. ACS Nano, 2017, 11, 7447-7456.	7.3	46
272	Nanomedicine and epigenome. Possible health risks. Food and Chemical Toxicology, 2017, 109, 780-796.	1.8	54
273	Optically Activated Delayed Fluorescence. Journal of Physical Chemistry Letters, 2017, 8, 3536-3543.	2.1	36
274	Ï€-Conjugated Chromophore Incorporated Polystyrene Nanobeads as Single Optical Agent for Three-Channel Fluorescent Probe in Bioimaging Application. ACS Biomaterials Science and Engineering, 2017, 3, 1788-1798	2.6	10

#	Article	IF	CITATIONS
275	Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies. Analytical and Bioanalytical Chemistry, 2017, 409, 5855-5874.	1.9	73
276	NIR Ratiometric Luminescence Detection of pH Fluctuation in Living Cells with Hemicyanine Derivative-Assembled Upconversion Nanophosphors. Analytical Chemistry, 2017, 89, 8863-8869.	3.2	65
277	Surface Engineered Ho3+ Incorporated Fluorescent Dye-Doped Bifunctional Silica Nanoparticles for Receptor Targeted Fluorescence Imaging and Potential Magnetic Resonance Imaging. Journal of Fluorescence, 2017, 27, 1897-1908.	1.3	6
278	An ultrasensitive bioluminogenic probe of $\hat{1}^3$ -Glutamyltranspeptidase in vivo and in human serum for tumor diagnosis. Biosensors and Bioelectronics, 2017, 98, 325-329.	5.3	26
279	Nanocrystallization: A Unique Approach to Yield Bright Organic Nanocrystals for Biological Applications. Advanced Materials, 2017, 29, 1604100.	11.1	126
280	Nearâ€Infrared Fluorescent Nanomaterials for Bioimaging and Sensing. Advanced Optical Materials, 2017, 5, 1600446.	3.6	128
281	Multifunctional Mesoporous Carbon Capsules and their Robust Coatings for Encapsulation of Actives: Antimicrobial and Anti-bioadhesion Functions. ACS Applied Materials & Interfaces, 2017, 9, 19371-19379.	4.0	20
282	Real-time naked-eye multiplex detection of toxins and bacteria using AlEgens with the assistance of graphene oxide. Faraday Discussions, 2017, 196, 363-375.	1.6	11
283	Positron emission tomography and nanotechnology: A dynamic duo for cancer theranostics. Advanced Drug Delivery Reviews, 2017, 113, 157-176.	6.6	153
284	Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Analytical Chemistry, 2017, 89, 42-56.	3.2	230
285	Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine, 2017, 12, 73-87.	1.7	213
286	Size controlled synthesis of silver sulfide nanostructures by multi-solvent thermal decomposition method. Journal of Crystal Growth, 2017, 468, 119-124.	0.7	9
287	Agents for fluorescence-guided glioma surgery: a systematic review of preclinical and clinical results. Acta Neurochirurgica, 2017, 159, 151-167.	0.9	119
288	Activatable fluorescence: From small molecule to nanoparticle. Advanced Drug Delivery Reviews, 2017, 113, 97-121.	6.6	75
289	The Suzuki modification of functional polydimethylsiloxanes. Mendeleev Communications, 2017, 27, 570-571.	0.6	8
292	Synthesis of Nanoparticles by Laser Ablation: A Review. KONA Powder and Particle Journal, 2017, 34, 80-90.	0.9	226
293	Understanding the physico-chemical properties of thermally aged natural ester oil adopting fluorescent technique. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 3460-3470.	1.8	13
295	Future trends and emerging issues for nanodelivery systems in oral and oropharyngeal cancer. International Journal of Nanomedicine, 2017, Volume 12, 4593-4606.	3.3	36

#	Article	IF	Citations
296	Haemocompatibility of Modified Nanodiamonds. Materials, 2017, 10, 352.	1.3	30
297	Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine. Molecules, 2017, 22, 17.	1.7	34
298	Nanosystems for Diagnostic Imaging, Biodetectors, and Biosensors. , 2017, , 217-248.		5
299	Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy. Beilstein Journal of Nanotechnology, 2017, 8, 1283-1296.	1.5	24
300	Rare Earthâ€Đoped Anatase TiO2 Nanoparticles. , 0, , .		7
301	Bio-Synthesized Silver Nanoparticles Using Different Plant Extracts as Anti-Cancer Agent. Journal of Nanomedicine & Biotherapeutic Discovery, 2017, 07, .	0.6	6
302	Synthesis of pH stable, blue light-emitting diode-excited, fluorescent silica nanoparticles and effects on cell behavior. International Journal of Nanomedicine, 2017, Volume 12, 8699-8710.	3.3	3
303	Fluorescence Sensing With Functional Nucleic Acids. , 2017, , 227-236.		0
304	Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano, 2018, 12, 2106-2121.	7.3	117
305	Current progress in the controlled synthesis and biomedical applications of ultrasmall (<10 nm) NaREF ₄ nanoparticles. Dalton Transactions, 2018, 47, 8538-8556.	1.6	20
306	Ultrafine Highly Magnetic Fluorescent γ-Fe ₂ O ₃ /NCD Nanocomposites for Neuronal Manipulations. ACS Omega, 2018, 3, 1897-1903.	1.6	22
307	Microwave-assisted solid-phase synthesis of highly fluorescent carbon nanoparticles and its application in intracellular pH sensing. Talanta, 2018, 186, 80-87.	2.9	7
308	Luminescence of Eu ³⁺ ions in hybrid polymerâ€inorganic composites based on poly(methyl) Tj ETQ	q0_0_0 rgB 1.5	T /Overlock 1 14
309	Molecular Cancer Imaging in the Second Nearâ€Infrared Window Using a Renalâ€Excreted NIRâ€I Fluorophoreâ€Peptide Probe. Advanced Materials, 2018, 30, e1800106.	11.1	115
310	Luminescent mesoporous silica nanoparticles for biomedical applications: Synthesis and characterization. Journal of Luminescence, 2018, 200, 200-205.	1.5	7
311	Probing Interaction Distance of Surface Quenchers in Lanthanide-Doped Upconversion Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 10278-10283.	1.5	14
312	Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chemical Society Reviews, 2018, 47, 4198-4232.	18.7	201
313	Organic Dye Based Nanoparticles for Cancer Phototheranostics. Small, 2018, 14, e1704247.	5.2	226

# 314	ARTICLE Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Materials Science and Engineering C, 2018, 89, 429-443.	IF 3.8	Citations 279
316	Laser synthesis of colloidal Si@Au and Si@Ag nanoparticles in water via plasma-assisted reduction. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 360, 125-131.	2.0	24
317	Multimodal Cleavable Reporters versus Conventional Labels for Optical Quantification of Accessible Amino and Carboxy Groups on Nano- and Microparticles. Analytical Chemistry, 2018, 90, 5887-5895.	3.2	23
318	Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice. Nanoscale, 2018, 10, 9880-9891.	2.8	68
319	Nearâ€UV activated, photostable nanophosphors for in vitro dosimetry and dynamic bioimaging. AICHE Journal, 2018, 64, 2947-2957.	1.8	12
320	Color-tunable AIE-active conjugated polymer nanoparticles as drug carriers for self-indicating cancer therapy <i>via</i> intramolecular FRET mechanism. Polymer Chemistry, 2018, 9, 3205-3214.	1.9	43
321	Tuning bandgap and surface wettability of NiFe2O4 driven by phase transition. Scientific Reports, 2018, 8, 1338.	1.6	27
322	Near infrared-emitting persistent luminescent nanoparticles for Hepatocellular Carcinoma imaging and luminescence-guided surgery. Biomaterials, 2018, 167, 216-225.	5.7	63
323	Quantification of Au Nanoparticle Biouptake and Distribution to Freshwater Algae Using Single Cell – ICP-MS. Environmental Science & Technology, 2018, 52, 2271-2277.	4.6	80
324	Fluorescent hybrid materials: A versatile platform for gas sensing, pH sensing, and cell imaging. Reactive and Functional Polymers, 2018, 125, 84-92.	2.0	3
325	Recent Advances in Graphene Quantum Dots as Bioimaging Probes. Journal of Analysis and Testing, 2018, 2, 45-60.	2.5	24
326	Photoluminescent two-dimensional SiC quantum dots for cellular imaging and transport. Nano Research, 2018, 11, 4074-4081.	5.8	38
327	Highâ€Resolution Labelâ€Free Detection of Biocompatible Polymeric Nanoparticles in Cells. Particle and Particle Systems Characterization, 2018, 35, 1700457.	1.2	27
328	Fabrication of mesoporous La ₃ Ga ₅ GeO ₁₄ :Cr ³⁺ ,Zn ²⁺ persistent luminescence nanocarriers with super-long afterglow for bioimaging-guided <i>in vivo</i> drug delivery to the gut. Journal of Materials Chemistry B, 2018, 6, 1479-1488.	2.9	17
329	A study of the diffusion dynamics and concentration distribution of gold nanospheres (GNSs) without fluorescent labeling inside live cells using fluorescence single particle spectroscopy. Nanoscale, 2018, 10, 5309-5317.	2.8	4
330	Gold nanoclusters as a quenchable fluorescent probe for sensing oxygen at high temperatures. Mikrochimica Acta, 2018, 185, 171.	2.5	12
331	Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect. Nanotechnology, 2018, 29, 125604.	1.3	40
332	Intrinsic optical sectioning with upconverting nanoparticles. Chemical Communications, 2018, 54, 1861-1864.	2.2	4

#	Article	IF	CITATIONS
333	High-efficiency X-ray luminescence in Eu ³⁺ -activated tungstate nanoprobes for optical imaging through energy transfer sensitization. Nanoscale, 2018, 10, 1607-1612.	2.8	48
334	Aptamer-Decorated Self-Assembled Aggregation-Induced Emission Organic Dots for Cancer Cell Targeting and Imaging. Analytical Chemistry, 2018, 90, 1063-1067.	3.2	70
335	White-Light-Emitting Carbon Nano-Onions: A Tunable Multichannel Fluorescent Nanoprobe for Glutathione-Responsive Bioimaging. ACS Applied Nano Materials, 2018, 1, 662-674.	2.4	28
336	Disintegrable NIR Light Triggered Gold Nanorods Supported Liposomal Nanohybrids for Cancer Theranostics. Bioconjugate Chemistry, 2018, 29, 1510-1518.	1.8	40
337	Intense blue upconversion emission and intrinsic optical bistability in Tm ³⁺ /Yb ³⁺ /Zn ²⁺ tridoped YVO ₄ phosphors. Methods and Applications in Fluorescence, 2018, 6, 025001.	1.1	14
338	On the Sizeâ€Determining Role of the Comonomer in the Nucleation and Growth of Cationic Polystyrene Latex via Emulsion Polymerization. Macromolecular Chemistry and Physics, 2018, 219, 1700457.	1.1	9
339	Enhanced Fluorescence Properties of Stilbeneâ€Containing Alternating Copolymers. Macromolecular Rapid Communications, 2018, 39, 1700530.	2.0	19
340	Photochromism into nanosystems: towards lighting up the future nanoworld. Chemical Society Reviews, 2018, 47, 1044-1097.	18.7	549
341	Nanoparticle Probes for Superâ€Resolution Fluorescence Microscopy. ChemNanoMat, 2018, 4, 253-264.	1.5	19
342	Highly Crystalline Multicolor Carbon Nanodots for Dual-Modal Imaging-Guided Photothermal Therapy of Glioma. ACS Applied Materials & Interfaces, 2018, 10, 4031-4040.	4.0	63
345	Fabrication of microstructured binary polymer brush "corrals―with integral pH sensing for studies of proton transport in model membrane systems. Chemical Science, 2018, 9, 2238-2251.	3.7	26
346	Fabrication of Conjugated Amphiphilic Triblock Copolymer for Drug Delivery and Fluorescence Cell Imaging. ACS Biomaterials Science and Engineering, 2018, 4, 566-575.	2.6	29
347	Nanoparticleâ€Based Fluoroionophore for Analysis of Potassium Ion Dynamics in 3D Tissue Models and In Vivo. Advanced Functional Materials, 2018, 28, 1704598.	7.8	33
348	Hyperbranched poly(ether amine) nanomicelles as nanoreactors for the unexpected ultrafast photolysis of fluorescein dyes. Polymer Chemistry, 2018, 9, 2727-2732.	1.9	4
349	Colloidal Nanobioconjugate with Complementary Surface Chemistry for Cellular and Subcellular Targeting. Langmuir, 2018, 34, 13461-13471.	1.6	28
350	Biocompatible properties of nano-drug carriers using TiO2-Au embedded on multiwall carbon nanotubes for targeted drug delivery. Materials Science and Engineering C, 2018, 90, 589-601.	3.8	62
351	Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 2018, 3, 7.	7.1	1,386
352	Labeling of native proteins with fluorescent RAFT polymer probes: application to the detection of a cell surface protein using flow cytometry. Polymer Chemistry, 2018, 9, 1857-1868.	1.9	15

#	Article	IF	CITATIONS
353	Calixarene-based micelles. , 2018, , 89-143.		5
354	Rapid "turn-on―detection of atrazine using highly luminescent N-doped carbon quantum dot. Sensors and Actuators B: Chemical, 2018, 263, 459-468.	4.0	82
355	Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chemical Society Reviews, 2018, 47, 2873-2920.	18.7	579
356	Fluorescent carbon and graphene oxide nanoparticles synthesized by the laser ablation in liquid. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	31
357	Synthesis, quantitative structure–property relationship study of novel fluorescence active 2-pyrazolines and application. Royal Society Open Science, 2018, 5, 171964.	1.1	19
358	One-pot single step to label microtubule with MPA-capped CdTe quantum dots. Micron, 2018, 108, 19-23.	1.1	3
359	Presence and Formation Mechanism of Foodborne Carbonaceous Nanostructures from Roasted Pike Eel (<i>Muraenesox cinereus</i>). Journal of Agricultural and Food Chemistry, 2018, 66, 2862-2869.	2.4	48
360	The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in Caenorhabditis elegans. Nano Research, 2018, 11, 2336-2346.	5.8	33
361	Methodologies and approaches for the analysis of cell–nanoparticle interactions. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1486.	3.3	36
362	Investigation on the pHâ€independent photoluminescence emission from carbon dots impregnated on polymer matrix. Luminescence, 2018, 33, 22-28.	1.5	16
363	Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 2018, 26, 64-70.	1.2	853
364	Development of colloidally stable carbazole-based fluorescent nanoaggregates. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 352, 55-64.	2.0	5
365	NIR-fluorescent dye doped silica nanoparticles for <i>in vivo</i> imaging, sensing and theranostic. Methods and Applications in Fluorescence, 2018, 6, 022002.	1.1	36
366	Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion. Nano Research, 2018, 11, 1369-1378.	5.8	40
367	Engineering carbon quantum dots for photomediated theranostics. Nano Research, 2018, 11, 1-41.	5.8	216
368	Solid state effective luminescent probe based on CdSe@CdS/amphiphilic co-polyarylene ether nitrile core-shell superparticles for Ag+ detection and optical strain sensing. Sensors and Actuators B: Chemical, 2018, 257, 442-450.	4.0	43
369	Tunable Emission from Fluorescent Organic Nanoparticles in Water: Insight into the Nature of Selfâ€Assembly and Photoswitching. Chemistry - A European Journal, 2018, 24, 2643-2652.	1.7	31
370	Mitochondrial dynamics tracking with iridium(III) complexes. Current Opinion in Chemical Biology, 2018, 43, 51-57.	2.8	47

#	Article	IF	CITATIONS
371	Subnanometer structure and function from ion beams through complex fluidics to fluorescent particles. Lab on A Chip, 2018, 18, 139-152.	3.1	13
372	N-Doped Graphene Quantum Dots-Decorated V ₂ O ₅ Nanosheet for Fluorescence Turn Off–On Detection of Cysteine. ACS Applied Materials & Interfaces, 2018, 10, 614-624.	4.0	117
373	Determination of trace uric acid in serum using porous graphitic carbon nitride (g-C3N4) as a fluorescent probe. Mikrochimica Acta, 2018, 185, 39.	2.5	26
374	<i>S</i> -Nitrosothiols (SNO) as light-responsive molecular activators for post-synthesis fluorescence augmentation in fluorophore-loaded nanospheres. Journal of Materials Chemistry B, 2018, 6, 153-164.	2.9	7
375	Single-Step LRET Aptasensor for Rapid Mycotoxin Detection. Analytical Chemistry, 2018, 90, 716-722.	3.2	49
376	Benzimidazole as a structural unit in fluorescent chemical sensors: the hidden properties of a multifunctional heterocyclic scaffold. Supramolecular Chemistry, 2018, 30, 838-857.	1.5	43
377	Paper-based fluorogenic devices for in vitro diagnostics. Biosensors and Bioelectronics, 2018, 102, 256-266.	5.3	50
378	Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Advanced Drug Delivery Reviews, 2018, 136-137, 73-81.	6.6	47
379	Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Analytical Chemistry, 2018, 90, 589-614.	3.2	85
380	Dualâ€Fluorescent Nanoscale Coordination Polymers via a Mixedâ€Ligand Synthetic Strategy and Their Use for Multichannel Imaging. ChemNanoMat, 2018, 4, 183-193.	1.5	14
381	A localized surface plasmon resonance enhanced dye-based biosensor for formaldehyde detection. Sensors and Actuators B: Chemical, 2018, 257, 1128-1133.	4.0	13
382	Passivity Breakdown: Development and Application of Local Chemical and Electrochemical Probe Methods. , 2018, , 401-413.		0
383	Phosphorescent iridium-containing nanomicelles: synthesis, characterization and preliminary applications in nanomedical imaging. RSC Advances, 2018, 8, 34162-34167.	1.7	2
384	Enhanced distance-dependent fluorescence quenching using size tuneable core shell silica nanoparticles. RSC Advances, 2018, 8, 35840-35848.	1.7	13
385	Visible transparent white light emitting ink from a Ce ³⁺ sensitized monodispersed Tb,Sm co-doped LaF ₃ @C-dot nanocomposite. Chemical Communications, 2018, 54, 14124-14127.	2.2	6
386	Multistage delivery of CDs-DOX/ICG-loaded liposome for highly penetration and effective chemo-photothermal combination therapy. Drug Delivery, 2018, 25, 1826-1839.	2.5	43
387	Organic–Inorganic FAPbBr ₃ Perovskite Quantum Dots as a Quantum Light Source: Single-Photon Emission and Blinking Behaviors. ACS Photonics, 2018, 5, 4937-4943.	3.2	34
388	Highly Photostable and Fluorescent Microporous Solids Prepared via Solid-State Entrapment of Boron Dipyrromethene Dyes in a Nascent Metal–Organic Framework. Journal of the American Chemical Society, 2018, 140, 16882-16887.	6.6	56

	Сітатіо	n Report	
#	ARTICLE	IF	CITATIONS
389	Molecular imaging of telomerase and the enzyme activity-triggered drug release by using a conformation-switchable nanoprobe in cancerous cells. Scientific Reports, 2018, 8, 16341.	1.6	15
390	Nanoporous Glass Surface for Backscattered Waveguide Fluorescence Application. ACS Applied Nano Materials, 2018, 1, 7052-7059.	2.4	0
391	Ab Initio Prediction of Fluorescence Lifetimes Involving Solvent Environments by Means of COSMO and Vibrational Broadening. Journal of Physical Chemistry A, 2018, 122, 9813-9820.	1.1	10
392	Degradable Carbon Dots from Cigarette Smoking with Broad-Spectrum Antimicrobial Activities against Drug-Resistant Bacteria. ACS Applied Bio Materials, 2018, 1, 1871-1879.	2.3	49
393	Molecular imaging with nanoparticles: the dwarf actors revisited 10Âyears later. Histochemistry and Cell Biology, 2018, 150, 733-794.	0.8	13
394	Biodegradable Anisotropic Microparticles for Stepwise Cell Adhesion and Preparation of Janus Cell Microparticles. ACS Applied Materials & Interfaces, 2018, 10, 36776-36785.	4.0	16
395	Functionalized Gold Nanoparticles as Biosensors for Monitoring Cellular Uptake and Localization in Normal and Tumor Prostatic Cells. Biosensors, 2018, 8, 87.	2.3	18
396	Functionalized Bioink with Optical Sensor Nanoparticles for O ₂ Imaging in 3Dâ€Bioprinted Constructs. Advanced Functional Materials, 2018, 28, 1804411.	7.8	63
397	Endotracheal Aerosolization Device for Laboratory Investigation of Pulmonary Delivery of Nanoparticle Suspensions: In Vitro and in Vivo Validation. Molecular Pharmaceutics, 2018, 15, 5521-5533.	2.3	8
398	Developing Hollow-Channel Gold Nanoflowers as Trimodal Intracellular Nanoprobes. International Journal of Molecular Sciences, 2018, 19, 2327.	1.8	8
399	Improving the Photostability of Semiconducting Polymer Dots Using Buffers. Analytical Chemistry, 2018, 90, 11785-11790.	3.2	9
400	DNA Nanostructure-Programmed Like-Charge Attraction at the Cell-Membrane Interface. ACS Central Science, 2018, 4, 1344-1351.	5.3	163
401	Protein‣ized Dye‣oaded Polymer Nanoparticles for Free Particle Diffusion in Cytosol. Advanced Functional Materials, 2018, 28, 1805157.	7.8	44
402	Modification of Cellulose. Polymers and Polymeric Composites, 2018, , 1-54.	0.6	0
403	Optimization of Red Luminescent Intensity in Eu ³⁺ -Doped Lanthanide Phosphors Using Genetic Algorithm. ACS Biomaterials Science and Engineering, 2018, 4, 4378-4384.	2.6	13
404	Probing Functionalized Nanoparticles in Biological Media. , 2018, , 795-802.		0
405	Highly Biocompatible, Fluorescence, and Zwitterionic Carbon Dots as a Novel Approach for Bioimaging Applications in Cancerous Cells. ACS Applied Materials & Interfaces, 2018, 10, 37835-37845.	4.0	58
406	Metal nanoparticleâ€hydrogel nanocomposites for biomedical applications – An atmospheric pressure plasma synthesis approach. Plasma Processes and Polymers, 2018, 15, 1800112.	1.6	34

#	Article	IF	CITATIONS
407	"Probe, Sample, and Instrument (PSI)― The Hat-Trick for Fluorescence Live Cell Imaging. Chemosensors, 2018, 6, 40.	1.8	21
408	Multilevel Nanoarchitecture Exhibiting Biosensing for Cancer Diagnostics by Dual-Modal Switching of Optical and Magnetic Resonance Signals. ACS Applied Bio Materials, 2018, 1, 1505-1511.	2.3	13
409	Paper-Based Analytical Methods for Smartphone Sensing with Functional Nanoparticles: Bridges from Smart Surfaces to Global Health. Analytical Chemistry, 2018, 90, 12325-12333.	3.2	60
410	Photoluminescence Enhancement of Carbon Dots by Surfactants at Room Temperature. Chemistry - A European Journal, 2018, 24, 15806-15811.	1.7	19
411	Photothermally Active Upconversion Core–Shell NaGdF ₄ :Yb:Tm@Cu Nanostructures: Synthesis and Theranostic Properties. Particle and Particle Systems Characterization, 2018, 35, 1800227.	1.2	3
412	Surface Association of Ubiquitin with CdTe and InP/ZnS Quantum Dots in Aqueous Buffer. Journal of Physical Chemistry C, 2018, 122, 22512-22518.	1.5	3
413	Superâ€Resolution Tracking of Mitochondrial Dynamics with An Iridium(III) Luminophore. Small, 2018, 14, e1802166.	5.2	89
414	Multiband light emission and nanoscale chemical analyses of carbonized fumed silica. Journal of Applied Physics, 2018, 124, .	1.1	6
415	Synthesis and Characterization of a Novel Green Cationic Polyfluorene and Its Potential Use as a Fluorescent Membrane Probe. Polymers, 2018, 10, 938.	2.0	11
416	Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chemical Reviews, 2018, 118, 10294-10348.	23.0	136
417	Gold nanocluster fluorescence as an indicator for optical enzymatic nanobiosensors: choline and acetylcholine determination. Sensors and Actuators B: Chemical, 2018, 277, 261-270.	4.0	23
418	A ternary doped single matrix material with dual functions of bone repair and multimodal tracking for applications in orthopedics and dentistry. Journal of Materials Chemistry B, 2018, 6, 6047-6056.	2.9	10
419	ExTzBox: A Glowing Cyclophane for Live-Cell Imaging. Journal of the American Chemical Society, 2018, 140, 7206-7212.	6.6	84
420	The role of l-cysteine and introduced surface defects in reactive oxygen species generation by ZnO nanoparticles. Dalton Transactions, 2018, 47, 8320-8329.	1.6	6
421	Emerging applications of nanoparticles: Biomedical and environmental. AIP Conference Proceedings, 2018, , .	0.3	2
422	Supraparticles: Functionality from Uniform Structural Motifs. ACS Nano, 2018, 12, 5093-5120.	7.3	169
423	Copolymer based multifunctional conducting polymer film for fluorescence sensing of glucose. Methods and Applications in Fluorescence, 2018, 6, 035012.	1,1	22
424	Quick Microwave Assisted Synthesis and In Vitro Imaging Application of Oxygen Doped Fluorescent Carbon Dots. Journal of Fluorescence, 2018, 28, 959-966.	1.3	20

#	Article	IF	CITATIONS
425	Specific Imaging of Tyrosinase in Vivo with 3-Hydroxybenzyl Caged <scp>D</scp> -Luciferins. Analytical Chemistry, 2018, 90, 9296-9300.	3.2	29
426	Nanotechnology in Bioengineering. , 2018, , 211-229.		3
427	Color-Tunable Upconversion Luminescence and Multiple Temperature Sensing and Optical Heating Properties of Ba ₃ Y ₄ O ₉ :Er ³⁺ /Yb ³⁺ Phosphors. Journal of Physical Chemistry C, 2018, 122, 16289-16303.	1.5	158
428	Terbium complexes encapsulated in hierarchically organized hybrid MOF particles toward stable luminescence in aqueous media. CrystEngComm, 2018, 20, 4225-4229.	1.3	1
429	Mammalian Cell-Based Assays for Studying Bio-Nano Interactions. , 2018, , 129-166.		1
430	Particle-loaded gels. , 2018, , 143-178.		0
431	Bright-blue-emission nitrogen and phosphorus-doped carbon quantum dots as a promising nanoprobe for detection of Cr(<scp>vi</scp>) and ascorbic acid in pure aqueous solution and in living cells. New Journal of Chemistry, 2018, 42, 12990-12997.	1.4	59
432	Thermochemiluminescent semiconducting polymer dots as sensitive nanoprobes for reagentless immunoassay. Nanoscale, 2018, 10, 14012-14021.	2.8	13
433	Fluorescent nanodiamonds: past, present, and future. Nanophotonics, 2018, 7, 1423-1453.	2.9	124
434	DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids. Journal of the American Chemical Society, 2018, 140, 10856-10865.	6.6	119
435	Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents. Biomedical Optics Express, 2018, 9, 2229.	1.5	41
436	Intrinsically Fluorescent, Stealth Polypyrazoline Nanoparticles with Large Stokes Shift for In Vivo Imaging. Small, 2018, 14, e1801571.	5.2	25
437	A Facile Approach towards Fluorescent Nanogels with AIE-Active Spacers. Polymers, 2018, 10, 722.	2.0	6
438	Tumor Theranostics of Transition Metal Ions Loaded Polyaminopyrrole Nanoparticles. Nanotheranostics, 2018, 2, 211-221.	2.7	2
439	Emerging technologies for optical spectral detection of reactive oxygen species. Analytical and Bioanalytical Chemistry, 2018, 410, 6079-6095.	1.9	24
440	Upcycling of jellyfish (<i>Nemopilema nomurai</i>) sea wastes as highly valuable reducing agents for green synthesis of gold nanoparticles and their antitumor and anti-inflammatory activity. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1127-1136.	1.9	26
441	Interfacial Defects Dictated In Situ Fabrication of Yolk–Shell Upconversion Nanoparticles by Electronâ€Beam Irradiation. Advanced Science, 2018, 5, 1800766.	5.6	23
442	Citrateâ€Based Fluorescent Biomaterials. Advanced Healthcare Materials, 2018, 7, e1800532.	3.9	51

#	Article	IF	CITATIONS
443	Recent progress on micro- and nano-robots: towards in vivo tracking and localization. Quantitative Imaging in Medicine and Surgery, 2018, 8, 461-479.	1.1	64
444	Decorating a single giant DNA with gold nanoparticles. RSC Advances, 2018, 8, 26571-26579.	1.7	10
445	Dissection of Protein Kinase Pathways in Live Cells Using Photoluminescent Probes: Surveillance or Interrogation?. Chemosensors, 2018, 6, 19.	1.8	2
446	Aggregation-Induced Emission Nanoparticles Encapsulated with PEGylated Nano Graphene Oxide and Their Applications in Two-Photon Fluorescence Bioimaging and Photodynamic Therapy <i>in Vitro</i> and <i>in Vivo</i> . ACS Applied Materials & Interfaces, 2018, 10, 25037-25046.	4.0	59
447	General and Scalable Approach to Bright, Stable, and Functional AIE Fluorogen Colloidal Nanocrystals for in Vivo Imaging. ACS Applied Materials & Interfaces, 2018, 10, 25154-25165.	4.0	35
448	Shining Light on Chitosan: A Review on the Usage of Chitosan for Photonics and Nanomaterials Research. International Journal of Molecular Sciences, 2018, 19, 1795.	1.8	53
449	Covalent Organic Frameworks: From Materials Design to Biomedical Application. Nanomaterials, 2018, 8, 15.	1.9	134
450	Development of optical nanoprobes for molecular imaging of reactive oxygen and nitrogen species. Nano Research, 2018, 11, 5258-5280.	5.8	39
451	Tracking the Fate of Porous Silicon Nanoparticles Delivering a Peptide Payload by Intrinsic Photoluminescence Lifetime. Advanced Materials, 2018, 30, e1802878.	11.1	35
452	"Bottomâ€Up―Fabrication of BODIPYâ€Functionalized Fluorescent Hyperbranched Glycopolymers for Hepatomaâ€Targeted Imaging. Macromolecular Bioscience, 2018, 18, e1700381.	2.1	6
453	Fluorescent activatable gadofullerene nanoprobes as NIR-MR dual-modal in vivo imaging contrast agent. Colloids and Surfaces B: Biointerfaces, 2018, 171, 159-166.	2.5	2
454	Monodisperse, colloidal and luminescent calcium fluoride nanoparticles via a citrate-assisted hydrothermal route. Journal of Colloid and Interface Science, 2018, 531, 444-450.	5.0	13
455	Fluorescent cellulose nanocrystals with responsiveness to solvent polarity and ionic strength. Sensors and Actuators B: Chemical, 2018, 275, 490-498.	4.0	37
456	A review on core–shell structured unimolecular nanoparticles for biomedical applications. Advanced Drug Delivery Reviews, 2018, 130, 58-72.	6.6	63
457	Rationally designed upconversion nanoprobe for simultaneous highly sensitive ratiometric detection of fluoride ions and fluorosis theranostics. Chemical Science, 2018, 9, 5242-5251.	3.7	40
458	In Vivo Near-Infrared Fluorescence Imaging. , 2018, , 67-125.		1
459	Aggregation-Induced Emission (AIE) Dots: Emerging Theranostic Nanolights. Accounts of Chemical Research, 2018, 51, 1404-1414.	7.6	506
460	Coordinating Self-Assembly of Copper Perylenetetracarboxylate Nanorods: Selectively Lighting up Normal Cells around Cancerous Ones for Better Cancer Diagnosis. ACS Applied Materials & Interfaces, 2018, 10, 17630-17638.	4.0	8

#	Article	IF	CITATIONS
461	pH-Responsive diblock copolymers with two different fluorescent labels for simultaneous monitoring of micellar self-assembly and degree of protonation. Polymer Chemistry, 2018, 9, 2964-2976.	1.9	13
462	Synthesis of Fluorescent Polythiophene Dots. Journal of Nanomaterials, 2018, 2018, 1-7.	1.5	0
463	pH-Controlled Self-Assembly of X-Shaped Conjugated Molecules: The Case of 1,2,4,5-Tetrastyrylbenzene. Journal of Physical Chemistry C, 2018, 122, 19937-19945.	1.5	6
464	Beyond Phototherapy: Recent Advances in Multifunctional Fluorescent Nanoparticles for Lightâ€Triggered Tumor Theranostics. Advanced Functional Materials, 2018, 28, 1803733.	7.8	54
465	Red-emitting fluorescent organic@silicate core–shell nanoparticles for bio-imaging. New Journal of Chemistry, 2018, 42, 15353-15360.	1.4	6
466	Photodynamic therapy and nuclear imaging activities of SubPhthalocyanine integrated TiO2 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 45-55.	2.0	23
467	Long-term real-time tracking live stem cells/cancer cells in vitro/in vivo through highly biocompatible photoluminescent poly(citrate-siloxane) nanoparticles. Materials Science and Engineering C, 2018, 93, 380-389.	3.8	7
468	Formation of core/corona nanoparticles with interpolyelectrolyte complex cores in aqueous solution: insight into chain dynamics in the complex from fluorescence quenching. Soft Matter, 2018, 14, 7578-7585.	1.2	6
469	Biodegradable polyester unimolecular systems as emerging materials for therapeutic applications. Journal of Materials Chemistry B, 2018, 6, 5488-5498.	2.9	32
470	Nanodiamonds and gold nanoparticles to obtain a hybrid nanostructure with potential applications in biomedicine. Nanotechnology, 2018, 29, 435101.	1.3	3
471	Tunable Aggregation-Induced Emission Nanoparticles by Varying Isolation Groups in Perylene Diimide Derivatives and Application in Three-Photon Fluorescence Bioimaging. ACS Nano, 2018, 12, 9532-9540.	7.3	106
472	Immuno-Nanoparticles for Multiplex Protein Imaging in Cells and Tissues. Biochip Journal, 2018, 12, 83-92.	2.5	11
473	Biomedical applications of zinc oxide nanoparticles. , 2018, , 239-278.		29
474	Understanding and utilizing the biomolecule/nanosystems interface. , 2018, , 207-297.		19
475	Functionalized conjugated polymers for sensing and molecular imprinting applications. Progress in Polymer Science, 2019, 88, 1-129.	11.8	173
476	How to Study the Uptake and Toxicity of Nanoparticles in Cultured Brain Cells: The Dos and Don't Forgets. Neurochemical Research, 2019, 44, 1330-1345.	1.6	8
477	Liposomes of Quantum Dots Configured for Passive and Active Delivery to Tumor Tissue. Nano Letters, 2019, 19, 5844-5852.	4.5	38
478	The use of luminescent spectroscopy to obtain information about the composition and the structure of lanthanide coordination compounds. Coordination Chemistry Reviews, 2019, 398, 113006.	9.5	32

#	Article	IF	CITATIONS
479	Amplified Heavy-Atom Free Phosphorescence from <i>meta</i> -Dimethoxy Difluoroboron β-Diketonate Charge-Transfer Materials. Journal of Physical Chemistry C, 2019, 123, 20488-20496.	1.5	18
480	Biosynthesized Gold Nanoparticles: In Vivo Study of Near-Infrared Fluorescence (NIR)-Based Bio-imaging and Cell Labeling Applications. ACS Biomaterials Science and Engineering, 2019, 5, 5439-5452.	2.6	52
481	Top-down Synthesized CdSe Nanoparticles for Electroanalytical and Labeling Applications. , 2019, , .		0
482	Quadruply-labeled serum albumin as a biodegradable nanosensor for simultaneous fluorescence imaging of intracellular pH values, oxygen and temperature. Mikrochimica Acta, 2019, 186, 584.	2.5	12
483	Primary and Secondary Mesoscopic Hybrid Materials of Au Nanoparticles@Silk Fibroin and Applications. ACS Applied Materials & amp; Interfaces, 2019, 11, 30125-30136.	4.0	18
484	Recent advances in the use of fluorescent nanoparticles for bioimaging. Nanomedicine, 2019, 14, 1759-1769.	1.7	53
485	Pyranine labeled polymer nanoparticles as fluorescent markers for cell wall staining and imaging of movement within apoplast. Sensors and Actuators B: Chemical, 2019, 297, 126789.	4.0	6
486	Elemental Migration in Core/Shell Structured Lanthanide Doped Nanoparticles. Chemistry of Materials, 2019, 31, 5608-5615.	3.2	49
487	Zirconyl Hydrogenphosphate Nanocontainers for Flexible Transport and Release of Lipophilic Cytostatics, Insecticides, and Antibiotics. Advanced Functional Materials, 2019, 29, 1900543.	7.8	9
488	A novel triarylboron based ratiometric fluorescent probe for in vivo targeting and specific imaging of cancer cells expressing abnormal concentration of GGT. Biosensors and Bioelectronics, 2019, 142, 111497.	5.3	26
489	Carbon Quantum Dots Codoped with Nitrogen and Lanthanides for Multimodal Imaging. Advanced Functional Materials, 2019, 29, 1903884.	7.8	76
490	<p>Manganese dioxide nanosheets: from preparation to biomedical applications</p> . International Journal of Nanomedicine, 2019, Volume 14, 4781-4800.	3.3	69
491	Chemical versus physical grafting of photoluminescent amino-functional carbon dots onto transparent nematic nanocellulose gels and aerogels. Cellulose, 2019, 26, 7781-7796.	2.4	15
492	Benzobisthiadiazoles: From structure to function. Dyes and Pigments, 2019, 171, 107746.	2.0	26
493	Manufacturing of a Sensitive and Selective Optical Sensor Based on Molecularly Imprinted Polymers and Green Carbon Dots Synthesized from Cedrus Plant for Trace Analysis of Propranolol. Analytical Sciences, 2019, 35, 1083-1088.	0.8	13
494	Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. Advanced Materials, 2019, 31, e1902409.	11.1	173
495	Ethylene glycol coated nanoceria protects against oxidative stress in human lens epithelium. RSC Advances, 2019, 9, 16596-16605.	1.7	12
496	Ionic aggregation-induced emission dye with bulky counterions for preparation of bright near-infrared polymeric nanoparticles. Nanoscale, 2019, 11, 13977-13987.	2.8	26

#	Article	IF	CITATIONS
497	Facile Production of Hexagonal Boron Nitride Nanoparticles by Cryogenic Exfoliation. Nano Letters, 2019, 19, 5417-5422.	4.5	25
498	A Quantum Chemistry Approach Based on the Analogy with π-System in Polymers for a Rapid Estimation of the Resonance Wavelength of Nanoparticle Systems. Nanomaterials, 2019, 9, 929.	1.9	10
499	Fluorescein ether-ester dyes for labeling of fluorinated methacrylate nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111956.	2.0	9
500	Organic-to-water dispersible Mn:ZnS–ZnS doped core–shell quantum dots: synthesis, characterization and their application towards optical bioimaging and a turn-off fluorosensor. New Journal of Chemistry, 2019, 43, 11912-11925.	1.4	10
501	Fluorescent Nanoparticles Synthesized by Carbon-Nitride-Stabilized Pickering Emulsion Polymerization for Targeted Cancer Cell Imaging. ACS Applied Bio Materials, 2019, 2, 5127-5135.	2.3	20
502	Au nanoclusters/porous silica particles nanocomposites as fluorescence enhanced sensors for sensing and mapping of copper(II) in cells. Nanotechnology, 2019, 30, 475701.	1.3	8
503	Biocompatibility in regenerative nanomedicine. Nanomedicine, 2019, 14, 2763-2775.	1.7	33
504	Optical Sensing (Nano)Materials Based on Benzimidazole Derivatives. , 2019, , .		3
505	Recent advances in synthetic methods and applications of photo-luminescent molecularly imprinted polymers. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 41, 100315.	5.6	40
506	Tuning the Upconversion Efficiency and Spectrum of Upconversion Nanoparticles through Surface Decorating of an Organic Dye. Inorganic Chemistry, 2019, 58, 14490-14497.	1.9	13
507	Oxygen-Sensing Probes and Bandage for Optical Detection of Inflammation. ACS Applied Bio Materials, 2019, 2, 5110-5117.	2.3	4
508	Mannose-Coated Fluorescent Lipid Microparticles for Specific Cellular Targeting and Internalization via Glycoreceptor-Induced Phagocytosis. ACS Applied Bio Materials, 2019, 2, 5118-5126.	2.3	7
509	Perylene-Tagged Polycaprolactone Block Copolymers and Their Enzyme-Biodegradable Fluorescent Nanoassemblies for Intracellular Bio-imaging in Cancer Cells. ACS Applied Polymer Materials, 2019, 1, 3375-3388.	2.0	15
510	Two-Step Synthesis, Upconversion Properties and Temperature Sensing Behavior of CaTiSiO ₅ :Er ³⁺ /Yb ³⁺ Phosphors. ECS Journal of Solid State Science and Technology, 2019, 8, R138-R145.	0.9	4
511	Applications of omics and nanotechnology to improve pig embryo production in vitro. Molecular Reproduction and Development, 2019, 86, 1531-1547.	1.0	7
512	Pâ€11.12: Analysis of the LC aligntment and performance at specific pixel design. Digest of Technical Papers SID International Symposium, 2019, 50, 937-940.	0.1	0
513	Biocompatible and Biodegradable Magnesium Oxide Nanoparticles with In Vitro Photostable Near-Infrared Emission: Short-Term Fluorescent Markers. Nanomaterials, 2019, 9, 1360.	1.9	25
514	Nanosized ZnGa ₂ O ₄ :Cr ³⁺ Spinels as Highly Luminescent Materials for Bioimaging. ACS Applied Nano Materials, 2019, 2, 6918-6927.	2.4	38

#	Article	IF	CITATIONS
515	Preparation and Characterization of Bacterial Cellulose-Carbon Dot Hybrid Nanopaper for Potential Sensing Applications. Applied Sciences (Switzerland), 2019, 9, 107.	1.3	7
516	X-ray powder diffraction to analyse bimetallic core–shell nanoparticles (gold and palladium; 7–8 nm). RSC Advances, 2019, 9, 26628-26636.	1.7	9
517	Femtosecond Laser-Assisted Synthesis of ZnO Nanoparticles in Solvent with Visible Emission for Temperature Sensing. Nano, 2019, 14, 1950054.	0.5	2
518	Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chemical Society Reviews, 2019, 48, 5140-5176.	18.7	150
519	Antioxidant properties of pectin/silver and pectin/gold-silver nanocomposite. AIP Conference Proceedings, 2019, , .	0.3	0
520	Aggregation-induced emission luminogen for in vivo three-photon fluorescence lifetime microscopic imaging. Journal of Innovative Optical Health Sciences, 2019, 12, 1940005.	0.5	13
521	Controlling the Interaction of Nanoparticles with Cell Membranes by the Polymeric Tether. Langmuir, 2019, 35, 12851-12857.	1.6	5
522	Design, properties and applications of fluorinated and fluoroalkylated N-containing monosaccharides and their analogues. Journal of Fluorine Chemistry, 2019, 227, 109364.	0.9	18
523	Isothiocyanate-Functionalized Mesoporous Silica Nanoparticles as Building Blocks for the Design of Nanovehicles with Optimized Drug Release Profile. Nanomaterials, 2019, 9, 1219.	1.9	13
524	Reversibly Photoswitchable Dual-Color Fluorescence and Controlled Release Properties of Polymeric Nanoparticles. Macromolecules, 2019, 52, 7130-7136.	2.2	33
525	Highly fluorescent hybrid Au/Ag nanoclusters stabilized with poly(ethylene glycol)- and zwitterion-modified thiolate ligands. Physical Chemistry Chemical Physics, 2019, 21, 21317-21328.	1.3	14
526	Controllable silicon nanostructures featuring stable fluorescence and intrinsic <i>in vitro</i> and <i>in vivo</i> anti-cancer activity. Journal of Materials Chemistry B, 2019, 7, 6247-6256.	2.9	3
527	Self-illumination of Carbon Dots by Bioluminescence Resonance Energy Transfer. Scientific Reports, 2019, 9, 13796.	1.6	7
528	Nanostructures serve as adsorbents for the selective separation/enrichment of proteins. TrAC - Trends in Analytical Chemistry, 2019, 120, 115650.	5.8	23
529	A Bottom-Up Approach for Developing Aptasensors for Abused Drugs: Biosensors in Forensics. Biosensors, 2019, 9, 118.	2.3	17
530	Ligands dissociation induced gold nanoparticles aggregation for colorimetric Al3+ detection. Analytica Chimica Acta, 2019, 1087, 76-85.	2.6	21
531	Nanoporous silica nanoparticles functionalized with a fluorescent turn-on spirorhodamineamide as pH indicators. Photochemical and Photobiological Sciences, 2019, 18, 155-165.	1.6	5
532	An insight into the molecular and surface state photoluminescence of carbon dots revealed through solvent-induced modulations in their excitation wavelength dependent emission properties. Photochemical and Photobiological Sciences, 2019, 18, 110-119.	1.6	46

#	Article	IF	CITATIONS
533	Rational design of a super-contrast NIR-II fluorophore affords high-performance NIR-II molecular imaging guided microsurgery. Chemical Science, 2019, 10, 326-332.	3.7	124
534	Dopamine integrated B, N, S doped CQD nanoprobe for rapid and selective detection of fluoride ion. Analytica Chimica Acta, 2019, 1058, 146-154.	2.6	34
535	Solventâ€Dependent Nanostructures Based on Active Ï€â€Aggregation Induced Emission Enhancement of New Carbazole Derivatives of Triphenylacrylonitrile. Chemistry - A European Journal, 2019, 25, 4856-4863.	1.7	15
536	Carbon Quantum Dots in Nanobiotechnology. Advanced Structured Materials, 2019, , 145-179.	0.3	17
537	Biological Applications of Nanoparticles in Optical Microscopy. , 2019, , 469-495.		1
538	Fast responsive photo-switchable dual-color fluorescent cyclodextrin nanogels for cancer cell imaging. Carbohydrate Polymers, 2019, 210, 379-388.	5.1	23
539	Surface modification strategy based on the conjugation of NaYF4:5%Eu luminescent nanoprobe with organic aromatic compounds for application in bioimaging assays. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	2
540	A green method for the production of an efficient bioimaging nanotool. Nanoscale Advances, 2019, 1, 1193-1199.	2.2	3
541	Time-resolved FRET in AgInS ₂ /ZnS-CdSe/ZnS quantum dot systems. Nanotechnology, 2019, 30, 195501.	1.3	5
542	Multifunctional Silicon–Carbon Nanohybrids Simultaneously Featuring Bright Fluorescence, High Antibacterial and Wound Healing Activity. Small, 2019, 15, e1803200.	5.2	25
543	In Vitro and in Cellulo Sensing of Transition Metals Using Time-Resolved Fluorescence Spectroscopy and Microscopy. Journal of Fluorescence, 2019, 29, 255-263.	1.3	4
544	Nanoparticle- and microparticle-based luminescence imaging of chemical species and temperature in aquatic systems: a review. Mikrochimica Acta, 2019, 186, 126.	2.5	35
545	Hydrothermal growth of nitrogen-rich carbon dots as a precise multifunctional probe for both Fe3+ detection and cellular bio-imaging. Optical Materials, 2019, 89, 92-99.	1.7	46
546	Nanomaterials for Advanced Biological Applications. Advanced Structured Materials, 2019, , .	0.3	10
547	A carbon dot and molecular beacon based fluorometric sensor for the cancer marker microRNA-21. Mikrochimica Acta, 2019, 186, 132.	2.5	47
548	Multicolor emitting N/S-doped carbon dots as a fluorescent probe for imaging pathogenic bacteria and human buccal epithelial cells. Mikrochimica Acta, 2019, 186, 157.	2.5	30
549	Nearâ€Infrared Upconversion Luminescence and Bioimaging In Vivo Based on Quantum Dots. Advanced Science, 2019, 6, 1801834.	5.6	42
550	High-speed imaging and tracking of very small single nanoparticles by contrast enhanced microscopy. Nanoscale, 2019, 11, 568-577.	2.8	44

#	Article	IF	CITATIONS
551	Biomaterials for Interfacing Cell Imaging and Drug Delivery: An Overview. Langmuir, 2019, 35, 12285-12305.	1.6	41
552	Bimetallic gold/silver nanoclusters as a fluorescent probe for detection of methotrexate and doxorubicin in serum. Mikrochimica Acta, 2019, 186, 371.	2.5	26
553	Bayesian Network Resource for Metaâ€Analysis: Cellular Toxicity of Quantum Dots. Small, 2019, 15, e1900510.	5.2	35
554	Synthesis of Thermosensitive Conjugated Triblock Copolymers by Sequential Click Couplings for Drug Delivery and Cell Imaging. ACS Biomaterials Science and Engineering, 2019, 5, 3419-3428.	2.6	19
555	Amine-rich carbon nitride nanoparticles: Synthesis, covalent functionalization with proteins and application in a fluorescence quenching assay. Nano Research, 2019, 12, 1862-1870.	5.8	14
556	Key factors tuning upconversion and near infrared luminescence in nanosized Lu2O3:Er3+,Yb3+. Journal of Alloys and Compounds, 2019, 799, 481-494.	2.8	14
557	Applications of metallic nanostructures in biomedical field. , 2019, , 341-361.		2
558	pH-responsive dithiomaleimide-amphiphilic block copolymer for drug delivery and cellular imaging. Journal of Colloid and Interface Science, 2019, 552, 439-447.	5.0	36
559	Lanthanide-Complex-Loaded Polymer Nanoparticles for Background-Free Single-Particle and Live-Cell Imaging. Chemistry of Materials, 2019, 31, 4034-4041.	3.2	37
560	Facile and large-scale synthesis of graphene quantum dots for selective targeting and imaging of cell nucleus and mitochondria. Materials Science and Engineering C, 2019, 103, 109824.	3.8	34
561	X-ray-activated nanosystems for theranostic applications. Chemical Society Reviews, 2019, 48, 3073-3101.	18.7	231
562	A proposal for the adsorption of anastrozole anticancer drug on gold nanoparticle surfaces. Journal of Raman Spectroscopy, 2019, 50, 1462-1467.	1.2	3
563	Synergistic Effects of Novel Superparamagnetic/Upconversion HA Material and Ti/Magnet Implant on Biological Performance and Longâ€Term In Vivo Tracking. Small, 2019, 15, e1901617.	5.2	20
564	Single Fluorescent Peptide Nanodots. ACS Photonics, 2019, 6, 1626-1631.	3.2	11
565	Multicolor lanthanide-doped CaS and SrS near-infrared stimulated luminescent nanoparticles with bright emission: application in broad-spectrum lighting, information coding, and bio-imaging. Nanoscale, 2019, 11, 12497-12501.	2.8	25
566	A nano-cocktail of an NIR-II emissive fluorophore and organoplatinum(<scp>ii</scp>) metallacycle for efficient cancer imaging and therapy. Chemical Science, 2019, 10, 7023-7028.	3.7	98
567	An efficient biosensor for monitoring Alzheimer's disease risk factors: modulation and disaggregation of the Aβ aggregation process. Journal of Materials Chemistry B, 2019, 7, 4124-4132.	2.9	13
568	PEGylated β-NaGdF ₄ /Tb@CaF ₂ Core/Shell Nanophosphors for Enhanced Radioluminescence and Folate Receptor Targeting. ACS Applied Nano Materials, 2019, 2, 3718-3727.	2.4	11

#	ARTICLE	IF	CITATIONS
569	Synthesis and Study of Fluorescent Forest-like Carbon Nanotubes Doped with Oxides of Rare-earth Elements. Current Nanomaterials, 2019, 4, 39-50.	0.2	0
570	Controlling Size and Fluorescence of Dye-Loaded Polymer Nanoparticles through Polymer Design. Langmuir, 2019, 35, 7009-7017.	1.6	31
571	Quantitative Imaging of Gd Nanoparticles in Mice Using Benchtop Cone-Beam X-ray Fluorescence Computed Tomography System. International Journal of Molecular Sciences, 2019, 20, 2315.	1.8	36
572	Linker-protein G mediated functionalization of polystyrene-encapsulated upconversion nanoparticles for rapid gene assay using convective PCR. Mikrochimica Acta, 2019, 186, 346.	2.5	5
573	Recent Advancements in Doped/Co-Doped Carbon Quantum Dots for Multi-Potential Applications. Journal of Carbon Research, 2019, 5, 24.	1.4	42
574	Investigation by CARS microscopy of squalene and boron nitride as a precursor material for drug delivery carrier. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 380, 111863.	2.0	2
575	Synthesis of gold nanocluster-loaded lysozyme nanoparticles for label-free ratiometric fluorescent pH sensing: applications to enzyme–substrate systems and cellular imaging. Journal of Materials Chemistry B, 2019, 7, 3876-3883.	2.9	22
576	Searching for the Optimized Luminescent Lanthanide Phosphor Using Heuristic Algorithms. Inorganic Chemistry, 2019, 58, 6458-6466.	1.9	12
577	Biological Responses to Nanoscale Particles. Nanoscience and Technology, 2019, , .	1.5	9
578	Plasma Treatment Conversion of Phenolic Compounds into Fluorescent Organic Nanoparticles for Cell Imaging. Analytical Chemistry, 2019, 91, 6754-6760.	3.2	11
579	Cellular Uptake Mechanisms and Detection of Nanoparticle Uptake by Advanced Imaging Methods. Nanoscience and Technology, 2019, , 191-211.	1.5	3
580	What controls the unusual melting profiles of small AuNPs/DNA complexes. Physical Chemistry Chemical Physics, 2019, 21, 11019-11032.	1.3	7
581	Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Advances in Colloid and Interface Science, 2019, 269, 152-186.	7.0	68
582	Multifunctional mesoporous curcumin encapsulated iron-phenanthroline nanocluster: A new Anti-HIV agent. Colloids and Surfaces B: Biointerfaces, 2019, 180, 289-297.	2.5	24
583	Fluorescentâ€functionalized graphene oxide for selective labeling of tumor cells. Journal of Biomedical Materials Research - Part A, 2019, 107, 1917-1924.	2.1	11
584	Newly-Engineered Materials for Bio-Imaging Technology: A Focus on the Hybrid System of Ultrasound and Fluorescence. Frontiers in Bioengineering and Biotechnology, 2019, 7, 88.	2.0	8
585	Strong host-guest interaction enables facile and controllable surface modification of cucurbit[6]uril-based polymer nanocapsules for <i>in vivo</i> cancer targeting. Supramolecular Chemistry, 2019, 31, 289-295.	1.5	13
586	Chiral Microneedles from an Achiral Bis(boron dipyrromethene): Spontaneous Mirror Symmetry Breaking Leading to a Promising Photoluminescent Organic Material. Langmuir, 2019, 35, 5021-5028.	1.6	6

#	Article	IF	CITATIONS
587	Self-Assembled Biocompatible Fluorescent Nanoparticles for Bioimaging. Frontiers in Chemistry, 2019, 7, 168.	1.8	26
588	Indocyanine green-modified hollow mesoporous Prussian blue nanoparticles loading doxorubicin for fluorescence-guided tri-modal combination therapy of cancer. Nanoscale, 2019, 11, 5717-5731.	2.8	64
589	A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods and Applications in Fluorescence, 2019, 7, 022002.	1.1	57
590	A study of structural effects on linear and nonlinear response of bicompartmental Ni (II) Schiff base complexes. Applied Organometallic Chemistry, 2019, 33, e4900.	1.7	8
591	One-step hydrothermal synthesis of ultrabright water-soluble silicon nanoparticles for folate-receptor-mediated bioimaging. Journal of Materials Science, 2019, 54, 9707-9717.	1.7	10
592	Four-Photon Absorption Properties of Mn-Doped ZnSe Quantum Dots. IEEE Photonics Journal, 2019, 11, 1-9.	1.0	2
593	Nanodiamonds for advanced optical bioimaging and beyond. Current Opinion in Colloid and Interface Science, 2019, 39, 220-231.	3.4	43
594	Recent advances in nanomaterial-based electrochemical and optical sensing platforms for microRNA assays. Analyst, The, 2019, 144, 2849-2866.	1.7	72
595	A novel 2,5-bis(benzo[d]thiazol-2-yl)phenol scaffold-based ratiometric fluorescent probe for sensing cysteine in aqueous solution and serum. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 217, 1-7.	2.0	43
596	Near-infrared photochemistry assisted by upconverting nanoparticles. , 2019, , 43-71.		3
597	Green chemistry route to realize, high quantum yield carbon quantum dots for cellular imaging applications. Materials Research Express, 2019, 6, 075025.	0.8	10
598	Polycarbonate-Based Nanoparticles with Aggregation-Induced Emission (AIE): Synthesis and Application for Cell Imaging. Polymer Science - Series B, 2019, 61, 266-274.	0.3	3
599	Plasmon-exciton interaction in colloidally fabricated metal nanoparticle-quantum emitter nanostructures. Nano Research, 2019, 12, 2164-2171.	5.8	31
600	Facile synthesis of intrinsically photoluminescent hyperbranched polyethylenimine and its specific detection for copper ion. Polymer, 2019, 172, 110-116.	1.8	26
601	In Situ Synthesis of Fluorescent Mesoporous Silica–Carbon Dot Nanohybrids Featuring Folate Receptor-Overexpressing Cancer Cell Targeting and Drug Delivery. Nano-Micro Letters, 2019, 11, 32.	14.4	70
602	One-pot fabrication of Fe-doped carbon nitride nanoparticles as peroxidase mimetics for H2O2 and glucose detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 215, 218-224.	2.0	26
603	Functional Mesoporous Silica Nanocomposites: Biomedical applications and Biosafety International Journal of Molecular Sciences, 2019, 20, 929.	1.8	45
604	Rare Earth Hydroxide as a Precursor for Controlled Fabrication of Uniform β-NaYF4 Nanoparticles: A Novel, Low Cost, and Facile Method. Molecules, 2019, 24, 357.	1.7	5

#	Article	IF	CITATIONS
605	Silica-Based Organic–Inorganic Hybrid Fluorescent Ink for Security Applications. ACS Omega, 2019, 4, 2577-2583.	1.6	25
606	Organoboron Schiff bases as cellâ€staining fluorescent probes: Synthesis, Chemioâ€photophysical characterization, DFT, and Xâ€ray structures. Applied Organometallic Chemistry, 2019, 33, e4718.	1.7	6
607	Critical role of tyrosine-20 in formation of gold nanoclusters within lysozyme: a molecular dynamics study. Physical Chemistry Chemical Physics, 2019, 21, 4907-4911.	1.3	0
608	Glucose Sensing by Fluorescent Nanomaterials. Critical Reviews in Analytical Chemistry, 2019, 49, 542-552.	1.8	34
609	Fluorescence-based histamine sensing with inorganic–organic hybrid nanoparticles. Journal of Materials Chemistry C, 2019, 7, 3543-3552.	2.7	16
610	Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Advances, 2019, 9, 6460-6481.	1.7	314
611	Water-soluble MoS2 quantum dots as effective fluorescence probe for the determination of bilirubin in human fluids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 215, 290-296.	2.0	36
612	Hybrid composites: a revolutionary trend in biomedical engineering. , 2019, , 33-46.		8
613	Designing biocompatible and multicolor fluorescent hydroxyapatite nanoparticles for cell-imaging applications. Materials Today Chemistry, 2019, 14, 100211.	1.7	14
614	Stepwise preparation of Ti-doped functionalized carbon nitride nanoparticles and hybrid TiO ₂ /graphitic-C ₃ N ₄ for detection of free residual chlorine and visible-light photocatalysis. Chemical Communications, 2019, 55, 13848-13851.	2.2	4
615	Multimodal Cleavable Reporters for Quantifying Carboxy and Amino Groups on Organic and Inorganic Nanoparticles. Scientific Reports, 2019, 9, 17577.	1.6	10
616	Dual light-emitting Yb3+,Er3+-doped La(IO3)3 iodate nanocrystals: up-conversion and second harmonic generation. MRS Communications, 2019, 9, 1221-1226.	0.8	4
617	Nanomedicines for Near-Infrared Fluorescent Lifetime-Based Bioimaging. Frontiers in Bioengineering and Biotechnology, 2019, 7, 386.	2.0	28
618	Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Frontiers in Bioengineering and Biotechnology, 2019, 7, 320.	2.0	44
619	Near-white photoluminescence in paramagnetic Gd ₆ O ₅ F ₈ nanoparticles. CrystEngComm, 2019, 21, 6313-6318.	1.3	1
620	Origin of strong red emission in Er ³⁺ -based upconversion materials: role of intermediate states and cross relaxation. Physical Chemistry Chemical Physics, 2019, 21, 24026-24033.	1.3	25
621	An invisible private 2D barcode design and implementation with tunable fluorescent nanoparticles. RSC Advances, 2019, 9, 37292-37299.	1.7	4
622	Cellular imaging using emission-tuneable conjugated polymer nanoparticles. RSC Advances, 2019, 9, 37971-37976.	1.7	3

#	Article	IF	CITATIONS
623	Lower power dependent upconversion multicolor tunable properties in TiO2:Yb3+/Er3+/ (Tm3+). Ceramics International, 2019, 45, 432-438.	2.3	10
624	Fluorescent Hydrogelâ€Coated Paper/Textile as Flexible Chemosensor for Visual and Wearable Mercury(II) Detection. Advanced Materials Technologies, 2019, 4, 1800201.	3.0	46
625	The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chemical Reviews, 2019, 119, 231-292.	23.0	718
626	Bioinspired Amyloid Nanodots with Visible Fluorescence. Advanced Optical Materials, 2019, 7, 1801400.	3.6	26
627	Aluminum(III) triggered aggregation-induced emission of glutathione-capped copper nanoclusters as a fluorescent probe for creatinine. Mikrochimica Acta, 2019, 186, 29.	2.5	61
628	Fighting Aggregationâ€Caused Quenching and Leakage of Dyes in Fluorescent Polymer Nanoparticles: Universal Role of Counterion. Chemistry - an Asian Journal, 2019, 14, 836-846.	1.7	92
629	Synthesis and characterization of stable silver nanoparticles, Ag-NPs: Discussion on the applications of Ag-NPs as antimicrobial agents. Physica B: Condensed Matter, 2019, 554, 21-30.	1.3	54
630	Modification of Cellulose. Polymers and Polymeric Composites, 2019, , 435-486.	0.6	6
631	Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review. Mikrochimica Acta, 2019, 186, 50.	2.5	28
633	Origins and Control of Optical Absorption in a Nondilute Oxide Solid Solution: Sr(Ti,Fe)O _{3–<i>x</i>} Perovskite Case Study. Chemistry of Materials, 2019, 31, 1030-1041.	3.2	17
634	Nanoheterostructures (NHS) and Their Applications in Nanomedicine: Focusing on In Vivo Studies. Materials, 2019, 12, 139.	1.3	19
635	Nitrogen-doped carbon dots synthesized from acrylic acid and ethylenediamine for simple and selective determination of cobalt ions in aqueous media. Journal of Luminescence, 2019, 206, 169-175.	1.5	43
636	Neurotheranostics as personalized medicines. Advanced Drug Delivery Reviews, 2019, 148, 252-289.	6.6	63
637	Selective cellular imaging with lanthanideâ€based upconversion nanoparticles. Journal of Biophotonics, 2019, 12, e201800256.	1.1	13
638	Enhanced luminescence properties of ZnGa2O4:Cr3+ nanoparticles with an average crystallite size of 5†nm. Journal of Solid State Chemistry, 2019, 269, 328-335.	1.4	22
639	AlEgen Nanoparticles of Arylamino Fumaronitrile Derivative with High Near-Infrared Emission for Two-Photon Imaging and in Vivo Cell Tracking. ACS Applied Bio Materials, 2019, 2, 430-436.	2.3	7
640	Biodistribution of Filamentous Plant Virus Nanoparticles: Pepino Mosaic Virus versus Potato Virus X. Biomacromolecules, 2019, 20, 469-477.	2.6	18
641	Tailoring the Molecular Skeleton of Azaâ€BODIPYs to Design Photostable Redâ€Lightâ€Emitting Laser Dyes. ChemPhotoChem, 2019, 3, 75-85.	1.5	11

#	ARTICLE	IF	CITATIONS
642	Luminescent silica mesoparticles for protein transduction. Materials Science and Engineering C, 2019, 96, 530-538.	3.8	19
643	Fluorescent Inorganicâ€Organic Hybrid Nanoparticles. ChemNanoMat, 2019, 5, 24-45.	1.5	20
644	Sustainable synthesis of luminescent CdTe quantum dots coated with modified silica mesoporous nanoparticles: Towards new protein scavengers and smart drug delivery carriers. Dyes and Pigments, 2019, 161, 360-369.	2.0	32
645	A new drug carrier with oxygen generation function for modulating tumor hypoxia microenvironment in cancer chemotherapy. Colloids and Surfaces B: Biointerfaces, 2019, 173, 335-345.	2.5	26
646	Non-traditional intrinsic luminescence: inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Progress in Polymer Science, 2019, 90, 35-117.	11.8	247
647	Responsive Hydrogel-based Photonic Nanochains for Microenvironment Sensing and Imaging in Real Time and High Resolution. Nano Letters, 2020, 20, 803-811.	4.5	92
648	Smart nanomaterials in pharmaceutical analysis. Arabian Journal of Chemistry, 2020, 13, 3319-3343.	2.3	71
649	Fabrication and characterization of the composite nanofibers of polyacrylonitrile/fluorescent core-shell silica particles with their potential use for anticounterfeiting purposes in the textile industry. Journal of Industrial Textiles, 2020, 49, 1145-1159.	1.1	2
650	Scheelite like NaTb(WO4)2 nanoparticles: Green fluorescence and in vitro cell imaging applications. Materials Science and Engineering C, 2020, 106, 110182.	3.8	5
651	Hypochlorite fluorescence sensing by phenylboronic acid-alizarin adduct based carbon dots. Talanta, 2020, 208, 120447.	2.9	31
652	Steric hindrance boosted upconversion for low-power imaging in vivo. Journal of Luminescence, 2020, 218, 116837.	1.5	5
653	Stimuliâ€Responsive Hybridized Nanostructures. Advanced Functional Materials, 2020, 30, 1903439.	7.8	37
654	Epoxy and quantum dots-based nanocomposites: achievements and applications. Materials Research Innovations, 2020, 24, 235-243.	1.0	13
655	Microfluidic Generation of Nanomaterials for Biomedical Applications. Small, 2020, 16, e1901943.	5.2	70
657	Application of molecularly imprinted polymers as artificial receptors for imaging. Acta Biomaterialia, 2020, 101, 444-458.	4.1	46
658	Sensitive development of latent fingerprints using Rhodamine B-diatomaceous earth composites and principle of efficient image enhancement behind their fluorescence characteristics. Chemical Engineering Journal, 2020, 383, 123076.	6.6	24
659	Carbon quantum dots embedded electrospun nanofibers for efficient antibacterial photodynamic inactivation. Materials Science and Engineering C, 2020, 108, 110377.	3.8	48
660	Cobalt Oxyhydroxide-prompted Synthesis of Fluorescent Polydopamine Nanoparticles for Glutathione Detection. Analytical Sciences, 2020, 36, 347-352.	0.8	2

#	Article	IF	CITATIONS
661	Single-dye-doped fluorescent nanoprobe enables self-referenced ratiometric imaging of hypochlorous acid in lysosomes. Sensors and Actuators B: Chemical, 2020, 304, 127299.	4.0	34
662	Engineering of a zero cross-talk fluorescent polymer nanoprobe for self-referenced ratiometric imaging of lysosomal hypochlorous acid in living cells. Materials Chemistry Frontiers, 2020, 4, 862-868.	3.2	26
663	Graphitic Carbon Coated Magnetite Nanoparticles for Dual Mode Imaging and Hyperthermia. ACS Applied Nano Materials, 2020, 3, 896-904.	2.4	24
664	Ultrasmall silicon nanoparticles as a promising platform for multimodal imaging. Faraday Discussions, 2020, 222, 362-383.	1.6	12
665	Recent developments in polydopamine fluorescent nanomaterials. Materials Horizons, 2020, 7, 746-761.	6.4	171
666	Recent advances in cancer bioimaging using a rationally designed Raman reporter in combination with plasmonic gold. Journal of Materials Chemistry B, 2020, 8, 186-198.	2.9	27
667	Carbohydrate coated fluorescent mesoporous silica particles for bacterial imaging. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110751.	2.5	18
668	Computational Analysis of the Silver Nanoparticle–Human Serum Albumin Complex. ACS Omega, 2020, 5, 170-178.	1.6	42
669	Aggregation of Metal-Nanoparticle-Induced Fluorescence Enhancement and Its Application in Sensing. ACS Omega, 2020, 5, 41-48.	1.6	24
670	Eu(III) complex based on nonsteroidal anti-inflammatory drugs loxoprofen as the ligand: A novel low-toxic luminescent material for cell imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 118014.	2.0	8
671	Metal complexes for mitochondrial bioimaging. Journal of Inorganic Biochemistry, 2020, 204, 110985.	1.5	21
672	New fluorescent-labelled nanoparticles: synthesis, characterization and interactions with cysteine and homocysteine to evaluate their stability in aqueous solution. Applied Nanoscience (Switzerland), 2020, 10, 1157-1172.	1.6	2
673	Selective imaging of diamond nanoparticles within complex matrices using magnetically induced fluorescence contrast. Environmental Science: Nano, 2020, 7, 525-534.	2.2	14
674	Dendrimers for diagnostic applications. , 2020, , 291-324.		6
675	Evolution from UV emission of phenyl groups to visible emission of pyrolytic nanocarbons dispersed in fumed silica: Alternative insight into photoluminescence of carbon nanodots. Journal of Luminescence, 2020, 219, 116926.	1.5	5
676	lonizing radiation attracts tumor targeting and apoptosis by radiotropic lysyl oxidase traceable nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102141.	1.7	10
677	Waveguiding and focusing in a bio-medium with an optofluidic cell chain. Acta Biomaterialia, 2020, 103, 165-171.	4.1	6
678	Synthesis of N, Zn-doped carbon dots for the detection of Fe3+ ions and bactericidal activity against Escherichia coli and Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 2020, 202, 111734.	1.7	54

#	Article	IF	CITATIONS
679	Temperature-Induced Stress Relaxation in Alloyed Silver–Gold Nanoparticles (7–8 nm) by in Situ X-ray Powder Diffraction. Crystal Growth and Design, 2020, 20, 107-115.	1.4	4
680	Lanthanide-Doped Upconversion Nanoparticles Meet the Needs for Cutting-Edge Bioapplications: Recent Progress and Perspectives. , 2020, 2, 1516-1531.		68
681	Hypoxia-responsive fluorescent nanoprobe for imaging and cancer therapy. TrAC - Trends in Analytical Chemistry, 2020, 131, 116010.	5.8	17
682	<p>Two-Photon Photoexcited Photodynamic Therapy with Water-Soluble Fullerenol Serving as the Highly Effective Two-Photon Photosensitizer Against Multidrug-Resistant Bacteria</p> . International Journal of Nanomedicine, 2020, Volume 15, 6813-6825.	3.3	6
683	Activatable Offâ€on Nearâ€Infrared QCy7â€based Fluorogenic Probes for Bioimaging. Chemistry - an Asian Journal, 2020, 15, 3983-3994.	1.7	11
684	Conjugated Photosensitizers for Imaging and PDT in Cancer Research. Journal of Medicinal Chemistry, 2020, 63, 14119-14150.	2.9	86
685	Stealth and Bright Monomolecular Fluorescent Organic Nanoparticles Based on Folded Amphiphilic Polymer. ACS Nano, 2020, 14, 13924-13937.	7.3	29
686	Optical control of Er ³⁺ -doped M _{0.5} Bi _{2.5} Nb ₂ O ₉ (M = Li, Na, K) materials for thermal stability and temperature sensing using photochromic reactions. Journal of Materials Chemistry C, 2020. 8. 15685-15696.	2.7	19
687	Facile Synthesis, Enhanced Photostability, and Long-term Cellular Imaging of Bright Red Luminescent Organosilica Nanoparticles. ACS Applied Bio Materials, 2020, 3, 5438-5445.	2.3	4
688	Tuning molecular aggregation to achieve highly bright AIE dots for NIR-II fluorescence imaging and NIR-I photoacoustic imaging. Chemical Science, 2020, 11, 8157-8166.	3.7	70
689	Algorithm for calculation of up-conversion luminophores mixtures chromaticity coordinates. Journal of Fluorine Chemistry, 2020, 237, 109607.	0.9	3
690	Ultrabright Fluorescent Polymeric Nanoparticles with a Stealth Pluronic Shell for Live Tracking in the Mouse Brain. ACS Nano, 2020, 14, 9755-9770.	7.3	48
691	New-generation quantum dots as contrast agent in imaging. , 2020, , 525-556.		1
692	Highly colloidally stable trimodal 125I-radiolabeled PEC-neridronate-coated upconversion/magnetic bioimaging nanoprobes. Scientific Reports, 2020, 10, 20016.	1.6	12
693	"What Doesn't Kill You Makes You Stronger― Future Applications of Amyloid Aggregates in Biomedicine. Molecules, 2020, 25, 5245.	1.7	20
694	Materdicine: Interdiscipline of materials and medicine. View, 2020, 1, 20200016.	2.7	22
695	A simple, quantitative method for spectroscopic detection of metformin using gold nanoclusters. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 241, 118744.	2.0	14
696	A wash-free lysosome targeting carbon dots for ultrafast imaging and monitoring cell apoptosis status. Analytica Chimica Acta, 2020, 1106, 207-215.	2.6	33

#	Article	IF	CITATIONS
697	Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. Advanced Therapeutics, 2020, 3, 2000117.	1.6	12
698	Molecularly Imprinted Polymers: Antibody Mimics for Bioimaging and Therapy. Chemical Reviews, 2020, 120, 9554-9582.	23.0	296
699	Tailoring structure, morphology and up-conversion properties of CaF2:Yb3+,Er3+ nanoparticles by the route of synthesis. Journal of Materials Science, 2020, 55, 14166-14178.	1.7	9
700	Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. Applied Sciences (Switzerland), 2020, 10, 5194.	1.3	114
701	Fluorescence Phenomena in Amyloid and Amyloidogenic Bionanostructures. Crystals, 2020, 10, 668.	1.0	17
702	Biomacromolecular fluorescent nanoparticles co-assembled by bovine serum albumin and DNA segments for living cell imaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125255.	2.3	1
703	A short review on NIR-II organic small molecule dyes. Dyes and Pigments, 2020, 183, 108756.	2.0	66
704	The Current Trends of Biosensors in Tissue Engineering. Biosensors, 2020, 10, 88.	2.3	42
705	Rareâ€Earth Metal Ions Doped Graphene Quantum Dots for Nearâ€IR In Vitro/In Vivo/Ex Vivo Imaging Applications. Advanced Optical Materials, 2020, 8, 2000897.	3.6	37
706	Fluorescent Materials for Cell Imaging. , 2020, , .		1
707	Opportunities for Persistent Luminescent Nanoparticles in Luminescence Imaging of Biological Systems and Photodynamic Therapy. Nanomaterials, 2020, 10, 2015.	1.9	32
708	Color Centers on Hydrogenated TiO ₂ Facets Unlock Fluorescence Imaging. Journal of Physical Chemistry Letters, 2020, 11, 9485-9492.	2.1	5
709	Fluorescent Nanomaterials for Cellular Imaging. , 2020, , .		1
710	Prediction of Kinetically Stable Nanotheranostic Superstructures: Integral of First-Passage Times from Constrained Simulations. Biomacromolecules, 2020, 21, 5008-5020.	2.6	4
711	Design of superior phototheranostic agents guided by Jablonski diagrams. Chemical Society Reviews, 2020, 49, 8179-8234.	18.7	397
712	An easy synthesis of nitrogen and phosphorus co-doped carbon dots as a probe for chloramphenicol. RSC Advances, 2020, 10, 32919-32926.	1.7	11
713	An efficient lattice Boltzmann method for fluorescent diffuse optical tomography on GPUs. Optical Review, 2020, 27, 465-474.	1.2	0
714	Nearâ€Infrared AIE Dots with Chemiluminescence for Deepâ€Tissue Imaging. Advanced Materials, 2020, 32, e2004685.	11.1	96

#	ARTICLE	IF	CITATIONS
715	Self-Assembly of a Dual-Targeting and Self-Calibrating Ratiometric Polymer Nanoprobe for Accurate Hypochlorous Acid Imaging. ACS Applied Materials & Interfaces, 2020, 12, 45822-45829.	4.0	75
716	Theranostic cancer applications utilized by nanoparticles offering multimodal systems and future insights. SN Applied Sciences, 2020, 2, 1.	1.5	10
717	Self-assembled amphiphilic fluorescent probe: detecting pH-fluctuations within cancer cells and tumour tissues. Chemical Science, 2020, 11, 9875-9883.	3.7	27
718	High Dye-Loaded and Thin-Shell Fluorescent Polymeric Nanoparticles for Enhanced FRET Imaging of Protein-Specific Sialylation on the Cell Surface. Analytical Chemistry, 2020, 92, 13271-13280.	3.2	16
719	Multiple-Labeled Antibodies Behave Like Single Emitters in Photoswitching Buffer. ACS Nano, 2020, 14, 12629-12641.	7.3	17
720	Design, Synthesis, and Application of a Small Molecular NIR-II Fluorophore with Maximal Emission beyond 1200 nm. Journal of the American Chemical Society, 2020, 142, 15271-15275.	6.6	133
721	Microwave-Assisted Synthesis of Silver Nanoparticles: Effect of Reaction Temperature and Precursor Concentration on Fluorescent Property. Journal of Cluster Science, 2020, , 1.	1.7	12
722	Aqueous solubilization of hydrophobic tetrapyrrole macrocycles by attachment to an amphiphilic single-chain nanoparticle (SCNP). New Journal of Chemistry, 2020, 44, 21293-21308.	1.4	7
723	Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chemical Reviews, 2020, 120, 12357-12489.	23.0	299
724	Ionic Aggregationâ€Induced Emission: Bulky Hydrophobic Counterions Light Up Dyes in Polymeric Nanoparticles. Advanced Optical Materials, 2020, 8, 2000027.	3.6	18
725	In vitro Biological Tests as the First Tools To Validate Magnetic Nanotheranostics for Colorectal Cancer Models. ChemMedChem, 2020, 15, 1003-1017.	1.6	7
726	Regulatory Preparation of N/S Doped Carbon Quantum Dots and Their Applications as Fe(III) Ion Sensors. ChemistrySelect, 2020, 5, 5306-5311.	0.7	10
727	Microfluidic Synthesis of Luminescent and Plasmonic Nanoparticles: Fast, Efficient, and Dataâ€Rich. Advanced Materials Technologies, 2020, 5, .	3.0	49
728	Delivery of RNAi-Based Therapeutics for Bone Regeneration. Current Osteoporosis Reports, 2020, 18, 312-324.	1.5	17
729	Versatile Bioconjugation Strategies of PEG-Modified Upconversion Nanoparticles for Bioanalytical Applications. Biomacromolecules, 2020, 21, 4502-4513.	2.6	28
730	Development and application of a ratiometric nanosensor for measuring pH inside the gastrointestinal tract of zooplankton. Environmental Science: Nano, 2020, 7, 1652-1660.	2.2	7
731	Fluorescent nanoparticles for sensing. Frontiers of Nanoscience, 2020, 16, 117-149.	0.3	16
732	Nanomaterials for cosmeceuticals: nanomaterials-induced advancement in cosmetics, challenges, and opportunities. , 2020, , 79-108.		17

#	Article	IF	CITATIONS
733	Emerging technologies for profiling extracellular vesicle heterogeneity. Lab on A Chip, 2020, 20, 2423-2437.	3.1	54
734	TADF Dye-Loaded Nanoparticles for Fluorescence Live-Cell Imaging. Frontiers in Chemistry, 2020, 8, 404.	1.8	20
735	Organic/inorganic nanocomposites for cancer immunotherapy. Materials Chemistry Frontiers, 2020, 4, 2571-2609.	3.2	38
736	Fluorescent linear polyurea based on toluene diisocyanate: Easy preparation, broad emission and potential applications. Chemical Engineering Journal, 2020, 399, 125867.	6.6	36
737	Fluorescent nanomaterials combined with molecular imprinting polymer: synthesis, analytical applications, and challenges. Mikrochimica Acta, 2020, 187, 399.	2.5	26
738	Bifunctional Tm3+,Yb3+:GdVO4@SiO2 Core-Shell Nanoparticles in HeLa Cells: Upconversion Luminescence Nanothermometry in the First Biological Window and Biolabelling in the Visible. Nanomaterials, 2020, 10, 993.	1.9	27
739	Low Power High Purity Red Upconversion Emission and Multiple Temperature Sensing Behaviors in Yb ³⁺ ,Er ³⁺ Codoped Gd ₂ O ₃ Porous Nanorods. ACS Sustainable Chemistry and Engineering, 2020, 8, 9578-9588.	3.2	35
740	Monodisperse Core-Shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-GGGRGDSGGGY-NH2 Nanoparticles Excitable at 808 and 980 nm: Design, Surface Engineering, and Application in Life Sciences. Frontiers in Chemistry, 2020, 8, 497.	1.8	18
741	Synthesis, Structures, and Photoluminescence of Elongated Face-Centered-Cubic Ag ₁₄ Clusters Containing Lipoic Acid and Its Amide Analogue. Inorganic Chemistry, 2020, 59, 8836-8845.	1.9	7
742	Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics, 2020, 5, 27.	1.5	249
743	Peasecodâ€Like Hollow Upconversion Nanocrystals with Excellent Optical Thermometric Performance. Advanced Science, 2020, 7, 2000731.	5.6	16
744	Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Progress in Polymer Science, 2020, 107, 101278.		
		11.8	77
745	A 6-nm ultra-photostable DNA FluoroCube for fluorescence imaging. Nature Methods, 2020, 17, 437-441.	11.8 9.0	41
745 746			
	A 6-nm ultra-photostable DNA FluoroCube for fluorescence imaging. Nature Methods, 2020, 17, 437-441. Fluorescence Intensity Enhancement of Green Carbon Dots: Synthesis, Characterization and Cell	9.0	41
746	A 6-nm ultra-photostable DNA FluoroCube for fluorescence imaging. Nature Methods, 2020, 17, 437-441. Fluorescence Intensity Enhancement of Green Carbon Dots: Synthesis, Characterization and Cell Imaging. Photochemistry and Photobiology, 2020, 96, 1032-1040.	9.0	41 12
746 747	A 6-nm ultra-photostable DNA FluoroCube for fluorescence imaging. Nature Methods, 2020, 17, 437-441. Fluorescence Intensity Enhancement of Green Carbon Dots: Synthesis, Characterization and Cell Imaging. Photochemistry and Photobiology, 2020, 96, 1032-1040. Light sources for photonanotechnology., 2020, , 1-21. DNAzyme-functionalized porous carbon nanospheres serve as a fluorescent nanoprobe for imaging	9.0 1.3	41 12 2

#	Article	IF	Citations
751	Upconversion nanocrystals for near-infrared-controlled drug delivery. , 2020, , 345-371.		0
752	Aggregationâ€Induced Emission: Recent Advances in Materials and Biomedical Applications. Angewandte Chemie, 2020, 132, 9952-9970.	1.6	96
753	Aggregationâ€Induced Emission: Recent Advances in Materials and Biomedical Applications. Angewandte Chemie - International Edition, 2020, 59, 9868-9886.	7.2	483
754	Enantioselective Fluorescent Recognition of Free Amino Acids: Challenges and Opportunities. Angewandte Chemie, 2020, 132, 21998-22012.	1.6	18
755	Enantioselective Fluorescent Recognition of Free Amino Acids: Challenges and Opportunities. Angewandte Chemie - International Edition, 2020, 59, 21814-21828.	7.2	86
756	On the photophysics of electrochemically generated silver nanoclusters: spectroscopic and theoretical characterization. Physical Chemistry Chemical Physics, 2020, 22, 16813-16821.	1.3	7
757	Synthesis of carbon nitride quantum dots and biocompatibility evaluation using C. elegans as a model organism. Materials Today Communications, 2020, 25, 101383.	0.9	4
758	Characterising the size and shape of metallic nano-structures by their acoustic vibrations. Nanoscale, 2020, 12, 14230-14236.	2.8	5
759	<i>In situ</i> self-assembly of conjugated polyelectrolytes for cancer targeted imaging and photodynamic therapy. Biomaterials Science, 2020, 8, 2156-2163.	2.6	25
760	Nitrogen and sulfur co-doped carbon nanodots in living EA.hy926 and A549 cells: oxidative stress effect and mitochondria targeting. Journal of Materials Science, 2020, 55, 6093-6104.	1.7	19
761	A zipped-up tunable metal coordinated cationic polymer for nanomedicine. Journal of Materials Chemistry B, 2020, 8, 1350-1358.	2.9	4
762	Hydrophilic P(Am-CD-AMPS) microgel for visual detection and removal metal ions in aqueous solution. Applied Surface Science, 2020, 512, 145668.	3.1	14
763	Preparation, Cytotoxicity, and In Vitro Bioimaging of Water Soluble and Highly Fluorescent Palladium Nanoclusters. Bioengineering, 2020, 7, 20.	1.6	16
764	Lipophilic Red-Emitting Oligomeric Organic Dots for Moisture Detection and Cell Imaging. ACS Applied Nano Materials, 2020, 3, 1942-1949.	2.4	7
765	Luminescent Sulfur Quantum Dots for Colorimetric Discrimination of Multiple Metal Ions. ACS Applied Nano Materials, 2020, 3, 3044-3049.	2.4	66
766	Synthesis of MUC1 aptamer-stabilized gold nanoclusters for cell-specific imaging. Talanta, 2020, 212, 120796.	2.9	28
767	Amine decorated polystyrene nanobeads incorporating π-conjugated OPV chromophore for picric acid sensing in water. RSC Advances, 2020, 10, 6497-6502.	1.7	4
768	Polyaromatic hydrocarbon inner-structured carbon nanodots for interfacial enhancement of carbon fiber composite. RSC Advances, 2020, 10, 411-423.	1.7	1

#	Article	IF	Citations
769	Lightâ€Harvesting Nanoparticle Probes for FRETâ€Based Detection of Oligonucleotides with Singleâ€Molecule Sensitivity. Angewandte Chemie - International Edition, 2020, 59, 6811-6818.	7.2	75
770	Insights into the Luminescence Thermochromism of a Triarylboron Derivative: The Role of Intramolecular Group Interaction. Journal of Physical Chemistry A, 2020, 124, 889-897.	1.1	1
771	Lightâ€Harvesting Nanoparticle Probes for FRETâ€Based Detection of Oligonucleotides with Singleâ€Molecule Sensitivity. Angewandte Chemie, 2020, 132, 6878-6885.	1.6	21
772	Novel fluorescein polymer-based nanoparticles: facile and controllable one-pot synthesis, assembly, and immobilization of biomolecules for application in a highly sensitive biosensor. RSC Advances, 2020, 10, 2998-3004.	1.7	10
773	Dye-doped silica nanoparticles: synthesis, surface chemistry and bioapplications. Cancer Nanotechnology, 2020, 11, .	1.9	91
774	Twoâ€Photon Detection of Organotin Schiff Base Complexes in Cancer Cells. ChemistrySelect, 2020, 5, 1623-1627.	0.7	6
775	Synthesis of Poly-Amino Acid Ionic Liquid Up-Conversion Fluorescent Probe and its Application in Fe(II)/Fe(III) Speciation Analysis. Journal of Fluorescence, 2020, 30, 309-316.	1.3	5
776	Near-infrared-persistent luminescence/bioluminescence imaging tracking of transplanted mesenchymal stem cells in pulmonary fibrosis. Biomaterials Science, 2020, 8, 3095-3105.	2.6	11
777	Fluorescent Submicron-Sized Poly(heptafluoro-n-butyl methacrylate) Particles with Long-Term Stability. Molecules, 2020, 25, 2013.	1.7	2
778	Biology of Composts. Soil Biology, 2020, , .	0.6	4
779	Cellulose-Based Photoluminescent Nanocomposites. , 2020, , 117-170.		3
780	Carbon quantum dots: A bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. Journal of Photochemistry and Photobiology B: Biology, 2020, 206, 111864.	1.7	74
781	Small-Molecule Probe for Sensing Serum Albumin with Consequential Self-Assembly as a Fluorescent Organic Nanoparticle for Bioimaging and Drug-Delivery Applications. ACS Applied Bio Materials, 2020, 3, 3099-3113.	2.3	20
782	Amino-Functionalized Nitrogen-Doped Graphene-Quantum-Dot-Based Nanomaterials with Nitrogen and Amino-Functionalized Group Content Dependence for Highly Efficient Two-Photon Bioimaging. International Journal of Molecular Sciences, 2020, 21, 2939.	1.8	16
783	Optimized Multimetal Sensitized Phosphor for Enhanced Red Up-Conversion Luminescence by Machine Learning. ACS Combinatorial Science, 2020, 22, 285-296.	3.8	11
784	Phosphorescent Ir (III) complexes as cellular staining agents for biomedical molecular imaging. Coordination Chemistry Reviews, 2020, 416, 213344.	9.5	44
785	Imaging lipophilic regions in rodent brain tissue with halogenated BODIPY probes. Analyst, The, 2020, 145, 3809-3813.	1.7	3
786	Critical assessment of relevant methods in the field of biosensors with direct optical detection based on fibers and waveguides using plasmonic, resonance, and interference effects. Analytical and Bioanalytical Chemistry, 2020, 412, 3317-3349.	1.9	51

#	Article	IF	CITATIONS
787	Synergy between nanoparticles and breast cancer theranostics. , 2020, , 71-106.		2
788	Molecular imaging of inflammation - Current and emerging technologies for diagnosis and treatment. , 2020, 211, 107550.		45
789	Heavy metal sensors and sequestrating agents based on polyaromatic copolymers and hydrogels. Polymer International, 2021, 70, 59-72.	1.6	5
790	Fine Tuning of the HOMO–LUMO Gap of 6â€(Thiophenâ€2â€yl) indolizino[3,2â€ <i>c</i>]quinolines and their Selfâ€Assembly to Form Fluorescent Organic Nanoparticles: Rational Design and Theoretical Calculations. ChemPhotoChem, 2021, 5, 58-67.	1.5	2
791	Conversional fluorescent kiwi peel phenolic extracts: Sensing of Hg2+ and Cu2+, imaging of HeLa cells and their antioxidant activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 244, 118857.	2.0	13
792	Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opinion on Drug Delivery, 2021, 18, 205-227.	2.4	72
793	Cancer nanotheranostics in the second nearâ€infrared window. View, 2021, 2, 20200075.	2.7	29
794	Intracellular Selfâ€Assembly of Peptide Conjugates for Tumor Imaging and Therapy. Advanced Healthcare Materials, 2021, 10, e2001211.	3.9	53
795	Cardiovascular bioimaging of nitric oxide: Achievements, challenges, and the future. Medicinal Research Reviews, 2021, 41, 435-463.	5.0	21
796	Nanoscale optical voltage sensing in biological systems. Journal of Luminescence, 2021, 230, 117719.	1.5	3
797	â€~Lightâ€Up' AlEâ€Active Materials: Selfâ€Assembly, Molecular Recognition and Catalytic Applications. Chemical Record, 2021, 21, 240-256.	2.9	11
798	Rational design, synthesis, and application of silica/graphene-based nanocomposite: A review. Materials and Design, 2021, 198, 109367.	3.3	47
799	Trends in Microâ€∤Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Advanced Materials, 2021, 33, e2002047.	11.1	256
800	SERSTEM: An app for the statistical analysis of correlative SERS and TEM imaging and evaluation of SERS tags performance. Journal of Raman Spectroscopy, 2021, 52, 355-365.	1.2	9
801	Nanomedicine: future therapy for brain cancers. , 2021, , 37-74.		1
802	Microwave-assisted synthesis of multifunctional fluorescent carbon quantum dots from A4/B2 polyamidation monomer sets. Applied Surface Science, 2021, 542, 148471.	3.1	19
803	Functionalized Cellulose Nanocrystals for Cellular Labeling and Bioimaging. Biomacromolecules, 2021, 22, 454-466.	2.6	16
804	In vivo nano-biosensing element of red blood cell-mediated delivery. Biosensors and Bioelectronics, 2021, 175, 112845.	5.3	20

	Cı	CITATION REPORT	
#	Article	IF	CITATIONS
805	Femtosecond laser ablation of metal targets: The physical origin of the power law size distribution of nanoparticles. Optics and Laser Technology, 2021, 134, 106651.	2.2	6
806	Hyaluronan-Conjugated Carbon Quantum Dots for Bioimaging Use. ACS Applied Materials & Interfaces, 2021, 13, 277-286.	4.0	64
807	Biocompatible Multifunctional Theranostic Nanoprobe for Imaging and Chemotherapy in Solidâ€īumorâ€Bearing Mice. ChemPhotoChem, 2021, 5, 106-117.	1.5	0
808	Theranostic applications of stimulus-responsive systems based on carbon dots. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 117-130.	1.8	4
809	Functional nanocomposites: promising candidates for cancer diagnosis and treatment. , 2021, , 279-3	40.	4
810	Introduction to Nanomedicines: Basic Concept and Applications. , 2021, , 1-23.		Ο
811	Zr ⁴⁺ -based metal organic gel as a fluorescent "Turn on–off―sensing platform for selective detection and adsorption of CrO ₄ ^{2â^²} . Materials Chemistry Frontie 2021, 5, 1932-1941.		13
812	Nanoparticles in medical imaging. , 2021, , 175-210.		3
813	Energy transfer from fluorescein dye dispersed with CdS nanoparticles as evidenced by emission spectrum measurements. Materials Today: Proceedings, 2021, 42, 838-841.	0.9	0
814	Nanotechnology in Imaging Applications: An Overview. Nanotechnology in the Life Sciences, 2021, , 75-86.	0.4	1
815	Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate, 2021 114-132.	, 2, 5.2	133
816	Polymeric Systems Containing Supramolecular Coordination Complexes for Drug Delivery. Polymers, 2021, 13, 370.	2.0	9
817	Fluorescent Carbon Nano-onion as Bioimaging Probe. ACS Applied Bio Materials, 2021, 4, 252-266.	2.3	21
818	Rational Design of a Polymer-Based Ratiometric K ⁺ Indicator for High-Throughput Monitoring Intracellular K ⁺ Fluctuations. ACS Applied Bio Materials, 2021, 4, 1731-1739.	. 2.3	6
819	New up-conversion luminescence in molecular cyano-substituted naphthylsalophen lanthanide(<scp>iii</scp>) complexes. Chemical Communications, 2021, 57, 2551-2554.	2.2	12
820	POSS nanocomposites for biological applications. , 2021, , 449-470.		2
821	Diagnostic and Therapeutic Nanomedicine. Advances in Experimental Medicine and Biology, 2021, 13 401-447.	10, 0.8	7
822	The formation mechanism and chirality evolution of chiral carbon dots prepared <i>via</i> radical assisted synthesis at room temperature. Nanoscale, 2021, 13, 10478-10489.	2.8	13

#	Article	IF	CITATIONS
823	Synthesis and characterization of novel protein nanodots as drug delivery carriers with an enhanced biological efficacy of melatonin in breast cancer cells. RSC Advances, 2021, 11, 9076-9085.	1.7	7
824	Material and strategies used in oncology drug delivery. , 2021, , 47-62.		1
825	A facile combinatorial approach to construct a ratiometric fluorescent sensor: application for the real-time sensing of cellular pH changes. Chemical Science, 2021, 12, 8231-8240.	3.7	10
826	Categorization of Quantum Dots, Clusters, Nanoclusters, and Nanodots. Journal of Chemical Education, 2021, 98, 703-709.	1.1	22
827	Fabrication of fluorescent nanospheres by heating PEGylated tetratyrosine nanofibers. Scientific Reports, 2021, 11, 2470.	1.6	10
828	A facile fabrication of conjugated fluorescent nanoparticles and micro-scale patterned encryption via high resolution inkjet printing. Nanoscale, 2021, 13, 14337-14345.	2.8	6
829	Fluorescent probes for imaging bioactive species in subcellular organelles. Chemical Communications, 2021, 57, 12058-12073.	2.2	38
830	Green-synthesized nanoparticles for fluorescence bioimaging and diagnostic applications. , 2021, , 153-188.		1
831	Quaternized Starch-Based Composite Nanoparticles for siRNA Delivery to Tumors. ACS Applied Nano Materials, 2021, 4, 2218-2229.	2.4	6
832	Orthogonal Emissive Upconversion Nanoparticles: Material Design and Applications. Small, 2021, 17, e2004552.	5.2	35
833	Tunable fabrication of rice-like nanostructures aggregated into flowers of Alq3 with negligible photo-degradation for potential biomedical applications. Materials Chemistry and Physics, 2021, 259, 124080.	2.0	14
834	Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS Nano, 2021, 15, 2005-2037.	7.3	148
835	Oxygen-less Carbon Nanodots with an Absolute Quantum Yield of 80% for Display Applications. ACS Applied Nano Materials, 2021, 4, 2462-2469.	2.4	9
836	Luminescent Carbon Dots Synthesized by the Laser Ablation of Graphite in Polyethylenimine and Ethylenediamine. Materials, 2021, 14, 729.	1.3	58
837	Preparation and Formation Mechanism of Covalent–Noncovalent Forces Stabilizing Lignin Nanospheres and Their Application in Superhydrophobic and Carbon Materials. ACS Sustainable Chemistry and Engineering, 2021, 9, 3811-3820.	3.2	34
838	Bottomâ€Up Synthesis of Hexagonal Boron Nitride Nanoparticles with Intensity‣tabilized Quantum Emitters. Small, 2021, 17, e2008062.	5.2	13
839	Ultrabright Fluorescent Organic Nanoparticles Based on Smallâ€Molecule Ionic Isolation Lattices**. Angewandte Chemie - International Edition, 2021, 60, 9450-9458.	7.2	29
840	A Solventâ€free, Catalystâ€free Formal [3+3] Cycloaddition Dearomatization Strategy: Towards New Fluorophores for Biomolecules Labelling. ChemSusChem, 2021, 14, 1821-1824.	3.6	2

#	Article	IF	Citations
842	Twisted Intramolecular Charge Transfer—Aggregation-Induced Emission Fluorogen with Polymer Encapsulation-Enhanced Near-Infrared Emission for Bioimaging. CCS Chemistry, 2021, 3, 2084-2094.	4.6	16
843	Organic J-Aggregate Nanodots with Enhanced Light Absorption and Near-Unity Fluorescence Quantum Yield. Nano Letters, 2021, 21, 2840-2847.	4.5	16
844	Recent progress on lanthanide scintillators for soft Xâ€rayâ€ŧriggered bioimaging and deepâ€ŧissue theranostics. View, 2021, 2, 20200122.	2.7	16
845	Ultrabright Fluorescent Organic Nanoparticles Based on Smallâ€Molecule Ionic Isolation Lattices**. Angewandte Chemie, 2021, 133, 9536-9544.	1.6	2
846	Activable Multi-Modal Nanoprobes for Imaging Diagnosis and Therapy of Tumors. Frontiers in Chemistry, 2020, 8, 572471.	1.8	9
847	Application of Nanotechnology in Immunity against Infection. Coatings, 2021, 11, 430.	1.2	6
848	Bioimaging Based on Nucleic Acid Nanostructures. Chemical Research in Chinese Universities, 2021, 37, 823-828.	1.3	3
849	Shedding New Lights Into STED Microscopy: Emerging Nanoprobes for Imaging. Frontiers in Chemistry, 2021, 9, 641330.	1.8	7
850	Efficient Energy Funneling in Spatially Tailored Segmented Conjugated Block Copolymer Nanofiber–Quantum Dot or Rod Conjugates. Journal of the American Chemical Society, 2021, 143, 7032-7041.	6.6	25
851	Recent Advances in Polymeric Nanoparticles for Enhanced Fluorescence and Photoacoustic Imaging. Angewandte Chemie, 2021, 133, 17941-17953.	1.6	1
852	Recent Advances in Polymeric Nanoparticles for Enhanced Fluorescence and Photoacoustic Imaging. Angewandte Chemie - International Edition, 2021, 60, 17797-17809.	7.2	61
853	A Bottomâ€Up Approach to Redâ€Emitting Molecularâ€Based Nanoparticles with Natural Stealth Properties and their Use for Singleâ€Particle Tracking Deep in Brain Tissue. Advanced Materials, 2021, 33, e2006644.	11.1	10
854	Theranostic platforms for specific discrimination and selective killing of bacteria. Acta Biomaterialia, 2021, 125, 29-40.	4.1	26
855	Real-Time Imaging of Laser-Induced Nanowelding of Silver Nanoparticles in Solution. Journal of Physical Chemistry C, 2021, 125, 10422-10430.	1.5	5
856	Making Aggregation-Induced Emission Luminogen More Valuable by Gold: Enhancing Anticancer Efficacy by Suppressing Thioredoxin Reductase Activity. ACS Nano, 2021, 15, 9176-9185.	7.3	41
857	Softness Meets with Brightness: Dyeâ€Doped Multifunctional Fluorescent Polymer Particles via Microfluidics for Labeling. Advanced Optical Materials, 2021, 9, 2002219.	3.6	14
858	Self-Assembly of Lanthanide-Based Metallogel Nanoplates into Microcubic Blocks as Self-Calibrating Luminescent Methanol Sensors. ACS Applied Nano Materials, 2021, 4, 4735-4745.	2.4	16
859	Integrating photoluminescent nanomaterials with photonic nanostructures. Journal of Luminescence, 2021, 233, 117870.	1.5	10

#	Article	IF	CITATIONS
860	Recent Advances in Fluorescence Imaging of Traumatic Brain Injury in Animal Models. Frontiers in Molecular Biosciences, 2021, 8, 660993.	1.6	3
861	Barium yttrium fluoride based upconversion nanoparticles as dual mode image contrast agents. Materials Science and Engineering C, 2021, 124, 111937.	3.8	7
862	A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials, 2021, 11, 1448.	1.9	73
863	Emerging theranostic applications of carbon dots and its variants. View, 2022, 3, 20200089.	2.7	17
864	Enhanced Photoluminescence of Gold Nanoparticleâ€Quantum Dot Hybrids Confined in Hairy Polymer Nanofibers. ChemNanoMat, 2021, 7, 831-841.	1.5	5
865	Stability and Performance Study of Fluorescent Organosilica pH Nanosensors. Langmuir, 2021, 37, 6578-6587.	1.6	3
866	Hybrid nanomaterials-based biomedical phototheranostic platforms. Progress in Biomedical Engineering, 2021, 3, 032001.	2.8	0
867	Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduction and Targeted Therapy, 2021, 6, 185.	7.1	222
868	Enzyme-free amplified detection of cellular microRNA by light-harvesting fluorescent nanoparticle probes. Biosensors and Bioelectronics, 2021, 179, 113084.	5.3	29
869	Recent progress on biomedical applications of functionalized hollow hydroxyapatite microspheres. Ceramics International, 2021, 47, 13552-13571.	2.3	14
870	Active-Targeting Polymeric Dual Nanosensor for Ratiometrically Measuring Proton and Oxygen Concentrations in Mitochondria. Analytical Chemistry, 2021, 93, 8291-8299.	3.2	6
871	Microfluidic-assisted assembly of fluorescent self-healing gel particles toward dual-signal sensors. Journal of Materials Science, 2021, 56, 14832-14843.	1.7	4
872	Formulation of nanoparticle-based fluorescence dye for detection of excitable cell. Materials Today: Proceedings, 2021, , .	0.9	1
873	Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications. Biomedicines, 2021, 9, 756.	1.4	48
874	Development and application of several fluorescent probes in near infrared region. Dyes and Pigments, 2021, 190, 109284.	2.0	28
875	Photochemical Properties and Stability of BODIPY Dyes. International Journal of Molecular Sciences, 2021, 22, 6735.	1.8	17
876	Nonspecific Binding—Fundamental Concepts and Consequences for Biosensing Applications. Chemical Reviews, 2021, 121, 8095-8160.	23.0	113
877	Recent trends in the developments of analytical probes based on lanthanide-doped upconversion nanoparticles. TrAC - Trends in Analytical Chemistry, 2021, 139, 116256.	5.8	50

#	Article	IF	CITATIONS
878	Target specific aptamer-induced self-assembly of fluorescent graphene quantum dots on palladium nanoparticles for sensitive detection of tetracycline in raw milk. Food Chemistry, 2021, 346, 128893.	4.2	66
879	Fusogenic Viral Protein-Based Near-Infrared Active Nanocarriers for Biomedical Imaging. ACS Biomaterials Science and Engineering, 2021, 7, 3351-3360.	2.6	3
880	Nano-fluorophores prepared by polymerization-induced self-assembly and its application in cell imaging. Dyes and Pigments, 2021, 190, 109353.	2.0	4
881	Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews, 2021, 121, 9243-9358.	23.0	162
882	NIR absorbing dimeric aza-BODIPY dye with J-type aggregation and photothermal properties. Tetrahedron Letters, 2021, 76, 153216.	0.7	3
883	A redox-coupled carbon dots-MnO2 nanosheets based sensory platform for label-free and sensitive detection of E. coli. Sensors and Actuators B: Chemical, 2021, 339, 129918.	4.0	19
884	Bulky Barbiturates as Nonâ€Toxic Ionic Dye Insulators for Enhanced Emission in Polymeric Nanoparticles. Chemistry - A European Journal, 2021, 27, 12877-12883.	1.7	6
885	Microwave-Assisted Synthesis of Carbon Dot – Iron Oxide Nanoparticles for Fluorescence Imaging and Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 711534.	2.0	16
886	Rapid one-step in situ synthesis of carbon nanoparticles with cellulosic paper for biosensing. Sensors and Actuators B: Chemical, 2021, 339, 129849.	4.0	1
887	Size, geometry and mobility of protein assemblage regulate the kinetics of membrane wrapping on nanoparticles. Journal of Molecular Liquids, 2021, 333, 115990.	2.3	7
888	Fluorescent Materials for Monitoring Mitochondrial Biology. Materials, 2021, 14, 4180.	1.3	6
889	Monitoring of Fe (II) ions in living cells using a novel quinoline-derived fluorescent probe. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 255, 119729.	2.0	5
890	Metal Oxide Nanoparticles: Evidence of Adverse Effects on the Male Reproductive System. International Journal of Molecular Sciences, 2021, 22, 8061.	1.8	23
891	Practicable Applications of Aggregationâ€Induced Emission with Biomedical Perspective. Advanced Healthcare Materials, 2021, 10, e2100945.	3.9	10
892	Radio frequency plasma assisted surface modification of Fe3O4 nanoparticles using polyaniline/polypyrrole for bioimaging and magnetic hyperthermia applications. Journal of Materials Science: Materials in Medicine, 2021, 32, 108.	1.7	6
893	Light-Mediated Polymerization Induced by Semiconducting Nanomaterials: State-of-the-Art and Future Perspectives. ACS Polymers Au, 2021, 1, 76-99.	1.7	22
894	Commentary: Revisiting nanoparticle-assay interference: There's plenty of room at the bottom for misinterpretation. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2021, 255, 110601.	0.7	12
895	Green fluorescent carbon dots as targeting probes for LEDâ€dependent bacterial killing. Nano Select, 2022, 3, 662-672.	1.9	5

#	Article	IF	CITATIONS
896	Multifunctional theranostic nanoparticles for biomedical cancer treatments - A comprehensive review. Materials Science and Engineering C, 2021, 127, 112199.	3.8	27
897	Metal–Organic Framework Photonic Balls: Single Object Analysis for Local Thermal Probing. Advanced Materials, 2021, 33, e2104450.	11.1	29
899	Advances in the Methods for the Synthesis of Carbon Dots and Their Emerging Applications. Polymers, 2021, 13, 3190.	2.0	56
900	New Organic Materials Based on Multitask 2H-benzo[d]1,2,3-triazole Moiety. Chemosensors, 2021, 9, 267.	1.8	4
901	Luminescent Metalâ€Phenolic Networks for Multicolor Particle Labeling. Angewandte Chemie - International Edition, 2021, 60, 24968-24975.	7.2	27
902	Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. Small, 2021, 17, e2103127.	5.2	31
903	Gold Nanoparticle Interaction in Algae Enhancing Quantum Efficiency and Power Generation in Microphotosynthetic Power Cells. Advanced Energy and Sustainability Research, 2022, 3, 2100135.	2.8	8
904	Current State of Laser-Induced Fluorescence Spectroscopy for Designing Biochemical Sensors. Chemosensors, 2021, 9, 275.	1.8	18
905	ZnO nanomaterials: Green synthesis, toxicity evaluation and new insights in biomedical applications. Journal of Alloys and Compounds, 2021, 876, 160175.	2.8	116
906	Review: Nanomaterials for Reactive Oxygen Species Detection and Monitoring in Biological Environments. Frontiers in Chemistry, 2021, 9, 728717.	1.8	11
907	Carbon Quantum Dot-Incorporated Chitosan Hydrogel for Selective Sensing of Hg ²⁺ Ions: Synthesis, Characterization, and Density Functional Theory Calculation. ACS Omega, 2021, 6, 23504-23514.	1.6	26
908	Inorganic Nanomaterials with Intrinsic Singlet Oxygen Generation for Photodynamic Therapy. Advanced Science, 2021, 8, e2102587.	5.6	66
909	Analyzing the surface of functional nanomaterials—how to quantify the total and derivatizable number of functional groups and ligands. Mikrochimica Acta, 2021, 188, 321.	2.5	21
910	Luminescent Metal–Phenolic Networks for Multicolor Particle Labeling. Angewandte Chemie, 0, , .	1.6	4
911	Modeling metal oxide nanoparticle GABA interactions: Complexation between the Keggin POM and γ-aminobutyric acid in the solid state and in solution influenced by additional ligands. Inorganica Chimica Acta, 2021, 526, 120547.	1.2	1
912	Intracellular potassium ion fluorescent nanoprobes for functional analysis of hERG channel via bioimaging. Sensors and Actuators B: Chemical, 2021, 345, 130450.	4.0	6
913	Lifetime oxygen sensors based on block copolymer micelles and non-covalent human serum albumin adducts bearing phosphorescent near-infrared iridium(III) complex. European Polymer Journal, 2021, 159, 110761.	2.6	6
914	Engineering bionanoparticles for improved biosensing and bioimaging. Current Opinion in Biotechnology, 2021, 71, 41-48.	3.3	14

#	Article	IF	CITATIONS
915	Recent advances in sensing applications of metal nanoparticle/metal–organic framework composites. TrAC - Trends in Analytical Chemistry, 2021, 143, 116395.	5.8	50
916	Self-assembly of semiconductor quantum dots with porphyrin chromophores: Energy relaxation processes and biomedical applications. Journal of Molecular Structure, 2021, 1244, 131239.	1.8	9
917	The influence of the Er3+ dopant concentration in LaPO4:Nd3+, Er3+ on thermometric properties of ratiometric and kinetic-based luminescent thermometers operating in NIR II and NIR III optical windows. Physica B: Condensed Matter, 2021, 620, 413247.	1.3	9
918	Trends and challenges of nanotechnology in self-test at home. TrAC - Trends in Analytical Chemistry, 2021, 144, 116438.	5.8	7
919	A new strategy to fabricate multifunctional luminescent MOFs, extending their application range from pH sensing to amino acid information coding. Journal of Colloid and Interface Science, 2021, 601, 427-436.	5.0	17
920	Evaluation of europium-based carbon nanocomposites as bioimaging probes: Preparation, NMR relaxivities, binding effects over plasma proteins and cytotoxic aspects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127250.	2.3	2
921	Phase and morphology evolution of NaGdF4:Yb,Er nanocrystals with power density-dependent upconversion fluorescence via one-step microwave-assisted solvothermal method. Journal of Luminescence, 2021, 239, 118283.	1.5	1
922	Cysteamine derived N/S co-doped carbon dots for fluorescence imaging of pathogenic bacteria and human buccal epithelial cells. Materials Letters, 2021, 305, 130725.	1.3	8
923	Nitrogen-doped graphene quantum dots-MoS2 nanoflowers as a fluorescence sensor with an off/on switch for intracellular glutathione detection and fabrication of molecular logic gates. Microchemical Journal, 2021, 171, 106786.	2.3	9
924	Novel dual labelled nanoprobes for nanosafety studies: Quantification and imaging experiment of CuO nanoparticles in C. elegans. Chemosphere, 2022, 286, 131698.	4.2	4
925	Properties of silicon–carbon (CNTs/graphene) hybrid nanoparticles. , 2022, , 45-64.		0
926	Image-guided Biodistribution and pharmacokinetic studies of theranostics. , 2021, , 293-306.		0
927	CHAPTER 5. Inorganic Nanocrystals and Biointerfaces. RSC Nanoscience and Nanotechnology, 2021, , 161-208.	0.2	0
928	Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications. Biomaterials Science, 2021, 9, 5472-5483.	2.6	24
929	Membrane-curvature-mediated co-endocytosis of bystander and functional nanoparticles. Nanoscale, 2021, 13, 9626-9633.	2.8	12
930	Bioapplications Manipulated by AlEgens with Nonlinear Optical Effect. Chemical Research in Chinese Universities, 2021, 37, 25-37.	1.3	6
931	Donor-Acceptor Typed AIE Luminogens with Near-infrared Emission for Super-resolution Imaging. Chemical Research in Chinese Universities, 2021, 37, 143-149.	1.3	9
932	High Hydrogen Ion Concentration Causes a Blue Shift in Gold Nanoparticles. Crystals, 2021, 11, 132.	1.0	0

ARTICLE IF CITATIONS # <i>Arthrospira platensis</i> (Cyanobacteria) â€" a potential biofactory for fluoromagnetic nanoiron 933 0.6 3 production. Phycologia, 2021, 60, 62-72. Current trends and key considerations in the clinical translation of targeted fluorescent probes for 934 5.2 intraoperative navigation. Aggregate, 2021, 2, e23. 935 Fluoride Nanoparticles for Biomedical Applications., 2020, , 135-174. 5 IPN Dendrimers in Drug Delivery., 2020, , 143-181. 936 The Use of Nano-Polysaccharides in Biomedical Applications. Springer Series in Biomaterials Science 937 0.7 3 and Engineering, 2019, , 171-219. Hydrothermal synthesis of fluorescent silicon nanoparticles using maleic acid as surface-stabilizing ligands. Journal of Materials Science, 2018, 53, 2443-2452. 1.7 A pH-sensitive fluorescent protein sensor to follow the pathway of calcium phosphate nanoparticles 939 4.1 25 into cells. Acta Biomaterialia, 2020, 111, 406-417. Advanced hybrid nanomaterials for biomedical applications. Progress in Materials Science, 2020, 114, 940 16.0 140 100686. Rhodamine Conjugated Gelatin Methacryloyl Nanoparticles for Stable Cell Imaging. ACS Applied Bio 941 2.3 12 Materials, 2020, 3, 6908-6918. Highly photostable wide-dynamic-range pH sensitive semiconducting polymer dots enabled by 942 48 dendronizing the near-IR emitters. Chemical Science, 2017, 8, 7236-7245. Silica-coated phosphorescent nanoprobes for selective cell targeting and dynamic bioimaging of 943 2.2 3 pathogen–host cell interactions. Chemical Communications, 2020, 56, 6989-6992. Lowâ€temperature oxidation of metal nanoparticles obtained by chemical dispersion. Micro and Nano 944 0.6 Letters, 2020, 15, 461-464. Unveiling the role of short-range exact-like exchange in the optimally tuned range-separated hybrids 945 1.2 8 for fluorescence lifetime modeling. Journal of Chemical Physics, 2020, 152, 204301. Unmodified Rose Bengal photosensitizer conjugated with NaYF₄:Yb,Er upconverting 946 1.3 nanoparticles for efficient photodynamic therapy. Nanotechnology, 2020, 31, 465101 Color Tuning of Biomass-Derived Carbon Nanodots by Reaction Temperature Toward White 948 0.54 Light-Emitting Diodes. Nano, 2020, 15, 2050159. New generation of oxide-based nanoparticles for the applications in early cancer detection and 949 diagnostics. Nanotechnology Reviews, 2020, 9, 274-302. Fluorescence Detection of Zinc Oxide Nanoparticles in Water Contamination Analysis based on 950 0.7 9 Surface Reactivity with Porphyrin. AIMS Environmental Science, 2018, 5, 67-77. Synergism at the Nanoscale. Advances in Chemical and Materials Engineering Book Series, 2016, , 42-77.

#	Article	IF	CITATIONS
952	Red, White and Blue Light Emission from Europium Doped Al2O3 Confined into a Silica Matrix. Open Journal of Applied Sciences, 2018, 08, 338-345.	0.2	5
953	Synthesis, Properties and Applications of Luminescent Carbon Dots. Indian Institute of Metals Series, 2021, , 421-460.	0.2	2
954	Nanotechnology Application and Intellectual Property Right Prospects of Mammalian Cell Culture. Biochemistry, 0, , .	0.8	1
955	Biomedical Applications of Chinese Herb-Synthesized Silver Nanoparticles by Phytonanotechnology. Nanomaterials, 2021, 11, 2757.	1.9	18
956	Open-Source Fluorescence Spectrometer for Noncontact Scientific Research and Education. Journal of Chemical Education, 0, , .	1.1	7
957	A novel formulation of theranostic nanomedicine for targeting drug delivery to gastrointestinal tract cancer. Cancer Nanotechnology, 2021, 12, .	1.9	9
958	Nipecotic-Acid-Tethered, Naphthalene-Diimide-Based, Orange-Emitting Organic Nanoparticles as Targeted Delivery Vehicle and Diagnostic Probe toward GABA _A -Receptor-Enriched Cancer Cells. ACS Applied Bio Materials, 2021, 4, 7563-7577.	2.3	5
959	Lanthanideâ€based bulky counterions against aggregationâ€caused quenching of dyes in fluorescent polymeric nanoparticles. Aggregate, 2022, 3, e130.	5.2	10
960	A Triphenylphosphonium Functionalized <scp>AIE</scp> Conjugated Macrocyclic Tetramaleimide for Mitochondrialâ€ŧargeting Bioimaging. Chinese Journal of Chemistry, 2022, 40, 39-45.	2.6	12
961	Endowing AIE with Extraordinary Potential: A New Au(I)â€Containing AIEgen for Bimodal Bioimagingâ€Guided Multimodal Synergistic Cancer Therapy. Advanced Functional Materials, 2022, 32, 2108199.	7.8	9
962	Responsive Carbonized Polymer Dots for Optical Super-resolution and Fluorescence Lifetime Imaging of Nucleic Acids in Living Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 50733-50743.	4.0	18
963	Carbon Quantum Dots as Potential Drug Carriers. Engineering and Protection of Environment, 2016, 19, 277-288.	0.3	0
964	A Mini Review of Methods for Acquiring Genomic/Biological Information using Fluorescent Signal: Current Status and Future Prospects. IEEJ Transactions on Electronics, Information and Systems, 2017, 137, 552-560.	0.1	0
966	Biocompatible Er, Yb co-doped fluoroapatite upconversion nanoparticles for imaging applications. , 2017, , .		0
967	Loading Efficiency of Polymersomes with Contrast Agents and their Intracellular Delivery: Quantum Dots Versus Organic Dyes. Anticancer Research, 2018, 38, 825-831.	0.5	1
968	FastFLIM, the all-in-one engine for measuring photoluminescence lifetime of 100 picoseconds to 100 milliseconds. , 2018, , .		3
970	Nano Drug Delivery Systems for Space Applications. , 2019, , 1-22.		0
971	Translational Nanodiagnostics for InÂVivo Cancer Detection. Bioanalysis, 2019, , 133-162.	0.1	1

#	Article	IF	CITATIONS
972	Synthesis of submicron-dispersed carbon phases in water by Nd:YAG laser ablation of graphite. , 2019, , .		0
973	A Novel Preparation of Blankophor R Nanoparticles by Reverse Microemulsion Method. Polycyclic Aromatic Compounds, 2020, 40, 1595-1605.	1.4	1
976	Application of Nanotechnology to Research on the Microbiology of Composting. Soil Biology, 2020, , 203-214.	0.6	0
977	Water-Soluble Fullerenol with Hydroxyl Group Dependence for Efficient Two-Photon Excited Photodynamic Inactivation of Infectious Microbes. Nanoscale Research Letters, 2020, 15, 99.	3.1	5
979	Targeted design of green carbon dot-CA-125 aptamer conjugate for the fluorescence imaging of ovarian cancer cell. Cell Biochemistry and Biophysics, 2022, 80, 75-88.	0.9	11
980	CRISPR/Cas-powered nanobiosensors for diagnostics. Biosensors and Bioelectronics, 2022, 197, 113732.	5.3	64
981	Design principles and biological applications of red-emissive two-photon carbon dots. Communications Materials, 2021, 2, .	2.9	29
982	Luminescent Nanomaterials Doped with Rare Earth Ions and Prospects for Their Biomedical Applications (A Review). Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 2050-2068.	0.2	6
983	Rethinking resolution estimation in fluorescence microscopy: from theoretical resolution criteria to super-resolution microscopy. Science China Life Sciences, 2020, 63, 1776-1785.	2.3	7
984	Evaluation of Neuroimaging Findings of Central Nervous System Complications in Heart Transplant Recipients. Experimental and Clinical Transplantation, 2020, 18, 814-822.	0.2	1
985	Fluorescent Nanotechnology: An Evolution in Optical Sensors. Current Analytical Chemistry, 2022, 18, 176-185.	0.6	7
986	Development of metal enhanced fluorescent nanomaterials featuring gold nanocubes in proximity to carbon nanodots. Dyes and Pigments, 2022, 197, 109896.	2.0	3
987	Rare earth-based materials for bone regeneration: Breakthroughs and advantages. Coordination Chemistry Reviews, 2022, 450, 214236.	9.5	23
988	Critical Overview of the Subject: Current Scenario and Future Prospects. , 2020, , 185-203.		0
989	Conjugated Polymers and Polymer Dots for Cell Imaging. , 2020, , 155-180.		3
990	The Essence of Electrochemical Measurements on Corrosion Characterization and Electrochemistry Application. Engineering Materials, 2020, , 39-64.	0.3	Ο
991	Tumor Diagnosis Patterns. , 2020, , 87-133.		0
992	Tunable fluorescent carbon dots from biowaste as fluorescence ink and imaging human normal and cancer cells. Environmental Research, 2022, 204, 112365.	3.7	78

#	Article	IF	CITATIONS
993	Small Molecular Prodrug Amphiphile Self-Assembled AIE Dots for Cancer Theranostics. Frontiers in Bioengineering and Biotechnology, 2020, 8, 903.	2.0	3
994	Aggregation induced emission materials for tissue imaging. Progress in Molecular Biology and Translational Science, 2021, 185, 1-18.	0.9	0
995	Wireless Network of Silver Film Lysozyme Aptasensor Based on Fractal Measurement. Security and Communication Networks, 2021, 2021, 1-9.	1.0	3
996	Hyperbranched poly(ester ether)s as an amplified fluorescence sensor for selective and sensitive Fe ³⁺ detection and bioimaging. Journal of Applied Polymer Science, 2022, 139, .	1.3	7
997	Colorimetric Picomolar-Level Determination of L-Cysteine with Fabricated N, Fe-Codoped Carbon Dots as a Peroxidase Mimic. Analytical Letters, 0, , 1-15.	1.0	1
998	Synthesis and Luminescent Properties of Carbon Nanodots Dispersed in Nanostructured Silicas. Nanomaterials, 2021, 11, 3267.	1.9	4
999	Near-Infrared Emissive Lanthanide Metal–Organic Frameworks for Targeted Biological Imaging and pH-Controlled Chemotherapy. ACS Applied Materials & Interfaces, 2021, 13, 59164-59173.	4.0	25
1000	Selfâ€Assembly of Upconversion Nanoparticles Based Materials and Their Emerging Applications. Small, 2022, 18, e2103241.	5.2	17
1001	Hydrolyzation-Triggered Ultralong Room-Temperature Phosphorescence in Biobased Nonconjugated Polymers. ACS Applied Materials & Interfaces, 2021, 13, 59320-59328.	4.0	20
1002	Magnetic and Fluorescent Nanogels for Nanomedicine. Gels Horizons: From Science To Smart Materials, 2021, , 73-105.	0.3	1
1003	External stimuli-responsive nanomedicine for cancer immunotherapy. , 2021, , .		0
1004	Benzyl-rich ligand engineering of the photostability of atomically precise gold nanoclusters. Chemical Communications, 2022, , .	2.2	1
1005	Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomedicine and Pharmacotherapy, 2022, 146, 112530.	2.5	41
1006	Amino-functionalized nitrogen-doped graphene quantum dots and silver-graphene based nanocomposites: Ultrafast charge transfer and a proof-of-concept study for bioimaging applications. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113741.	2.0	10
1007	Nanoparticle and surfactant controlled switching between proton transfer and charge transfer reaction coordinates. Physical Chemistry Chemical Physics, 2022, , .	1.3	1
1008	Two-Photon Fluorescent Nanomaterials and Their Applications in Biomedicine. Journal of Biomedical Nanotechnology, 2021, 17, 509-528.	0.5	24
1009	Lignin-Based CdS Dots as Multifunctional Platforms for Sensing and Wearable Photodynamic Coatings. ACS Applied Nano Materials, 2022, 5, 2748-2761.	2.4	12
1010	Fluorescence Molecular Targeting of Colon Cancer to Visualize the Invisible. Cells, 2022, 11, 249.	1.8	14

#	Article	IF	CITATIONS
1011	Lightâ€Harvesting Fluorescent Spherical Nucleic Acids Selfâ€Assembled from a DNAâ€Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angewandte Chemie - International Edition, 2022, 61,	7.2	25
1012	Hairpin oligosensor using SiQDs: Förster resonance energy transfer study and application for miRNA-21 detection. Analytical and Bioanalytical Chemistry, 2022, 414, 2505-2512.	1.9	9
1013	Red, green, and blue light-emitting carbon dots prepared from gallic acid for white light-emitting diode applications. Nanoscale Advances, 2021, 4, 14-18.	2.2	10
1014	Lightâ€Harvesting Fluorescent Spherical Nucleic Acids Selfâ€Assembled from a DNAâ€Grafted Conjugated Polymer for Amplified Detection of Nucleic Acids. Angewandte Chemie, 0, , .	1.6	0
1015	Mitochondrial structural variations in the process of mitophagy. Journal of Biophotonics, 2022, 15, e202200006.	1.1	3
1016	Kinetically stable sub-50 nm fluorescent block copolymer nanoparticles <i>via</i> photomediated RAFT dispersion polymerization for cellular imaging. Nanoscale, 2022, 14, 534-545.	2.8	5
1017	Multifaceted Approaches to Engineer Fluorescence in Nanomaterials via a Focused Laser Beam. Light Advanced Manufacturing, 2022, 3, 1.	2.2	6
1018	Integration of Au Nanosheets and GdOF:Yb,Er for NIR-I and NIR-II Light-Activated Synergistic Theranostics. ACS Applied Materials & Interfaces, 2022, 14, 3809-3824.	4.0	13
1019	What are upconversion nanophosphors: Basic concepts and mechanisms. , 2022, , 19-48.		0
1020	Nanobiomaterials for bioimaging. , 2022, , 189-234.		1
1020 1021	Nanobiomaterials for bioimaging. , 2022, , 189-234. Narrowâ€bandwidth emissive carbon dots: A rising star in the fluorescent material family. , 2022, 4, 88-114.		1 49
	Narrowâ€bandwidth emissive carbon dots: A rising star in the fluorescent material family. , 2022, 4,	1.9	
1021	Narrowâ€bandwidth emissive carbon dots: A rising star in the fluorescent material family. , 2022, 4, 88-114. Optical and Physicochemical Characterizations of a Cellulosic/CdSe-QDs@S-DAB5 Film. Nanomaterials,	1.9 3.2	49
1021 1022	Narrowâ€bandwidth emissive carbon dots: A rising star in the fluorescent material family. , 2022, 4, 88-114. Optical and Physicochemical Characterizations of a Cellulosic/CdSe-QDs@S-DAB5 Film. Nanomaterials, 2022, 12, 484. Shape-controlled synthesis of zinc nanostructures mediating macromolecules for biomedical		49 4
1021 1022 1023	Narrowâ€bandwidth emissive carbon dots: A rising star in the fluorescent material family. , 2022, 4, 88-114. Optical and Physicochemical Characterizations of a Cellulosic/CdSe-QDs@S-DAB5 Film. Nanomaterials, 2022, 12, 484. Shape-controlled synthesis of zinc nanostructures mediating macromolecules for biomedical applications. Biomaterials Research, 2022, 26, 4. Microporousâ€Ceriaâ€Wrapped Gold Nanoparticles for Conductometric and SERS Dual Monitoring of	3.2	49 4 29
1021 1022 1023 1024	Narrowâ€bandwidth emissive carbon dots: A rising star in the fluorescent material family. , 2022, 4, 88-114. Optical and Physicochemical Characterizations of a Cellulosic/CdSe-QDs@S-DAB5 Film. Nanomaterials, 2022, 12, 484. Shape-controlled synthesis of zinc nanostructures mediating macromolecules for biomedical applications. Biomaterials Research, 2022, 26, 4. Microporousâ€Ceriaâ€Wrapped Gold Nanoparticles for Conductometric and SERS Dual Monitoring of Hazardous Gases at Room Temperature. Advanced Materials Interfaces, 2022, 9, . Upconversion-luminescent optical fiber probe for in situ tyrosinase monitoring. Sensors and	3.2 1.9	49 4 29 5
1021 1022 1023 1024 1025	Narrowâ€bandwidth emissive carbon dots: A rising star in the fluorescent material family. , 2022, 4, 88-114. Optical and Physicochemical Characterizations of a Cellulosic/CdSe-QDs@S-DAB5 Film. Nanomaterials, 2022, 12, 484. Shape-controlled synthesis of zinc nanostructures mediating macromolecules for biomedical applications. Biomaterials Research, 2022, 26, 4. Microporousâ€Ceriaâ€Wrapped Gold Nanoparticles for Conductometric and SERS Dual Monitoring of Hazardous Gases at Room Temperature. Advanced Materials Interfaces, 2022, 9, . Upconversion-luminescent optical fiber probe for in situ tyrosinase monitoring. Sensors and Actuators B: Chemical, 2022, 358, 131474. A Siâ€CdTe Composite Quantum Dots Probe with Dualâ€Wavelength Emission for Sensitively Monitoring	3.2 1.9 4.0	49 4 29 5 5

ARTICLE IF CITATIONS Microwave-Mediated Synthesis of Near-Infrared-Emitting Silver Ion-Modified Gold Nanoclusters for Ratiometric Sensing of Hydrosulfide in Environmental Water and Hydrogen Sulfide in Live Cells. ACS 1029 3.2 23 Sustainable Chemistry and Engineering, 2022, 10, 2461-2472. A spectrofluorometric analysis to evaluate transcutaneous biodistribution of fluorescent 0.6 nanoparticulate gel formulations. European Journal of Histochemistry, 2022, 66, . Detection of Pathogens Using Graphene Quantum Dots and Gold Nanoclusters on Paper-Based 1031 0.4 0 Analytical Devices. SSRN Electronic Journal, 0, , . The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chemical 168 Society Reviews, 2022, 51, 1983-2030. Nano Drug Delivery Systems for Space Applications., 2022, , 113-134. 1033 1 Progress and perspectives: fluorescent to long-lived emissive multifunctional probes for 1034 2.7 intracellular sensing and imaging. Journal of Materials Chemistry C, 2022, 10, 6141-6195. Highly selective NIR fluorescent probe for acetylcholinesterase and its application in pesticide 1035 4.8 13 residues detection. Chinese Chemical Letters, 2022, 33, 4233-4237. Shell-Isolated Assembly of Atomically Precise Nanoclusters on Gold Nanorods for Integrated 1036 1.2 Plasmonic-Luminescent Nanocomposites. Journal of Physical Chemistry B, 2022, 126, 1842-1851. Development and application of Diels-Alder adducts displaying AIE properties. Cell Reports Physical 1037 2.8 5 Science, 2022, 3, 100766. Luminescence-Tunable ZnS–AgInS₂ Nanocrystals for Cancer Cell Imaging and 2.3 Photodynamic Therapy. ACS Applied Bio Materials, 2022, 5, 1230-1238. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. 1039 5.560 Nature Protocols, 2022, 17, 1028-1072. The Pursuit of Shortwave Infrared-Emitting Nanoparticles with Bright Fluorescence through Molecular Design and Excited-State Engineering of Molecular Aggregates. ACS Nanoscience Au, 2022, 1040 2,253-283. Long-Term Fluorescence Behavior of CdSe/ZnS Quantum Dots on Various Planar Chromatographic 1041 1.9 0 Stationary Phases. Nanomaterials, 2022, 12, 745. Deposition of Lead Phosphate by Lead-Tolerant Bacteria Isolated from Fresh Water near an Abandoned 1042 1.8 Mine. International Journal of Molecular Sciences, 2022, 23, 2483. Synthesis, characterization, photophysical, lipophilicity, and in vitro fluorescence studies of mono-, di-, and trinuclear Ru(II) polypyridyl complexes of pyridinyl benzimidazole derivatives. Journal of Biological Inorganic Chemistry, 2022, 27, 357-372. 1043 1.1 1 Magnetic Nano-Platform Enhanced iPSC-Derived Trabecular Meshwork Delivery and Tracking 1044 Efficiency. International Journal of Nanomedicine, 2022, Volume 17, 1285-1307. CD44-Targeted Nanocarrier for Cancer Therapy. Frontiers in Pharmacology, 2021, 12, 800481. 1045 1.6 41 Large and Small Solids: A Journey Through Inorganic Chemistry. Zeitschrift Fur Anorganische Und 1047 Allgemeine Chemie, 0, , .

#	Article	IF	CITATIONS
1048	Optically engineered ZnO Nanoparticles: Excitable at visible wavelength and lowered cytotoxicity towards bioimaging applications. Applied Surface Science, 2022, 592, 153303.	3.1	10
1049	Nanoâ€enzyme of Ni0.5Fe0.5S2 Mediated Synergetic Antitumor Treatment. ChemNanoMat, 0, , .	1.5	1
1050	Green-synthesized, pH-stable and biocompatible carbon nanosensor for Fe3+: An experimental and computational study. Heliyon, 2022, 8, e09259.	1.4	8
1051	Ultrafast Collective Excited-State Dynamics of a Virus-Supported Fluorophore Antenna. Journal of Physical Chemistry Letters, 2022, 13, 3237-3243.	2.1	2
1052	Advances in protein analysis in single live cells: Principle, instrumentation and applications. TrAC - Trends in Analytical Chemistry, 2022, 152, 116619.	5.8	6
1053	Designing inorganic nanoparticles into computed tomography and magnetic resonance (CT/MR) imaging-guidable photomedicines. Materials Today Nano, 2022, 18, 100187.	2.3	8
1054	Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coordination Chemistry Reviews, 2022, 460, 214486.	9.5	39
1055	One-step gold nanoparticle size-shift assay using synthetic binding proteins and dynamic light scattering. Sensors and Actuators B: Chemical, 2022, 361, 131709.	4.0	4
1056	Detection of pathogens using graphene quantum dots and gold nanoclusters on paper-based analytical devices. Sensors and Actuators B: Chemical, 2022, 363, 131824.	4.0	7
1057	Inorganic Nanomaterial for Biomedical Imaging of Brain Diseases. Molecules, 2021, 26, 7340.	1.7	8
1058	Water-Soluble Luminescent Silicon Nanocrystals by Plasma-Induced Acrylic Acid Grafting and PEGylation. ACS Applied Bio Materials, 2022, 5, 105-112.	2.3	5
1059	Pre- and Postfunctionalization of Dye-Loaded Polymeric Nanoparticles for Preparation of FRET-Based Nanoprobes. ACS Applied Polymer Materials, 2022, 4, 44-53.	2.0	4
1060	Amplified Fluorescence <i>in Situ</i> Hybridization by Small and Bright Dye-Loaded Polymeric Nanoparticles. ACS Nano, 2022, 16, 1381-1394.	7.3	11
1061	Antibacterial Nanoparticles with Natural Photosensitizers Extracted from Spinach Leaves. ACS Omega, 2022, 7, 1505-1513.	1.6	3
1062	Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An upâ€ŧoâ€date review. IET Nanobiotechnology, 2022, 16, 171-189.	1.9	27
1063	Dark-Field Microscopic Study of Cellular Uptake of Carbon Nanodots: Nuclear Penetrability. Molecules, 2022, 27, 2437.	1.7	5
1064	Temperature elevation detection in migrating cells. , 2022, 1, 1085.		2
1065	FRET-mediated quenching of BODIPY fluorescent nanoparticles by methylene blue and its application to bacterial imaging. Photochemical and Photobiological Sciences, 2022, , 1.	1.6	0

		CITATION REPORT		
#	Article		IF	CITATIONS
1066	Incorporation of Perovskite Nanocrystals into Polymer Matrix for Enhanced Stability in Bic Media: <i>In Vitro</i> and <i>In Vivo</i> Studies. ACS Applied Bio Materials, 2022, 5, 241		2.3	6
1067	Bioinspired materials: Physical properties governed by biological refolding. Applied Physics 2022, 9, .	Reviews,	5.5	4
1072	Composition, thickness, and homogeneity of the coating of core–shell nanoparticlesâ€ limits, and challenges of X-ray photoelectron spectroscopy. Analytical and Bioanalytical Cl 2022, , 1.	'possibilities, nemistry,	1.9	3
1073	Long Non-Coding RNAs in Pancreatic Cancer: Biologic Functions, Mechanisms, and Clinica Significance. Cancers, 2022, 14, 2115.	l	1.7	12
1074	Synthesis of fluorescent polystyrene nanoparticles: a reproducible and scalable method. ,	0, 4, e22.		1
1075	Quantum Chemical Characterization and Design of Quantum Dots for Sensing Application Physical Chemistry A, 2022, 126, 2899-2908.	ns. Journal of	1.1	11
1076	Airâ€Stable Ultraâ€Flexible Organic Photonic System for Cardiovascular Monitoring. Adva Technologies, 2022, 7, .	nced Materials	3.0	5
1077	Fluorescent labeling as a strategy to evaluate uptake and transport of polymeric nanopart plants. Advances in Colloid and Interface Science, 2022, 305, 102695.	icles in	7.0	9
1078	Sol–Gel-Derived Biodegradable Er-Doped ZnO/Polyethylene Glycol Nanoparticles for Cel Applied Nano Materials, 2022, 5, 7103-7112.	l Imaging. ACS	2.4	7
1079	Polymeric carbon nitride-based materials: Rising stars in bioimaging. Biosensors and Bioele 2022, 211, 114370.	ectronics,	5.3	7
1080	Specific Tumor Cell Detection by a Metabolically Targeted Aggregation-Induced Emission- Nanoprobe. ACS Omega, 2022, 7, 18073-18084.	Based Gold	1.6	2
1081	Proteinâ€Mimicking Nanoparticles in Biosystems. Advanced Materials, 2022, 34, e220156	52.	11.1	17
1083	Long-term fate tracking and quantitative analyzing of nanoparticles in stem cells with brig microscopy. Nano Today, 2022, 44, 101506.	;ht-field	6.2	3
1084	Conjugated polymer-based luminescent probes for ratiometric detection of biomolecules. Materials Chemistry B, 2022, 10, 7309-7327.	Journal of	2.9	8
1085	Biological aspects of polymer nanocomposites. , 2022, , 49-71.			0
1086	Near-infrared photocatalysis based on upconversion nanomaterials. Chinese Physics B, 20	22, 31, 108201.	0.7	3
1088	Engineering Metal–Organic Framework Hybrid AlEgens with Tumor-Activated Accumula Emission for the Image-Guided GSH Depletion ROS Therapy. ACS Applied Materials & 14, 29599-29612.		4.0	18
1089	Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor. Scier Reports, 2022, 12, .	tific	1.6	11

#	Article	IF	CITATIONS
1090	Nanoparticleâ€assisted, imageâ€guided laser interstitial thermal therapy for cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	4
1091	Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies. Analytical Chemistry, 2022, 94, 9656-9664.	3.2	13
1092	Effect of Graphene/Spherical Graphite Ratio on the Properties of PLA/TPU Composites. Polymers, 2022, 14, 2538.	2.0	10
1093	Interfacial charge changes induce the responsive behavior of two analytes based on novel carbon nanomaterials. Surfaces and Interfaces, 2022, 32, 102112.	1.5	0
1094	Illuminating metal oxides containing luminescent probes for personalized medicine. , 2022, , 339-395.		1
1095	Fluorescent Nanoparticles for Super-Resolution Imaging. Chemical Reviews, 2022, 122, 12495-12543.	23.0	82
1096	Facile Conjugatedâ€Polymerâ€Based Flexible Lighting Fabrication and Microdeformation Monitoring. Advanced Photonics Research, 0, , 2200030.	1.7	0
1097	Luminescence-Sensitive Surfaces Bearing Ratiometric Nanoparticles for Bacteria Growth Detection. ACS Applied Polymer Materials, 0, , .	2.0	1
1098	Incorporation of Fluorescent Fluorinated Methacrylate Nano-Sized Particles into Chitosan Matrix Formed as a Membranes or Beads. Polymers, 2022, 14, 2750.	2.0	3
1099	Down/up-conversion dual-mode ratiometric fluorescence imprinted sensor embedded with metal-organic frameworks for dual-channel multi-emission multiplexed visual detection of thiamphenicol. Environmental Pollution, 2022, 309, 119762.	3.7	18
1100	Highly emissive perylene diimide-based bowtie-shaped metallacycles. Chinese Chemical Letters, 2023, 34, 107688.	4.8	4
1101	Facile Access to Farâ€Red Fluorescent Probes with Throughâ€Space Chargeâ€Transfer Effects for In Vivo Twoâ€Photon Microscopy of the Mouse Cerebrovascular System. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
1102	Advances in Noble-Metal Nanoparticle-Based Fluorescence Detection of Organophosphorus Chemical Warfare Agents. ACS Omega, 2022, 7, 27079-27089.	1.6	2
1103	Facile Access to Farâ€Red Fluorescent Probes with Throughâ€5pace Charge Transfer Effect for In Vivo Twoâ€Photon Microscopy of Mouse Cerebrovascular System. Angewandte Chemie, 0, , .	1.6	1
1104	Photomodulated cryogenic temperature sensing through a photochromic reaction in Na _{0.5} Bi _{2.5} Ta ₂ O ₉ : Er/Yb multicolour upconversion. Optics Express, 2023, 31, 7047.	1.7	6
1105	Bioactive nutraceutical ligands and their efficiency to chelate elemental iron of varying dynamic oxidation states to mitigate associated clinical conditions. Critical Reviews in Food Science and Nutrition, 2024, 64, 517-543.	5.4	1
1106	Construction of Co,N-Coordinated Carbon Dots for Efficient Oxygen Reduction Reaction. Molecules, 2022, 27, 5021.	1.7	12
1107	Effects of Ligands on Synthesis and Surfaceâ€Engineering of Noble Metal Nanocrystals for Electrocatalysis. ChemElectroChem, 2022, 9, .	1.7	2

#	Article	IF	CITATIONS
1108	Highly sensitive and selective detection of free bilirubin using blue emitting graphene quantum dots (GQDs). Journal of Chemical Sciences, 2022, 134, .	0.7	6
1109	Surface Plasmon-Enhanced NIR-II Fluorescence in a Multilayer Nanoprobe for Through-Skull Mouse Brain Imaging. ACS Applied Materials & Interfaces, 2022, 14, 38575-38583.	4.0	10
1111	Red-emitting polyaniline-based nanoparticle probe for pH-sensitive fluorescence imaging. , 2022, 140, 213088.		2
1112	Single layer synthesis of silver nanoparticles with controlled filling fraction and average particle size. Optical Materials, 2022, 132, 112761.	1.7	3
1113	Self-fluorescence property of octa-arginine functionalized hydroxyapatite nanoparticles aids in studying their intracellular fate in R1 ESCs. Biochemical and Biophysical Research Communications, 2022, 627, 21-29.	1.0	1
1114	Microgels based on 0D-3D carbon materials: Synthetic techniques, properties, applications, and challenges. Chemosphere, 2022, 307, 135981.	4.2	4
1115	Biogenesis, classification, and role of LncRNAs in tumor angiogenesis: A focus on tumor and its neighbouring cells, and interaction with miRNAs. Process Biochemistry, 2022, 122, 347-355.	1.8	3
1116	In vitro and in vivo toxicity of metal nanoparticles and their drug delivery applications. , 2022, , 367-421.		0
1117	Quantum Dots: Potential Cell Imaging Agent. , 2022, , 191-207.		1
1118	Advances in nanobiotechnology-propelled multidrug resistance circumvention of cancer. Nanoscale, 2022, 14, 12984-12998.	2.8	13
1119	Nanotechnology for Enhancing Medical Imaging. Micro/Nano Technologies, 2022, , 1-60.	0.1	0
1120	A europium(<scp>iii</scp>)-based nanooptode for bicarbonate sensing – a multicomponent approach to sensor materials. Chemical Communications, 2022, 58, 9198-9201.	2.2	5
1121	Advances in the Synthesis and Applications of Self-Activated Fluorescent Nano- and Micro-Hydroxyapatite. Engineering Materials, 2022, , 149-181.	0.3	0
1122	Dynamic Timing Control of Molecular Photoluminescent Systems. Chemistry - A European Journal, 2022, 28, .	1.7	3
1123	Carbon Nanostructure-Based DNA Sensor Used for Quickly Detecting Breast Cancer-Associated Genes. Nanoscale Research Letters, 2022, 17, .	3.1	4
1124	Anti-Adhesive Organosilane Coating Comprising Visibility on Demand. Polymers, 2022, 14, 4006.	2.0	1
1125	Microwave-Assisted Synthesis of the Red-Shifted Pentamethine Tetrahydroxanthylium Core with Absorbance within the Near Infrared-II Window. ACS Pharmacology and Translational Science, 2022, 5, 963-972.	2.5	1
1126	Carbon Dots Embedded Hybrid Microgel with Phenylboronic Acid as Monomer for Fluorescent Glucose Sensing and Glucose-Triggered Insulin Release at Physiological pH. Nanomaterials, 2022, 12, 3065.	1.9	3

#	Article	IF	Citations
1127	Bioimaging with Upconversion Nanoparticles. Advanced Photonics Research, 2022, 3, .	1.7	17
1128	Spatial Transcriptomicsâ€Based Identification of Molecular Markers for Nanomedicine Distribution in Tumor Tissue. Small Methods, 2022, 6, .	4.6	7
1129	Visualizing biogeochemical heterogeneity in soils and sediments: A review of advanced micro-scale sampling and imaging methods. Critical Reviews in Environmental Science and Technology, 2023, 53, 1229-1253.	6.6	16
1130	Visible fluorescent sensing of Cu2+ ions in urine by reusable chitosan/l-histidine–stabilized silicon nanoparticles integrated thin layer chromatography sheet. Analytica Chimica Acta, 2022, 1231, 340418.	2.6	5
1131	Absolute Counting Method with Multiplexing Capability for Estimating the Number Concentration of Nanoparticles Using Anisotropically Collapsed Gels. Analytical Chemistry, 2022, 94, 14340-14348.	3.2	3
1132	Ultrabright AlEdots with tunable narrow emission for multiplexed fluorescence imaging. Chemical Science, 2022, 14, 113-120.	3.7	5
1133	Highly efficient dual-state emission and two-photon absorption of novel naphthalimide functionalized cyanostilbene derivatives with finely tuned terminal alkoxyl groups. Materials Chemistry Frontiers, 2022, 6, 3522-3530.	3.2	9
1134	Nanobody-Based Delivery Systems for Diagnosis and Therapeutic Applications. Nanotechnology in the Life Sciences, 2022, , 227-254.	0.4	1
1135	Monitoring nanoparticle dissolution <i>via</i> fluorescence-colour shift. Nanoscale, 2022, 14, 16249-16255.	2.8	2
1136	Enhancement approaches for photothermal conversion of donor–acceptor conjugated polymer for photothermal therapy: a review. Science and Technology of Advanced Materials, 2022, 23, 707-734.	2.8	12
1137	Nano- and Microsensors for In Vivo Real-Time Electrochemical Analysis: Present and Future Perspectives. Nanomaterials, 2022, 12, 3736.	1.9	6
1139	NIRâ€II Fluorescence Imagingâ€Guided Oxygen Selfâ€Sufficient Nanoâ€Platform for Precise Enhanced Photodynamic Therapy. Small, 2022, 18, .	5.2	15
1140	Rhodamine-Tagged Polymethacrylate Dyes as Alternative Tools for Analysis of Plant Cells. Materials, 2022, 15, 7720.	1.3	1
1141	Multicolor upconversion emission and highly optical temperature sensing based on lanthanide-doped double perovskite Sr2LaNbO6 phosphors. Ceramics International, 2023, 49, 9574-9583.	2.3	10
1142	Predictive Molecular Models for Charged Materials Systems: From Energy Materials to Biomacromolecules. Advanced Materials, 2023, 35, .	11.1	2
1143	Preparation and applications of polymer-modified lanthanide-doped upconversion nanoparticles. Giant, 2022, 12, 100130.	2.5	8
1144	Diagnosis of cancer using carbon nanomaterial-based biosensors. Sensors & Diagnostics, 2023, 2, 268-289.	1.9	5
1145	A sensitive ratiometric fluorescent chemosensor for visual and wearable mercury (II) recognition in river prawn and water samples. Food Chemistry, 2023, 408, 135211.	4.2	7

#	Article	IF	CITATIONS
1146	Red fluorescent benzothiadiazole derivative loaded in different nanoformulations: Optical properties and their use in bio-imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 290, 122250.	2.0	0
1147	Ultra-flexible organic photonic system for detecting the bio signals. , 2022, , .		0
1148	Review of 2D MnO ₂ Nanosheets as FRET-Based Nanodot Fluorescence Quenchers in Chemosensing Applications. ACS Applied Nano Materials, 2022, 5, 17373-17412.	2.4	8
1149	Nanoparticles: a promising vehicle for the delivery of therapeutic enzymes. International Nano Letters, 2023, 13, 209-221.	2.3	3
1150	Single-Particle Optical Imaging for Ultrasensitive Bioanalysis. Biosensors, 2022, 12, 1105.	2.3	1
1151	The Use of Capping Agents in the Stabilization and Functionalization of Metallic Nanoparticles for Biomedical Applications. Particle and Particle Systems Characterization, 2023, 40, .	1.2	10
1152	Recent Advances in Raman Spectroscopy for Skin Diagnosis. Journal of Innovative Optical Health Sciences, 0, , .	0.5	4
1153	Novel Injectable Fluorescent Polymeric Nanocarriers for Intervertebral Disc Application. Journal of Functional Biomaterials, 2023, 14, 52.	1.8	2
1154	Conjugating Coumarin with Tetraphenylethylene to Achieve Dualâ€State Emission for Reversible Mechanofluorochromism and Live Cell Imaging. Chemistry - A European Journal, 2023, 29, .	1.7	9
1155	Circular RNAs: Insights into Clinical and Therapeutic Approaches for Various Cancers. Current Protein and Peptide Science, 2023, 24, 130-142.	0.7	2
1156	Synthesis and characterization of luminescent Cu2+–doped fluorapatite nanocrystals as potential broad–spectrum antimicrobial agents. Journal of Photochemistry and Photobiology B: Biology, 2023, 239, 112649.	1.7	2
1157	Biogenic Synthesis of Fluorescent Carbon Dots (CDs) and Their Application in Bioimaging of Agricultural Crops. Nanomaterials, 2023, 13, 209.	1.9	8
1158	Reducing the cytotoxicity of magnesium oxide nanoparticles using cerium oxide shell coating: An in vitro and in vivo study. Ceramics International, 2023, , .	2.3	0
1159	Fluorescent Carbon Dots for Super-Resolution Microscopy. Materials, 2023, 16, 890.	1.3	4
1160	Nanotechnology for Enhancing Medical Imaging. Micro/Nano Technologies, 2023, , 99-156.	0.1	0
1161	Influence of the Crystallinity of Silver Nanoparticles on Their Magnetic Properties. Helvetica Chimica Acta, 2023, 106, .	1.0	2
1162	Carbon quantum dots@metal–organic framework based catalytic nucleic acid fluorescent system for highly sensitive and selective detection of Pb2+ in aqueous solutions. Chemical Engineering Journal, 2023, 457, 141375.	6.6	18
1163	Tailorable and scalable production of eco-friendly lignin micro-nanospheres and their application in functional superhydrophobic coating. Chemical Engineering Journal, 2023, 457, 141309.	6.6	12

# 1164	ARTICLE Light-induced antifungal activity of nanoparticles with an encapsulated porphyrin photosensitizer. Microbiological Research, 2023, 269, 127303.	IF 2.5	CITATIONS 3
1165	Synthesis and Biological Characterization of Phyto-Fabricated Silver Nanoparticles from <i>Azadirachta indica</i> . Journal of Biomedical Nanotechnology, 2022, 18, 2022-2057.	0.5	5
1166	Biosensors for drug of abuse detection. , 2023, , 125-172.		1
1167	Red emissive carbon dots as a fluorescent sensor for fast specific monitoring and imaging of polarity in living cells. Journal of Materials Chemistry A, 2023, 11, 2679-2689.	5.2	19
1168	Aggregation-Induced Emission-Active Nanostructures: Beyond Biomedical Applications. ACS Nano, 2023, 17, 1845-1878.	7.3	34
1169	Plasmonic quenching and enhancement: metal–quantum dot nanohybrids for fluorescence biosensing. Chemical Communications, 2023, 59, 2352-2380.	2.2	10
1170	Phosphors for bioimaging applications. , 2023, , 237-260.		1
1171	Ir(III)-based Ratiometric Hypoxic Probe for Cell Imaging. Chinese Journal of Polymer Science (English) Tj ETQq1 1	0.784314 2.0	rgBT /Overlo
1172	Silica-Based Advanced Nanoparticles For Treating Ischemic Disease. Tissue Engineering and Regenerative Medicine, 2023, 20, 177-198.	1.6	2
1173	Sustainable applications of carbon dots-based composites as photocatalyst for environmental pollutants remediation. , 2023, , 555-577.		0
1174	Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies. Scientific Reports, 2023, 13, .	1.6	5
1175	Imaging and Sensing Inside the Living Cells. From Seeing to Believing. , 2023, , 529-596.		0
1176	Visualizing intracellular dynamics with AIE probes. Materials Chemistry Frontiers, 2023, 7, 2973-2994.	3.2	1
1177	Pivot, Persevere, or Perish: How Ellume Health overcame development and regulatory obstacles to become the first authorized over-the-counter COVID-19 test in the United States. Lab on A Chip, 0, , .	3.1	0
1178	Quantitative evaluation of brightness of fluorescent nanoparticles using <scp>DNA</scp> origami standards. Bulletin of the Korean Chemical Society, 0, , .	1.0	0
1179	Synthesis and Application of Fluorescent Polymer Micro―and Nanoparticles. Small, 2023, 19, .	5.2	9
1180	Fluorescent Carbon Nanoparticles. , 2023, , 183-197.		0
1181	Biogenic preparation of undoped and heteroatoms doped carbon dots: effect of heteroatoms doping in fluorescence, catalytic ability and multicolour in-vitro bio-imaging applications - A comparative study. Materials Research Bulletin, 2023, 162, 112204.	2.7	11

#	Article	IF	CITATIONS
1182	Highly stable multi-encapsulated red-emitting cesium lead halide nanocrystals for efficient copper ion detection and imaging in live cells. Journal of Alloys and Compounds, 2023, 947, 169453.	2.8	7
1183	An advanced organic molecular probe for multimodal fluorescence imaging of cellular lipid droplets. Sensors and Actuators B: Chemical, 2023, 387, 133772.	4.0	5
1184	Ratiometric Fluorescent Chemosensors: Photophysical/Chemical Mechanism Principles and Design Strategies. , 2023, , 124-159.		0
1185	Design of a Fluorescent Sensor Based on the Polydopamine Nanoparticles for Detection of Gallic Acid. Iranian South Medical Journal, 2022, 25, 13-29.	0.2	0
1186	MicroLED biosensor with colloidal quantum dots and smartphone detection. Biomedical Optics Express, 2023, 14, 1107.	1.5	2
1188	Fluorescence-Activating and Absorption-Shifting Nanoprobes for Anaerobic Tracking of Gut Microbiota Derived Vesicles. ACS Nano, 2023, 17, 2279-2293.	7.3	9
1189	Self-optimized single-nanowire photoluminescence thermometry. Light: Science and Applications, 2023, 12, .	7.7	15
1190	Encapsulating Semiconductor Quantum Dots in Supramolecular Cages Enables Ultrafast Guest–Host Electron and Vibrational Energy Transfer. Journal of the American Chemical Society, 2023, 145, 5191-5202.	6.6	13
1191	Re-recognizing fluorescence quenching Units: Improve abnormally the luminescent efficiency of AIEgens for fluorescence Sensing, organelle targeted imaging and photodynamic therapy. Chemical Engineering Journal, 2023, 460, 141792.	6.6	2
1192	Fluorescent Imaging In Vivo. , 2023, , 597-647.		0
1193	Magneto-luminescent nanocrystalline hydroxyapatite (Gd, Ho: HAp @Cu-NC) for prospective T1-T2 magnetic resonance imaging and fluorescence bioimaging. Journal of Materials Research, 2023, 38, 1963-1972.	1.2	0
1194	Highly water-stable, luminescent, and monodisperse polymer-coated CsPbBr ₃ nanocrystals for imaging in living cells with better sensitivity. RSC Advances, 2023, 13, 5946-5956.	1.7	4
1195	The Usefulness of Nanotechnology in Improving the Prognosis of Lung Cancer. Biomedicines, 2023, 11, 705.	1.4	1
1196	Plasmon-Enhanced Fluorescence of Single Quantum Dots Immobilized in Optically Coupled Aluminum Nanoholes. Journal of Physical Chemistry Letters, 2023, 14, 2339-2346.	2.1	1
1197	Ni–Au magnetoplasmonic nanoparticles with a unique intertwined crystal structure showing excellent reduction and tunability of the superparamagnetic blocking temperature. Nano Structures Nano Objects, 2023, 34, 100950.	1.9	1
1198	Fluorescence Quantum Yield Standards for the UV/Visible/NIR: Development, Traceable Characterization, and Certification. Analytical Chemistry, 2023, 95, 5671-5677.	3.2	1
1199	Influence of Capping Ligands, Solvent, and Thermal Effects on CdSe Quantum Dot Optical Properties by DFT Calculations. ACS Omega, 2023, 8, 11467-11478.	1.6	3
1200	Tetraphenyletheneâ€Based <i>cis/trans</i> Isomers for Targeted Fluorescence Sensing and Biomedical Applications. Chemistry - A European Journal, 2023, 29, .	1.7	5

ARTICLE IF CITATIONS # Reactive oxygen species-powered cancer immunotherapy: Current status and challenges. Journal of 1201 28 4.8 Controlled Release, 2023, 356, 623-648. Graphene and graphene oxide-based nanocomposites for theranostic applications., 2023, , 103-135. Carbon dots (CDs): basics, recent potential biomedical applications, challenges, and future 1203 0.8 10 perspectives. Journal of Nanoparticle Research, 2023, 25, . OregonFluor enables quantitative intracellular paired agent imaging to assess drug target availability 1204 in live cells and tissues. Nature Chemistry, 2023, 15, 729-739. Restriction of molecular motion to a higher level: Towards bright AIE dots for biomedical 1205 1.9 3 applications. IScience, 2023, 26, 106568. Fluorescent Platforms for Environmental Sensing., 2023, , 378-405. Nanobioconjugates: Plants and microbes assisted synthesis, mechanistics of surface functionalization 1207 0.7 0 and their applications. Comprehensive Analytical Chemistry, 2023, , . Supramolecular Luminescent Nanoâ€assemblies Based on Macrocycles and Amphiphiles for Cell Imaging. 1208 1.5 ChemPhotoChem, 2023, 7, . Longâ€Range Energy Transfer between Dyeâ€Loaded Nanoparticles: Observation and Amplified Detection of 1209 11.1 5 Nucleic Acids. Advanced Materials, 2023, 35, . Block Copolymer-Templated Au@CdSe Core-Satellite Nanostructures with Solvent-Dependent Optical 1.6 Properties. Langmuir, 2023, 39, 6231-6239. Microwave-Assisted Synthesis of Room Temperature Long Persistent Luminescent Materials and Their 1211 1.0 0 Imaging Applications. Crystals, 2023, 13, 705. Visible-NIR luminescent nanomaterials for cancer diagnostic applications., 2023, , 89-150. 1215 Nanotools for nanoanalysis., 2023, , 273-296. 0 Prospects of Safe Use of Nanomaterials in Biomedical Applications., 2023, , 83-101. Safe Appraisal of Carbon Nanoparticles in Pollutant Sensing. Environmental Contamination 1220 0.50 Remediation and Management, 2023, , 229-261. Multicomponent Hydrogels for Bioimaging and Biosensing Applications., 2023, , 502-541. Polymeric nanomaterials with aggregation-induced emission characteristics. Materials Chemistry 1239 3.22 Frontiers, 2023, 7, 4768-4781. Applications of Upconversion Nanoparticles in Bio-Imaging. Progress in Optical Science and Photonics, 2023, , 405-436.

IF ARTICLE CITATIONS # Dual-color coreâ€"shell silica nanosystems for advanced super-resolution biomedical imaging. 1256 2.2 0 Nanoscale Advances, 0, , . Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chemical Society Reviews, 2023, 52, 7848-7948. 18.7 Functional Biosensors in Cell and Tissue Fabrication for Smart Life-Sciences Applications. , 2024, , 1270 0 235-253. Advanced Nano-Materials for Biomedical Applications., 2024, , 31-41. Organelle imaging with fluorescent carbon dots: strategies, challenges, and perspectives. Inorganic 1280 3.0 0 Chemistry Frontiers, 0, , . FeAu mixing for high-temperature control of light scattering at the nanometer scale. Nanoscale, 0, , . 1284 2.8 Recent Advancements in the Application of Nanomaterial in Modern Drug Delivery and Future 1295 0.10 Perspective. Environmental Science and Engineering, 2024, , 319-351. Optical properties and applications of zero-dimensional carbon nanomaterials., 2024, , 153-183. 1296