Electron transfer in peptides

Chemical Society Reviews 44, 1015-1027 DOI: 10.1039/c4cs00297k

Citation Report

#	Article	IF	CITATIONS
2	Electronic coupling through natural amino acids. Journal of Chemical Physics, 2015, 143, 225102.	1.2	15
4	Electron Transfer across Helical Peptides. ChemPlusChem, 2015, 80, 1075-1095.	1.3	55
6	Charge Tunneling along Short Oligoglycine Chains. Angewandte Chemie - International Edition, 2015, 54, 14743-14747.	7.2	36
7	Modulation of ultrafast photoinduced electron transfer in H-bonding environment: PET from aniline to coumarin 153 in the presence of an inert co-solvent cyclohexane. Physical Chemistry Chemical Physics, 2015, 17, 32556-32563.	1.3	7
8	Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity. Biosensors and Bioelectronics, 2016, 84, 82-88.	5.3	45
9	Turning electron transfer â€~on-off' in peptides through side-bridge gating. Electrochimica Acta, 2016, 209, 65-74.	2.6	10
10	The Strong Influence of Structure Polymorphism on the Conductivity of Peptide Fibrils. Angewandte Chemie - International Edition, 2016, 55, 9988-9992.	7.2	44
11	The Strong Influence of Structure Polymorphism on the Conductivity of Peptide Fibrils. Angewandte Chemie, 2016, 128, 10142-10146.	1.6	9
12	Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route. Biotechnology for Biofuels, 2016, 9, 247.	6.2	22
13	Photoinduced Electron Transfer and Hole Migration in Nanosized Helical Aromatic Oligoamide Foldamers. Journal of the American Chemical Society, 2016, 138, 13568-13578.	6.6	71
14	Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping. Proceedings of the United States of America, 2016, 113, 10785-10790.	3.3	77
15	Dipole Moment Effect on the Electrochemical Desorption of Selfâ€Assembled Monolayers of 3 ₁₀ â€Helicogenic Peptides on Gold. ChemElectroChem, 2016, 3, 2063-2070.	1.7	10
16	Computational Studies on Structural, Excitation, and Charge-Transfer Properties of Ureidopeptidomimetics. Journal of Physical Chemistry B, 2016, 120, 6469-6478.	1.2	9
17	Molecular conductance of double-stranded DNA evaluated by electrochemical capacitance spectroscopy. Nanoscale, 2016, 8, 8931-8938.	2.8	16
18	Distance-Dependent Excited-State Electron Transfer from Tryptophan to Gold Nanoparticles through Polyproline Helices. Journal of Physical Chemistry C, 2017, 121, 4882-4890.	1.5	6
19	Mechanically Controlled Electron Transfer in a Single-Polypeptide Transistor. Scientific Reports, 2017, 7, 39792.	1.6	9
20	Introducing the mean field approximation to CDFT/MMpol method: Statistically converged equilibrium and nonequilibrium free energy calculation for electron transfer reactions in condensed phases. Journal of Chemical Physics, 2017, 146, 154101.	1.2	9
21	Hydrogen-Bond-Assisted, Concentration-Dependent Molecular Dimerization of Ferrocenyl Hydantoins. Organometallics, 2017, 36, 2190-2197.	1.1	6

ATION REDO

#	Article	IF	CITATIONS
22	Elucidating the H-Bonding Environment of Coumarin 102 in a Phenol–Cyclohexane Mixture by Molecular Dynamics Simulation: Implications for H-Bond-Guided Photoinduced Electron Transfer. Journal of Physical Chemistry A, 2017, 121, 616-622.	1.1	3
23	Oligoprolines as Molecular Entities for Controlling Distance in Biological and Material Sciences. Accounts of Chemical Research, 2017, 50, 2420-2428.	7.6	49
24	Multi-dimensional charge transport in supramolecular helical foldamer assemblies. Chemical Science, 2017, 8, 7251-7257.	3.7	38
25	Observation of dielectric universalities in albumin, cytochrome C and Shewanella oneidensis MR-1 extracellular matrix. Scientific Reports, 2017, 7, 15731.	1.6	8
26	Genetically encoded conductive protein nanofibers secreted by engineered cells. RSC Advances, 2017, 7, 32543-32551.	1.7	36
27	Role of Core Electrons in Quantum Dynamics Using TDDFT. Journal of Chemical Theory and Computation, 2017, 13, 77-85.	2.3	15
28	Detecting Electron Transport of Amino Acids by Using Conductance Measurement. Sensors, 2017, 17, 811.	2.1	14
29	Amide Neighbouringâ€Group Effects in Peptides: Phenylalanine as Relay Amino Acid in Longâ€Distance Electron Transfer. ChemBioChem, 2018, 19, 922-926.	1.3	29
30	Electron Transport Through Homopeptides: Are They Really Good Conductors?. ACS Omega, 2018, 3, 3778-3785.	1.6	26
31	Microbial nanowires – Electron transport and the role of synthetic analogues. Acta Biomaterialia, 2018, 69, 1-30.	4.1	51
32	Study of electron transfer process in aqueous methanol system by using tryptophan based short peptide – Amino acid pairs. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 556-564.	2.0	2
33	Electronic structure of dipeptides in the gas-phase and as an adsorbed monolayer. Physical Chemistry Chemical Physics, 2018, 20, 6860-6867.	1.3	9
34	Mechanistic insight into protein supported biosorption complemented by kinetic and thermodynamics perspectives. Advances in Colloid and Interface Science, 2018, 261, 28-40.	7.0	20
35	Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials. Journal of Physical Chemistry B, 2018, 122, 10403-10423.	1.2	116
36	Peptides as Bio-Inspired Electronic Materials: An Electrochemical and First-Principles Perspective. Accounts of Chemical Research, 2018, 51, 2237-2246.	7.6	28
37	Nanoscale defolding influence of polypeptides in the charge-transfer process through an organic–inorganic nanohybrid system. Nanoscale, 2018, 10, 11143-11149.	2.8	0
38	Achieving biopolymer synergy in systems chemistry. Chemical Society Reviews, 2018, 47, 5444-5456.	18.7	43
39	Tailorâ€Made Functional Peptide Selfâ€Assembling Nanostructures. Advanced Materials, 2018, 30, e1707083.	11.1	104

CITATION REPORT

#	Article	IF	CITATIONS
40	Impedance spectroscopy of single bacterial nanofilament reveals water-mediated charge transfer. PLoS ONE, 2018, 13, e0191289.	1.1	8
41	Impact of N-(2-aminoethyl) Glycine Unit on Watson-Crick Base Pairs. Zeitschrift Fur Physikalische Chemie, 2019, 233, 449-469.	1.4	1
42	Self-Assembled Peptide Nanotube Films with High Proton Conductivity. Journal of Physical Chemistry B, 2019, 123, 9882-9888.	1.2	10
43	Supramolecular Host–Guest Inclusion to Regulate Long-Range Electron Transfer at Highly Oriented Molecular Interfaces. Journal of Physical Chemistry C, 2019, 123, 26315-26323.	1.5	3
44	Orientation of Oligopeptides in Self-Assembled Monolayers Inferred from Infrared Reflection–Absorption Spectroscopy. Journal of Physical Chemistry B, 2019, 123, 860-868.	1.2	5
45	Stimuli-responsive poly(phenyl acetylene) microparticles with tunable chirality. European Polymer Journal, 2019, 118, 275-279.	2.6	12
46	Doping hepta-alanine with tryptophan: A theoretical study of its effect on the electrical conductance of peptide-based single-molecule junctions. Journal of Chemical Physics, 2019, 150, 174705.	1.2	10
47	Building Supramolecular DNAâ€Inspired Nanowires on Gold Surfaces: From 2D to 3D. Angewandte Chemie - International Edition, 2019, 58, 7308-7312.	7.2	10
48	Chirality and its role in the electronic properties of peptides: spin filtering and spin polarization. Current Opinion in Electrochemistry, 2019, 14, 138-142.	2.5	7
49	Building Supramolecular DNAâ€Inspired Nanowires on Gold Surfaces: From 2D to 3D. Angewandte Chemie, 2019, 131, 7386-7390.	1.6	2
50	Superexchange in the fast lane $\hat{a} \in$ "intramolecular electron transfer in a molecular triad occurs by conformationally gated superexchange. Chemical Communications, 2019, 55, 5251-5254.	2.2	3
51	Backbone-Constrained Peptides: Temperature and Secondary Structure Affect Solid-State Electron Transport. Journal of Physical Chemistry B, 2019, 123, 10951-10958.	1.2	5
52	Tunable oligo-histidine self-assembled monolayer junction and charge transport by a pH modulated assembly. Physical Chemistry Chemical Physics, 2019, 21, 26058-26065.	1.3	7
53	Dynamic relaying properties of a βâ€ŧurn peptide in longâ€ŧange electron transfer. Journal of Computational Chemistry, 2019, 40, 988-996.	1.5	3
54	Electrochemical Sensing of Ovalbumin Based on the Interaction between Lysozyme Origin/Tyrosineâ€rich Peptides Modified on Magnetic Beads and Oligothreonine/Ovalbuminâ€origin Peptide. Electroanalysis, 2020, 32, 207-216.	1.5	3
55	Mechanically modulated spin-orbit couplings in oligopeptides. Physical Review B, 2020, 102, .	1.1	14
56	Unravelling Structural Dynamics within a Photoswitchable Single Peptide: A Step Towards Multimodal Bioinspired Nanodevices. Angewandte Chemie, 2020, 132, 22743-22751.	1.6	3
57	Electronic transport through single polyalanine molecules. Physical Review B, 2020, 102, .	1.1	4

#	Article	IF	CITATIONS
58	Unravelling Structural Dynamics within a Photoswitchable Single Peptide: A Step Towards Multimodal Bioinspired Nanodevices. Angewandte Chemie - International Edition, 2020, 59, 22554-22562.	7.2	17
59	Formation of n → π ⁺ interaction facilitating dissociative electron transfer in isolated tyrosine-containing molecular peptide radical cations. Physical Chemistry Chemical Physics, 2020, 22, 21393-21402.	1.3	8
60	Directed Electron Transfer in Flavin Peptides with Oligoprolineâ€Type Helical Conformation as Models for Flavinâ€Functional Proteins. ChemistryOpen, 2020, 9, 1264-1269.	0.9	2
61	Spin-orbit interaction and spin selectivity for tunneling electron transfer in DNA. Physical Review B, 2020, 101, .	1.1	18
62	Redox Activity of Ce(IV)-Substituted Polyoxometalates toward Amino Acids and Peptides. Inorganic Chemistry, 2020, 59, 10569-10577.	1.9	19
63	Peptide-based electrochemical biosensor for matrix metalloproteinase-14 and protein-overexpressing cancer cells based on analyte-induced cleavage of peptide. Microchemical Journal, 2020, 157, 105103.	2.3	17
64	First principle approach to elucidate transport properties through l-glutamic acid-based molecular devices using symmetrical electrodes. Journal of Molecular Modeling, 2020, 26, 74.	0.8	10
65	Printed-Circuit-Board-Based Two-Electrode System for Electronic Characterization of Proteins. ACS Omega, 2020, 5, 7802-7808.	1.6	5
66	Insights into the Distance Dependence of Electron Transfer through Conformationally Constrained Peptides. ChemElectroChem, 2020, 7, 1225-1237.	1.7	8
67	Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chemical Reviews, 2020, 120, 4707-4765.	23.0	189
68	Filler matrix interfaces of inorganic/biopolymer composites and their applications. , 2020, , 95-112.		6
69	Electronics of peptide- and protein-based biomaterials. Advances in Colloid and Interface Science, 2021, 287, 102319.	7.0	21
70	Nanostructured functional peptide films and their application in C-reactive protein immunosensors. Bioelectrochemistry, 2021, 138, 107692.	2.4	8
71	Conformation-dependent charge transport through short peptides. Nanoscale, 2021, 13, 3002-3009.	2.8	18
72	Expanding the reactivity of inorganic clusters towards proteins: the interplay between the redox and hydrolytic activity of Ce(<scp>iv</scp>)-substituted polyoxometalates as artificial proteases. Chemical Science, 2021, 12, 10655-10663.	3.7	11
73	Flat, C ^{α,β} â€Didehydroalanine Foldamers with Ferrocene Pendants: Assessing the Role of αâ€Peptide Dipolar Moments. ChemPlusChem, 2021, 86, 723-730.	1.3	7
74	Electron Transfer in Films of Atomically Precise Gold Nanoclusters. Chemistry of Materials, 2021, 33, 4177-4187.	3.2	10
75	Implications of the simple chemical structure of the odorant molecules interacting with the olfactory receptor 1A1. Genomics and Informatics, 2021, 19, e18.	0.4	2

CITATION REPORT

#	Article	IF	CITATIONS
76	A single atom change turns insulating saturated wires into molecular conductors. Nature Communications, 2021, 12, 3432.	5.8	16
77	Ultralong π-Conjugated Bis(terpyridine)metal Polymer Wires Covalently Bound to a Carbon Electrode: Fast Redox Conduction and Redox Diode Characteristics. Molecules, 2021, 26, 4267.	1.7	4
78	Flat, Ferrocenylâ€Conjugated Peptides: A Combined Electrochemical and Spectroscopic Study. ChemElectroChem, 2021, 8, 2693-2700.	1.7	3
79	Electrochemically induced electron transfer through molecular bridges. Current Opinion in Electrochemistry, 2021, 28, 100700.	2.5	2
80	Label-free detection of target proteins using peptide molecular wires as conductive supports. Sensors and Actuators B: Chemical, 2021, 345, 130416.	4.0	2
81	Features of the crystallization of multicomponent solutions: a dipeptide, its salt and potassium carbonate. CrystEngComm, 2021, 23, 6427-6441.	1.3	1
82	Field Effect and Applications. SpringerBriefs in Applied Sciences and Technology, 2018, , 51-81.	0.2	0
83	Molecular electronics behaviour of l-aspartic acid using symmetrical metal electrodes. Journal of Molecular Modeling, 2021, 27, 335.	0.8	9
84	Effects of Peptide-Functionalized Surfaces on the Electrochemical Hydrogen Evolution Reaction. Journal of Electrochemical Energy Conversion and Storage, 2020, 17, .	1.1	3
85	Effect of macromolecular crowding on protein oxidation: Consequences on the rate, extent and oxidation pathways. Redox Biology, 2021, 48, 102202.	3.9	14
86	Electrochemical One-Step Immunoassay Based on Switching Peptides and Pyrolyzed Carbon Electrodes. ACS Sensors, 2022, 7, 215-224.	4.0	8
87	Conformational Analysis and Throughâ€Chain Charge Propagation in Ferrocenylâ€Conjugated Homopeptides of 2,3â€Điaminopropionic acid (Dap). European Journal of Inorganic Chemistry, 0, , .	1.0	2
88	Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	34
89	Molecular Geometry Dependent Electronic Coupling and Reorganization Energy for Electron Transfer between Dye Molecule Adsorbed on TiO2 Electrode and Co Complex in Electrolyte Solutions. Journal of Physical Chemistry C, 0, , .	1.5	2
91	L-Glutamic acid (i.e. L-amino acid) based molecular junction as rectifiers. Materials Today: Proceedings, 2022, 67, 31-35.	0.9	5
92	α-Helix in Cystathionine β-Synthase Enzyme Acts as an Electron Reservoir. Journal of Physical Chemistry B, O, , .	1.2	1
93	Food as a countermeasure to SARS-COV-2. Science Technologies Innovation, 2022, , 36-46.	0.1	0
94	Quantum rate efficiency of the charge transfer mediated by quantum capacitive states. Electrochimica Acta, 2022, 434, 141194.	2.6	4

CITATION REPORT

#	Article	IF	CITATIONS
95	Helical versus Flat Bis-Ferrocenyl End-Capped Peptides: The Influence of the Molecular Skeleton on Redox Properties. Molecules, 2022, 27, 6128.	1.7	2
96	l-Aspartic acid based molecular rectifier using dissimilar electrodes. Materials Today: Proceedings, 2022, 71, 408-413.	0.9	4
97	Electron transport <i>via</i> tyrosine-doped oligo-alanine peptide junctions: role of charges and hydrogen bonding. Physical Chemistry Chemical Physics, 2022, 24, 28878-28885.	1.3	1
98	Non-Conventional Peptide Self-Assembly into a Conductive Supramolecular Rope. Nanomaterials, 2023, 13, 333.	1.9	1
99	Photoinduced Processes in Lysine-Tryptophan-Lysine Tripeptide with L and D Tryptophan. International Journal of Molecular Sciences, 2023, 24, 3331.	1.8	0
100	Computational evaluation of transport parameters and logic circuit designing of L-Lysine amino acid stringed to Au, Ag, Cu, Pt, and Pd electrodes. Journal of Molecular Modeling, 2023, 29, .	0.8	2
101	L-Histidine-based computation devices. Pramana - Journal of Physics, 2023, 97, .	0.6	1