
CITATION REPORT List of articles citing

DOI: 10.1021/ja5129132 Journal of the American Chemical Society, 2015, 137, 1436-9.

Source: https://exaly.com/paper-pdf/61707412/citation-report.pdf

Version: 2024-04-10

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
753	Facile Synthesis of a NDoped Fe3C@CNT/Porous Carbon Hybrid for an Advanced Oxygen Reduction and Water Oxidation Electrocatalyst.		
752	Trace Iron-Decorated Nitrogen/Sulfur Co-Doped Hierarchically Porous Carbon for Oxygen Reduction and LithiumSulfur Batteries.		
75 ¹	CoNi NanoalloyOrganic Framework Electrocatalysts with Ultrahigh Electron Transfer Kinetics for Efficient Oxygen Reduction.		
750	Composite of Hierarchically Porous N-Doped Carbon/Carbon Nanotube with Greatly Improved Catalytic Performance for Oxygen Reduction Reaction.		
749	Nitrogen-Doped Carbon Electrocatalysts Decorated with Transition Metals for the Oxygen Reduction Reaction. 2015 , 7, 3808-3817		59
748	High-Performance FeN-Doped Graphene Electrocatalysts with pH-Dependent Active Sites for the Oxygen Reduction Reaction. 2015 , 2, 2032-2040		29
747	Strongly Coupled 3D Hybrids of N-doped Porous Carbon Nanosheet/CoNi Alloy-Encapsulated Carbon Nanotubes for Enhanced Electrocatalysis. 2015 , 11, 5940-8		148
746	Bamboo-Like Nitrogen-Doped Carbon Nanotubes with Co Nanoparticles Encapsulated at the Tips: Uniform and Large-Scale Synthesis and High-Performance Electrocatalysts for Oxygen Reduction. 2015 , 21, 14022-9		66
745	Porous Carbon Supports: Recent Advances with Various Morphologies and Compositions. 2015 , 7, 2788	-2805	67
744	A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction. 2015 , 2015, 1-11		7
743	Carbon nanotubes and catalysis: the many facets of a successful marriage. 2015 , 5, 3859-3875		78
742	Helical and Dendritic Unzipping of Carbon Nanotubes: A Route to Nitrogen-Doped Graphene Nanoribbons. 2015 , 9, 5833-45		54
74 ¹	An oxygen reduction sensor based on a novel type of porous carbon composite membrane electrode. 2015 , 26, 1322-1326		4
740	Nitrogen-doped ordered mesoporous carbon sphere with short channel as an efficient metal-free catalyst for oxygen reduction reaction. 2015 , 5, 70010-70016		26
739	A N-, Fe- and Co-tridoped carbon nanotube/nanoporous carbon nanocomposite with synergistically enhanced activity for oxygen reduction in acidic media. 2015 , 3, 17866-17873		18
738	Porous Carbon Nanosheets Codoped with Nitrogen and Sulfur for Oxygen Reduction Reaction in Microbial Fuel Cells. 2015 , 7, 18672-8		77
737	M3C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions. 2015 , 9, 7407-18		376

(2016-2015)

NiCo-embedded in hierarchically structured N-doped carbon nanoplates for the efficient electrochemical determination of ascorbic acid, dopamine, and uric acid. 2015 , 5, 65532-65539	19
Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. 2015 , 5, 4643-4667	748
IL-derived N, S co-doped ordered mesoporous carbon for high-performance oxygen reduction. 2015 , 7, 11956-61	70
Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction. 2015 , 51, 17285-8	50
Review R ecent Progress in Electrocatalysts for Oxygen Reduction Suitable for Alkaline Anion Exchange Membrane Fuel Cells. 2015 , 162, F1504-F1539	119
A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction. 2015 , 7, 19201-6	51
Bimetal Drganic Framework Self-Adjusted Synthesis of Support-Free Nonprecious Electrocatalysts for Efficient Oxygen Reduction. 2015 , 5, 7068-7076	361
Carbon Nanohorn-Derived Graphene Nanotubes as a Platinum-Free Fuel Cell Cathode. 2015 , 7, 24256-64	60
Electrochemical-reduction-assisted assembly of ternary Ag nanoparticles/polyoxometalate/graphene nanohybrids and their activity in the electrocatalysis of oxygen reduction. 2015 , 5, 74447-74456	30
High-performance oxygen reduction electrocatalysts derived from uniform cobaltdenine assemblies. 2015 , 17, 120-130	53
Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. 2015 , 51, 16045-8	92
Towards efficient electrocatalysts for oxygen reduction by doping cobalt into graphene-supported graphitic carbon nitride. 2015 , 3, 19657-19661	40
A low-cost cementite (Fe3C) nanocrystal@N-doped graphitic carbon electrocatalyst for efficient oxygen reduction. 2015 , 17, 27527-33	22
CoxC encased in carbon nanotubes: an efficient oxygen reduction catalyst under both acidic and alkaline conditions. 2015 , 44, 20708-13	10
Easy gas-flow-induced CVD synthesis and tunable electromagnetic characteristics of centipede-shaped iron/cementite/multiwalled carbon nanotube (Fe/Fe3C/MWCNT) heterostructures. 2015 , 283, 286-297	25
Non-Precious Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media: Latest Achievements on Novel Carbon Materials. 2016 , 6, 159	40
Effect of Glucose on the Synthesis of Iron Carbide Nanoparticles from Combustion Synthesis Precursors. 2016 , 99, 1443-1448	17
Cobalt-Carbon Core-Shell Nanoparticles Aligned on Wrinkle of N-Doped Carbon Nanosheets with Pt-Like Activity for Oxygen Reduction. 2016 , 12, 2839-45	74
	electrochemical determination of ascorbic acid, dopamine, and uric acid. 2015, 5, 65532-65539 Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. 2015, 5, 4643-4667 IL-derived N., S co-doped ordered mesoporous carbon for high-performance oxygen reduction. 2015, 7, 711956-61 Hydrophilit non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction. 2015, 51, 17285-8 ReviewBecent Progress in Electrocatalysts for Oxygen Reduction Suitable for Alkaline Anion Exchange Membrane Fuel Cells. 2015, 162, F1504-F1539 A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction. 2015, 7, 19201-6 BimetalDrganic Framework Self-Adjusted Synthesis of Support-Free Nonprecious Electrocatalysts for Efficient Oxygen Reduction. 2015, 5, 7068-7076 Carbon Nanohorn-Derived Graphene Nanotubes as a Platinum-Free Fuel Cell Cathode. 2015, 7, 24256-64 Electrochemical-reduction-assisted assembly of ternary Ag nanoparticles/polyoxometalate/graphene nanohybrids and their activity in the electrocatalysis of oxygen reduction. 2015, 5, 74447-74456 High-performance oxygen reduction electrocatalysts derived from uniform cobaltBdenine assemblies. 2015, 17, 120-130 Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. 2015, 51, 16045-8 Towards efficient electrocatalysts for oxygen reduction by doping cobalt into graphene-supported graphitic carbon nitride. 2015, 3, 19657-19661 A low-cost cementite (Fe3C) nanocrystal@N-doped graphitic carbon electrocatalyst for efficient oxygen reduction. 2015, 17, 27527-33 CoxC encased in carbon nanotubes: an efficient oxygen reduction catalyst under both acidic and alkaline conditions. 2015, 41, 20708-13 Easy gas-flow-induced CVD synthesis and tunable electromagnetic characteristics of centipede-shaped iron/cementite/multiwalled carbon nanotube (Fe/Fe3C/MWCNT) heterostructures. 2015, 283, 2

718	A 3D hierarchical assembly of optimized heterogeneous carbon nanosheets for highly efficient electrocatalysis. 2016 , 4, 11625-11629	11
717	A Versatile IronIIannin-Framework Ink Coating Strategy to Fabricate Biomass-Derived Iron Carbide/Fe-N-Carbon Catalysts for Efficient Oxygen Reduction. 2016 , 128, 1377-1381	55
716	Graphene layer encapsulated metal nanoparticles as a new type of non-precious metal catalysts for oxygen reduction. 2016 , 11, 382-385	10
715	Well-Dispersed ZIF-Derived Co,N-Co-doped Carbon Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. 2016 , 28, 1668-74	558
714	PtCu alloy nanotube arrays supported on carbon fiber cloth as flexible anodes for direct methanol fuel cell. 2016 , 62, 975-983	20
713	Platinfreie Nanomaterialien f⊞die Sauerstoffreduktion. 2016 , 128, 2698-2726	78
712	Earth-Abundant Nanomaterials for Oxygen Reduction. 2016 , 55, 2650-76	760
711	MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting. 2016 , 8, 35390-35397	110
710	Fe-carbon nitride Core-shell electrocatalysts for the oxygen reduction reaction. 2016, 222, 1778-1791	54
709	Effect of Organic Cations on Hydrogen Oxidation Reaction of Carbon Supported Platinum. 2016 , 163, F1503-F1509	25
708	Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction. 2016 , 6, 20132	28
707	Hydrothermally Driven Transformation of Oxygen Functional Groups at Multiwall Carbon Nanotubes for Improved Electrocatalytic Applications. 2016 , 8, 35513-35522	44
706	Non-precious Metal Oxide and Metal-free Catalysts for Energy Storage and Conversion. 2016 , 243-320	
705	N-, P- and Fe-tridoped nanoporous carbon derived from plant biomass: an excellent oxygen reduction electrocatalyst for zinclir batteries. 2016 , 4, 8602-8609	99
704	Co@N-CNTs derived from triple-role CoAl-layered double hydroxide as an efficient catalyst for oxygen reduction reaction. 2016 , 107, 162-170	50
703	Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. 2016 , 9, 2123-2137	90
702	Supramolecular polymers-derived nonmetal N, S-codoped carbon nanosheets for efficient oxygen reduction reaction. 2016 , 6, 52937-52944	18
701	Shrimp-shell derived carbon nanodots as precursors to fabricate Fe,N-doped porous graphitic carbon electrocatalysts for efficient oxygen reduction in zinclir batteries. 2016 , 3, 910-918	20

(2016-2016)

700	Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells. 2016 , 7, 509-32	41
699	Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. 2016 , 29, 149-165	162
698	Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells. 2016 , 175, 459-467	49
697	An efficient CoNC oxygen reduction catalyst with highly dispersed Co sites derived from a ZnCo bimetallic zeolitic imidazolate framework. 2016 , 6, 37965-37973	55
696	(Fe1⊠Nix)3N nanoparticles: the structure, magnetic and photocatalytic properties for water splitting. 2016 , 6, 44641-44645	5
695	Highly Efficient Oxygen Reduction Catalysts by Rational Synthesis of Nanoconfined Maghemite in a Nitrogen-Doped Graphene Framework. 2016 , 6, 3558-3568	67
694	Electromagnetic and mechanical properties of Fe3O4-coated amorphous carbon nanotube/polyvinyl chloride composites. 2016 , 23, 901-907	4
693	Facile Synthesis of a N-Doped Fe3C@CNT/Porous Carbon Hybrid for an Advanced Oxygen Reduction and Water Oxidation Electrocatalyst. 2016 , 120, 11006-11013	46
692	Constructing B and N separately co-doped carbon nanocapsules-wrapped Fe/FeC for oxygen reduction reaction with high current density. 2016 , 18, 26572-26578	11
691	Tuning Nanowires and Nanotubes for Efficient Fuel-Cell Electrocatalysis. 2016 , 28, 10117-10141	179
690	Coralloid Co2P2O7 Nanocrystals Encapsulated by Thin Carbon Shells for Enhanced Electrochemical Water Oxidation. 2016 , 8, 22534-44	61
689	Metal©rganic Framework-Induced Synthesis of Ultrasmall Encased NiFe Nanoparticles Coupling with Graphene as an Efficient Oxygen Electrode for a Rechargeable ZnAir Battery. 2016 , 6, 6335-6342	167
688	Soft magnetic Fe3N: Synthesis, characterization and magnetic properties. 2016, 688, 828-832	13
687	Iron and nitrogen co-functionalized porous 3D graphene frameworks as an efficient oxygen reduction catalyst. 2016 , 6, 74886-74894	4
686	Strategic Preparation of Efficient and Durable NiCo Alloy Supported N-Doped Porous Graphene as an Oxygen Evolution Electrocatalyst: A Theoretical and Experimental Investigation. 2016 , 3, 1600532	38
685	Hierarchically porous Fe-N-doped carbon nanotubes as efficient electrocatalyst for oxygen reduction. 2016 , 109, 632-639	64
684	2D Nanoporous Fe-N/C Nanosheets as Highly Efficient Non-Platinum Electrocatalysts for Oxygen Reduction Reaction in Zn-Air Battery. 2016 , 12, 5710-5719	82
683	Noncovalent Immobilization of a Pyrene-Modified Cobalt Corrole on Carbon Supports for Enhanced Electrocatalytic Oxygen Reduction and Oxygen Evolution in Aqueous Solutions. 2016 , 6, 6429-6437	132

682	Bamboo-like carbon nanotubes derived from colloidal polymer nanoplates for efficient removal of bisphenol A. 2016 , 4, 15450-15456	45
681	Experimental and theoretical studies on the effect of functional groups on carbon nanotubes to its oxygen reduction reaction activity. 2016 , 506, 476-484	20
68o	In situ preparation of hollow Mo2CL hybrid microspheres as bifunctional electrocatalysts for oxygen reduction and evolution reactions. 2016 , 4, 12583-12590	65
679	Non-Pt Nanostructured Catalysts for Oxygen Reduction Reaction: Synthesis, Catalytic Activity and its Key Factors. 2016 , 6, 1600458	125
678	Enhancing the Performance of CoO as Cathode Catalyst for Li-O2 Batteries through Confinement into Bimodal Mesoporous Carbon. 2016 , 201, 134-141	13
677	Nitrogen-doped 3D porous carbons with iron carbide nanoparticles encapsulated in graphitic layers derived from functionalized MOF as an efficient noble-metal-free oxygen reduction electrocatalysts in both acidic and alkaline media. 2016 , 6, 110820-110830	20
676	Biomass-Derived Porous FeC/Tungsten Carbide/Graphitic Carbon Nanocomposite for Efficient Electrocatalysis of Oxygen Reduction. 2016 , 8, 32307-32316	73
675	Synthesis of nanoporous structured iron carbide/FeNBarbon composites for efficient oxygen reduction reaction in ZnBir batteries. 2016 , 4, 19037-19044	46
674	Nitrogen-doped mesoporous network-like carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction. 2016 , 41, 22941-22951	29
673	Probing the electro-catalytic ORR activity of cobalt-incorporated nitrogen-doped CNTs. 2016 , 344, 455-464	24
672	Controlling the BET Surface Area of Porous Carbon by Using the Cd/C Ratio of a Cd-MOF Precursor and Enhancing the Capacitance by Activation with KOH. 2016 , 22, 17734-17747	34
671	Highly efficient metal-free electrocatalysts toward oxygen reduction derived from carbon nanotubes@polypyrrole coreBhell hybrids. 2016 , 4, 18008-18014	22
670	Heteroatom (N or N-S)-Doping Induced Layered and Honeycomb Microstructures of Porous Carbons for CO2 Capture and Energy Applications. 2016 , 26, 8651-8661	133
669	FeCo Alloy Nanoparticles Confined in Carbon Layers as High-activity and Robust Cathode Catalyst for Zn-Air Battery. 2016 , 220, 354-362	94
668	A General Approach to Preferential Formation of Active Fe-N Sites in Fe-N/C Electrocatalysts for Efficient Oxygen Reduction Reaction. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15046-15056 ^{16.4}	523
667	Nitrogen- and sulfur-doped carbon nanoplatelets via thermal annealing of alkaline lignin with urea as efficient electrocatalysts for oxygen reduction reaction. 2016 , 6, 104183-104192	21
666	Magnetic N-Enriched Fe3C/Graphitic Carbon instead of Pt as an Electrocatalyst for the Oxygen Reduction Reaction. 2016 , 22, 4863-9	40
665	Nitrogen-Doped Porous Carbon Nanosheets Templated from g-C3 N4 as Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction. 2016 , 28, 5080-6	573

(2016-2016)

664	Metal-Organic Framework-Derived Honeycomb-Like Open Porous Nanostructures as Precious-Metal-Free Catalysts for Highly Efficient Oxygen Electroreduction. 2016 , 28, 6391-8	354
663	Engineering Multimetallic Nanocrystals for Highly Efficient Oxygen Reduction Catalysts. 2016 , 6, 1600236	81
662	Three-dimensional hierarchical meso/macroporous Fe/Co-nitrogen-doped carbon encapsulated FeCo alloy nanoparticles prepared without any template or surfactant: High-performance bifunctional oxygen electrodes. 2016 , 686, 467-478	34
661	An FeNII hybrid electrocatalyst derived from a bimetalBrganic framework for efficient oxygen reduction. 2016 , 4, 11357-11364	114
660	Hierarchically porous Fe-N-C derived from covalent-organic materials as a highly efficient electrocatalyst for oxygen reduction. 2016 , 8, 14271-7	51
659	An alumina-coated, egg-shell Pd/\textsquare\	5
658	MetalBrganic framework-derived hybrid of Fe3C nanorod-encapsulated, N-doped CNTs on porous carbon sheets for highly efficient oxygen reduction and water oxidation. 2016 , 6, 6365-6371	55
657	Emerging new generation electrocatalysts for the oxygen reduction reaction. 2016 , 4, 11156-11178	143
656	Macroscopic Ultrathin Film as Bio-Inspired Interfacial Reactor for Fabricating 2D Freestanding Janus CNTs/AuNPs Hybrid Nanosheets with Enhanced Electrical Performance. 2016 , 3, 1600170	26
655	A Versatile Iron-Tannin-Framework Ink Coating Strategy to Fabricate Biomass-Derived Iron Carbide/Fe-N-Carbon Catalysts for Efficient Oxygen Reduction. 2016 , 55, 1355-9	181
654	Nitrogen-Doped Graphene Quantum Dots Anchored on Thermally Reduced Graphene Oxide as an Electrocatalyst for the Oxygen Reduction Reaction. 2016 , 3, 864-870	29
653	Porous Core-Shell Fe3C Embedded N-doped Carbon Nanofibers as an Effective Electrocatalysts for Oxygen Reduction Reaction. 2016 , 8, 4118-25	2 10
652	A versatile strategy to fabricate MOFs/carbon material integrations and their derivatives for enhanced electrocatalysis. 2016 , 6, 7728-7735	21
651	Core-shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries. 2016 , 52, 986-9	78
650	Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. 2016 , 45, 1273-307	510
649	N,S-Codoped microporous carbon nanobelts with blooming nanoflowers for oxygen reduction. 2016 , 4, 5834-5838	46
648	Porous N-doped graphitic carbon assembled one-dimensional hollow structures as high performance electrocatalysts for ORR. 2016 , 6, 12467-12471	7
647	Enriching Co nanoparticles inside carbon nanofibers via nanoscale assembly of metal®rganic complexes for highly efficient hydrogen evolution. 2016 , 22, 79-86	59

646	A facile synthesis of Fe3C@mesoporous carbon nitride nanospheres with superior electrocatalytic activity. 2016 , 8, 5441-5	47
645	Porous Fe-Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction. 2016 , 311, 137-143	62
644	Surfactant-Assisted Hydrothermal Synthesis of Cobalt Oxide/Nitrogen-Doped Graphene Framework for Enhanced Anodic Performance in Lithium Ion Batteries. 2016 , 194, 310-316	32
643	Optimization of cobalt/nitrogen embedded carbon nanotubes as an efficient bifunctional oxygen electrode for rechargeable zinc∃ir batteries. 2016 , 4, 4864-4870	64
642	Metallic Cobalt Encapsulated in Bamboo-Like and Nitrogen-Rich Carbonitride Nanotubes for Hydrogen Evolution Reaction. 2016 , 8, 6439-48	90
641	Understanding the High Activity of Fe-N-C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe-N(x). <i>Journal of the American Chemical Society</i> , 2016 , 138, 3570-8 ^{16.4}	1219
640	Synthesis of graphene encapsulated Fe3C in carbon nanotubes from biomass and its catalysis application. 2016 , 99, 330-337	124
639	Photocatalytic Reduction Synthesis of Ternary Ag Nanoparticles/Polyoxometalate/Graphene Nanohybrids and Its Activity in the Electrocatalysis of Oxygen Reduction. 2016 , 27, 241-256	11
638	Nitrogen-doped carbon onions encapsulating metal alloys as efficient and stable catalysts for dye-sensitized solar cells. 2016 , 303, 159-167	35
637	Superior oxygen reduction electrocatalysis enabled by integrating hierarchical pores, Fe3C nanoparticles and bamboo-like carbon nanotubes. 2016 , 8, 959-64	41
636	Prussian blue as a single precursor for synthesis of Fe/Fe3C encapsulated N-doped graphitic nanostructures as bi-functional catalysts. 2016 , 18, 427-432	125
635	Transition metallitrogenlarbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. 2017 , 10, 1449-1470	122
634	The recent development of efficient Earth-abundant transition-metal nanocatalysts. 2017, 46, 816-854	351
633	Highly dispersed iron nitride nanoparticles embedded in N doped carbon as a high performance electrocatalyst for oxygen reduction reaction. 2017 , 42, 2996-3005	27
632	Fe-Cluster Pushing Electrons to N-Doped Graphitic Layers with FeC(Fe) Hybrid Nanostructure to Enhance O Reduction Catalysis of Zn-Air Batteries. 2017 , 9, 4587-4596	96
631	Lamellar Metal Organic Framework-Derived Fe-N-C Non-Noble Electrocatalysts with Bimodal Porosity for Efficient Oxygen Reduction. 2017 , 9, 5272-5278	78
630	Facile ionothermal synthesis of mesoporous FeNxII composites as efficient catalysts for oxygen reduction in acid media. 2017 , 5, 3832-3838	35
629	Porous Iron-Tungsten Carbide Electrocatalyst with High Activity and Stability toward Oxygen Reduction Reaction: From the Self-Assisted Synthetic Mechanism to Its Active-Species Probing. 2017 , 9, 3713-3722	32

(2017-2017)

628	electrocatalysis. 2017 , 33, 221-228	96
627	2D Layered non-precious metal mesoporous electrocatalysts for enhanced oxygen reduction reaction. 2017 , 5, 4868-4878	45
626	Metal organic framework derived NiFe@N-doped graphene microtube composites for hydrogen evolution catalyst. 2017 , 116, 68-76	62
625	An Efficient Bifunctional Electrocatalyst for a Zinc-Air Battery Derived from Fe/N/C and Bimetallic Metal-Organic Framework Composites. 2017 , 9, 5213-5221	96
624	Pyrolysis of conjugated nanoporous polycarbazoles to mesoporous N-doped carbon nanotubes as efficient electrocatalysts for the oxygen reduction reaction. 2017 , 5, 4507-4512	34
623	Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries. 2017 , 343, 30-38	79
622	Atomically Dispersed Fe/N-Doped Hierarchical Carbon Architectures Derived from a Metal D rganic Framework Composite for Extremely Efficient Electrocatalysis. 2017 , 2, 504-511	223
621	High-purity helical carbon nanotubes with enhanced electrochemical properties for supercapacitors. 2017 , 7, 7375-7381	11
620	Cobalt nanoparticles encapsulated in carbon nanotube-grafted nitrogen and sulfur co-doped multichannel carbon fibers as efficient bifunctional oxygen electrocatalysts. 2017 , 5, 4949-4961	101
619	Coupling multiphase-Fe and hierarchical N-doped graphitic carbon as trifunctional electrocatalysts by supramolecular preorganization of precursors. 2017 , 53, 2044-2047	42
618	Atomic Modulation of FeCoNitrogenCarbon Bifunctional Oxygen Electrodes for Rechargeable and Flexible All-Solid-State ZincAir Battery. 2017 , 7, 1602420	505
617	Oxidase-mimicking activity of the nitrogen-doped FeC@C composites. 2017, 53, 3882-3885	47
616	Molecular dynamics of laser-assisted decomposition of unstable molecules at the surface of carbon nanotubes: case study of CH2(NO2)2 on CNT(4,0). 2017 , 115, 674-682	9
615	A simple in situ synthesis of magnetic M@CNTs by thermolysis of the hybrid perovskite [TPrA][M(dca)3]. 2017 , 41, 3124-3133	7
614	Roles of Fe-N and Fe-FeC@C Species in Fe-N/C Electrocatalysts for Oxygen Reduction Reaction. 2017 , 9, 9567-9575	115
613	One-pot synthesized covalent porphyrin polymer-derived core-shell Fe3C@carbon for efficient oxygen electroreduction. 2017 , 116, 606-614	27
612	Self-Assembled Fe-N-Doped Carbon Nanotube Aerogels with Single-Atom Catalyst Feature as High-Efficiency Oxygen Reduction Electrocatalysts. 2017 , 13, 1603407	207
611	Boosting Bifunctional Oxygen Electrolysis for N-Doped Carbon via Bimetal Addition. 2017 , 13, 1604103	97

610	"Wiring" Fe-N -Embedded Porous Carbon Framework onto 1D Nanotubes for Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media. 2017 , 29, 1606534	280
609	In Situ Formation of Hierarchical Porous Fe,CoN-Doped Carbon as a Highly Efficient Electrocatalyst for Oxygen Reduction. 2017 , 4, 2005-2011	7
608	In situ hybridization of CoO nanoparticles on N-doped graphene through one step mineralization of co-responsive hydrogels. 2017 , 46, 6163-6167	10
607	Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. 2017 , 23, 10460-10464	42
606	Synthesis and magnetic properties of Fe 3 C doped with Mn or Ni for applications as adsorbents. 2017 , 144, 76-79	2
605	Silver cluster supported on nitrogen-doped graphene as an electrocatalyst with high activity and stability for oxygen reduction reaction. 2017 , 42, 14522-14533	12
604	Binary Fe, Cu-doped bamboo-like carbon nanotubes as efficient catalyst for the oxygen reduction reaction. 2017 , 37, 187-194	100
603	From biomass chitin to mesoporous nanosheets assembled loofa sponge-like N-doped carbon/g-C 3 N 4 3D network architectures as ultralow-cost bifunctional oxygen catalysts. 2017 , 240, 216-226	42
602	The marriage and integration of nanostructures with different dimensions for synergistic electrocatalysis. 2017 , 10, 321-330	85
601	Is iron nitride or carbide highly active for oxygen reduction reaction in acidic medium?. 2017 , 7, 51-55	42
600	Facile route for synthesis of mesoporous graphite encapsulated iron carbide/iron nanosheet composites and their electrocatalytic activity. 2017 , 491, 55-63	15
599	Recent Progress in Nonnoble Metal Electrocatalysts for Oxygen Reduction for Alkaline Fuel Cells. 2017 , 267-316	
598	Direct synthesis of a carbon nanotube interpenetrated doped porous carbon alloy as a durable Pt-free electrocatalyst for the oxygen reduction reaction in an alkaline medium. 2017 , 1, 1524-1532	14
597	N-Doped Defective Carbon Layer Encapsulated W2C as a Multifunctional Cathode Catalyst for High Performance Li-O2 Battery. 2017 , 245, 430-437	18
596	Cerium carbide embedded in nitrogen-doped carbon as a highly active electrocatalyst for oxygen reduction reaction. 2017 , 359, 487-493	20
595	Unprecedented Activity of Bifunctional Electrocatalyst for High Power Density Aqueous Zinc-Air Batteries. 2017 , 9, 21216-21224	44
594	Directly anchoring Fe3C nanoclusters and FeNx sites in ordered mesoporous nitrogen-doped graphitic carbons to boost electrocatalytic oxygen reduction. 2017 , 121, 143-153	59
593	Achieving excellent activity and stability for oxygen reduction electrocatalysis by hollow mesoporous ironlitrogen-doped graphitic carbon spheres. 2017 , 5, 12243-12251	40

(2017-2017)

Facile fabrication of N/S-doped carbon nanotubes with Fe3O4 nanocrystals enchased for lasting synergy as efficient oxygen reduction catalysts. 2017 , 5, 13189-13195	44
Novel highly active and selective Fe-N-C oxygen reduction electrocatalysts derived from in-situ polymerization pyrolysis. 2017 , 38, 201-209	71
N, S co-doped carbon spheres with highly dispersed CoO as non-precious metal catalyst for oxygen reduction reaction. 2017 , 360, 106-113	32
Nitrogen doped carbon materials derived from Gentiana scabra Bunge as high-performance catalysts for the oxygen reduction reaction. 2017 , 41, 7392-7399	15
Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning. 2017, 9, 9787-9791	66
Biomass derived porous nitrogen doped carbon for electrochemical devices. 2017 , 2, 84-99	106
On-Off Ratiometric Electrochemical Biosensor for Accurate Detection of Glucose. 2017 , 235, 488-494	15
Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries. 2017 , 8, 49-58	56
Porous carbon supported Fe-N-C composite as an efficient electrocatalyst for oxygen reduction reaction in alkaline and acidic media. <i>Applied Surface Science</i> , 2017 , 411, 487-493	29
Perfectly ordered mesoporous iron-nitrogen doped carbon as highly efficient catalyst for oxygen reduction reaction in both alkaline and acidic electrolytes. 2017 , 36, 286-294	171
Facile Synthesis of Cobalt Nanoparticles Entirely Encapsulated in Slim Nitrogen-Doped Carbon Nanotubes as Oxygen Reduction Catalyst. 2017 , 5, 3973-3981	70
MOF-Templated Assembly Approach for Fe C Nanoparticles Encapsulated in Bamboo-Like N-Doped CNTs: Highly Efficient Oxygen Reduction under Acidic and Basic Conditions. 2017 , 23, 12125-12130	56
In situ template synthesis of hollow nanospheres assembled from NiCoS@C ultrathin nanosheets with high electrochemical activities for lithium storage and ORR catalysis. 2017 , 19, 11554-11562	40
A metal-organic framework devised Co-N doped carbon microsphere/nanofiber hybrid as a free-standing 3D oxygen catalyst. 2017 , 53, 4034-4037	55
Novel Iron/Cobalt-Containing Polypyrrole Hydrogel-Derived Trifunctional Electrocatalyst for Self-Powered Overall Water Splitting. 2017 , 27, 1606497	255
Pyrolysis of Self-Assembled Iron Porphyrin on Carbon Black as Core/Shell Structured Electrocatalysts for Highly Efficient Oxygen Reduction in Both Alkaline and Acidic Medium. 2017 , 27, 1604356	94
Functional Species Encapsulated in Nitrogen-Doped Porous Carbon as a Highly Efficient Catalyst for the Oxygen Reduction Reaction. 2017 , 23, 3398-3405	28
Rational Construction of Multivoids-Assembled Hybrid Nanospheres Based on VPO Encapsulated in Porous Carbon with Superior Lithium Storage Performance. 2017 , 9, 1437-1445	22
	Novel highly active and selective Fe-N-C oxygen reduction electrocatalysts derived from in-situ polymerization pyrolysis. 2017, 38, 201-209 N, Sco-doped carbon spheres with highly dispersed CoO as non-precious metal catalyst for oxygen reduction reaction. 2017, 360, 106-113 Nitrogen doped carbon spheres with highly dispersed CoO as non-precious metal catalyst for oxygen reduction reaction. 2017, 360, 106-113 Nitrogen doped carbon materials derived from Gentiana scabra Bunge as high-performance catalysts for the oxygen reduction reaction. 2017, 41, 7392-7399 Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning. 2017, 9, 9787-9791 Biomass derived porous nitrogen doped carbon for electrochemical devices. 2017, 2, 84-99 On-Off Ratiometric Electrochemical Biosensor for Accurate Detection of Glucose. 2017, 235, 488-494 Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries. 2017, 8, 49-58 Porous carbon supported Fe-N-C composite as an efficient electrocatalyst for oxygen reduction reaction in alkaline and acidic media. Applied Surface Science, 2017, 411, 487-493 6-7 Perfectly ordered mesoporous iron-nitrogen doped carbon as highly efficient catalyst for oxygen reduction reaction in both alkaline and acidic electrolytes. 2017, 36, 286-294 Facile Synthesis of Cobalt Nanoparticles Entirely Encapsulated in Slim Nitrogen-Doped Carbon Nanotubes as Oxygen Reduction Catalyst. 2017, 5, 3973-3981 MOF-Templated Assembly Approach for Fe C Nanoparticles Encapsulated in Bamboo-Like N-Doped CNTs: Highly Efficient Oxygen Reduction under Acidic and Basic Conditions. 2017, 23, 12125-12130 In situ template synthesis of hollow nanospheres assembled from NiCoS@C ultrathin nanosheets with high electrochemical activities for lithium storage and ORR catalysis. 2017, 19, 11554-11562 A metal-organic framework devised Co-N doped carbon microsphere/nanofiber hybrid as a free-standing 3D oxygen catalyst. 2017, 27, 160

574	A new method for developing defect-rich graphene nanoribbons/onion-like carbon@Co nanoparticles hybrid materials as an excellent catalyst for oxygen reactions. 2017 , 9, 1738-1744	51
573	Organic-acid-assisted synthesis of a 3D lasagna-like Fe-N-doped CNTs-G framework: An efficient and stable electrocatalyst for oxygen reduction reactions. 2017 , 10, 1258-1267	21
572	Red-blood-cell like nitrogen-doped carbons with highly catalytic activity towards oxygen reduction reaction. 2017 , 28, 748-754	15
571	Fe/N decorated mulberry-like hollow mesoporous carbon fibers as efficient electrocatalysts for oxygen reduction reaction. 2017 , 114, 706-716	32
57°	Engineering Favorable Morphology and Structure of Fe-N-C Oxygen-Reduction Catalysts through Tuning of Nitrogen/Carbon Precursors. 2017 , 10, 774-785	97
569	A novel method to prepare a nanotubes@mesoporous carbon composite material based on waste biomass and its electrochemical performance. 2017 , 5, 3875-3887	61
568	Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. 2017 , 10, 742-749	374
567	Porous Boron Carbon Nitride Nanosheets as Efficient Metal-Free Catalysts for the Oxygen Reduction Reaction in Both Alkaline and Acidic Solutions. 2017 , 2, 306-312	134
566	Ultrafine Co-based Nanoparticle@Mesoporous Carbon Nanospheres toward High-Performance Supercapacitors. 2017 , 9, 1746-1758	56
565	Fabrication of N-doped Graphenetarbon Nanotube Hybrids from Prussian Blue for LithiumBulfur Batteries. 2017 , 7, 1602014	235
564	Non-noble bimetallic alloy encased in nitrogen-doped nanotubes as a highly active and durable electrocatalyst for oxygen reduction reaction. 2017 , 114, 347-355	80
563	The synergistic effect achieved by combining different nitrogen-doped carbon shells for high performance capacitance. 2017 , 53, 857-860	15
562	Electropolymerization Fabrication of Co Phosphate Nanoparticles Encapsulated in N,P-Codoped Mesoporous Carbon Networks as a 3D Integrated Electrode for Full Water Splitting. 2017 , 5, 571-579	29
561	3D Porous Fe/N/C Spherical Nanostructures As High-Performance Electrocatalysts for Oxygen Reduction in Both Alkaline and Acidic Media. 2017 , 9, 36944-36954	70
560	Synthesis and ORR electrocatalytic activity of mixed Mn-Co oxides derived from divalent metal-based MIL-53 analogues. 2017 , 46, 15512-15519	25
559	Active Fe-Nx Sites in Carbon Nanosheets as Oxygen Reduction Electrocatalyst for Flexible All-Solid-State ZincAir Batteries. 2017 , 1, 1700085	31
558	Magnetic IFe N/Fe C, IFe C, and IFe C by a Simple Route for Application as Electrochemical Catalysts. 2017 , 23, 17592-17597	9
557	Heteroatom-Doped Carbon Nanotube and Graphene-Based Electrocatalysts for Oxygen Reduction Reaction. 2017 , 13, 1702002	138

556	A study of defect-rich carbon spheres as a metal-free electrocatalyst for an efficient oxygen reduction reaction. 2017 , 5, 24314-24320	28
555	A novel Fe-N-C catalyst for efficient oxygen reduction reaction based on polydopamine nanotubes. 2017 , 9, 17364-17370	94
554	Nitrogen containing carbon spheres as an efficient electrocatalyst for oxygen reduction: Microelectrochemical investigation and visualization. 2017 , 5, 20014-20023	11
553	Efficient and Durable Oxygen Reduction Electrocatalyst Based on CoMn Alloy Oxide Nanoparticles Supported Over N-Doped Porous Graphene. 2017 , 7, 6700-6710	70
552	Fe3C@nitrogen doped CNT arrays aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction. 2017 , 5, 19672-19679	84
551	From Chlorella to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. 2017 , 9, 32168-32178	₃ 47
550	Porous yolk-shell microspheres as N-doped carbon matrix for motivating the oxygen reduction activity of oxygen evolution oriented materials. 2017 , 28, 365403	5
549	Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective. 2017 , 29, 1606967	240
548	Covalent Porphyrin Framework-Derived FeP@FeN-Coupled Nanoparticles Embedded in N-Doped Carbons as Efficient Trifunctional Electrocatalysts. 2017 , 9, 32840-32850	91
547	Structural Evolution and Formation Mechanism of the Soft Colloidal Arrays in the Core of PAAm Nanofibers by Electrospun Packing. 2017 , 33, 10291-10301	6
546	Excellent Sulfur Dioxide Electrooxidation Performance and Good Stability on a Fe-N-Doped Carbon-Cladding Catalyst in H2SO4. 2017 , 164, H456-H462	4
545	Transformation from FeS/Fe3C nanoparticles encased S, N dual doped carbon nanotubes to nanosheets for enhanced oxygen reduction performance. 2017 , 123, 135-144	23
544	One step in-situ synthesis of Co@N, S co-doped CNTs composite with excellent HER and ORR bi-functional electrocatalytic performances. 2017 , 247, 736-744	32
543	Biomass willow catkin-derived Co3O4/N-doped hollow hierarchical porous carbon microtubes as an effective tri-functional electrocatalyst. 2017 , 5, 20170-20179	70
542	Fe/N/C Nanotubes with Atomic Fe Sites: A Highly Active Cathode Catalyst for Alkaline Polymer Electrolyte Fuel Cells. 2017 , 7, 6485-6492	108
541	Recent advances in Fe (or Co)/N/C electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells. 2017 , 5, 18933-18950	120
540	Shape-Customizable Macro-/Microporous Carbon Monoliths for Structure-to-Functionality CO2 Adsorption and Novel Electrical Regeneration. 2017 , 2, 1700088	5
539	Encapsulated iron-based oxygen reduction electrocatalysts by high pressure pyrolysis. 2017 , 42, 22887-22896	8

538	Noble metal-free catalysts for oxygen reduction reaction. 2017 , 60, 1494-1507	35
537	Nanocarbon [bnic Liquid Hybrid Materials for Heterogeneous Catalysis. 2017 , 497-533	
536	Magnetron Sputtering Deposition Cu@Onion-like N-C as High-Performance Electrocatalysts for Oxygen Reduction Reaction. 2017 , 9, 41945-41954	17
535	A N,P-co-doped 3D graphene/cobalt-embedded electrocatalyst for the oxygen reduction reaction. 2017 , 41, 15236-15243	3
534	Interconnected Fe, S, N-Codoped Hollow and Porous Carbon Nanorods as Efficient Electrocatalysts for the Oxygen Reduction Reaction. 2017 , 9, 40298-40306	35
533	Nd doped Fe3C nanoparticles: The structure, morphology and magnetic properties. 2017 , 723, 295-300	3
532	Embedding FeSb alloy nanoparticles in N-doped carbon layers as an efficient bifunctional electrocatalyst for zinc-air battery. 2017 , 21, 3315-3324	4
531	Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. 2017 , 5, 16929-16935	201
530	Boosting the bifunctional electrocatalytic oxygen activities of CoOx nanoarrays with a porous N-doped carbon coating and their application in ZnBir batteries. 2017 , 5, 17804-17810	38
529	Ferric carbide nanocrystals encapsulated in nitrogen-doped carbon nanotubes as an outstanding environmental catalyst. 2017 , 4, 170-179	125
528	Co-N-Doped Mesoporous Carbon Hollow Spheres as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. 2017 , 13, 1602507	118
527	Nitrogen-Doped Carbon Vesicles with Dual Iron-Based Sites for Efficient Oxygen Reduction. 2017 , 10, 499-505	24
526	Ultrafine WC nanoparticles anchored on co-encased, N-doped carbon nanotubes for efficient hydrogen evolution. 2017 , 6, 104-111	42
525	Template Free Preparation of Heteroatoms Doped Carbon Spheres with Trace Fe for Efficient Oxygen Reduction Reaction and Supercapacitor. 2017 , 7, 1602002	137
524	The Ordered and Disordered Nano-Intermetallic AuCu/C Catalysts for the Oxygen Reduction Reaction: The Differences of the Electrochemical Performance. 2017 , 164, F1654-F1661	9
523	. 2017,	20
522	Multi-active sites of iron carbide nanoparticles on nitrogen@cobalt-doped carbon for a highly efficient oxygen reduction reaction. 2018 , 746, 177-184	24
521	Ancient Chemistry "Pharaoh's Snakes" for Efficient Fe-/N-Doped Carbon Electrocatalysts. 2018 , 10, 10778-10	 78 <u>5</u> 2

(2018-2018)

520	The photo-, electro- and photoelectro-catalytic properties and application prospects of porous coordinate polymers. 2018 , 6, 6130-6154	54
519	Fe3C/Fe/C Magnetic Hierarchical Porous Carbon with Micromesopores for Highly Efficient Chloramphenicol Adsorption: Magnetization, Graphitization, and Adsorption Properties Investigation. 2018 , 57, 3510-3522	33
518	FeC nanoparticles encapsulated in highly crystalline porous graphite: salt-template synthesis and enhanced electrocatalytic oxygen evolution activity and stability. 2018 , 54, 3158-3161	30
517	A highly active and durable iron/cobalt alloy catalyst encapsulated in N-doped graphitic carbon nanotubes for oxygen reduction reaction by a nanofibrous dicyandiamide template. 2018 , 6, 5962-5970	56
516	3D interconnected hierarchical porous N-doped carbon constructed by flake-like nanostructure with Fe/FeC for efficient oxygen reduction reaction and supercapacitor. 2018 , 10, 9252-9260	69
515	Electrocatalytically Active Hollow Carbon Nanospheres Derived from PS-b-P4VP Micelles. 2018 , 35, 1700404	7
514	Correlating electrocatalytic oxygen reduction activity with d-band centers of metallic nanoparticles. 2018 , 13, 189-198	22
513	Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells. 2018 , 27, 1124-1139	68
512	Iron Carbides and Nitrides: Ancient Materials with Novel Prospects. 2018 , 24, 8922-8940	31
511	Rational synthesis of N/S-doped porous carbons as high efficient electrocatalysts for oxygen reduction reaction and Zn-Air batteries. 2018 , 266, 17-26	39
510	From the inside-out: leached metal impurities in multiwall carbon nanotubes for purification or electrocatalysis. 2018 , 6, 4686-4694	17
509	Increased SO2 electrooxidation activity on a copper-nitrogen doped catalyst and its active sites analysis. 2018 , 43, 2794-2802	4
508	Coral-like CoO Decorated N-doped Carbon Particles as active Materials for Oxygen Reduction Reaction and Supercapacitor. 2018 , 8, 1802	35
507	Three-Dimensional Nanofibrous Air Electrode Assembled With Carbon Nanotubes-Bridged Hollow FeO Nanoparticles for High-Performance Lithium-Oxygen Batteries. 2018 , 10, 6531-6540	46
506	Recent Progress of Carbon-Based Materials in Oxygen Reduction Reaction Catalysis. 2018, 5, 1764-1774	47
505	Co-VN encapsulated in bamboo-like N-doped carbon nanotubes for ultrahigh-stability of oxygen reduction reaction. 2018 , 10, 4311-4319	57
504	Recent Advancements in Transition Metal-Nitrogen-Carbon Catalysts for Oxygen Reduction Reaction. 2018 , 30, 1217-1228	52
503	Significantly enhanced oxygen reduction activity of Cu/CuN x C y co-decorated ketjenblack catalyst for AlBir batteries. 2018 , 27, 419-425	23

502	Silver@Nitrogen-Doped Carbon Nanorods as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction in Alkaline Media. 2018 , 24, 3283-3288	8
501	Graphene-Directed Formation of a Nitrogen-Doped Porous Carbon Sheet with High Catalytic Performance for the Oxygen Reduction Reaction. 2018 , 122, 13508-13514	15
500	Graphene Layers-Wrapped Fe/Fe5C2 Nanoparticles Supported on N-doped Graphene Nanosheets for Highly Efficient Oxygen Reduction. 2018 , 8, 1702476	162
499	Controlled synthesis of porous nitrogen-doped carbon nanoshells for highly efficient oxygen reduction. 2018 , 3, 238-243	4
498	Fe/Fe3C@graphitic carbon shell embedded in carbon nanotubes derived from Prussian blue as cathodes for LiD2 batteries. 2018 , 2, 376-384	27
497	Fe/N-doped graphene with rod-like CNTs as an air-cathode catalyst in microbial fuel cells 2018 , 8, 1203-1209	18
496	N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction. 2018 , 10, e461-e461	72
495	Blood-Capillary-Inspired, Free-Standing, Flexible, and Low-Cost Super-Hydrophobic N-CNTs@SS Cathodes for High-Capacity, High-Rate, and Stable Li-Air Batteries. 2018 , 8, 1702242	88
494	A Bifunctional Highly Efficient FeN /C Electrocatalyst. 2018 , 14, 1702827	23
493	Fe-N-Doped Mesoporous Carbon with Dual Active Sites Loaded on Reduced Graphene Oxides for Efficient Oxygen Reduction Catalysts. 2018 , 10, 2423-2429	77
492	Facile synthesis and color-tunable properties of monodisperse ENaYF:Ln (Ln = Eu, Tb, Tm, Sm, Ho) microtubes. 2018 , 47, 1294-1302	14
491	Uric acid-derived Fe3C-containing mesoporous Fe/N/C composite with high activity for oxygen reduction reaction in alkaline medium. 2018 , 378, 491-498	22
490	N-doped porous carbon-encapsulated Fe nanoparticles as efficient electrocatalysts for oxygen reduction reaction. <i>Applied Surface Science</i> , 2018 , 445, 462-470	25
489	Light-weight 3D Co-N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc-air batteries. 2018 , 10, 10412-10419	63
488	Co@C/CoOx coupled with N-doped layer-structured carbons for excellent CO2 capture and oxygen reduction reaction. 2018 , 133, 306-315	25
487	Hydrothermal Synthesis of a New Kind of N-Doped Graphene Gel-like Hybrid As an Enhanced ORR Electrocatalyst. 2018 , 10, 10842-10850	64
486	Incorporation of Fe3C and Pyridinic N Active Sites with a Moderate N/C Ratio in FeN Mesoporous Carbon Materials for Enhanced Oxygen Reduction Reaction Activity. 2018 , 1, 1801-1810	35
485	1D N-doped hierarchically porous hollow carbon tubes derived from a supramolecular template as metal-free electrocatalysts for a highly efficient oxygen reduction reaction. 2018 , 6, 6212-6219	55

484	Non-noble metal catalyst on carbon ribbon for fuel cell cathode. 2018 , 22, 761-771	5
483	Nitrogen-doped carbon nanotubes based on melamine-formaldehyde resin as highly efficient catalyst for oxygen reduction reaction. 2018 , 509, 1-9	20
482	Nickeltopper Alloy Encapsulated in Graphitic Carbon Shells as Electrocatalysts for Hydrogen Evolution Reaction. 2018 , 8, 1701759	164
481	57Fe-MBsbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction. 2018 , 221, 406-412	46
480	CuMOF-Derived Cu/Cu2O Nanoparticles and CuNxCy Species to Boost Oxygen Reduction Activity of Ketjenblack Carbon in AlAir Battery. 2018 , 6, 413-421	81
479	Engineering beneficial structures and morphologies of M-N-C oxygen-reduction catalysts derived from different metal-containing precursors. 2018 , 24, 1733-1744	4
478	Electrochemical probing into the active sites of graphitic-layer encapsulated iron oxygen reduction reaction electrocatalysts. 2018 , 63, 24-30	16
477	Facile synthesis of efficient core-shell structured iron-based carbon catalyst for oxygen reduction reaction. 2018 , 43, 1386-1395	4
476	Fe/Fe3C Nanoparticles Embedded in Nitrogen-Doped Carbon Nanotubes as Multifunctional Electrocatalysts for Oxygen Catalysis and CO2 Reduction. 2018 , 5, 471-477	30
475	Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metallitrogenlarbon catalysts for alkaline membrane fuel cells. 2018 , 6, 776-804	257
474	Enhancement of oxygen reduction reaction performance: The characteristic role of FeN coordinations. 2018 , 260, 264-273	26
473	Hierarchical hollow microspheres grafted with Co nanoparticle-embedded bamboo-like N-doped carbon nanotube bundles as ultrahigh rate and long-life cathodes for rechargeable lithium-oxygen batteries. 2018 , 334, 2500-2510	25
472	Three-dimensional nanoporous N-doped graphene/iron oxides as anode materials for high-density energy storage in asymmetric supercapacitors. 2018 , 335, 467-474	23
471	Facile synthesis of N-doped carbon layer encapsulated Fe2N as an efficient catalyst for oxygen reduction reaction. 2018 , 127, 636-642	62
470	Fe/Fe3C@C nanoparticles encapsulated in N-doped graphenelINTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable ZnBir batteries. 2018 , 6, 516-526	288
469	A highly selective and sensitive fluorescent chemosensor for distinguishing cadmium(II) from zinc(II) based on amide tautomerization. 2018 , 42, 19245-19251	17
468	Synthesis of TiO2/rGO composites with different morphologies and their electrocatalysis for the oxygen reduction reaction. 2018 , 42, 19755-19763	13
467	Solid and macroporous FeC/N-C nanofibers with enhanced electromagnetic wave absorbability. 2018 , 8, 16832	22

466	Methanol-Tolerant MN位 Catalysts for Oxygen Reduction Reactions in Acidic Media and Their Application in Direct Methanol Fuel Cells. 2018 , 8, 650	25
465	Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. 2018 , 9, 5422	431
464	A Facile Synthesis of C-N Hollow Nanotubes as High Electroactivity Catalysts of Oxygen Reduction Reaction Derived from Dicyandiamide. 2018 , 3, 12603-12612	17
463	A Strategy to Achieve Well-Dispersed Hollow Nitrogen-Doped Carbon Microspheres with Trace Iron for Highly Efficient Oxygen Reduction Reaction in Al-Air Batteries. 2018 , 165, A3766-A3772	6
462	Template-Free Synthesis of Two-Dimensional Fe/N Codoped Carbon Networks as Efficient Oxygen Reduction Reaction Electrocatalysts. 2018 , 10, 37079-37086	12
461	Combined Electron and Structure Manipulation on Fe-Containing N-Doped Carbon Nanotubes To Boost Bifunctional Oxygen Electrocatalysis. 2018 , 10, 35888-35895	63
460	In situ derived Fe/N/S-codoped carbon nanotubes from ZIF-8 crystals as efficient electrocatalysts for the oxygen reduction reaction and zinc∃ir batteries. 2018 , 6, 20093-20099	97
459	N-doped carbon nanofibers aerogels derived from aramid as efficient electrocatalysts for oxygen reduction reaction in alkaline and acidic media. 2018 , 829, 177-183	17
458	Enhancement of Oxygen Reduction Performance of Biomass-Derived Carbon through Co-Doping with Early Transition Metal. 2018 , 165, J3148-J3156	9
457	Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction. 2018 , 24, 18374-18384	39
456	Cobalt-doped MnO2 ultrathin nanosheets with abundant oxygen vacancies supported on functionalized carbon nanofibers for efficient oxygen evolution. 2018 , 54, 129-137	125
455	Covalent Phenanthroline Framework Derived FeS@Fe3C Composite Nanoparticles Embedding in N-S-Codoped Carbons as Highly Efficient Trifunctional Electrocatalysts. 2018 , 28, 1803973	95
454	Individual High-Quality N-Doped Carbon Nanotubes Embedded with Nonprecious Metal Nanoparticles toward Electrochemical Reaction. 2018 , 10, 39757-39767	25
453	Co2Pton Double Active Centers Confined in N-Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward HER, ORR, OER, and ZnAir Batteries Driven Water Splitting. 2018 , 28, 1805641	303
452	Scalable Synthesis of Fe/N-Doped Porous Carbon Nanotube Frameworks for Aqueous Zn-Air Batteries. 2019 , 25, 635-641	8
451	Facile Fabrication of Novel Hetero-Structured OrganicIhorganic High-Performance Nanocatalyst: A Smart System for Enhanced Catalytic Activity toward Ciprofloxacin Degradation and Oxygen Reduction. 2018 , 1, 6015-6026	18
450	Self-Sacrificial Template Synthesis of a Nitrogen-Doped Microstructured Carbon Tube as Electrocatalyst for Oxygen Reduction. 2018 , 5, 3731-3740	9
449	Ni nanoparticle-decorated-MnO2 nanodendrites as highly selective and efficient catalysts for CO2 electroreduction. 2018 , 6, 19438-19444	21

448	2018 , 10, 33737-33767	34
447	One-Pot Pyrolysis Method to Fabricate Carbon Nanotube Supported Ni Single-Atom Catalysts with Ultrahigh Loading. 2018 ,	14
446	FeIII-functionalized carbon electrocatalyst derived from a zeolitic imidazolate framework for oxygen reduction: Fe and NH3 treatment effects. 2018 , 8, 5368-5381	32
445	Well-defined Fe, Fe3C, and Fe2O3 heterostructures on carbon black: a synergistic catalyst for oxygen reduction reaction. 2018 , 8, 4900-4906	32
444	Iron-based heterogeneous catalysts for oxygen evolution reaction; change in perspective from activity promoter to active catalyst. 2018 , 395, 106-127	44
443	Stable and Efficient Nitrogen-Containing Carbon-Based Electrocatalysts for Reactions in Energy-Conversion Systems. 2018 , 11, 2267-2295	15
442	Novel porous FexCyNz/N-doped CNT nanocomposites with excellent bifunctions for catalyzing oxygen reduction reaction and absorbing electromagnetic wave. <i>Applied Surface Science</i> , 2018 , 453, 83-927	18
441	Critical role of iron carbide nanodots on 3D graphene based nonprecious metal catalysts for enhancing oxygen reduction reaction. 2018 , 281, 502-509	16
440	MoS -Carbon Nanotube Porous 3 D Network for Enhanced Oxygen Reduction Reaction. 2018 , 11, 2960-2966	32
439	Dicyandiamide and iron-tannin framework derived nitrogen-doped carbon nanosheets with encapsulated iron carbide nanoparticles as advanced pH-universal oxygen reduction catalysts. 2018 , 530, 196-201	18
438	Sustainable Synthesis of Co@NC Core Shell Nanostructures from Metal Organic Frameworks via Mechanochemical Coordination Self-Assembly: An Efficient Electrocatalyst for Oxygen Reduction Reaction. 2018 , 14, e1800441	103
437	In Situ Growth of NiFe Alloy Nanoparticles Embedded into N-Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn-Air Batteries. 2018 , 10, 26178-26187	66
436	Design of novel graphdiyne-based materials with large second-order nonlinear optical properties. 2018 , 6, 7576-7583	47
435	Highly efficient hierarchical multiroom-structured molybdenum carbide/carbon composite microspheres grafted with nickel-nanoparticle-embedded nitrogen-doped carbon nanotubes as air electrode for lithium-oxygen batteries. 2018 , 351, 886-896	23
434	3D Edge-Enriched Fe C@C Nanocrystals with a Core-Shell Structure Grown on Reduced Graphene Oxide Networks for Efficient Oxygen Reduction Reaction. 2018 , 11, 3292-3298	21
433	Highly Graphitic Mesoporous Fe,N-Doped Carbon Materials for Oxygen Reduction Electrochemical Catalysts. 2018 , 10, 25337-25349	33
432	Porous FeN-codoped carbon microspheres: an efficient and durable electrocatalyst for oxygen reduction reaction. 2018 , 5, 2211-2217	7
431	N, P (S) Co-doped Mo2C/C hybrid electrocatalysts for improved hydrogen generation. 2018 , 139, 845-852	55

430	Bioinspired foam with large 3D macropores for efficient solar steam generation. 2018 , 6, 16220-16227	62
429	Nitrogen-Doped Hollow Carbon Spheres with Embedded Co Nanoparticles as Active Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction. 2018 , 4, 11	1
428	An Iron-Based Catalyst with Multiple Active Components Synergetically Improved Electrochemical Performance for Oxygen Reduction Reaction. 2018 , 8, 243	4
427	Strategic Design of Vacancy-Enriched FeS Nanoparticles Anchored on FeC-Encapsulated and N-Doped Carbon Nanotube Hybrids for High-Efficiency Triiodide Reduction in Dye-Sensitized Solar Cells. 2018 , 10, 31208-31224	45
426	Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. 2018 , 4, eaap8817	72
425	Non Noble Metal Catalyst for Oxygen Reduction Reaction and Its Characterization by Simulated Fuel Cell Test. 2018 , 165, J3008-J3015	10
424	The self-template synthesis of highly efficient hollow structure Fe/N/C electrocatalysts with Fe-N coordination for the oxygen reduction reaction 2018 , 8, 24509-24516	12
423	Induced growth of Fe-Nx active sites using carbon templates. 2018 , 39, 1427-1435	17
422	Cobalt encapsulated in the nitrogen and sulfur co-doped carbon nanotube supported platinum for the oxygen reduction reaction catalyst. 2018 , 139, 656-665	5
421	Heteroatom-doped nanoporous carbon from recyclable lobata and its dual activities for oxygen reduction and hydrogen evolution reactions 2018 , 8, 24392-24398	
42 0	S, N co-doped carbon nanotube-encapsulated core-shelled CoS2@Co nanoparticles: efficient and stable bifunctional catalysts for overall water splitting. 2018 , 63, 1130-1140	156
419	Metal-organic framework-derived Fe3C@NC nanohybrids as highly-efficient oxygen reduction electrocatalysts in both acidic and basic media. 2018 , 823, 755-764	13
418	Sub-50 nm Iron-Nitrogen-Doped Hollow Carbon Sphere-Encapsulated Iron Carbide Nanoparticles as Efficient Oxygen Reduction Catalysts. 2018 , 5, 1800120	140
417	Recent developments of nano-structured materials as the catalysts for oxygen reduction reaction. 2018 , 5, 13	16
416	Transition Metal Carbide Complex Architectures for Energy-Related Applications. 2018, 24, 16716-16736	21
415	Cobalt N itrogen-Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. 2018 , 130, 13371-13375	15
414	Robust Synthesis of High-Performance N-Graphite Hollow Nanocatalysts Based on the Ostwald Ripening Mechanism for Oxygen Reduction Reaction Electrocatalysis. 2018 , 35, 1800266	1
413	Carbon-Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage. 2018 , 30, e1801995	339

A facile synthesis of porous N-doped carbon with hybridization of Fe3C nanoparticle-encased CNTs for an advanced oxygen reduction reaction electrocatalyst. 2018 , 5, 2546-2553	6
Hierarchically Porous MNC (M = Co and Fe) Single-Atom Electrocatalysts with Robust MNx Active Moieties Enable Enhanced ORR Performance. 2018 , 8, 1801956	351
Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. 2018 , 52, 485-493	131
Cobalt-Nitrogen-Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. 2018 , 57, 13187-13191	84
Nitrogen-doped carbon nanotube sponge with embedded Fe/Fe3C nanoparticles as binder-free cathodes for high capacity lithium lufur batteries. 2018 , 6, 17473-17480	49
Bamboo-Structured Nitrogen-Doped Carbon Nanotube Coencapsulating Cobalt and Molybdenum Carbide Nanoparticles: An Efficient Bifunctional Electrocatalyst for Overall Water Splitting. 2018 , 6, 9912-992	o ⁸⁶
Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. 2019 , 18, 338-348	95
Architectural design and promises of carbon materials for energy conversion and storage: in laboratory and industry. 2019 , 25-61	3
Preparing LaMnO3 nanocrystals on surface graphitized micro-diamond for efficient oxygen reduction. 2019 , 807, 151684	2
A multifunctional platform by controlling of carbon nitride in the core-shell structure: From design to construction, and catalysis applications. 2019 , 258, 117957	97
Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts. <i>Journal of the American Chemical Society</i> , 2019 , 141, 12372-12381	236
Fe3C nanoparticles-loaded 3D nanoporous N-doped carbon: A highly efficient electrocatalyst for oxygen reduction in alkaline media. 2019 , 44, 21506-21517	10
The relationship between inherent properties of carbon nanotubes and electrochemical durability of supported-Pt catalysts. 2019 , 97, 107459	2
Iron Carbides: Control Synthesis and Catalytic Applications in CO Hydrogenation and Electrochemical HER. 2019 , 31, e1901796	40
Scale-up biopolymer-chelated fabrication of cobalt nanoparticles encapsulated in N-enriched graphene shells for biofuel upgrade with formic acid. 2019 , 21, 4732-4747	15
ZIF-8 derived nitrogen, phosphorus and sulfur tri-doped mesoporous carbon for boosting electrocatalysis to oxygen reduction in universal pH range. 2019 , 318, 783-793	16
High catalytic activity of supported Au nanoparticles assisted with the surface selective adsorption. 2019 , 21, 1	1
Genuine four-electron oxygen reduction over precious-metal-free catalyst in alkaline media. 2019 , 319, 382-389	14
	For an advanced oxygen reduction reaction electrocatalyst. 2018, 5, 2546-2553 Hierarchically Porous MNIQ (M = Co and Fe) Single-Atom Electrocatalysts with Robust MNx Active Moieties Enable Enhanced ORR Performance. 2018, 8, 1801956 Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. 2018, 52, 485-493 Coball-Nitrogen-Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. 2018, 57, 13187-13191 Nitrogen-doped carbon nanotube sponge with embedded Fe/Fe3C nanoparticles as binder-free catchodes for high capacity lithiumBulfur batteries. 2018, 6, 17473-17480 Bamboo-Structured Nitrogen-Doped Carbon Nanotube Coencapsulating Cobalt and Molybdenum Carbide Nanoparticles: An Efficient Bifunctional Electrocatalyst for Overall Water Splitting. 2018, 6, 9912-992 Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries. 2019, 18, 338-348 Architectural design and promises of carbon materials for energy conversion and storage: in laboratory and Industry. 2019, 25-61 Preparing LaMnO3 nanocrystals on surface graphitized micro-diamond for efficient oxygen reduction. 2019, 807, 151684 A multifunctional platform by controlling of carbon nitride in the core-shell structure: From design to construction, and catalysis applications. 2019, 258, 117957 Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts. Journal of the American Chemical Society, 2019, 141, 12372-12331 164 Fe3C nanoparticles-loaded 3D nanoporous N-doped carbon: A highly efficient electrocatalyst for oxygen reduction in alkaline media. 2019, 44, 21506-21517 The relationship between inherent properties of carbon nanotubes and electrochemical durability of supported-Pt catalysts. 2019, 97, 107459 Iron Carbides Control Synthesis and Catalytic Applications in CO Hydrogenation and Electrochemical Her

394	Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. 2019 , 12, 2924-2956	104
393	A novel strategy for realizing high nitrogen doping in Fe3C-embedded nitrogen and phosphorus-co-doped porous carbon nanowires: efficient oxygen reduction reaction catalysis in acidic electrolytes. 2019 , 7, 17923-17936	35
392	Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media. 2019 , 66, 104164	46
391	Generic Derivation of Optimal Architecture for A Resilient Microgrid with Graph Theory. 2019,	3
390	Magnetic Fe3C@C nanoparticles as a novel cocatalyst for boosting visible-light-driven photocatalytic performance of g-C3N4. 2019 , 44, 26970-26981	22
389	Atomic Fe hetero-layered coordination between g-C3N4 and graphene nanomeshes enhances the ORR electrocatalytic performance of zinclir batteries. 2019 , 7, 1451-1458	48
388	MetalBrganic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. 2019 , 7, 1964-1988	118
387	Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. 2019 , 7, 1281-1286	101
386	Porous Fe, Co, and N-co-doped carbon nanofibers as high-efficiency oxygen reduction catalysts. 2019 , 21, 1	10
385	Fe-functionalized mesoporous carbonaceous microsphere with high sulfur loading as cathode for lithium-sulfur batteries. 2019 , 850, 113408	5
384	Enhanced Electrochemiluminescence Detection for Hydrogen Peroxide Using Peroxidase-Mimetic Fe/N-Doped Porous Carbon. 2019 , 166, B1594-B1601	11
383	Cell cycle dynamics in the reprogramming of cellular identity. 2019 , 593, 2840-2852	8
382	An Integrated Structural Air Electrode Based on Parallel Porous Nitrogen-Doped Carbon Nanotube Arrays for Rechargeable Li-Air Batteries. 2019 , 9,	5
381	Fe/Co-based nanoparticles encapsulated in heteroatom-doped carbon electrocatalysts for oxygen reduction reaction. 2019 , 62, 1626-1641	13
380	Interwoven Molecular Chains Obtained by Ionic Self-Assembly of Two Iron(III) Porphyrins with Opposite and Mismatched Charges. 2019 , 11, 34203-34211	5
379	Markedly Enhanced Oxygen Reduction Activity of Single-Atom Fe Catalysts via Integration with Fe Nanoclusters. 2019 , 13, 11853-11862	189
378	Tuning the electronic structure of PtRu bimetallic nanoparticles for promoting the hydrogen oxidation reaction in alkaline media. 2019 , 6, 2900-2905	32
377	A "MOF-Protective-Pyrolysis" Strategy for the Preparation of Fe-N-C Catalysts and the Role of Fe, N, and C in the Oxygen Reduction Reaction in Acidic Medium. 2019 , 11, 35755-35763	36

376	Multiscale porous Fe-N-C networks as highly efficient catalysts for the oxygen reduction reaction. 2019 , 11, 19506-19511	22
375	In Situ Confined Bimetallic Metal-Organic Framework Derived Nanostructure within 3D Interconnected Bamboo-like Carbon Nanotube Networks for Boosting Electromagnetic Wave Absorbing Performances. 2019 , 11, 35999-36009	74
374	Scalable Synthesis of Micromesoporous Iron-Nitrogen-Doped Carbon as Highly Active and Stable Oxygen Reduction Electrocatalyst. 2019 , 11, 39263-39273	25
373	Bioinspired FeC@C as Highly Efficient Electrocatalyst for Nitrogen Reduction Reaction under Ambient Conditions. 2019 , 11, 40062-40068	31
372	Nonprecious Catalyst for Three-Phase Contact in a Proton Exchange Membrane CO Conversion Full Cell for Efficient Electrochemical Reduction of Carbon Dioxide. 2019 , 11, 40432-40442	6
371	Rational design and construction of nanoporous iron- and nitrogen-doped carbon electrocatalysts for oxygen reduction reaction. 2019 , 7, 1380-1393	111
370	The synthesis, morphology and magnetic properties of (Fe1MMnx)3N nanoparticles. 2019 , 30, 277-283	2
369	Air-Stable Carbon-Fe Based Magnetic Nanostructures. 2019 , 2019, 1374-1383	2
368	Coupling O2 and K2S2O8 Dual Co-reactant with Fe-N-C Modified Electrode for Ultrasensitive Electrochemiluminescence Signal Amplification. 2019 , 4, 1673-1680	2
367	Effect of electrolyte on regenerated cellulose film as gold nanoparticle carrier. 2019 , 210, 234-244	12
366	Fe3C-N-doped carbon modified separator for high performance lithium-sulfur batteries. 2019 , 39, 101-108	47
365	Electrochemical synthesis of ammonia from N2 and H2O using a typical non-noble metal carbon-based catalyst under ambient conditions. 2019 , 9, 1208-1214	25
364	Cobalt oxide doped with titanium dioxide and embedded with carbon nanotubes and graphene-like nanosheets for efficient trifunctional electrocatalyst of hydrogen evolution, oxygen reduction, and oxygen evolution reaction. 2019 , 414, 333-344	31
363	Boosting oxygen reduction activity with low-temperature derived high-loading atomic cobalt on nitrogen-doped graphene for efficient Zn-air batteries. 2019 , 55, 334-337	25
362	Substrate-free and label-free electrocatalysis-assisted biosensor for sensitive detection of microRNA in lung cancer cells. 2019 , 55, 1172-1175	18
361	The design of a novel and resistant Zn(PZDC)(ATZ) MOF catalyst for the chemical fixation of CO2 under solvent-free conditions. 2019 , 6, 317-325	32
360	The combination of metal-organic frameworks and polydopamine nanotubes aiming for efficient one-dimensional oxygen reduction electrocatalyst. 2019 , 552, 351-358	17
359	Novel CdFe Bimetallic Complex-Derived Ultrasmall Fe- and N-Codoped Carbon as a Highly Efficient Oxygen Reduction Catalyst. 2019 , 11, 21481-21488	15

358	An easy synthesis of Ni-Co doped hollow C-N tubular nanocomposites as excellent cathodic catalysts of alkaline and neutral zinc-air batteries. 2019 , 62, 1251-1264	23
357	Fe3C/C nanoparticles encapsulated in N-doped graphene aerogel: an advanced oxygen reduction reaction catalyst for fiber-shaped fuel cells. 2019 , 44, 18393-18402	8
356	Iron and Iodine Co-doped Triazine-Based Frameworks with Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media. 2019 , 7, 11787-11794	5
355	Calixarene-Based (Co26) Burr Puzzle: An Efficient Oxygen Reduction Catalyst. 2019 , 2, 4232-4237	8
354	Chromium phosphide CrP as highly active and stable electrocatalysts for oxygen electroreduction in alkaline media. 2019 , 256, 117846	13
353	Iron carbides: Magic materials with magnetic and catalytic properties. 2019 , 489, 165432	7
352	Fe3O4 Nanoparticles Supported on Arc-synthesized Carbon Nanotubes as Advanced Electrocatalyst for Oxygen Reduction Reaction. 2019 , 4, 6227-6232	1
351	Pyrolytic Carbon-coated Cu-Fe Alloy Nanoparticles with High Catalytic Performance for Oxygen Electroreduction. 2019 , 14, 2676-2684	11
350	In Situ Synthesis and Electrocatalytic Performance of Fe/Fe2.5C/Fe3N/Nitrogen-Doped Carbon Nanotubes for the Oxygen Reduction Reaction. 2019 , 6, 3030-3038	5
349	Poly(ferrocenedimethano)cyclotriphosphazene to Homogenously Fe, N, P, O Doped Carbon Nanotubes: An Efficient and Tremendous Electrocatalyst for Oxygen Reduction Reaction. 2019 , 166, H297-H303	10
348	Polyacrylamide Microspheres-Derived FeC@N-doped Carbon Nanospheres as Efficient Catalyst for Oxygen Reduction Reaction. 2019 , 11,	5
347	Low content of Fe3C anchored on Fe,N,S-codoped graphene-like carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. 2019 , 150, 93-100	37
346	An ingenious approach for ZIFs derived N-doped hierarchical porous carbon hybrids with FeCo alloy nanoparticles as efficient bifunctional oxygen electrocatalysts. <i>Applied Surface Science</i> , 2019 , 487, 496-502	20
345	Hierarchically porous iron and nitrogen Co-doped carbon composite with enhanced ORR performance. 2019 , 276, 139-145	5
344	Fe3C-Co Nanoparticles Encapsulated in a Hierarchical Structure of N-Doped Carbon as a Multifunctional Electrocatalyst for ORR, OER, and HER. 2019 , 29, 1901949	136
343	Facile Synthesis of Cobalt and Nitrogen Coordinated Carbon Nanotube as a High-Performance Electrocatalyst for Oxygen Reduction Reaction in Both Acidic and Alkaline Media. 2019 , 7, 10951-10961	12
342	YolkBhell-structured manganese oxide/nitride composite powders comprising cobalt-nanoparticle-embedded nitrogen-doped carbon nanotubes as cathode catalysts for long-life-cycle lithiumBxygen batteries. 2019 , 373, 86-94	15
341	Facile preparation of trace-iron doped manganese oxide/N-doped ketjenblack carbon composite for efficient ORR electrocatalyst. 2019 , 100, 230-238	14

340	Emerging applications of biochar-based materials for energy storage and conversion. 2019 , 12, 1751-1779	265
339	Fe/Fe C Nanoparticles Encapsulated in N-Doped Hollow Carbon Spheres as Efficient Electrocatalysts for the Oxygen Reduction Reaction over a Wide pH Range. 2019 , 25, 9650-9657	29
338	In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction. 2019 , 254, 292-299	88
337	S, N co-doped rod-like porous carbon derived from S, N organic ligand assembled Ni-MOF as an efficient electrocatalyst for oxygen reduction reaction. 2019 , 275, 167-173	14
336	Ultrasmall Co2P2O7 nanocrystals anchored on nitrogen-doped graphene as efficient electrocatalysts for the oxygen reduction reaction. 2019 , 43, 6492-6499	10
335	Soft magnetic FeC-FeC@C as an electrocatalyst for the hydrogen evolution reaction. 2019, 48, 4636-4642	18
334	Systematic Theoretical Study of Electronic Structures and Stability of Transition-Metal-Adsorbed Graphdiyne Clusters. 2019 , 123, 8843-8850	14
333	A N, S dual doping strategy via electrospinning to prepare hierarchically porous carbon polyhedra embedded carbon nanofibers for flexible supercapacitors. 2019 , 7, 9040-9050	88
332	Importance of Electrocatalyst Morphology for the Oxygen Reduction Reaction. 2019, 6, 2600-2614	28
331	Enhancement of photocurrent in Cu2ZnSnS4 quantum dot-anchored multi-walled carbon nanotube for solar cell application. 2019 , 54, 8542-8555	8
330	Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor. <i>Applied Surface Science</i> , 2019 , 480, 371-383	39
329	Role of Graphene Edges in the Electron Transfer Kinetics: Insight from Theory and Molecular Modeling. 2019 , 123, 6627-6634	14
328	Ultrathin NiS/Ni(OH) Nanosheets Filled within Ammonium Polyacrylate-Functionalized Polypyrrole Nanotubes as an Unique Nanoconfined System for Nonenzymatic Glucose Sensors. 2019 , 11, 10153-10162	22
327	Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction. 2019 , 251, 240-246	65
326	Peroxymonosulfate activation for pollutants degradation by Fe-N-codoped carbonaceous catalyst: Structure-dependent performance and mechanism insight. 2019 , 369, 542-552	71
325	An integrated cathode with bi-functional catalytic effect for excellent-performance lithium-sulfur batteries. 2019 , 12, 1017-1024	15
324	Multicomponent Doped Sugar-Coated Haws Stick-like Nanofibers as Efficient Oxygen Reduction Reaction Catalysts for the ZnAir Battery. 2019 , 7, 7716-7727	23
323	Phosphorus-doped hierarchical porous carbon as efficient metal-free electrocatalysts for oxygen reduction reaction. 2019 , 44, 12941-12951	18

322	Intercalation of Nanosized FeC in Iron/Carbon To Construct Multifunctional Interface with Reduction, Catalysis, Corrosion Resistance, and Immobilization Capabilities. 2019 , 11, 15709-15717	25
321	Strongly coupled ultrasmall-FeC/N-doped porous carbon hybrids for highly efficient Zn-air batteries. 2019 , 55, 5651-5654	25
320	Electrospun FeC-loaded carbon nanofibers as efficient electrocatalysts for oxygen reduction reaction. 2019 , 30, 325403	7
319	Co-, Fe-, and N-Modified Carbon Composites for Excellent Catalytic Performances toward Electrochemical Reduction Reaction. 2019 , 7, 8744-8754	10
318	Iron and nitrogen co-doped porous carbon derived from soybean dregs with enhanced catalytic performance for oxygen reduction. 2019 , 839, 141-148	13
317	Electrocatalytic Water Splitting and CO2 Reduction: Sustainable Solutions via Single-Atom Catalysts Supported on 2D Materials. 2019 , 3, 1800492	41
316	Covalent organic frameworks derived hollow structured N-doped noble carbon for asymmetric-electrolyte Zn-air battery. 2019 , 62, 385-392	20
315	Fe3C-doped asymmetric porous carbon membrane binder-free integrated materials as high performance anodes of lithium-ion batteries. 2019 , 368, 310-320	21
314	Oriented arrays of CoO nanoneedles for highly efficient electrocatalytic water oxidation. 2019 , 55, 3971-3974	13
313	Highly efficient electrocatalysts for oxygen reduction reaction: Nitrogen-doped PtNiMo ternary alloys. 2019 , 44, 6582-6591	16
312	Highly effective and stable doped carbon catalyst with three-dimensional porous structure and well-covered Fe3C nanoparticles prepared with C3N4 and tannic acid as template/precursors. 2019 , 417, 117-124	13
311	Synthesis, Morphology and Magnetic Properties of Fe3C/CNTs Composites by a g-C3N4 Route. 2019 , 4, 13596-13600	0
310	3D interconnected nitrogen-self-doped carbon aerogels as efficient oxygen reduction electrocatalysts derived from biomass gelatin 2019 , 9, 40301-40308	18
309	Enhancement of the hydrogen evolution performance by finely tuning the morphology of Co-based catalyst without changing chemical composition. 2019 , 12, 191-196	10
308	One-step synthesis of novel Fe3C@nitrogen-doped carbon nanotubes/graphene nanosheets for catalytic degradation of Bisphenol A in the presence of peroxymonosulfate. 2019 , 356, 1022-1031	102
307	Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis. 2019 , 12, 33-39	22
306	3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. 2019 , 240, 193-200	134
305	Designing iron carbide embedded isolated boron (B) and nitrogen (N) atoms co-doped porous carbon fibers networks with tiny amount of BN bonds as high-efficiency oxygen reduction reaction catalysts. 2019 , 533, 709-722	19

(2020-2019)

304	Novel and multifunctional inorganic mixing salt-templated 2D ultrathin Fe/Co-N/S-carbon nanosheets as effectively bifunctional electrocatalysts for Zn-air batteries. 2019 , 241, 95-103		76
303	Multiwall carbon nanotube encapsulated Co grown on vertically oriented graphene modified carbon cloth as bifunctional electrocatalysts for solid-state Zn-air battery. 2019 , 144, 370-381		76
302	Bimetallic Mn and Co encased within bamboo-like N-doped carbon nanotubes as efficient oxygen reduction reaction electrocatalysts. 2019 , 537, 238-246		22
301	Atomic Cobalt on Defective Bimodal Mesoporous Carbon toward Efficient Oxygen Reduction for ZincAir Batteries. 2019 , 3, 1800450		35
300	Improved oxygen reduction reaction via a partially oxidized Co-CoO catalyst on N-doped carbon synthesized by a facile sand-bath method. 2019 , 30, 624-629		11
299	Low-Cost and Highly Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: Environment-Friendly Three-Dimensional B, N Co-doped Graphene Aerogels. 2019 , 10, 56-62		8
298	Fused Aromatic Network Structures as a Platform for Efficient Electrocatalysis. 2019 , 31, e1805062		22
297	Activation of peroxymonosulfate by magnetic catalysts derived from drinking water treatment residuals for the degradation of atrazine. 2019 , 366, 402-412		31
296	Cobalt sulfide/N,S-codoped defect-rich carbon nanotubes hybrid as an excellent bi-functional oxygen electrocatalyst. 2019 , 30, 075402		10
295	Robust fused aromatic pyrazine-based two-dimensional network for stably cocooning iron nanoparticles as an oxygen reduction electrocatalyst. 2019 , 56, 581-587		24
294	Fabricating hierarchically porous and Fe3C-embeded nitrogen-rich carbon nanofibers as exceptional electocatalysts for oxygen reduction. 2019 , 142, 115-122		46
293	Bimetal- and nitrogen-codoped spherical porous carbon with efficient catalytic performance towards oxygen reduction reaction in alkaline media. 2019 , 534, 655-664		21
292	Boosting oxygen reduction activity of Fe-N-C by partial copper substitution to iron in Al-air batteries. 2019 , 242, 209-217		87
291	Developing an advanced electrocatalyst derived from Ce(TTA)3Phen embedded polyaniline for oxygen reduction reaction. <i>Applied Surface Science</i> , 2019 , 465, 979-985	6.7	7
290	Green synthesis of transition metal nanocrystals encapsulated into nitrogen-doped carbon nanotubes for efficient carbon dioxide capture. 2019 , 141, 692-703		33
289	The controllable magnetic properties of Fe3N nanoparticles synthesized by a simple urea route. 2020 , 122, 110662		4
288	Co Nanoparticles Encapsulated in Nitrogen Doped Carbon Tubes for Efficient Hydrogenation of Quinoline under Mild Conditions. 2020 , 12, 129-134		11
287	Development of N-doped bamboo-shaped carbon nanotube/magnesium oxide nanocomposites. 2020 , 54, 857-863		

286	Recent advances in carbon-based electrocatalysts for oxygen reduction reaction. 2020 , 31, 626-634	60
285	Charge Transfer Modulated Activity of Carbon-Based Electrocatalysts. 2020 , 10, 1901227	93
284	Enhancement of oxygen reduction on a newly fabricated cathode and its application in the electro-Fenton process. 2020 , 330, 135206	23
283	Epitaxial growth and multiferroic properties of artificial LCMO/BCZT heterostructure on (1 0 0) MgO substrate by pulsed laser deposition. 2020 , 53, 015002	4
282	Design of house centipede-like MoCMo2C nanorods grafted with N-doped carbon nanotubes as bifunctional catalysts for high-performance LiD2 batteries. 2020 , 384, 123344	18
281	The Fe-N-C oxidase-like nanozyme used for catalytic oxidation of NOM in surface water. 2020 , 171, 115491	15
280	Graphitic Carbon Nitride (g-CN)-Derived Bamboo-Like Carbon Nanotubes/Co Nanoparticles Hybrids for Highly Efficient Electrocatalytic Oxygen Reduction. 2020 , 12, 4463-4472	53
279	Gas-liquid detonation synthesis of CNTs@Fe/Fe3C composites and their application as electrode materials for double-layer capacitors. 2020 , 28, 480-486	1
278	A nitrogen and fluorine enriched Fe/FeC@C oxygen reduction reaction electrocatalyst for anion/proton exchange membrane fuel cells. 2020 , 12, 2542-2554	26
277	Preparation of Iron- and Nitrogen-Codoped Carbon Nanotubes from Waste Plastics Pyrolysis for the Oxygen Reduction Reaction. 2020 , 13, 938-944	25
276	Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries. 2020 , 334, 135562	26
275	Atomic-Level Fe-N-C Coupled with Fe C-Fe Nanocomposites in Carbon Matrixes as High-Efficiency Bifunctional Oxygen Catalysts. 2020 , 16, e1906057	50
274	Low-background electrochemical biosensor for one-step detection of base excision repair enzyme. 2020 , 150, 111865	8
273	Recent Progress of Metal Carbides Encapsulated in Carbon-Based Materials for Electrocatalysis of Oxygen Reduction Reaction. 2020 , 4, 1900575	41
272	AgCoO2©o3O4/CMC Cloudy Architecture as High Performance Electrodes for Asymmetric Supercapacitors. 2020 , 7, 535-545	8
271	Fused Hybrid Linkers for Metal©rganic Framework-Derived Bifunctional Oxygen Electrocatalysts. 2020 , 3, 152-157	14
270	Promotion of Nitrogen Reserve and Electronic Regulation in Bamboo-like Carbon Tubules by Cobalt Nanoparticles for Highly Efficient ORR. 2020 , 3, 2323-2330	10
269	Honeycomb-like 3D N-, P-codoped porous carbon anchored with ultrasmall Fe2P nanocrystals for efficient Zn-air battery. 2020 , 158, 885-892	26

(2020-2020)

268	Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healing in vivo. 2020 , 159, 149-160	34
267	Fe/N-doped hollow porous carbon spheres for oxygen reduction reaction. 2020 , 31, 125404	8
266	Toward Efficient Carbon and Water Cycles: Emerging Opportunities with Single-Site Catalysts Made of 3d Transition Metals. 2020 , 32, e1905548	14
265	Iron encased organic networks with enhanced lithium storage properties. 2020 , 2, e114	2
264	Cuprum Metal-Organic-Framework and Polyacrylonitrile-Derived Cu-N-C Electrocatalyst for Application in Zinc-Air Batteries. 2020 , 15, 2050012	3
263	Noble-Metal-Free Doped Carbon Nanomaterial Electrocatalysts. 2020 , 26, 15397-15415	13
262	Fe-Co Alloyed Nanoparticles Catalyzing Efficient Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol in Water. 2020 , 132, 23727-23732	1
261	Confined CoGe Alloy Nanoparticles in Nitrogen-Doped Carbon Nanotubes for Boosting Lithium Storage. 2020 , 12, 46247-46253	8
260	A facile synthesis of an Fe/N-doped ultrathin carbon sheet for highly efficient oxygen reduction reaction. 2020 , 7, 4652-4660	2
259	Surfactant-Mediated Morphological Evolution of MnCo Prussian Blue Structures. 2020 , 16, e2004614	18
258	Non-tubular-biomass-derived nitrogen-doped carbon microtubes for ultrahigh-area-capacity lithium-ion batteries. 2020 , 580, 638-644	10
257	Defect-controlled Fe-N-doped carbon nanofiber by ball-milling for oxygen reduction reaction. 2020 , 37, 938-945	3
256	Work function regulation of nitrogen-doped carbon nanotubes triggered by metal nanoparticles for efficient electrocatalytic nitrogen fixation. 2020 , 8, 26066-26074	12
255	Applications of biomass-derived materials for energy production, conversion, and storage. 2020 , 3, 905-920	10
254	Non-precious Melamine/Chitosan Composites for the Oxygen Reduction Reaction: Effect of the Transition Metal. 2020 , 7,	2
253	Highly efficient catalysts for oxygen reduction using well-dispersed iron carbide nanoparticles embedded in multichannel hollow nanofibers. 2020 , 8, 18125-18131	15
252	Highly ordered macroporous dual-element-doped carbon from metal-organic frameworks for catalyzing oxygen reduction. 2020 , 11, 9584-9592	14
251	The non-precious metal ORR catalysts for the anion exchange membrane fuel cells application: A numerical simulation and experimental study. 2020 , 45, 23353-23367	6

250	High performance biomass-derived catalysts for the oxygen reduction reaction with excellent methanol tolerance. 2020 , 45, 27026-27035	4
249	A computational evaluation of MoS2-based materials for the electrocatalytic oxygen reduction reaction. 2020 , 44, 14189-14197	6
248	Engineering the efficient three-dimension hollow cubic carbon from vacuum residuum with enhanced mass transfer ability towards H2O2 production. 2020 , 38, 98-98	
247	Facile Synthesis of the Amorphous Carbon Coated Fe-N-C Nanocatalyst with Efficient Activity for Oxygen Reduction Reaction in Acidic and Alkaline Media. 2020 , 13,	4
246	Engineering hierarchical MOFs-derived FeNC nanostructure with improved oxygen reduction activity for zinc-air battery: the role of iron oxide. 2020 , 18, 100500	19
245	A N-doped rice husk-based porous carbon as an electrocatalyst for the oxygen reduction reaction. 2020 , 35, 401-409	8
244	FeS/FeNC decorated N,S-co-doped porous carbon for enhanced ORR activity in alkaline media. 2020 , 56, 12921-12924	11
243	Unveiling the Potential of an Fe Bis(terpyridine) Complex for Precise Development of an Fe-N-C Electrocatalyst to Promote the Oxygen Reduction Reaction. 2020 , 59, 13453-13464	6
242	Fe-Co Alloyed Nanoparticles Catalyzing Efficient Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol in Water. 2020 , 59, 23521-23526	36
241	Uniform Bamboo-like N-Doped Carbon Nanotubes Derived from a g-C3N4 Substrate Grown via Anchoring Effect to Boost the Performance of Metal&ir Batteries. 2020 , 3, 11213-11222	5
240	Hollow Carbon Nanocubes as Oxygen Reduction Reaction Electrocatalyst. 2020 , 5, 13300-13304	2
239	A No-Sweat Strategy for Graphene-Macrocycle Co-assembled Electrocatalyst toward Oxygen Reduction and Ambient Ammonia Synthesis. 2020 , 59, 16385-16397	3
238	Fe/Fe3C-NC Nanosheet/Carbon Nanotube Composite Electrocatalysts for Oxygen Reduction Reaction. 2020 , 3, 11574-11580	12
237	Banana Leaflike C-Doped MoS Aerogels toward Excellent Microwave Absorption Performance. 2020 , 12, 26301-26312	38
236	Recent advances in Co-based electrocatalysts for the oxygen reduction reaction. 2020 , 4, 3848-3870	20
235	Facile synthesis of cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotubes for use as a highly efficient bifunctional catalyst in rechargeable Zn-Air batteries. 2020 , 842, 155791	10
234	Fabrication of Fe3C caged in N doped carbon nanotube as a desirable ORR electrocatalyst by a facile method. 2020 , 871, 114316	4
233	Highly conductive skeleton Graphitic-C3N4 assisted Fe-based metal-organic frameworks derived porous bimetallic carbon nanofiber for enhanced oxygen-reduction performance in microbial fuel cells. 2020 , 467, 228313	20

(2020-2020)

232	Tailored design of highBtability CoMn1.5Ox@TiO2 doubleWall nanocages derived from Prussian blue analogue for catalytic combustion of odichlorobenzene. 2020 , 276, 119133	19
231	Microstructure Engineering of Fe/FeC-Decorated Metal-Nitrogen-Carbon Mesoporous Nanospheres via a Self-Template Method for Enhancing Oxygen Reduction Activity. 2020 , 12, 28065-28074	7
230	Insights into the regularity of the formation of 2D 3d transition metal monocarbides. 2020 , 12, 13407-13413	4
229	Hexamine-Coordination-Framework-Derived CoN-doped Carbon Nanosheets for Robust Oxygen Reduction Reaction. 2020 , 8, 9721-9730	13
228	Bubble-like Fe-encapsulated N,S-codoped carbon nanofibers as efficient bifunctional oxygen electrocatalysts for robust Zn-air batteries. 2020 , 13, 2175-2182	23
227	Ionic liquid derived Fe, N, B co-doped bamboo-like carbon nanotubes as an efficient oxygen reduction catalyst. 2020 , 579, 637-644	14
226	Ionothermal carbonization of biomass to construct sp2/sp3 carbon interface in N-doped biochar as efficient oxygen reduction electrocatalysts. 2020 , 400, 125969	27
225	Bimetallic IrAu mesoporous nanovesicles. 2020 , 395, 125135	5
224	Synergistic heat treatment derived hollow-mesoporous-microporous FeINII-SHT electrocatalyst for oxygen reduction reaction. 2020 , 305, 110382	9
223	A novel approach for the synthesis of iron carbide nanostructures using spark plasma sintering. 2020 , 510, 166935	4
222	Confining Iron Carbide Growth in Porous Carbon to Improve the Electrocatalytic Performance for Oxygen Reduction Reaction. 2020 , 11, 354-363	1
221	Solar energy conversion and utilization: Towards the emerging photo-electrochemical devices based on perovskite photovoltaics. 2020 , 393, 124766	42
220	Cobalt Metaltobalt Carbide Composite Microspheres for Water Reduction Electrocatalysis. 2020 , 3, 3909-3918	11
219	Yolk-shell Fe@FeNx nanoparticles decorated N-doped mesoporous carbon as highly active electrocatalyst for oxygen reduction reactions. 2020 , 829, 154558	14
218	Design and Preparation of Fe-N Catalytic Sites in Single-Atom Catalysts for Enhancing the Oxygen Reduction Reaction in Fuel Cells. 2020 , 12, 17334-17342	35
217	Highly Dispersed Nonprecious Metal Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. 2020 , 12, 17481-17491	14
216	Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts. 2020 , 49, 275-282	21
215	FeNx and Fe2O3 co-functionalized hollow graphitic carbon nanofibers for efficient oxygen reduction in an alkaline medium. 2020 , 8, 6076-6082	22

214	Fabrication of core-shell nanohybrid derived from iron-based metal-organic framework grappled on nitrogen-doped graphene for oxygen reduction reaction. 2020 , 401, 126001	34
213	An efficient pH-universal electrocatalyst for oxygen reduction: defect-rich graphitized carbon shell wrapped cobalt within hierarchical porous N-doped carbon aerogel. 2020 , 17, 100452	11
212	Preparation of monodisperse ferrous nanoparticles embedded in carbon aerogels via in situ solid phase polymerization for electrocatalytic oxygen reduction. 2020 , 12, 15318-15324	2
211	Scalable synthesis of FeN nanoparticles within N-doped carbon frameworks as efficient electrocatalysts for oxygen reduction reaction. 2020 , 580, 460-469	10
210	Rational design of hierarchical carbon hybrid microassemblies via reductive-catalytic chemical vapor deposition. 2020 , 167, 422-430	5
209	Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review. 2020 , 12,	18
208	Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C. 2020 , 162, 438-444	83
207	Tailor-made open porous 2D CoFe/SN-carbon with slightly weakened adsorption strength of ORR/OER intermediates as remarkable electrocatalysts toward zinc-air batteries. 2020 , 269, 118771	42
206	Highly Efficient Oxygen Reduction Reaction Electrocatalysts FeCoNC Derived from Two Metallomacrocycles and N-doped Porous Carbon Materials. 2020 , 7, 865-872	6
205	In-situ formation of N doped hollow graphene Nanospheres/CNTs architecture with encapsulated Fe3C@C nanoparticles as efficient bifunctional oxygen electrocatalysts. 2020 , 828, 154238	7
204	FeNi intermetallic compound nanoparticles wrapped with N-doped graphitized carbon: a novel cocatalyst for boosting photocatalytic hydrogen evolution. 2020 , 8, 3481-3490	35
203	Fe3C nanoparticles decorated Fe/N codoped graphene-like hierarchically carbon nanosheets for effective oxygen electrocatalysis. 2020 , 45, 3930-3939	8
202	Synergistic effect between atomically dispersed Fe and Co metal sites for enhanced oxygen reduction reaction. 2020 , 8, 4369-4375	57
201	Bottom-Up Fabrication of a Sandwich-Like Carbon/Graphene Heterostructure with Built-In FeNC Dopants as Non-Noble Electrocatalyst for Oxygen Reduction Reaction. 2020 , 15, 432-439	9
200	Facile synthesis of CoSe nanoparticles encapsulated in N-doped carbon nanotubes-grafted N-doped carbon nanosheets for water splitting. 2020 , 337, 135685	14
199	Ordered micro-mesoporous carbon spheres embedded with well-dispersed ultrafine Fe3C nanocrystals as cathode material for high-performance lithium-sulfur batteries. 2020 , 388, 124315	16
198	Gadolinium-Induced Valence Structure Engineering for Enhanced Oxygen Electrocatalysis. 2020 , 10, 1903833	61
197	Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. 2020 , 272, 118967	53

(2021-2020)

Highly efficient Co@NCS nanosheet electrocatalyst for oxygen reduction reaction: An environment-friendly, low-cost and sustainable electrocatalyst. 2020 , 128, 110873	14
A Honeycomb-Like Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. 2020 , 59, 19627-19632	50
A Honeycomb-Like Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. 2020 , 132, 19795-19800	4
Fe/Fe3C nanoparticle-decorated N-doped carbon nanofibers for improving the nitrogen selectivity of electrocatalytic nitrate reduction. 2020 , 8, 15853-15863	42
High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation. 2020 , 397, 122764	94
FeRh and Nitrogen Codoped Graphene, a Highly Efficient Bifunctional Catalyst toward Oxygen Reduction and Oxygen Evolution Reactions. 2020 , 124, 9142-9150	5
Enhanced utilization of active sites of Fe/N/C catalysts by pore-in-pore structures for ultrahigh mass activity. 2020 , 31, 315401	5
Novel Fe3C Nanoparticles Encapsulated in Bamboo-Like Nitrogen-Doped Carbon Nanotubes as High-Performance Electrocatalyst for Zinc-Air Battery. 2020 , 167, 060526	5
Dual-template strategy for electrocatalyst of cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotubes for oxygen reduction reaction. 2021 , 581, 523-532	8
One-dimensional metal-organic nanowires-derived catalyst of carbon nanobamboos with encapsulated cobalt nanoparticles for oxygen reduction. 2021 , 394, 366-375	8
Bimetallic MOFs derived FeM(II)-alloy@C composites with high-performance electromagnetic wave absorption. 2021 , 420, 127609	12
A Highly Ordered Hydrophilic⊞ydrophobic Janus Bi-Functional Layer with Ultralow Pt Loading and Fast Gas/Water Transport for Fuel Cells. 2021 , 4, 126-133	19
Core-shell FeCo N-doped biocarbons as stable electrocatalysts for oxygen reduction reaction in fuel cells. 2021 , 45, 8285-8295	3
N-doped graphitic carbon shell-encapsulated FeCo alloy derived from metal-polyphenol network and melamine sponge for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media. 2021 , 581, 362-373	23
Carbon-based electrocatalysts for sustainable energy applications. 2021 , 116, 100717	71
Atomic Fe & FeP nanoparticles synergistically facilitate oxygen reduction reaction of hollow carbon hybrids. 2021 , 583, 371-375	6
Highly active sites of low spin FeIIN4 species: The identification and the ORR performance. 2021 , 14, 122-130	20
In-situ self-catalyzed growth of bimetallic nanoparticles/carbon nanotubes: A flexible binder-free electrocatalyst for high-performance oxygen evolution reaction. 2021 , 16, 100303	8
	A Honeycomb-Like Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. 2020, 59, 19627-19632 A Honeycomb-Like Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. 2020, 132, 19795-19800 Fe/Fe3C nanoparticle-decorated N-doped carbon nanofibers for improving the nitrogen selectivity of electrocatalytic nitrate reduction. 2020, 8, 15853-15863 High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation. 2020, 397, 122764 FeRh and Nitrogen Codoped Graphene, a Highly Efficient Bifunctional Catalyst toward Oxygen Reduction and Oxygen Evolution Reactions. 2020, 124, 9142-9150 Enhanced utilization of active sites of Fe/N/C catalysts by pore-in-pore structures for ultrahigh mass activity. 2020, 31, 315401 Novel Fe3C Nanoparticles Encapsulated in Bamboo-Like Nitrogen-Doped Carbon Nanotubes as High-Performance Electrocatalyst for Zinc-Air Battery. 2020, 167, 060526 Dual-template strategy for electrocatalyst of cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotubes for oxygen reduction reaction. 2021, 581, 523-532 One-dimensional metal-organic nanowires-derived catalyst of carbon nanobamboos with encapsulated cobalt nanoparticles for oxygen reduction. 2021, 394, 366-375 Bimetallic MOFs derived FeM(II)-alloy@C composites with high-performance electromagnetic wave absorption. 2021, 420, 127609 A Highly Ordered HydrophilidBydrophobic Janus Bi-Functional Layer with Ultralow Pt Loading and Fast Cas/Water Transport for Fuel Cells. 2021, 4, 126-133 Core-shell FeCo N-doped biocarbons as stable electrocatalysts for oxygen reduction reaction in Fuel cells. 2021, 45, 828-8-8295 N-doped graphitic carbon shell-encapsulated FeCo alloy derived from metal-polyphenol network and melamine sponge for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media. 2021, 581, 362-373 Carbon-based electrocatalysts for sustainable energy applications. 2021, 116, 100717 Atomic Fe & FeP n

178	Designed Iron Single Atom Catalysts for Highly Efficient Oxygen Reduction Reaction in Alkaline and Acid Media. 2021 , 8, 2001788	5
177	Preparation of iron and nitrogen co-doped carbon material Fe/N-CCM-T for oxygen reduction reaction. 2021 , 46, 5332-5344	8
176	Modulated FeCo nanoparticle in situ growth on the carbon matrix for high-performance oxygen catalysts. 2021 , 19, 100610	5
175	Boosting NH3 production from nitrate electroreduction via electronic structure engineering of Fe3C nanoflakes.	5
174	Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins. 2021 , 50, 5120-5123	3
173	Hierarchically porous Fe,N-doped carbon nanorods derived from 1D Fe-doped MOFs as highly efficient oxygen reduction electrocatalysts in both alkaline and acidic media. 2021 , 13, 10500-10508	6
172	Iron-Nanoparticle-Loaded Nitrogen-Doped Carbon Nanotube/Carbon Sheet Composites Derived from MOF as Electrocatalysts for an Oxygen Reduction Reaction. 2021 , 4, 459-477	13
171	Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction. 2021 , 14, 2819-2825	5
170	Rh particles in N-doped porous carbon materials derived from ZIF-8 as an efficient bifunctional electrocatalyst for the ORR and HER 2021 , 11, 13906-13911	4
169	Solid-state synthesis of single-phase nickel monophosphosulfide for the oxygen evolution reaction. 2021 , 50, 12870-12878	1
168	The cooperation of Fe3C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for ZnBir batteries. 2021 , 9, 6831-6840	28
167	Morphological and reactive optimization of g-C3N4-derived Co,N-codoped carbon nanotubes for hydrogen evolution reaction. 2021 , 45, 6308-6314	O
166	One-step synthesis of carbon-encapsulated nickel phosphide nanoparticles with efficient bifunctional catalysis on oxygen evolution and reduction. 2021 , 46, 8519-8530	10
165	Recycling of Graphite Anode from Spent Lithium-ion Batteries for Preparing Fe-N-doped Carbon ORR Catalyst. 2021 , 13, 2025-2033	6
164	An ultra-dispersive, nonprecious metal MOFBeZn catalyst with good oxygen reduction activity and favorable stability in acid. 2021 , 56, 8600-8612	2
163	Single entity electrochemistry and the electron transfer kinetics of hydrazine oxidation. 2021 , 14, 4132	6
162	Incorporating Fe3C into B, N co-doped CNTs: Non-radical-dominated peroxymonosulfate catalytic activation mechanism. 2021 , 405, 126686	34
161	Single-Atom Fe Catalyst Outperforms Its Homogeneous Counterpart for Activating Peroxymonosulfate to Achieve Effective Degradation of Organic Contaminants. 2021 , 55, 7034-7043	64

(2021-2021)

160	Carbon-nanotube-entangled Co,N-codoped carbon nanocomposite for oxygen reduction reaction. 2021 , 32, 205402	2
159	Nitrogen-Rich Precursors Assisted Synthesis of Metal-Organic Framework-Derived Nanostructures as Bifunctional Catalysts for Electrochemical Sensing and Oxygen Reduction Reaction. 2021 , 168, 027514	3
158	Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based corellhell electrocatalysts for rechargeable zinclir batteries. 2021 , 53, 364-371	22
157	Cobalt Nanoparticle-Embedded Nitrogen-Doped Carbon Catalyst Derived from a Solid-State Metal-Organic Framework Complex for OER and HER Electrocatalysis. 2021 , 14, 1320	6
156	An Ingenious Strategy to Integrate Multiple Electrocatalytically Active Components within a Well-Aligned Nitrogen-Doped Carbon Nanotube Array Electrode for Electrocatalysis. 2021 , 11, 3958-3974	11
155	Fe7C3 nanoparticles with in situ grown CNT on nitrogen doped hollow carbon cube with greatly enhanced conductivity and ORR performance for alkaline fuel cell. 2021 , 174, 531-539	33
154	Electronic Optimization by Coupling FeCo Nanoclusters and Pt Nanoparticles to Carbon Nanotubes for Efficient Hydrogen Evolution. 2021 , 9, 5895-5901	4
153	Transformation to nonradical pathway for the activation of peroxydisulfate after doping S into Fe3C-encapsulated N/S-codoped carbon nanotubes. 2021 , 409, 128201	14
152	2021 Roadmap: electrocatalysts for green catalytic processes. 2021 , 4, 022004	24
151	Fe3C encapsulated in N-doped carbon shell grown on reduced graphene oxide as a high-performance negative material for electrochemical energy storage. 2021 , 412, 128720	9
150	Optimizing Surface N-Doping of Fe-N-C Catalysts Derived from Fe/Melamine-Decorated Polyaniline for Oxygen Reduction Electrocatalysis. 2021 , 8, 2100197	3
149	Fe/N-codoped carbocatalysts loaded on carbon cloth (CC) for activating peroxymonosulfate (PMS) to degrade methyl orange dyes. <i>Applied Surface Science</i> , 2021 , 549, 149300	13
148	A Highly Active Oxygen Reduction Composite Electrocatalyst of Fe3C with a N, F Dual-Doped Carbon Layer Hide. 2021 , 168, 054511	О
147	CoNi Alloy Nanoparticles Encapsulated in N-Doped Graphite Carbon Nanotubes as an Efficient Electrocatalyst for Oxygen Reduction Reaction in an Alkaline Medium. 2021 , 9, 8207-8213	2
146	Trace Bimetallic Iron/Manganese Co-Doped N-Ketjenblack Carbon Electrocatalyst for Robust Oxygen Reduction Reaction. 2021 , 168, 060502	1
145	Fe/Fe3C@CNTs anchored on carbonized wood as both self-standing anode and cathode for synergistic electro-Fenton oxidation and sequestration of As(III). 2021 , 414, 128925	5
144	Modulating Oxygen Reduction Behaviors on Nickel Single-Atom Catalysts to Probe the Electrochemiluminescence Mechanism at the Atomic Level. 2021 , 93, 8663-8670	8
143	Ternary TiMoBe Nanotubes as Efficient Photoanodes for Solar-Assisted Water Splitting. 2021 , 125, 12504-12517	4

142	An overview on the development of nanofiber-based as polymer electrolyte membrane and electrocatalyst in fuel cell application. 2021 , 45, 18441	5
141	Novel core-shell CuMo-oxynitride@N-doped graphene nanohybrid as multifunctional catalysts for rechargeable zinc-air batteries and water splitting. 2021 , 85, 105987	30
140	Developing nitrogen and Co/Fe/Ni multi-doped carbon nanotubes as high-performance bifunctional catalyst for rechargeable zinc-air battery. 2021 , 593, 204-213	10
139	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. 2021 , 121, 10271	-1036 6 1
138	Nanozymes-Hitting the Biosensing "Target". 2021 , 21,	7
137	Cobalt nanoparticles encapsulated in nitrogen-rich carbonitride nanotubes for efficient and stable hydrogen evolution reaction at all pH values. 2021 , 46, 26347-26357	1
136	3D Melamine Sponge-Derived Cobalt Nanoparticle-Embedded N-Doped Carbon Nanocages as Efficient Electrocatalysts for the Oxygen Reduction Reaction. 2021 , 6, 20130-20138	0
135	In Situ Growth of Novel Graphene Nanostructures in Reduced Graphene Oxide Microspherical Assembly with Restacking-Resistance and Inter-Particle Contacts for Energy Storage Devices. 2021 , 17, e2101930	1
134	FeCo-based mesoporous carbon shells modified N-doped porous carbon spheres for oxygen reduction reaction. 2021 , 31, 527-535	3
133	Recent Advances in Enhancing Oxygen Reduction Reaction Performance for Non-Noble-Metal Electrocatalysts Derived from Electrospinning. 2021 , 9, 2100301	O
132	Heteroatom sulfur-induced defect engineering in carbon nanotubes: Enhanced electrocatalytic activity of oxygen reduction reaction. 2021 , 180, 31-40	9
131	A scalable molecular-templating strategy toward well-defined microporous carbon aerogels for efficient water treatment and electrocatalysis. 2021 , 418, 129315	2
130	Non-layered transition metal carbides for energy storage and conversion. 2021 , 36, 751-778	1
129	Structure Optimization of a High-Temperature Oxygen-Membrane Module Using Finite Element Analysis. 2021 , 14, 4992	
128	Magnetic nanocomposites of Fe3C or Ni-substituted (Fe3C/Fe3O4) with carbon for degradation of methylene orange and p-nitrophenol. 2021 , 309, 127372	3
127	Iron/Iron Carbide (Fe/Fe3C) Encapsulated in S, N Codoped Graphitic Carbon as a Robust HER Electrocatalyst.	3
126	In-situ construction of C-S-Zn structures on Enteromorpha-based porous carbon for efficient oxygen reduction reaction. 2021 , 391, 138918	
125	Hybrid hierarchically structured materials combining breath figures and thermal decomposition of KAuCl4. 2021 , 624, 126766	2

124	A g-CN self-templated preparation of N-doped carbon nanosheets@Co-CoO/Carbon nanotubes as high-rate lithium-ion batteries' anode materials. 2021 , 597, 1-8	7
123	CoNi Nanoalloys @ N-Doped Graphene Encapsulated in N-Doped Carbon Nanotubes for Rechargeable ZnAir Batteries.	3
122	Interfacial enhancement of O* protonation on Fe2N/Fe3C nanoparticles to boost oxygen reduction reaction and the fuel cell in acidic electrolyte. 2021 , 21, 100834	2
121	Dual oxidation and sulfurization enabling hybrid Co/Co3O4@CoS in S/N-doped carbon matrix for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. 2021 , 419, 129619	21
120	Endohedral Fe3C decorated multi-walled CNTs as an efficient electrocatalyst for oxygen evolution. 2021 , 118, 108508	1
119	Confining self-standing CoSe2 nanostructures and Fe3C wrapped N-doped carbon frameworks with enhanced energy storage performances. <i>Applied Surface Science</i> , 2021 , 564, 150449	7
118	Nickel nanoparticles encapsulated by nitrogen-doped bamboo-shaped carbon nanotubes with a high-level doping: A boosting electrocatalyst for alkaline hydrogen evolution. <i>Applied Surface</i> 6.7 <i>Science</i> , 2021 , 564, 150439	О
117	Second diffusion of Co particles during MoS2 incorporated in N-doped carbon nanotubes towards superior electrochemical activity. 2021 , 46, 33801-33808	6
116	Influence of doping nitrogen on the catalytic performance of carbon nanotubes encapsulating cobalt for selective oxidation of arylalkanes. 2021 , 58, 85-91	1
115	Fe atom clusters embedded N-doped graphene decorated with ultrathin mesoporous carbon nitride nanosheets for high efficient photocatalytic performance. 2021 , 629, 127360	2
114	Hollow and Porous Fe3C-NC Nanoballoons Nanozymes for Cancer Cell H2O2 Detection. 2021 , 347, 130597	3
113	Light-weight 1D heteroatoms-doped Fe3C@C nanofibers for microwave absorption with a thinner matching thickness. 2021 , 885, 160968	7
112	Cobalt nanoparticles/ nitrogen, sulfur-codoped ultrathin carbon nanotubes derived from metal organic frameworks as high-efficiency electrocatalyst for robust rechargeable zinc-air battery. 2021 , 603, 559-571	6
111	Multi-functional Co3O4 embedded carbon nanotube architecture for oxygen evolution reaction and benzoin oxidation. 2021 , 343, 117616	2
110	Synthesis and application in oxygen reduction reaction of N-doping porous graphitic carbon from biomass waste. 2021 , 224, 107028	1
109	Binary ligand strategy toward interweaved encapsulation-nanotubes structured electrocatalyst for proton exchange membrane fuel cell. 2022 , 64, 129-135	2
108	Two-step assembly induced Fe0-anchored graphitic N-rich graphene with biactive centers for enhanced heterogeneous peroxymonosulfate activation. 2021 , 9, 17366-17379	8
107	Enhancement of Mass Transport for Oxygen Reduction Reaction Using Petal-Like Porous Fe-NC Nanosheet. 2021 , 17, e2006178	15

106	A Self-Jet Vapor-Phase Growth of 3D FeNi@NCNT Clusters as Efficient Oxygen Electrocatalysts for Zinc-Air Batteries. 2021 , 17, e2006183	20
105	Bimetallic carbon nanotube encapsulated Fe-Ni catalysts from fast pyrolysis of waste plastics and their oxygen reduction properties. 2020 , 109, 119-126	26
104	Calcination of Porphyrin-Based Conjugated Microporous Polymers Nanotubes As Nanoporous N-Rich Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction. 2020 , 3, 5260-5268	16
103	Toward pH Independent Oxygen Reduction Reaction by Polydopamine Derived 3D Interconnected, Iron Carbide Embedded Graphitic Carbon. 2021 , 13, 8147-8158	5
102	Fe7C3 E e3N/FeNxCy Decorated Carbon Material as Highly Efficient Catalyst for Oxygen Reduction Reaction in Al-Air Batteries. 2017 , 9, 1909-1918	5
101	Superior Fe x N electrocatalyst derived from 1,1?-diacetylferrocene for oxygen reduction reaction in alkaline and acidic media. 2020 , 9, 843-852	3
100	Improving the Performance of Zn-Air Batteries with N-Doped Electroexfoliated Graphene. 2020, 13,	10
99	Relevant Properties of Carbon Support Materials in Successful Fe-N-C Synthesis for the Oxygen Reduction Reaction: Study of Carbon Blacks and Biomass-Based Carbons. 2020 , 14,	7
98	Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. 1	15
97	Alkaline Metal Oxide Assisting the Ionothermal Method for Efficient Fe-N/C Catalyst Preparation. 2021 ,	
96	Reducing ROS generation and accelerating the photocatalytic degradation rate of PPCPs at neutral pH by doping Fe-N-C to g-C3N4. 2022 , 301, 120790	6
95	Fe,N-modulated carbon fibers aerogel as freestanding cathode catalyst for rechargeable ZnAir battery. 2022 , 187, 196-206	7
94	Facile fabrication of Fe/FeC embedded in N-doped carbon nanofiber for efficient degradation of tetracycline via peroxymonosulfate activation: Role of superoxide radical and singlet oxygen. 2021 , 609, 86-101	5
93	Coffe alloy nanoparticles and Fe3C nanocrystals on N-doped biomass-derived porous carbon for superior electrocatalytic oxygen reduction. 2021 , 122735	1
92	The regulation of coordination structure between cobalt and nitrogen on graphene for efficient bifunctional electrocatalysis in Zn-air batteries. 2021 , 68, 213-213	2
91	Fe3C/Carbon-Coated Fe3O4 CoreBhell Nanoparticles as Recyclable Catalysts for Ciprofloxacin Degradation in Water.	1
90	Facile synthesis of N-doped carbon nanotubes grafted on N-doped carbon nanosheets co-encapsulating cobalt and molybdenum carbide nanoparticles for efficient methanol oxidation. 2022 , 23, 100665	1
89	Engineering Gd2O3-Ni heterostructure for efficient oxygen reduction electrocatalysis via the electronic reconfiguration and adsorption optimization of intermediates. 2022 , 433, 134597	2

88	Ultra-fast synthesis of iron decorated multiwalled carbon nanotube composite materials: A sensitive electrochemical sensor for determining dopamine. 2022 , 897, 163257	2
87	hcp-phased Ni nanoparticles with generic catalytic hydrogenation activities toward different functional groups. 2022 , 65, 1252	1
86	Unmasking the Critical Role of the Ordering Degree of Bimetallic Nanocatalysts on Oxygen Reduction Reaction by In-situ Raman Spectroscopy.	
85	Synthesis and electrocatalytic properties of M (Fe, Co),N co-doped porous carbon frameworks for efficient oxygen reduction reaction. 2022 , 47, 9504-9516	3
84	Adina Rubella-Like Microsized SiO@N-Doped Carbon Grafted with N-Doped Carbon Nanotubes as Anodes for High-Performance Lithium Storage. 2100105	7
83	Synergistic effect on ammonia borane hydrolysis by Co catalysts with atomically dispersed CoNx active sites for hydrogen generation.	1
82	Tailoring atomically dispersed cobaltilitrogen active sites in wrinkled carbon nanosheets via flencelisolation for highly sensitive detection of hydrogen peroxide. 2022 , 10, 3190-3200	1
81	Heteroatom-doped nanomaterials/core8hell nanostructure based electrocatalysts for the oxygen reduction reaction. 2022 , 10, 987-1021	5
80	Characterization on the formation mechanism of Fe0/Fe3C/C nanostructure and its effect on PMS activation performance towards BPA degradation. 2022 , 435, 134709	1
79	Unmasking the Critical Role of the Ordering Degree of Bimetallic Nanocatalysts on Oxygen Reduction Reaction by In-situ Raman Spectroscopy 2022 ,	2
7 ⁸	Carbon foam-supported CoN nanoparticles and carbon nanotubes hybrids as bifunctional reduction electrocatalyst. 2022 , 163, 106408	1
77	High electrocatalytic performance of Fe3C-encapsulated N-doped carbon nanotubes and nanosheets for oxygen reduction reaction. 2022 , 149, 111719	0
76	One-Step Synthesis of PtNi Modified TiO 2 Nanotubes Array for Methanol Oxidation.	
75	Construction of single-atom catalysts for electro-, photo- and photoelectro-catalytic applications: State-of-the-art, opportunities, and challenges. 2022 ,	5
74	Tuning Active Species in N-Doped Carbon with Fe/FeC Nanoparticles for Efficient Oxygen Reduction Reaction 2022 ,	3
73	Advanced carbon-based nanostructured materials for fuel cells. 2022 , 201-227	
72	TiO2??Ti3C2??Mn-N-C?????????. 2022 ,	
71	Gradually Anchoring N and Fe, Zn Atoms on Monodispersed Carbon Nanospheres: Their Contribution to the Oxygen Reduction Reaction under Analogous Structure.	O

70	Recent advances in solid[]quid[]as three-phase interfaces in electrocatalysis for energy conversion and storage.	2
69	MXene boosted metal-organic framework-derived FeNC as an efficient electrocatalyst for oxygen reduction reactions. 2022 ,	3
68	Rare earth praseodymium-based single atom catalyst for high performance CO2 reduction reaction. 2022 , 436, 135271	2
67	Highly dispersed and stable Fe species supported on active carbon for enhanced degradation of rhodamine B through peroxymonosulfate activation: Mechanism analysis, response surface modeling and kinetic study. 2022 , 10, 107463	O
66	Fe3C coupled with Fe-Nx supported on N-doped carbon as oxygen reduction catalyst for assembling Zn-air battery to drive water splitting. 2021 ,	2
65	Extra Storage Capacity Enabled by Structural Defects in Pseudocapacitive NbN Monocrystals for High-Energy Hybrid Supercapacitors. 2112592	2
64	Interplay of hetero-MN4 catalytic sites on graphene for efficient oxygen reduction reaction. 2022, 140397	O
63	In-situ growth of iron phosphide encapsulated by carbon nanotubes decorated with zeolitic imidazolate framework-8 for enhancing oxygen reduction reaction. 2022 ,	O
62	Bamboo-like N,S-doped carbon nanotubes with encapsulated Co nanoparticles as high-performance electrocatalyst for liquid and flexible all-solid-state rechargeable Zn-air 6.7 batteries. <i>Applied Surface Science</i> , 2022 , 593, 153446	1
61	Rechargeable ZincAir Batteries with Seawater Electrolyte and Cranberry Bean Shell-Derived Carbon Electrocatalyst.	3
60	A review on biomass-derived N-doped carbons as electrocatalysts in electrochemical energy applications. 2022 , 446, 137116	4
59	Environmentally Friendly Bifunctional Catalyst for ORR and OER from Coconut Shell Particles. 2022 , 12, 106-123	O
58	Bio-Inspired Micro-Reactor Mimicking Multi-Ridged Mitochondrial Intimae for Efficient Oxygen Reduction.	
57	Oxygen reduction reaction by non-noble metal-based catalysts. 2022 , 205-239	
56	Transition Metal Non-Oxides as Electrocatalysts: Advantages and Challenges. 2202033	4
55	Removal of organic contaminants by starch-derived porous carbon via peroxymonosulfate activation: The role of N doping and Fe/Mn loading. 2022 , 649, 129520	O
54	A self-supported bifunctional air cathode composed of Co3O4/Fe2O3 nanoparticles embedded in nanosheet arrays grafted onto carbon nanofibers for secondary zinc-air batteries. 2022 , 921, 166128	1
53	Enhanced catalytic reduction of Cr(VI) with formic acid over spherical bimetallic Ni-Co nanoalloy catalysts at room temperature. <i>Applied Surface Science</i> , 2022 , 601, 154252	O

35

Bio-Inspired Micro-Reactor Mimicking Multi-Ridged Mitochondrial Intimae for Efficient Oxygen 52 Reduction. Efficient peroxymonosulfate activation of immobilized FeNC catalyst on ceramsite for the 51 continuous flow removal of phenol. 2022, 136149 Metal Drganic Frameworks (MOFs) Derived Materials Used in ZnAir Battery. 2022, 15, 5837 50 1 Facial synthesis of Fe/Fe3N@carbon nanocomposite for simultaneous electrochemical detection of 49 dopamine and acetaminophen. 2022, 132, 106984 Intensification of van der Waals interaction for efficient peroxymonosulfate activation and accuracy re-evaluation of quenching experiments for reactive oxidation species identification. 2022 48 1 , 450, 138353 Mineralize complex organic contaminants using only oxygen on dense copper atoms embedded in 47 the walls of carbon nanotubes. 2022, 605, 154760 Nitrogen-doped carbon nanotubes filled with Fe3C nanowires for efficient electrocatalytic oxygen 46 O reduction. 2022, 654, 130095 Atomically dispersed Co in a cross-channel hierarchical carbon-based electrocatalyst for 45 high-performance oxygen reduction in Znair batteries. 2022, 10, 18723-18729 Science and engineering for non-noble-metal-based electrocatalysts to boost their ORR 1 44 performance: A critical review. 2023, 474, 214854 The Stability of Cementite in the Presence of Water at Extreme Temperatures and Pressures. 2022, 43 58, 615-619 Polydopamine-Derived Iron-Doped Hollow Carbon Nanorods as an Efficient Bifunctional 42 O Electrocatalyst for Simultaneous Generation of Hydrogen and Electricity. 2022, 36, 11245-11260 Iron Carbide Nanoparticles Embedded in Edge-Rich, N and F Codoped Graphene/Carbon Nanotubes 41 Hybrid for Oxygen Electrocatalysis. **2022**, 12, 1023 Metal-organic frameworks derived Co/N-doped carbon nanonecklaces as high-efficient oxygen 40 2 reduction reaction electrocatalysts. 2022, Iron and nitrogen co-doped porous carbon derived from natural cellulose of wood activating 39 peroxymonosulfate for degradation of tetracycline: Role of delignification and mechanisms. 2022, Selective Borohydride Oxidation Reactions of Zeolitic Imidazolate Framework-Derived Bimetallic 38 \circ Carbon Alloy Electrocatalysts for Alkaline Fuel Cell Applications. In Situ Exfoliated Graphene-Like Carbon Nanosheets Strongly Coupled with the Biochar Tube as the 37 Cathode for an Application-Ready Zn-Air Battery. In-Situ Self-Catalyzed Growth of Manganese Embedded 3D Flakes-Coated Carbon Rod as an 36 Ο Efficient Oxygen Reduction Reaction Catalyst of ZincAir Batteries. Enhanced removal of fluoroquinolone antibiotics by peroxydisulfate activated with N-doped sludge

biochar: Performance, mechanism and toxicity evaluation. 2023, 305, 122469

34	Bio-inspired micro-reactor mimicking multi-ridged mitochondrial intimae for efficient oxygen reduction. 2023 , 610, 155469	O
33	Novel highly active and selective Co N S C efficient ORR catalyst derived from in-situ egg gel pyrolysis. 2023 , 333, 126432	1
32	Heteroatom-doped Carbon Sheets as Metal-free Electrocatalysts for Promoting Oxygen Reduction Reaction in Zn-air Batteries.	0
31	Magnetic nitrogen-doped carbon nanotubes as activators of peroxymonosulfate and their application in non-radical degradation of sulfonamide antibiotics. 2022 , 380, 135064	О
30	Molecular engineering of atomically dispersed Fe-N4 and Cu-N4 dual-sites in carbon nitride nanotubes for rechargeable zinclir batteries. 2023 , 55, 397-405	0
29	Dispersed Mn2Co2C nanoparticles in interconnected nitrogen-doped carbon framework as cathode catalysts for efficient and long-life Li-CO2 batteries. 2022 , 140564	o
28	Zinc-assisted synthesis of Fe-N-C catalysts based on polyaniline with high oxygen reduction reaction catalytic activities in direct methanol fuel cells.	0
27	A Self-powered Aptasensor for Isocarbophos Determination Based on Nanozyme-catalytic Photoelectrochemical Fuel Cell.	О
26	Catalytic ozonation of phenol by magnetic Mn0.7Ce0.3Ox/CNT@Fe3C. 2022 , 9, 126101	0
25	CoO x Supported on EMoC for Efficient Electrocatalytic Oxygen Evolution Reaction. 2022 , 9,	o
24	Low-density polyethylene-derived carbon nanotubes from express packaging bags waste as electrode material for supercapacitors. 2022 ,	0
23	Nitrogen-doped porous carbon derived from graphite of solid waste for activating peroxymonosulfate to degradation tetracycline. 2023 , 130984	O
22	Caffeine derived graphene-wrapped Fe3C nanoparticles entrapped in hierarchically porous Fe-N-C nanosheets for boosting oxygen reduction reaction. 2023 ,	0
21	Preparation of microfiber composite nitrogen doped carbon nanotube membranes and their degradation properties of phenol in the structured fixed bed. 2023 , 11, 109255	o
20	Fe-N-C-based cathode catalyst enhances redox reaction performance of microbial fuel cells: Azo dyes degradation accompanied by electricity generation. 2023 , 11, 109264	0
19	Molten-salt confined synthesis of nitrogen-doped carbon nanosheets supported Co3O4 nanoparticles as a superior oxygen electrocatalyst for rechargeable Zn-air battery. 2023 , 560, 232692	o
18	Agarose-gel-based self-limiting synthesis of a bimetal (Fe and Co)-doped composite as a bifunctional catalyst for a zinc-air battery. 2023 , 635, 186-196	0
17	Cobalt nanoparticles-encapsulated holey nitrogen-doped carbon nanotubes for stable and efficient oxygen reduction and evolution reactions in rechargeable Zn-air batteries. 2023 , 325, 122386	0

CITATION REPORT

16	Synthesis of hierarchically structured Fe3C/CNTs composites in a FeNC matrix for use as efficient ORR electrocatalysts. 2023 , 13, 3835-3842	О
15	A highly durable zinc-air battery from directly integrated FexNC@NiFe(OH)x bifunctional catalyst.	Ο
14	Regulating the Fe-spin state by Fe/Fe3C neighbored single Fe-N4 sites in defective carbon promotes the oxygen reduction activity. 2023 , 56, 394-402	О
13	One-step synthesis of PtNi anchored on TiO2 nanotube arrays for methanol oxidation. 2023 , 943, 169179	O
12	Rational design of porous Fex-N@MOF as a highly efficient catalyst for oxygen reduction over a wide pH range. 2023 , 944, 169039	0
11	Crystal structure regulation boosts the conductivity and redox chemistry of T-Nb2O5 anode material. 2023 , 110, 108377	O
10	Fe/Fe3C nanoparticles embedded in N-doped porous carbon as the heterogeneous electro-Fenton catalyst for efficient degradation of bisphenol A. 2023 , 316, 123778	0
9	MOF-derived carbon nanotubes as an highly active electrocatalyst for oxygen reduction reaction in alkaline and acidic media. 2023 , 18, 100131	O
8	Isocarbophos determination using a nanozyme-catalytic photoelectrochemical fuel cell-based aptasensor. 2023 , 190, 108662	O
7	Fabrication of Fe3C nanoparticles encapsulated in undoped graphite carbon and their catalysis for oxygen reduction. 2023 , 30, 35-48	O
6	Direct pyrolysis to convert biomass to versatile 3D carbon nanotubes/mesoporous carbon architecture: conversion mechanism and electrochemical performance.	0
5	Imidazole linker-induced covalent triazine framework IF hybrids for confined hollow carbon super-heterostructures toward a long-life supercapacitor.	O
4	Porous Boron Nitride Nanoarchitectonics for Environment: Adsorption in Water. 2023 , 33, 637-662	0
3	An attempt to confirm the contribution to ORR activity of different N-species in M-NC ($M = Fe$, Co, Ni) catalysts with XPS analysis. 2023 , 59, 4535-4538	O
2	Design strategies of Pd-based electrocatalysts for efficient oxygen reduction.	О
1	Mn atomic clusters and Fe nanoparticles in-situ confied nitrogen carbon nanotubes for efficient and durable ORR electrocatalysts in both alkaline and acidic media. 2023 , 953, 169992	О