Environmental instability of few-layer black phosphoru

2D Materials 2, 011002

DOI: 10.1088/2053-1583/2/1/011002

Citation Report

#	Article	IF	CITATIONS
1	Magnetoelectronic properties of multilayer black phosphorus. Physical Review B, 2015, 92, .	1.1	45
2	Fieldâ€Effect Transistors Based on Amorphous Black Phosphorus Ultrathin Films by Pulsed Laser Deposition. Advanced Materials, 2015, 27, 3748-3754.	11.1	274
3	Black Phosphorus–Polymer Composites for Pulsed Lasers. Advanced Optical Materials, 2015, 3, 1447-1453.	3.6	228
4	Electronic Properties of Phosphorene/Graphene and Phosphorene/Hexagonal Boron Nitride Heterostructures. Journal of Physical Chemistry C, 2015, 119, 13929-13936.	1.5	295
5	Chemical modifications and stability of phosphorene with impurities: a first principles study. Physical Chemistry Chemical Physics, 2015, 17, 15209-15217.	1.3	78
6	Properties of 2D layered crystals: MoS ² , NbSe <inf>2</inf> and black phosphorus. , 2015, , .		O
7	Screening and plasmons in pure and disordered single- and bilayer black phosphorus. Physical Review B, $2015, 92, .$	1.1	41
8	Phosphorene oxides: Bandgap engineering of phosphorene by oxidation. Physical Review B, 2015, 91, .	1.1	181
9	High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nature Communications, 2015, 6, 7809.	5.8	223
10	Transport and optical properties of single- and bilayer black phosphorus with defects. Physical Review B, 2015, 91, .	1.1	103
11	Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere. Nano Letters, 2015, 15, 4914-4921.	4.5	358
12	Phosphorene: Fabrication, Properties, and Applications. Journal of Physical Chemistry Letters, 2015, 6, 2794-2805.	2.1	680
13	Toward air-stable multilayer phosphorene thin-films and transistors. Scientific Reports, 2015, 5, 8989.	1.6	344
14	Creating a Stable Oxide at the Surface of Black Phosphorus. ACS Applied Materials & Amp; Interfaces, 2015, 7, 14557-14562.	4.0	318
15	Unusual Angular Dependence of the Raman Response in Black Phosphorus. ACS Nano, 2015, 9, 4270-4276.	7.3	301
16	Large Frequency Change with Thickness in Interlayer Breathing Mode—Significant Interlayer Interactions in Few Layer Black Phosphorus. Nano Letters, 2015, 15, 3931-3938.	4.5	100
17	Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nature Communications, 2015, 6, 6647.	5.8	460
18	Stable and Selective Humidity Sensing Using Stacked Black Phosphorus Flakes. ACS Nano, 2015, 9, 9898-9905.	7. 3	207

#	ARTICLE	IF	CITATIONS
19	Nonlocal Response and Anamorphosis: The Case of Few-Layer Black Phosphorus. Nano Letters, 2015, 15, 6991-6995.	4.5	42
20	Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus. ACS Nano, 2015, 9, 11362-11370.	7.3	247
21	Engineering excitonic dynamics and environmental stability of post-transition metal chalcogenides by pyridine functionalization technique. Nanoscale, 2015, 7, 17109-17115.	2.8	12
22	The electronic structures of group-V–group-IV hetero-bilayer structures: a first-principles study. Physical Chemistry Chemical Physics, 2015, 17, 27769-27776.	1.3	54
23	Air-Stable Black Phosphorus Devices for Ion Sensing. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24396-24402.	4.0	144
24	The atomic and electronic structure of nitrogen- and boron-doped phosphorene. Physical Chemistry Chemical Physics, 2015, 17, 27210-27216.	1.3	38
25	Anisotropic Effective Mass, Optical Property, and Enhanced Band Gap in BN/Phosphorene/BN Heterostructures. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23489-23495.	4.0	58
26	Noncovalent Molecular Doping of Twoâ€Ðimensional Materials. ChemNanoMat, 2015, 1, 542-557.	1.5	41
27	Black Phosphorus: Narrow Gap, Wide Applications. Journal of Physical Chemistry Letters, 2015, 6, 4280-4291.	2.1	631
28	Plasma-Treated Thickness-Controlled Two-Dimensional Black Phosphorus and Its Electronic Transport Properties. ACS Nano, 2015, 9, 8729-8736.	7.3	166
29	The third principal direction besides armchair and zigzag in single-layer black phosphorus. Nanotechnology, 2015, 26, 365702.	1.3	13
30	Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials. ACS Nano, 2015, 9, 10411-10421.	7.3	126
31	Phosphorene FETs & Dromising transistors based on a few layers of phosphorus atoms., 2015,,.		5
32	Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption. Journal of Physical Chemistry Letters, 2015, 6, 4701-4710.	2.1	63
33	A Filmy Black-Phosphorus Polyimide Saturable Absorber for Q-Switched Operation in an Erbium-Doped Fiber Laser. Materials, 2016, 9, 917.	1.3	20
34	Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst. Nanomaterials, 2016, 6, 194.	1.9	79
35	Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber. Optics Express, 2016, 24, 25933.	1.7	200
36	Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus. Photonics Research, 2016, 4, 286.	3.4	61

#	Article	IF	CITATIONS
37	Unusually strong lateral interaction in the CO overlayer in phosphorene-based systems. Nano Research, 2016, 9, 2598-2605.	5.8	15
38	2Dâ€Crystalâ€Based Functional Inks. Advanced Materials, 2016, 28, 6136-6166.	11.1	371
39	Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions. Advanced Materials, 2016, 28, 6332-6336.	11.1	444
40	An Airâ€Stable Densely Packed Phosphorene–Graphene Composite Toward Advanced Lithium Storage Properties. Advanced Energy Materials, 2016, 6, 1600453.	10.2	167
41	The Role of Air Adsorption in Inverted Ultrathin Black Phosphorus Field-Effect Transistors. Nanoscale Research Letters, 2016, 11, 521.	3.1	5
42	Exfoliated 2D black phosphorus nanosheets: Field emission studies. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 041803.	0.6	22
43	Anisotropic Mechanical Properties of Black Phosphorus Nanoribbons. Journal of Physical Chemistry C, 2016, 120, 29491-29497.	1.5	60
44	An array of layers in silicon sulfides: Chainlike and monolayer. Physical Review B, 2016, 94, .	1.1	6
45	<i $>$ d $<$ /i $>$ ferromagnetism in black phosphorous oxide caused by surface P-O bonds. Applied Physics Letters, 2016, 108, .	1.5	4
46	Multipurpose Black-Phosphorus/hBN Heterostructures. Nano Letters, 2016, 16, 2586-2594.	4. 5	127
47	High-Performance p-Type Black Phosphorus Transistor with Scandium Contact. ACS Nano, 2016, 10, 4672-4677.	7.3	119
48	Passivated ambipolar black phosphorus transistors. Nanoscale, 2016, 8, 12773-12779.	2.8	77
49	Black phosphorus polycarbonate polymer composite for pulsed fibre lasers. Applied Materials Today, 2016, 4, 17-23.	2.3	87
50	Strong Modulation of Optical Properties in Black Phosphorus through Strain-Engineered Rippling. Nano Letters, 2016, 16, 2931-2937.	4.5	199
51	Degradation of phosphorene in air: understanding at atomic level. 2D Materials, 2016, 3, 025011.	2.0	228
52	Development of two-dimensional materials for electronic applications. Science China Information Sciences, 2016, 59, 1.	2.7	9
53	Exploring the promising properties of 2D exfoliated black phosphorus for optoelectronic applications under 1.55 \hat{l} 4m optical excitation. Proceedings of SPIE, 2016, , .	0.8	2
54	Black Phosphorus-Based Nanodevices. Semiconductors and Semimetals, 2016, 95, 279-303.	0.4	5

#	Article	IF	Citations
55	Two-Dimensional Phosphorus Porous Polymorphs with Tunable Band Gaps. Journal of the American Chemical Society, 2016, 138, 7091-7098.	6.6	119
56	Teâ€Doped Black Phosphorus Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 9408-9415.	11.1	241
57	Surface chemistry of black phosphorus under a controlled oxidative environment. Nanotechnology, 2016, 27, 434002.	1.3	112
58	Band-gap control in phosphorene/BN structures from first-principles calculations. Physical Review B, 2016, 94, .	1.1	9
59	First-Principles Prediction of the Electronic Structure and Carrier Mobility in Hexagonal Boron Phosphide Sheet and Nanoribbons. Journal of Physical Chemistry C, 2016, 120, 25037-25042.	1.5	92
60	Environmental effects in mechanical properties of few-layer black phosphorus. 2D Materials, 2016, 3, 031007.	2.0	39
61	Preparation of black phosphorus-PEDOT:PSS hybrid semiconductor composites with good film-forming properties and environmental stability in water containing oxygen. RSC Advances, 2016, 6, 76174-76182.	1.7	35
62	The Role of Water in the Preparation and Stabilization of Highâ€Quality Phosphorene Flakes. Advanced Materials Interfaces, 2016, 3, 1500441.	1.9	62
63	Tuning the thickness of black phosphorus via ion bombardment-free plasma etching for device performance improvement. Journal of Materials Chemistry C, 2016, 4, 6234-6239.	2.7	38
64	Ultrathin and Flat Layer Black Phosphorus Fabricated by Reactive Oxygen and Water Rinse. ACS Nano, 2016, 10, 8723-8731.	7.3	68
65	Black Phosphorus Based Photocathodes in Wideband Bifacial Dyeâ€Sensitized Solar Cells. Advanced Materials, 2016, 28, 8937-8944.	11.1	116
66	In situ thickness control of black phosphorus field-effect transistors via ozone treatment. Nano Research, 2016, 9, 3056-3065.	5.8	22
67	Lightâ€Induced Ambient Degradation of Fewâ€Layer Black Phosphorus: Mechanism and Protection. Angewandte Chemie - International Edition, 2016, 55, 11437-11441.	7.2	514
68	Lightâ€Induced Ambient Degradation of Fewâ€Layer Black Phosphorus: Mechanism and Protection. Angewandte Chemie, 2016, 128, 11609-11613.	1.6	78
69	Degradation of black phosphorus: a real-time ³¹ P NMR study. 2D Materials, 2016, 3, 035025.	2.0	53
70	Nanotube-terminated zigzag edges of phosphorene formed by self-rolling reconstruction. Nanoscale, 2016, 8, 17940-17946.	2.8	39
71	Effect of atomic-scale defects and dopants on phosphorene electronic structure and quantum transport properties. Physical Review B, 2016, 93, .	1.1	20
72	Highly Itinerant Atomic Vacancies in Phosphorene. Journal of the American Chemical Society, 2016, 138, 10199-10206.	6.6	134

#	Article	IF	CITATIONS
73	Two-dimensional semiconductors for transistors. Nature Reviews Materials, 2016, 1, .	23.3	1,020
74	Low-symmetry two-dimensional materials for electronic and photonic applications. Nano Today, 2016, 11, 763-777.	6.2	113
75	Interaction of Black Phosphorus with Oxygen and Water. Chemistry of Materials, 2016, 28, 8330-8339.	3.2	436
76	Disorder effect on the anisotropic resistivity of phosphorene determined by a tight-binding model. Physical Review B, 2016, 94, .	1.1	20
77	Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nature Communications, 2016, 7, 12967.	5.8	835
78	Noncovalent Functionalization of Black Phosphorus. Angewandte Chemie, 2016, 128, 14777-14782.	1.6	71
79	Phosphorene: from theory to applications. Nature Reviews Materials, 2016, 1, .	23.3	815
80	Noncovalent Functionalization of Black Phosphorus. Angewandte Chemie - International Edition, 2016, 55, 14557-14562.	7.2	199
81	Covalent Functionalization of Black Phosphorus from First-Principles. Journal of Physical Chemistry Letters, 2016, 7, 4540-4546.	2.1	71
82	Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. Small, 2016, 12, 3480-3502.	5.2	337
83	Capping Black Phosphorene by h-BN Enhances Performances in Anodes for Li and Na Ion Batteries. ACS Energy Letters, 2016, 1, 253-259.	8.8	126
84	Spatial conductivity mapping of unprotected and capped black phosphorus using microwave microscopy. 2D Materials, 2016, 3, 021002.	2.0	31
85	Surface Coordination of Black Phosphorus for Robust Air and Water Stability. Angewandte Chemie, 2016, 128, 5087-5091.	1.6	116
86	Surface Coordination of Black Phosphorus for Robust Air and Water Stability. Angewandte Chemie - International Edition, 2016, 55, 5003-5007.	7.2	479
87	Producing air-stable monolayers of phosphorene and their defect engineering. Nature Communications, 2016, 7, 10450.	5.8	443
88	Blockage of ultrafast and directional diffusion of Li atoms on phosphorene with intrinsic defects. Nanoscale, 2016, 8, 4001-4006.	2.8	84
89	Substitutionally doped phosphorene: electronic properties and gas sensing. Nanotechnology, 2016, 27, 065708.	1.3	130
90	Supercritical carbon dioxide-assisted rapid synthesis of few-layer black phosphorus for hydrogen peroxide sensing. Biosensors and Bioelectronics, 2016, 80, 34-38.	5.3	96

#	ARTICLE	IF	CITATIONS
91	One-pot solventless preparation of PECylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of Acancer. Biomaterials, 2016, 91, 81-89.	5.7	403
92	The influence of chemical reactivity of surface defects on ambient-stable InSe-based nanodevices. Nanoscale, 2016, 8, 8474-8479.	2.8	92
93	Carbon phosphide monolayers with superior carrier mobility. Nanoscale, 2016, 8, 8819-8825.	2.8	135
94	Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus. ACS Nano, 2016, 10, 3900-3917.	7.3	232
95	Temperature Evolution of Phonon Properties in Few-Layer Black Phosphorus. Journal of Physical Chemistry C, 2016, 120, 5265-5270.	1.5	60
96	Optoelectronic properties of atomically thin ReSSe with weak interlayer coupling. Nanoscale, 2016, 8, 5826-5834.	2.8	32
97	Low-frequency interlayer vibration modes in two-dimensional layered materials. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 80, 130-141.	1.3	18
98	Polaronic effects in monolayer black phosphorus on polar substrates. Physical Review B, 2016, 93, .	1.1	41
99	Thermal conductivity of armchair black phosphorus nanotubes: a molecular dynamics study. Nanotechnology, 2016, 27, 155703.	1.3	26
100	Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms. Nano Letters, 2016, 16, 2145-2151.	4.5	196
101	Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors. Nano Letters, 2016, 16, 2580-2585.	4.5	119
102	Half-oxidized phosphorene: band gap and elastic properties modulation. Journal of Physics Condensed Matter, 2016, 28, 145501.	0.7	9
103	Optically driven black phosphorus as a saturable absorber for mode-locked laser pulse generation. Optical Engineering, 2016, 55, 081317.	0.5	23
104	Tuning Phosphorene Nanoribbon Electronic Structure through Edge Oxidization. Journal of Physical Chemistry C, 2016, 120, 2149-2158.	1.5	28
105	Long-term stability study of graphene-passivated black phosphorus under air exposure. Current Applied Physics, 2016, 16, 165-169.	1.1	77
106	Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosensors and Bioelectronics, 2017, 89, 505-510.	5.3	206
107	Infrared fingerprints of few-layer black phosphorus. Nature Communications, 2017, 8, 14071.	5.8	228
108	Nonlinear Saturable and Polarization-induced Absorption of Rhenium Disulfide. Scientific Reports, 2017, 7, 40080.	1.6	105

#	Article	IF	CITATIONS
109	Unintentional doping effects in black phosphorus by native vacancies in h-BN supporting layer. Applied Surface Science, 2017, 402, 175-181.	3.1	14
110	Magnetoresistance and Hall resistivity of semimetal WTe ₂ ultrathin flakes. Nanotechnology, 2017, 28, 145704.	1.3	7
111	Highly sensitive MoTe ₂ chemical sensor with fast recovery rate through gate biasing. 2D Materials, 2017, 4, 025018.	2.0	125
112	Exfoliation of black phosphorus in ionic liquids. Nanotechnology, 2017, 28, 125603.	1.3	48
113	Control of Surface and Edge Oxidation on Phosphorene. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9126-9135.	4.0	135
114	Nanostructures for NIR light-controlled therapies. Nanoscale, 2017, 9, 3698-3718.	2.8	92
115	Franckeite as a naturally occurring van der Waals heterostructure. Nature Communications, 2017, 8, 14409.	5.8	103
116	Optical Identification of Few-Layer Antimonene Crystals. ACS Photonics, 2017, 4, 600-605.	3.2	62
117	Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors. Nanotechnology, 2017, 28, 175708.	1.3	81
118	Toward high-performance two-dimensional black phosphorus electronic and optoelectronic devices. Chinese Physics B, 2017, 26, 037307.	0.7	11
119	Vastly enhancing the chemical stability of phosphorene by employing an electric field. Nanoscale, 2017, 9, 4219-4226.	2.8	22
120	Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. Advanced Science, 2017, 4, 1600305.	5.6	285
121	The effects of vacancy and oxidation on black phosphorus nanoresonators. Nanotechnology, 2017, 28, 135202.	1.3	15
122	Reactivity of phosphorene with a 3d element trioxide (CrO3) considering van der Waals molecular interactions: a DFT-D2 study. Journal of Molecular Modeling, 2017, 23, 49.	0.8	5
123	Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides. 2D Materials, 2017, 4, 022003.	2.0	146
124	Quantum dot cadmium selenide as a saturable absorber for Q-switched and mode-locked double-clad ytterbium-doped fiber lasers. Optics Communications, 2017, 397, 147-152.	1.0	18
125	Ambient Protection of Fewâ€Layer Black Phosphorus via Sequestration of Reactive Oxygen Species. Advanced Materials, 2017, 29, 1700152.	11.1	141
126	Black Phosphorus Based All-Optical-Signal-Processing: Toward High Performances and Enhanced Stability. ACS Photonics, 2017, 4, 1466-1476.	3.2	173

#	Article	IF	CITATIONS
127	The advent of graphene and other two-dimensional materials in membrane science and technology. Current Opinion in Chemical Engineering, 2017, 16, 78-85.	3.8	83
128	Few‣ayered PtS ₂ Phototransistor on hâ€BN with High Gain. Advanced Functional Materials, 2017, 27, 1701011.	7.8	176
129	Low-Temperature Associated Interface Influence on the Black Phosphorus Nanoflakes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15219-15224.	4.0	7
130	Nonlinear optical response and applications of tin disulfide in the near- and mid-infrared. Applied Physics Letters, 2017, 110, .	1.5	47
131	Black Phosphorus/TiO ₂ Composite Photoanode with Enhanced Photoelectrical Performance. ChemElectroChem, 2017, 4, 2373-2377.	1.7	24
132	Optical properties calculations of the phosphorene-CrO 3 system within the G 0 W 0 and BSE approximations. Applied Surface Science, 2017, 416, 266-272.	3.1	4
133	Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. Nano Letters, 2017, 17, 4122-4129.	4.5	117
134	Protective molecular passivation of black phosphorus. Npj 2D Materials and Applications, 2017, 1 , .	3.9	52
135	Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review. Journal of Materials Science, 2017, 52, 10364-10386.	1.7	109
136	Indium selenide: an insight into electronic band structure and surface excitations. Scientific Reports, 2017, 7, 3445.	1.6	60
137	Exciton center-of-mass localization and dielectric environment effect in monolayer WS2. Journal of Applied Physics, 2017, 121, 235702.	1.1	20
138	First-principles predictions on charge mobility and half-metallicity in two dimensional metal coordination polyporphyrin sheets. Organic Electronics, 2017, 49, 45-52.	1.4	26
139	Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Materials Horizons, 2017, 4, 800-816.	6.4	155
140	2D Black Phosphorus for Energy Storage and Thermoelectric Applications. Small, 2017, 13, 1700661.	5.2	139
141	Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures. Physical Chemistry Chemical Physics, 2017, 19, 17180-17186.	1.3	37
142	Recovery of the Pristine Surface of Black Phosphorus by Water Rinsing and Its Device Application. ACS Applied Materials & Device Application. ACS Applied Materials & Device Application. ACS Applied Materials & Device Application.	4.0	12
143	Exotic Physics and Chemistry of Two-Dimensional Phosphorus: Phosphorene. Journal of Physical Chemistry Letters, 2017, 8, 2909-2916.	2.1	71
144	Quantum confinement in black phosphorus-based nanostructures. Journal of Physics Condensed Matter, 2017, 29, 283001.	0.7	22

#	Article	IF	CITATIONS
145	Phosphorene – The two-dimensional black phosphorous: Properties, synthesis and applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 221, 17-34.	1.7	195
146	High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nature Nanotechnology, 2017, 12, 530-534.	15.6	507
147	Recent progress in high-mobility thin-film transistors based on multilayer 2D materials. Journal Physics D: Applied Physics, 2017, 50, 164001.	1.3	20
148	A first principles study of the interaction between two-dimensional black phosphorus and Al ₂ O ₃ dielectric. RSC Advances, 2017, 7, 13777-13783.	1.7	5
149	The Prospect of Two-Dimensional Heterostructures: A Review of Recent Breakthroughs. IEEE Nanotechnology Magazine, 2017, 11, 6-17.	0.9	27
150	Electric-field-induced widely tunable direct and indirect band gaps in hBN/MoS ₂ van der Waals heterostructures. Journal of Materials Chemistry C, 2017, 5, 4426-4434.	2.7	29
151	Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy. Advanced Functional Materials, 2017, 27, 1700371.	7.8	254
152	Aharonov-Bohm effect in monolayer phosphorene nanorings. Physical Review B, 2017, 95, .	1.1	23
153	Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus. Scientific Reports, 2017, 7, 44540.	1.6	46
154	Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Selfâ€Powered Photodetector. Advanced Functional Materials, 2017, 27, 1606834.	7.8	342
155	Cyclical Thinning of Black Phosphorus with High Spatial Resolution for Heterostructure Devices. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12654-12662.	4.0	17
156	The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials "beyond graphene―and topological insulators. FlatChem, 2017, 1, 60-64.	2.8	32
157	H ₂ O incorporation in the phosphorene/a-SiO ₂ interface: a first-principles study. Journal of Physics Condensed Matter, 2017, 29, 075002.	0.7	1
158	Air-stable few-layer black phosphorus phototransistor for near-infrared detection. Nanotechnology, 2017, 28, 085201.	1.3	26
159	Recent advance in black phosphorus: Properties and applications. Materials Chemistry and Physics, 2017, 189, 215-229.	2.0	67
160	Solution processing of two-dimensional black phosphorus. Chemical Communications, 2017, 53, 1445-1458.	2.2	63
161	Passivation of Black Phosphorus via Selfâ€Assembled Organic Monolayers by van der Waals Epitaxy. Advanced Materials, 2017, 29, 1603990.	11.1	113
162	Highly Efficient Visible Blue-Emitting Black Phosphorus Quantum Dot: Mussel-Inspired Surface Functionalization for Bioapplications. ACS Omega, 2017, 2, 7096-7105.	1.6	37

#	Article	IF	CITATIONS
163	Fluorinated Phosphorene: Electrochemical Synthesis, Atomistic Fluorination, and Enhanced Stability. Small, 2017, 13, 1702739.	5.2	150
164	Noncovalent Functionalization and Charge Transfer in Antimonene. Angewandte Chemie - International Edition, 2017, 56, 14389-14394.	7.2	83
165	Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene–Black Phosphorus Heterostructure. ACS Applied Materials & Interfaces, 2017, 9, 36137-36145.	4.0	185
166	Noncovalent Functionalization and Charge Transfer in Antimonene. Angewandte Chemie, 2017, 129, 14581-14586.	1.6	26
167	Band-edge engineering via molecule intercalation: a new strategy to improve stability of few-layer black phosphorus. Physical Chemistry Chemical Physics, 2017, 19, 29232-29236.	1.3	10
168	Two-Dimensional Stoichiometric Boron Oxides as a Versatile Platform for Electronic Structure Engineering. Journal of Physical Chemistry Letters, 2017, 8, 4347-4353.	2.1	41
169	Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Materials, 2017, 4, 045010.	2.0	260
170	Lithium and sodium adsorption properties of monolayer antimonene. Materials Today Energy, 2017, 5, 347-354.	2.5	62
171	Electronic band structure of ReS2 by high-resolution angle-resolved photoemission spectroscopy. Physical Review B, 2017, 96, .	1.1	48
172	Enhancement of hole mobility in InSe monolayer via an InSe and black phosphorus heterostructure. Nanoscale, 2017, 9, 14682-14689.	2.8	92
173	Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Materials Horizons, 2017, 4, 997-1019.	6.4	296
174	Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chemical Society Reviews, 2017, 46, 6872-6904.	18.7	316
175	Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chemical Communications, 2017, 53, 10946-10949.	2.2	55
176	Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nature Communications, 2017, 8, 278.	5.8	311
177	Two-dimensional black phosphorus: Synthesis, modification, properties, and applications. Materials Science and Engineering Reports, 2017, 120, 1-33.	14.8	130
178	Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries. Nano Energy, 2017, 40, 576-586.	8.2	95
179	Two-Dimensional GeSe as an Isostructural and Isoelectronic Analogue of Phosphorene: Sonication-Assisted Synthesis, Chemical Stability, and Optical Properties. Chemistry of Materials, 2017, 29, 8361-8368.	3.2	65
180	Fabrication of an ideal nanoring from a black phosphorus nanoribbon upon movable bundling carbon nanotubes. Nanotechnology, 2017, 28, 385603.	1.3	9

#	Article	IF	CITATIONS
181	A CNH monolayer: a direct gap 2D semiconductor with anisotropic electronic and optical properties. Journal of Materials Chemistry C, 2017, 5, 8498-8503.	2.7	13
182	Oxygen impact on the electronic and vibrational properties of black phosphorus probed by synchrotron infrared nanospectroscopy. 2D Materials, 2017, 4, 035028.	2.0	16
183	Electric field tunable band-gap crossover in black(blue) phosphorus/g-ZnO van der Waals heterostructures. RSC Advances, 2017, 7, 34584-34590.	1.7	34
184	Charge Transfer at the PTCDA/Black Phosphorus Interface. Journal of Physical Chemistry C, 2017, 121, 18084-18094.	1.5	46
185	Identifying the Crystalline Orientation of Black Phosphorus by Using Optothermal Raman Spectroscopy. ChemPhysChem, 2017, 18, 2828-2834.	1.0	12
186	Optical Properties and Optoelectronic Applications of Black Phosphorus. , 0, , 435-457.		0
187	Degradation of black phosphorus is contingent on UVâ \in "blue light exposure. Npj 2D Materials and Applications, 2017, 1, .	3.9	95
188	Combining 2D inorganic semiconductors and organic polymers at the frontier of the hard–soft materials interface. Journal of Materials Chemistry C, 2017, 5, 11158-11164.	2.7	13
189	Stabilizing ultra-thin black phosphorus with <i>in-situ</i> -grown 1 nm-Al2O3 barrier. Applied Physics Letters, 2017, 111, .	1.5	35
190	Improving MOCVD MoS ₂ Electrical Performance: Impact of Minimized Water and Air Exposure Conditions. IEEE Electron Device Letters, 2017, 38, 1606-1609.	2.2	33
191	Novel Surface Molecular Functionalization Route To Enhance Environmental Stability of Tellurium-Containing 2D Layers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44625-44631.	4.0	15
192	Observation of A1g Raman mode splitting in few layer black phosphorus encapsulated with hexagonal boron nitride. Nanoscale, 2017, 9, 19298-19303.	2.8	9
193	Alloyâ∈Based Anode Materials toward Advanced Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1700622.	11.1	613
194	Electronic bandstructure and van der Waals coupling of ReSe2 revealed by high-resolution angle-resolved photoemission spectroscopy. Scientific Reports, 2017, 7, 5145.	1.6	32
195	Fundamental Insights into the Degradation and Stabilization of Thin Layer Black Phosphorus. Journal of the American Chemical Society, 2017, 139, 10432-10440.	6.6	232
196	Environmental Screening Effects in 2D Materials: Renormalization of the Bandgap, Electronic Structure, and Optical Spectra of Few-Layer Black Phosphorus. Nano Letters, 2017, 17, 4706-4712.	4.5	155
197	Black phosphorus: a two-dimensional reductant for in situ nanofabrication. Npj 2D Materials and Applications, 2017, 1 , .	3.9	63
198	Adsorption behavior of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on pristine and doped black phosphorene: A DFT study. Chemosphere, 2017, 185, 509-517.	4.2	21

#	Article	IF	CITATIONS
199	An ab initio investigation of phosphorene/hexagonal boron nitride heterostructures with defects for high performance photovoltaic applications. Applied Surface Science, 2017, 423, 1003-1011.	3.1	9
200	Recent Advances in the Study of Phosphorene and its Nanostructures. Critical Reviews in Solid State and Materials Sciences, 2017, 42, 1-82.	6.8	130
201	Physics and chemistry of oxidation of twoâ€dimensional nanomaterials by molecular oxygen. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1280.	6.2	47
202	Pseudospin Electronics in Phosphorene Nanoribbons. Physical Review Applied, 2017, 8, .	1.5	17
203	Complementary black phosphorous FETs by workfunction engineering of pre-patterned Au and Ag embedded electrodes. , 2017, , .		3
204	Enhanced electrical characteristics of black phosphorus by polyaniline and protonic acid surface doping. , 2017, , .		1
205	Tunable Broadband Nonlinear Optical Properties of Black Phosphorus Quantum Dots for Femtosecond Laser Pulses. Materials, 2017, 10, 210.	1.3	56
206	The Advent of Indium Selenide: Synthesis, Electronic Properties, Ambient Stability and Applications. Nanomaterials, 2017, 7, 372.	1.9	50
207	Black phosphorus flakes covered microfiber for Q-switched ytterbium-doped fiber laser. Applied Optics, 2017, 56, 6427.	0.9	37
208	Q-switched double-clad Ytterbium-doped fiber laser using MoS2flakes saturable absorber. IOP Conference Series: Materials Science and Engineering, 2017, 210, 012054.	0.3	0
210	Optical contrast and refractive index of natural van der Waals heterostructure nanosheets of franckeite. Beilstein Journal of Nanotechnology, 2017, 8, 2357-2362.	1.5	27
211	Supercapacitor Electrodes from the in Situ Reaction between Two-Dimensional Sheets of Black Phosphorus and Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10330-10338.	4.0	44
212	Hybrid Interfaces in Molecular Spintronics. Chemical Record, 2018, 18, 737-748.	2.9	24
213	2D Black Phosphorus: from Preparation to Applications for Electrochemical Energy Storage. Advanced Science, 2018, 5, 1700491.	5.6	174
214	A carbon science perspective in 2018: Current achievements and future challenges. Carbon, 2018, 132, 785-801.	5.4	80
215	Tuning Infrared Plasmon Resonance of Black Phosphorene Nanoribbon with a Dielectric Interface. Scientific Reports, 2018, 8, 3224.	1.6	36
216	2D GeP: An Unexploited Lowâ€Symmetry Semiconductor with Strong Inâ€Plane Anisotropy. Advanced Materials, 2018, 30, e1706771.	11.1	219
217	Black phosphorus as a new lubricant. Friction, 2018, 6, 116-142.	3.4	136

#	Article	IF	CITATIONS
218	Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9663-9668.	4.0	93
219	Two-Dimensionally Layered p-Black Phosphorus/n-MoS ₂ /p-Black Phosphorus Heterojunctions. ACS Applied Materials & Interfaces, 2018, 10, 10347-10352.	4.0	43
220	The Electronic and Optical Properties of Au Doped Single-Layer Phosphorene. Russian Journal of Physical Chemistry A, 2018, 92, 132-139.	0.1	8
221	Electronic structure of phosphorene nanoflakes. A theoretical insight. Computational and Theoretical Chemistry, 2018, 1130, 33-45.	1.1	4
222	Blackâ€Phosphorusâ€Incorporated Hydrogel as a Sprayable and Biodegradable Photothermal Platform for Postsurgical Treatment of Cancer. Advanced Science, 2018, 5, 1700848.	5.6	289
223	Atomically thin p–n junctions based on two-dimensional materials. Chemical Society Reviews, 2018, 47, 3339-3358.	18.7	231
224	Recent advances in phosphorene as a sensing material. Nano Today, 2018, 20, 13-32.	6.2	134
225	Nonlinear Fewâ€Layer Antimoneneâ€Based Allâ€Optical Signal Processing: Ultrafast Optical Switching and Highâ€Speed Wavelength Conversion. Advanced Optical Materials, 2018, 6, 1701287.	3 . 6	97
226	Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure. ACS Applied Materials & Interfaces, 2018, 10, 15058-15064.	4.0	43
227	Interaction of the O atom with the InSe monolayer: A first-principles study. Vacuum, 2018, 153, 53-61.	1.6	6
228	Unipolar n-Type Black Phosphorus Transistors with Low Work Function Contacts. Nano Letters, 2018, 18, 2822-2827.	4.5	40
229	Absorption and temperature effects on the tensile strength of a black phosphorus ribbon in argon environment. Computational Materials Science, 2018, 150, 15-23.	1.4	8
230	Large-scale synthesis of 2D metal dichalcogenides. Journal of Materials Chemistry C, 2018, 6, 4627-4640.	2.7	35
231	Impact of vacancies on electronic properties of black phosphorus probed by STM. Journal of Applied Physics, 2018, 123, .	1.1	31
232	Few-Layer Antimonene: Anisotropic Expansion and Reversible Crystalline-Phase Evolution Enable Large-Capacity and Long-Life Na-Ion Batteries. ACS Nano, 2018, 12, 1887-1893.	7.3	175
233	Liquid phase mass production of air-stable black phosphorus/phospholipids nanocomposite with ultralow tunneling barrier. 2D Materials, 2018, 5, 025012.	2.0	4
234	On-surface synthesis: a promising strategy toward the encapsulation of air unstable ultra-thin 2D materials. Nanoscale, 2018, 10, 3799-3804.	2.8	18
235	Tailoring the Surface Chemical Reactivity of Transitionâ€Metal Dichalcogenide PtTe ₂ Crystals. Advanced Functional Materials, 2018, 28, 1706504.	7.8	68

#	Article	IF	CITATIONS
236	Inâ€Plane Black Phosphorus/Dicobalt Phosphide Heterostructure for Efficient Electrocatalysis. Angewandte Chemie, 2018, 130, 2630-2634.	1.6	55
237	Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation. Frontiers of Physics, 2018, 13, 1.	2.4	24
238	Recent progress in 2D group-VA semiconductors: from theory to experiment. Chemical Society Reviews, 2018, 47, 982-1021.	18.7	697
239	Inâ€Plane Black Phosphorus/Dicobalt Phosphide Heterostructure for Efficient Electrocatalysis. Angewandte Chemie - International Edition, 2018, 57, 2600-2604.	7.2	209
240	Oxygen-induced degradation of the electronic properties of thin-layer InSe. Physical Chemistry Chemical Physics, 2018, 20, 2238-2250.	1.3	23
241	Ultrathin Semiconducting Bi ₂ Te ₂ S and Bi ₂ Te ₂ Se with High Electron Mobilities. Journal of Physical Chemistry Letters, 2018, 9, 487-490.	2.1	56
242	Reducing the contact and channel resistances of black phosphorus via low-temperature vacuum annealing. Journal of Materials Chemistry C, 2018, 6, 1567-1572.	2.7	20
243	Enhanced Stability of Black Phosphorus Fieldâ€Effect Transistors via Hydrogen Treatment. Advanced Electronic Materials, 2018, 4, 1700455.	2.6	19
244	A tunable THz absorber consisting of an elliptical graphene disk array. Physical Chemistry Chemical Physics, 2018, 20, 14357-14361.	1.3	26
245	High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers. Physical Review B, 2018, 97, .	1.1	21
246	Strain engineering on electronic structure and carrier mobility in monolayer GeP ₃ . Journal Physics D: Applied Physics, 2018, 51, 235302.	1.3	47
247	Defect Engineering in Fewâ€Layer Phosphorene. Small, 2018, 14, e1704556.	5.2	27
248	Electronic Properties of van der Waals Heterostructure of Black Phosphorus and MoS ₂ . Journal of Physical Chemistry C, 2018, 122, 7027-7032.	1.5	82
249	Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS ₂ van der Waals Heterojunction Diode. ACS Applied Materials & Interfaces, 2018, 10, 13150-13157.	4.0	61
250	Self-Lubricating PTFE-Based Composites with Black Phosphorus Nanosheets. Tribology Letters, 2018, 66, 1.	1.2	66
251	Fast MoTe ₂ Waveguide Photodetector with High Sensitivity at Telecommunication Wavelengths. ACS Photonics, 2018, 5, 1846-1852.	3.2	83
252	Nonlinear Optics with 2D Layered Materials. Advanced Materials, 2018, 30, e1705963.	11.1	485
253	Polarity Control of Top Gated Black Phosphorous FETs by Workfunction Engineering of Pre-Patterned Au and Ag Embedded Electrodes. IEEE Journal of the Electron Devices Society, 2018, 6, 1041-1047.	1.2	5

#	Article	IF	CITATIONS
254	A revival of 2D materials, phosphorene: Its application as sensors. Journal of Industrial and Engineering Chemistry, 2018, 64, 60-69.	2.9	56
255	A new strategy for air-stable black phosphorus reinforced PVA nanocomposites. Journal of Materials Chemistry A, 2018, 6, 7142-7147.	5.2	47
256	Stable high-power saturable absorber based on polymer-black-phosphorus films. Optics Communications, 2018, 406, 254-259.	1.0	45
257	Recent Progress on Antimonene: A New Bidimensional Material. Advanced Materials, 2018, 30, 1703771.	11.1	245
258	Zweidimensionale Chemie jenseits von Graphen: das aufstrebende Gebiet der Funktionalisierung von Molybdädisulfid und schwarzem Phosphor. Angewandte Chemie, 2018, 130, 4421-4437.	1.6	24
259	Postâ€Graphene 2D Chemistry: The Emerging Field of Molybdenum Disulfide and Black Phosphorus Functionalization. Angewandte Chemie - International Edition, 2018, 57, 4338-4354.	7.2	193
260	Density functional theory calculations of biomolecules adsorption on phosphorene for biomedical applications. Applied Surface Science, 2018, 427, 1227-1234.	3.1	32
261	The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Materials, 2018, 5, 014002.	2.0	208
262	Black phosphorene and PEDOT:PSS-modified electrode for electrochemistry of hemoglobin. Electrochemistry Communications, 2018, 86, 68-71.	2.3	51
263	Electronic Properties of <i>h</i> â€BCN–Blue Phosphorene van der Waals Heterostructures. ChemPhysChem, 2018, 19, 612-618.	1.0	14
264	Fewâ€Layered Black Phosphorus: From Fabrication and Customization to Biomedical Applications. Small, 2018, 14, 1702830.	5.2	76
265	Recovery Mechanism of Degraded Black Phosphorus Fieldâ€Effect Transistors by 1,2â€Ethanedithiol Chemistry and Extended Device Stability. Small, 2018, 14, 1703194.	5.2	23
266	Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chemical Society Reviews, 2018, 47, 53-68.	18.7	473
267	Metal-assisted exfoliation of few-layer black phosphorus with high yield. Chemical Communications, 2018, 54, 595-598.	2.2	66
268	MoTe2 saturable absorber for passively Q-switched Ho,Pr:LiLuF4 laser at â^1⁄43â€TÎ1⁄4m. Optics and Laser Technology, 2018, 100, 261-264.	2.2	18
269	Ultra-Stable Passively Q-Switched Yb-Doped All-Fiber Laser With a Black Phosphorus Saturable Absorber., 2018,,.		0
270	Tuning the electronic properties of van der Waals heterostructures composed of black phosphorus and graphitic SiC. Physical Chemistry Chemical Physics, 2018, 20, 29333-29340.	1.3	17
271	Anomalous oxidation and its effect on electrical transport originating from surface chemical instability in large-area, few-layer 1T′-MoTe⟨sub⟩2⟨ sub⟩ films. Nanoscale, 2018, 10, 19906-19915.	2.8	36

#	Article	IF	CITATIONS
272	Interface engineering for a stable chemical structure of oxidized-black phosphorus <i>via</i> self-reduction in AlO _x atomic layer deposition. Nanoscale, 2018, 10, 22896-22907.	2.8	6
273	Hexagonal M \cdot sub \cdot 2 \cdot /sub \cdot C \cdot sub \cdot 3 \cdot /sub \cdot (M = As, Sb, and Bi) monolayers: new functional materials with desirable band gaps and ultrahigh carrier mobility. Journal of Materials Chemistry C, 2018, 6, 12689-12697.	2.7	42
274	Ultrasmall black phosphorus quantum dots: synthesis, characterization, and application in cancer treatment. Analyst, The, 2018, 143, 5822-5833.	1.7	40
275	High-yield production of stable antimonene quantum sheets for highly efficient organic photovoltaics. Journal of Materials Chemistry A, 2018, 6, 23773-23779.	5.2	26
276	Superlubricity of Black Phosphorus as Lubricant Additive. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43203-43210.	4.0	113
277	pHâ€Dependent Degradation of Layered Black Phosphorus: Essential Role of Hydroxide Ions. Angewandte Chemie, 2018, 131, 477.	1.6	9
278	Ambient Degradationâ€Induced Spin Paramagnetism in Phosphorene. Small, 2019, 15, e1804386.	5.2	14
279	Multifunctional two-dimensional semiconductors SnP ₃ : universal mechanism of layer-dependent electronic phase transition. Journal of Physics Condensed Matter, 2018, 30, 475702.	0.7	12
280	Double carrier transport in electron-doped region in black phosphorus FET. Applied Physics Letters, 2018, 113, .	1.5	6
281	Toward Air Stability of Thin GaSe Devices: Avoiding Environmental and Laserâ€Induced Degradation by Encapsulation. Advanced Functional Materials, 2018, 28, 1805304.	7.8	49
282	Silicon-Phosphorene Nanocavity-Enhanced Optical Emission at Telecommunications Wavelengths. Nano Letters, 2018, 18, 6515-6520.	4.5	23
283	Two-Dimensional WSe ₂ /MoS ₂ p–n Heterojunction-Based Transparent Photovoltaic Cell and Its Performance Enhancement by Fluoropolymer Passivation. ACS Applied Materials & Diterraces, 2018, 10, 35972-35977.	4.0	51
284	Promise and Challenge of Phosphorus in Science, Technology, and Application. Advanced Functional Materials, 2018, 28, 1803471.	7.8	65
285	Autoperforation of 2D materials for generating two-terminal memristive Janus particles. Nature Materials, 2018, 17, 1005-1012.	13.3	56
286	Computational Prediction to Two-Dimensional SnAs. Chinese Physics Letters, 2018, 35, 107101.	1.3	5
287	Anomalous Temperature-Dependent Raman Scattering of Vapor-Deposited Two-Dimensional Bi Thin Films. Journal of Physical Chemistry C, 2018, 122, 24459-24466.	1.5	22
288	Highly Inâ€Plane Anisotropic 2D GeAs ₂ for Polarizationâ€Sensitive Photodetection. Advanced Materials, 2018, 30, e1804541.	11.1	140
289	Optimized Transport of Black Phosphorus Top Gate Transistors Using Alucone Dielectrics. IEEE Electron Device Letters, 2018, 39, 1952-1955.	2.2	2

#	Article	IF	CITATIONS
290	Anisotropic Thermal Conductivity of Suspended Black Phosphorus Probed by Opto-Thermomechanical Resonance Spectromicroscopy. Nano Letters, 2018, 18, 7683-7691.	4.5	37
291	Polymer Ionic Liquid Stabilized Black Phosphorus for Environmental Robust Flexible Optoelectronics. Advanced Functional Materials, 2018, 28, 1805311.	7.8	54
292	Recent advancements in 2D nanomaterials for cancer therapy. Science China Chemistry, 2018, 61, 1214-1226.	4.2	51
293	Epitaxial Growth of Few‣ayer Black Phosphorene Quantum Dots on Si Substrates. Advanced Materials Interfaces, 2018, 5, 1801048.	1.9	20
294	Bi ₂ OS ₂ : a direct-gap two-dimensional semiconductor with high carrier mobility and surface electron states. Materials Horizons, 2018, 5, 1058-1064.	6.4	45
295	Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi ₂ O ₂ Se. Science Advances, 2018, 4, eaat8355.	4.7	167
296	Thicknessâ€Dependent Carrier Transport Characteristics of a New 2D Elemental Semiconductor: Black Arsenic. Advanced Functional Materials, 2018, 28, 1802581.	7.8	125
297	Enhancement of photoluminescence and hole mobility in 1- to 5-layer InSe due to the top valence-band inversion: strain effect. Nanoscale, 2018, 10, 11441-11451.	2.8	58
298	Realizing Long-Term Stability and Thickness Control of Black Phosphorus by Ambient Thermal Treatment. ACS Applied Materials & Early Interfaces, 2018, 10, 19069-19075.	4.0	32
299	Zinc oxide–black phosphorus composites for ultrasensitive nitrogen dioxide sensing. Nanoscale Horizons, 2018, 3, 525-531.	4.1	52
300	Enhanced stability and performance of few-layer black phosphorus transistors by electron beam irradiation. Nanoscale, 2018, 10, 11616-11623.	2.8	27
301	Preparation of Highly Stable Black Phosphorus by Gold Decoration for Highâ€Performance Thermoelectric Generators. Advanced Functional Materials, 2018, 28, 1800532.	7.8	49
303	Effect of TCNQ Layer Cover on Oxidation Dynamics of Black Phosphorus. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800179.	1.2	4
304	Solvent mediated hybrid 2D materials: black phosphorus – graphene heterostructured building blocks assembled for sodium ion batteries. Nanoscale, 2018, 10, 10443-10449.	2.8	40
305	Enhanced Performance of Field-Effect Transistors Based on Black Phosphorus Channels Reduced by Galvanic Corrosion of Al Overlayers. ACS Applied Materials & Interfaces, 2018, 10, 18895-18901.	4.0	9
306	Thermal annealing of black phosphorus for etching and protection. Applied Surface Science, 2018, 457, 773-779.	3.1	17
307	Chemical sensing with 2D materials. Chemical Society Reviews, 2018, 47, 4860-4908.	18.7	513
308	Lithography-free fabrication of field effect transistor channels with randomly contact-printed black phosphorus flakes. Materials Science in Semiconductor Processing, 2018, 86, 58-62.	1.9	2

#	Article	IF	CITATIONS
309	Covalent Functionalization of Few-Layer Black Phosphorus Using Iodonium Salts and Comparison to Diazonium Modified Black Phosphorus. Chemistry of Materials, 2018, 30, 4667-4674.	3.2	79
310	Perspective: 2D for beyond CMOS. APL Materials, 2018, 6, .	2.2	37
311	Enhancing ambipolar carrier transport of black phosphorus field-effect transistors with Ni–P alloy contacts. Physical Chemistry Chemical Physics, 2018, 20, 22439-22444.	1.3	4
312	Two-dimensional light-emitting materials: preparation, properties and applications. Chemical Society Reviews, 2018, 47, 6128-6174.	18.7	167
313	Scalable Patterning of Encapsulated Black Phosphorus. Nano Letters, 2018, 18, 5373-5381.	4.5	43
314	Black Phosphorus: Degradation Favors Lubrication. Nano Letters, 2018, 18, 5618-5627.	4.5	107
315	Penta-Pt ₂ N ₄ : an ideal two-dimensional material for nanoelectronics. Nanoscale, 2018, 10, 16169-16177.	2.8	58
316	Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation. Nature Communications, 2018, 9, 2889.	5.8	125
317	Progress on Black Phosphorus Photonics. Advanced Optical Materials, 2018, 6, 1800365.	3.6	44
318	Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator. Optical Materials Express, 2018, 8, 926.	1.6	38
319	A Perspective on the Application of Spatially Resolved ARPES for 2D Materials. Nanomaterials, 2018, 8, 284.	1.9	47
320	Multilayer Black Phosphorus Near-Infrared Photodetectors. Sensors, 2018, 18, 1668.	2.1	26
321	Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility. Frontiers of Physics, 2018, 13, 1.	2.4	11
322	A surface potential based compact model for two-dimensional field effect transistors with disorders induced transition behaviors. Journal of Applied Physics, 2018, 124, .	1.1	6
323	Recent Progress on Stability and Passivation of Black Phosphorus. Advanced Materials, 2018, 30, e1704749.	11.1	248
324	2D Phosphorene: Epitaxial Growth and Interface Engineering for Electronic Devices. Advanced Materials, 2018, 30, e1802207.	11.1	58
325	Wavelength tunable polarizer based on layered black phosphorus on Si/SiO ₂ substrate. Optics Letters, 2018, 43, 1255.	1.7	32
326	Energy Level Evolution and Oxygen Exposure of Fullerene/Black Phosphorus Interface. Journal of Physical Chemistry Letters, 2018, 9, 5254-5261.	2.1	13

#	Article	IF	Citations
327	Electroluminescent Devices Based on 2D Semiconducting Transition Metal Dichalcogenides. Advanced Materials, 2018, 30, e1802687.	11.1	86
328	Photo-oxidative Degradation and Protection Mechanism of Black Phosphorus: Insights from Ultrafast Dynamics. Journal of Physical Chemistry Letters, 2018, 9, 5034-5039.	2.1	45
329	Multilayer Black Phosphorus Exfoliated with the Aid of Sodium Hydroxide: An Improvement in Electrochemical Energy Storage. Journal of Electronic Materials, 2018, 47, 4793-4798.	1.0	14
330	Fluorinationâ€Enhanced Ambient Stability and Electronic Tolerance of Black Phosphorus Quantum Dots. Advanced Science, 2018, 5, 1800420.	5.6	67
331	Effects of plasma-treatment on the electrical and optoelectronic properties of layered black phosphorus. Applied Materials Today, 2018, 12, 244-249.	2.3	38
332	Biodegradable Black Phosphorus Nanosheets Mediate Specific Delivery of hTERT siRNA for Synergistic Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 21137-21148.	4.0	90
333	Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials. ACS Nano, 2018, 12, 6360-6377.	7.3	78
334	Structures, Properties and Applications of 2D Materials. , 2019, , 19-51.		2
335	Surface Engineering of Twoâ€Dimensional Materials. ChemNanoMat, 2019, 5, 6-23.	1.5	22
336	Dual-wavelength mode-locked erbium-doped fiber laser based on tin disulfide thin film as saturable absorber. Journal of Applied Physics, 2019, 125, .	1.1	23
337	Recent Developments in Stability and Passivation Techniques of Phosphorene toward Nextâ€Generation Device Applications. Advanced Functional Materials, 2019, 29, 1903419.	7.8	113
338	Epitaxial multilayers of alkanes on two-dimensional black phosphorus as passivating and electrically insulating nanostructures. Nanoscale, 2019, 11, 17252-17261.	2.8	13
339	In Situ Doping of Black Phosphorus by High-Pressure Synthesis. Inorganic Chemistry, 2019, 58, 10227-10238.	1.9	20
340	Superior Photo-thermionic electron Emission from Illuminated Phosphorene Surface. Scientific Reports, 2019, 9, 10307.	1.6	9
341	Unveiling chemical reactivity and oxidation of 1T-phased group VI disulfides. Physical Chemistry Chemical Physics, 2019, 21, 17010-17017.	1.3	7
342	Monolayer Phosphorene–Carbon Nanotube Heterostructures for Photocatalysis: Analysis by Density Functional Theory. Nanoscale Research Letters, 2019, 14, 233.	3.1	10
343	Two-dimensional layered materials: from mechanical and coupling properties towards applications in electronics. Nanoscale, 2019, 11, 13181-13212.	2.8	67
344	Black phosphorus quantum dot based all-optical signal processing: ultrafast optical switching and wavelength converting. Nanotechnology, 2019, 30, 415202.	1.3	30

#	ARTICLE	IF	CITATIONS
345	Unveiling the Interfacial Instability of the Phosphorus/Carbon Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30763-30773.	4.0	26
346	Elastic behavior and intrinsic carrier mobility for monolayer SnS and SnSe: First-principles calculations. Applied Surface Science, 2019, 492, 435-448.	3.1	44
347	Environmental stability of bismuthene: oxidation mechanism and structural stability of 2D pnictogens. Journal of Materials Chemistry C, 2019, 7, 9195-9202.	2.7	40
348	Noncovalent Functionalization of Pnictogen Surfaces: From Small Molecules to 2D Heterostructures. Small, 2019, 15, e1903495.	5. 2	11
349	Holmium oxide thin film as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers. Optical Fiber Technology, 2019, 52, 101996.	1.4	27
350	Black phosphorus nanomaterials as multi-potent and emerging platforms against bacterial infections. Microbial Pathogenesis, 2019, 137, 103800.	1.3	36
351	Interplay of Charged States and Oxygen Dissociation Induced by Vacancies in Phosphorene. Journal of Physical Chemistry C, 2019, 123, 27080-27087.	1.5	8
352	Sensing Infrared Photons at Room Temperature: From Bulk Materials to Atomic Layers. Small, 2019, 15, e1904396.	5. 2	83
353	Effect of excess charge carriers and fluid medium on the magnitude and sign of the Casimir-Lifshitz torque. Physical Review B, 2019, 100, .	1.1	4
354	Dependence of channel thickness on MoTe ₂ transistor performance with Pt contact on a HfO ₂ dielectric. Applied Physics Express, 2019, 12, 124001.	1.1	1
355	Halogenated Antimonene: Oneâ€Step Synthesis, Structural Simulation, Tunable Electronic and Photoresponse Property. Advanced Functional Materials, 2019, 29, 1905857.	7.8	33
356	Anisotropic interfacial properties between monolayered black phosphorus and water. Applied Surface Science, 2019, 475, 857-862.	3.1	16
357	Infrared ultrafast spectroscopy of solution-grown thin film tellurium. Physical Review B, 2019, 100, .	1.1	13
358	Two-dimensional VDW crystal SnP3 with high carrier mobility and extraordinary sunlight absorbance. Chinese Journal of Chemical Physics, 2019, 32, 327-332.	0.6	1
359	Effective improvement in capacitance performance of polypyrrole assisted by black phosphorus. Journal of Materials Science: Materials in Electronics, 2019, 30, 15130-15138.	1.1	9
360	Fabricating and probing additive-free electrophoretic-deposited black phosphorus nanoflake anode for lithium-ion battery applications. Materials Letters, 2019, 254, 367-370.	1.3	8
361	Long-Term Stabilization of Two-Dimensional Perovskites by Encapsulation with Hexagonal Boron Nitride. Nanomaterials, 2019, 9, 1120.	1.9	31
362	Comprehensive understanding of intrinsic mobility in the monolayers of Ill–VI group 2D materials. Physical Chemistry Chemical Physics, 2019, 21, 21898-21907.	1.3	32

#	Article	lF	Citations
363	Ultraselective antibiotic sensing with complementary strand DNA assisted aptamer/MoS2 field-effect transistors. Biosensors and Bioelectronics, 2019, 145, 111711.	5. 3	68
364	The mechanical flexibility, electronic structure and carrier mobility of monolayer GeP: A first principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125856.	0.9	4
365	Photoluminescence mechanism of phosphorene quantum dots (PQDs) produced by pulsed laser ablation in liquids. Applied Physics Letters, 2019, 115, .	1.5	16
366	Tunable multiwavelength erbium-doped fiber laser based on BPQDs packaged by poly tetra fluoroethylene and two segments of PMF. Optics Communications, 2019, 453, 124349.	1.0	8
367	Ultra-stable pulse generation in ytterbium-doped fiber laser based on black phosphorus. Nanoscale Advances, 2019, 1, 195-202.	2.2	32
368	High-performance sub-10 nm monolayer Bi ₂ O ₂ Se transistors. Nanoscale, 2019, 11, 532-540.	2.8	196
369	Thickness-dependent resistive switching in black phosphorus CBRAM. Journal of Materials Chemistry C, 2019, 7, 725-732.	2.7	51
370	Highly ambient-stable few-layer black phosphorene by pulsed laser exfoliation and HEMM. Chemical Communications, 2019, 55, 2601-2604.	2.2	18
371	Monolayer black phosphorus by sequential wet-chemical surface oxidation. RSC Advances, 2019, 9, 3570-3576.	1.7	28
372	Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. Journal of Materials Chemistry A, 2019, 7, 4291-4312.	5. 2	158
373	Exciton in phosphorene: Strain, impurity, thickness, and heterostructure. Physical Review B, 2019, 99, .	1.1	17
374	Natural organic matter inhibits aggregation of few-layered black phosphorus in mono- and divalent electrolyte solutions. Environmental Science: Nano, 2019, 6, 599-609.	2.2	22
375	Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Nanoscale, 2019, 11, 1995-2002.	2.8	64
376	Even–odd oscillation of bandgaps in GeP ₃ nanoribbons and a tunable 1D lateral homogenous heterojunction. Physical Chemistry Chemical Physics, 2019, 21, 275-280.	1.3	6
377	Direct Growth of Black Phosphorus (p-Type) on a Flexible Substrate with Dual Role of Two-Dimensional ZnO (n-Type) as Effective Passivation and Enabling Highly Stable Broadband Photodetection. ACS Applied Electronic Materials, 2019, 1, 1076-1083.	2.0	14
378	Highly in-plane anisotropic 2D semiconductors $\langle i \rangle \hat{l}^2 \langle i \rangle$ -AuSe with multiple superior properties: a first-principles investigation. Journal of Physics Condensed Matter, 2019, 31, 395501.	0.7	10
379	<i>In vivo</i> clearable inorganic nanophotonic materials: designs, materials and applications. Nanoscale, 2019, 11, 12742-12754.	2.8	11
380	Black phosphorus nanosheets-based stable drug delivery system via drug-self-stabilization for combined photothermal and chemo cancer therapy. Chemical Engineering Journal, 2019, 375, 121917.	6.6	91

#	Article	IF	CITATIONS
381	Accurate Threshold Voltage Reliability Evaluation of Thin Al ₂ O ₃ Top-Gated Dielectric Black Phosphorous FETs Using Ultrafast Measurement Pulses. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 23673-23680.	4.0	12
382	Lead monoxide: a promising two-dimensional layered material for applications in nonlinear photonics in the infrared band. Nanoscale, 2019, 11, 12595-12602.	2.8	36
383	Interfacial Properties of Monolayer Antimonene Devices. Physical Review Applied, 2019, 11, .	1.5	22
384	Noncovalent Functionalization of 2D Black Phosphorus with Fluorescent Boronic Derivatives of Pyrene for Probing and Modulating the Interaction with Molecular Oxygen. ACS Applied Materials & Amp; Interfaces, 2019, 11, 22637-22647.	4.0	42
385	Nanomaterial-based SERS sensing technology for biomedical application. Journal of Materials Chemistry B, 2019, 7, 3755-3774.	2.9	76
386	Anisotropic buckling of few-layer black phosphorus. Nanoscale, 2019, 11, 12080-12086.	2.8	29
387	Propose two-dimensional Sb ₂ Te ₂ X (X = S, Se) with isotropic electron mobility and remarkable visible-light response. Physical Chemistry Chemical Physics, 2019, 21, 14904-14910.	1.3	2
388	quasi-two-dimensional Fermi liquid single-crystal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">B</mml:mi><mml:msub><mml:mi mathvariant="normal">i</mml:mi><mml:mn></mml:mn></mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mm< td=""><td>1.1</td><td>16</td></mm<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:math>	1.1	16
389	mathvariant= 'normal' > 0 < /mml:ml> < mml:mn> 2 < /mml:mn> < /mml:msub> < mml:ml> Sec /mml:ml> < /mml:mrow> < Surface Coordination of Black Phosphorus with Modified Cisplatin. Bioconjugate Chemistry, 2019, 30, 1658-1664.	/mml:math	25
390	HfO ₂ -passivated black phosphorus field effect transistor with long-termed stability and enhanced current on/off ratio. Nanotechnology, 2019, 30, 345208.	1.3	18
391	ReSe2 passively Q-switched Nd:Y3Al5 O12 laser with near repetition rate limit of microsecond pulse output. Optics Communications, 2019, 445, 165-170.	1.0	8
392	Chemical and structural stability of 2D layered materials. 2D Materials, 2019, 6, 042001.	2.0	94
393	Sensitivity enhancement of surface plasmon resonance sensors with 2D franckeite nanosheets. Results in Physics, 2019, 13, 102320.	2.0	39
394	Etching Techniques in 2D Materials. Advanced Materials Technologies, 2019, 4, 1900064.	3.0	50
395	Ti ₂ PTe ₂ monolayer: a promising two-dimensional anode material for sodium-ion batteries. RSC Advances, 2019, 9, 15536-15541.	1.7	18
396	Theoretical prediction of tunable electronic and magnetic properties of monolayer antimonene by vacancy and strain. Applied Surface Science, 2019, 488, 98-106.	3.1	20
397	Chemistry of Layered Pnictogens: Phosphorus, Arsenic, Antimony, and Bismuth. Angewandte Chemie, 2019, 131, 7631-7637.	1.6	14
398	Effective passivation of black phosphorus transistor against ambient degradation by an ultra-thin tin oxide film. Science Bulletin, 2019, 64, 570-574.	4.3	12

#	Article	IF	CITATIONS
399	Chemistry of Layered Pnictogens: Phosphorus, Arsenic, Antimony, and Bismuth. Angewandte Chemie - International Edition, 2019, 58, 7551-7557.	7.2	48
400	Black Phosphorus-Modified Co ₃ O ₄ through Tuning the Electronic Structure for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Electronic Structure (17, 17459-17466).	4.0	87
401	Voltammetric sensing performances of a carbon ionic liquid electrode modified with black phosphorene and hemin. Mikrochimica Acta, 2019, 186, 304.	2.5	21
402	Fabrication and the Interlayer Coupling Effect of Twisted Stacked Black Phosphorus for Optical Applications. ACS Applied Nano Materials, 2019, 2, 3138-3145.	2.4	23
403	Surface Instability and Chemical Reactivity of ZrSiS and ZrSiSe Nodalâ€Line Semimetals. Advanced Functional Materials, 2019, 29, 1900438.	7.8	6
404	Antiferromagnetic coupling of van der Waals ferromagnetic Fe ₃ GeTe ₂ . Nanotechnology, 2019, 30, 245701.	1.3	53
405	Black Phosphorus-New Nanostructured Material for Humidity Sensors: Achievements and Limitations. Sensors, 2019, 19, 1010.	2.1	26
406	Accelerated Degradation of CrCl ₃ Nanoflakes Induced by Metal Electrodes: Implications for Remediation in Nanodevice Fabrication. ACS Applied Nano Materials, 2019, 2, 1597-1603.	2.4	9
407	Preparations, properties and applications of low-dimensional black phosphorus. Chemical Engineering Journal, 2019, 370, 120-135.	6.6	71
408	Beta-lead oxide quantum dot (\hat{l}^2 -PbO QD)/polystyrene (PS) composite films and their applications in ultrafast photonics. Nanoscale, 2019, 11, 6828-6837.	2.8	33
409	The atomic layer etching of molybdenum disulfides using low-power oxygen plasma. Semiconductor Science and Technology, 2019, 34, 045007.	1.0	9
410	Graphene-WS2 heterostructures by a lithography free method: their electrical properties. Nanotechnology, 2019, 30, 275704.	1.3	2
411	Electrically Robust Singleâ€Crystalline WTe ₂ Nanobelts for Nanoscale Electrical Interconnects. Advanced Science, 2019, 6, 1801370.	5.6	17
412	Lutetium oxide film as a passive saturable absorber for generating Q-switched fiber laser at 1570†nm wavelength. Optical Fiber Technology, 2019, 50, 82-86.	1.4	23
413	Electrogenerated chemiluminescence aptasensor for lysozyme based on copolymer nanospheres encapsulated black phosphorus quantum dots. Talanta, 2019, 199, 507-512.	2.9	34
414	Transport properties of 2D As1-xPx binary compounds as a potential thermoelectric materials. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 111, 79-83.	1.3	10
415	Silicene Passivation by Few-Layer Graphene. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12745-12751.	4.0	16
416	Van der Waals 2D layered-material bipolar transistor. 2D Materials, 2019, 6, 035005.	2.0	19

#	Article	IF	CITATIONS
417	A first-principles study: Adsorption of small gas molecules on GeP3 monolayer. Surface Science, 2019, 684, 37-43.	0.8	16
418	Mono-Elemental Properties of 2D Black Phosphorus Ensure Extended Charge Carrier Lifetimes under Oxidation: Time-Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2019, 10, 1083-1091.	2.1	74
419	Atomic layer deposition of a MgO barrier for a passivated black phosphorus spintronics platform. Applied Physics Letters, 2019, 114 , .	1.5	13
420	Electronic structures of air-exposed few-layer black phosphorus by optical spectroscopy. Physical Review B, 2019, 99, .	1.1	17
421	Enhanced photocatalytic properties of TiO ₂ nanosheets@2D layered black phosphorus composite with high stability under hydro-oxygen environment. Nanoscale, 2019, 11, 5674-5683.	2.8	45
422	P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices. ACS Nano, 2019, 13, 1683-1693.	7.3	23
423	Two-dimensional Dirac fermions on oxidized black phosphorus. Physical Chemistry Chemical Physics, 2019, 21, 24206-24211.	1.3	5
424	A unipolar nonvolatile resistive switching behavior in a layered transition metal oxide. Nanoscale, 2019, 11, 20497-20506.	2.8	24
425	Degradation of Black Phosphorus upon Environmental Exposure and Encapsulation Strategies To Prevent It. ACS Symposium Series, 2019, , 47-59.	0.5	3
426	Heterogeneous Integration of 2D Materials: Recent Advances in Fabrication and Functional Device Applications. Nano, 2019, 14, 1930009.	0.5	10
427	Monte Carlo Study of Electronic Transport in Monolayer InSe. Materials, 2019, 12, 4210.	1.3	16
428	Density functional study of Li/Na adsorption properties of single-layer and double-layer antimonenes. RSC Advances, 2019, 9, 32608-32619.	1.7	8
429	Copper(<scp>i</scp>) sulfide: a two-dimensional semiconductor with superior oxidation resistance and high carrier mobility. Nanoscale Horizons, 2019, 4, 223-230.	4.1	51
430	2D/2D Graphitic Carbon Nitride/Antimonene Heterostructure: Structural Characterization and Application in Photocatalysis. Advanced Sustainable Systems, 2019, 3, 1800138.	2.7	30
431	Intrinsic Correlation between Electronic Structure and Degradation: From Few‣ayer to Bulk Black Phosphorus. Angewandte Chemie, 2019, 131, 3794-3798.	1.6	6
432	Mode-locked thulium doped fiber laser with zinc oxide saturable absorber for 2 μm operation. Infrared Physics and Technology, 2019, 97, 142-148.	1.3	32
433	Electrically-Transduced Chemical Sensors Based on Two-Dimensional Nanomaterials. Chemical Reviews, 2019, 119, 478-598.	23.0	521
434	Two-dimensional black phosphorus: A new star in energy applications and the barrier to stability. Applied Materials Today, 2019, 14, 51-58.	2.3	48

#	Article	IF	CITATIONS
435	pHâ€Dependent Degradation of Layered Black Phosphorus: Essential Role of Hydroxide Ions. Angewandte Chemie - International Edition, 2019, 58, 467-471.	7.2	60
436	Black phosphorus, a prospective graphene substitute for biomedical applications. Materials Science and Engineering C, 2019, 97, 978-993.	3.8	127
437	Evaluating the Surface Chemistry of Black Phosphorus during Ambient Degradation. Langmuir, 2019, 35, 2172-2178.	1.6	41
438	Liquid-exfoliation of S-doped black phosphorus nanosheets for enhanced oxygen evolution catalysis. Nanotechnology, 2019, 30, 035701.	1.3	32
439	Electronic, photocatalytic, and optical properties of two-dimensional boron pnictides. Journal of Materials Science, 2019, 54, 2278-2288.	1.7	37
440	Near-infrared light control of bone regeneration with biodegradable photothermal osteoimplant. Biomaterials, 2019, 193, 1-11.	5 . 7	181
441	Intrinsic Correlation between Electronic Structure and Degradation: From Few‣ayer to Bulk Black Phosphorus. Angewandte Chemie - International Edition, 2019, 58, 3754-3758.	7.2	26
442	Performance and Reliability Improvement under High Current Densities in Black Phosphorus Transistors by Interface Engineering. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1587-1594.	4.0	13
443	The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. Materials Horizons, 2020, 7, 252-262.	6.4	164
444	Antimonene-based flexible photodetector. Nanoscale Horizons, 2020, 5, 124-130.	4.1	51
445	Theoretical prediction of intrinsic electron mobility of monolayer InSe: first-principles calculation. Journal of Physics Condensed Matter, 2020, 32, 065306.	0.7	26
446	High mobility ReSe ₂ field effect transistors: Schottky-barrier-height-dependent photoresponsivity and broadband light detection with Co decoration. 2D Materials, 2020, 7, 015010.	2.0	36
447	Inorganic 2D Luminescent Materials: Structure, Luminescence Modulation, and Applications. Advanced Optical Materials, 2020, 8, 1900978.	3.6	37
448	Novel BCN-phosphorene bilayer: Dependence of carbon doping on band offsets for potential photovoltaic applications. Applied Surface Science, 2020, 504, 144327.	3.1	13
449	Influence of the surface decoration of phosphorene with Ag nanoclusters on gas sensing properties. Applied Surface Science, 2020, 504, 144374.	3.1	21
450	First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Reports on Progress in Physics, 2020, 83, 036501.	8.1	176
451	Controlling Defects in Continuous 2D GaS Films for Highâ€Performance Wavelengthâ€Tunable UVâ€Discriminating Photodetectors. Advanced Materials, 2020, 32, e1906958.	11.1	53
452	Energy level engineering of PEDOT:PSS by antimonene quantum sheet doping for highly efficient OLEDs. Journal of Materials Chemistry C, 2020, 8, 1796-1802.	2.7	16

#	Article	IF	CITATIONS
453	Facile passivation of black phosphorus nanosheets <i>via</i> silica coating for stable and efficient solar desalination. Environmental Science: Nano, 2020, 7, 414-423.	2.2	15
454	Mesenchymal stem cells transporting black phosphorus-based biocompatible nanospheres: Active trojan horse for enhanced photothermal cancer therapy. Chemical Engineering Journal, 2020, 385, 123942.	6.6	44
455	Covalent Functionalized Black Phosphorus Greatly Inhibits Nonradiative Charge Recombination: A Time Domain Ab Initio Study. Journal of Physical Chemistry Letters, 2020, 11, 478-484.	2.1	22
456	PdTe ₂ Transitionâ€Metal Dichalcogenide: Chemical Reactivity, Thermal Stability, and Device Implementation. Advanced Functional Materials, 2020, 30, 1906556.	7.8	27
457	Tunneling-based rectification and photoresponsivity in black phosphorus/hexagonal boron nitride/rhenium diselenide van der Waals heterojunction diode. Nanoscale, 2020, 12, 3455-3468.	2.8	40
458	2D semiconducting materials for electronic and optoelectronic applications: potential and challenge. 2D Materials, 2020, 7, 022003.	2.0	168
459	Fabrication and Imaging of Monolayer Phosphorene with Preferred Edge Configurations via Graphene-Assisted Layer-by-Layer Thinning. Nano Letters, 2020, 20, 559-566.	4.5	22
460	Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets. Advanced Science, 2020, 7, 1902359.	5.6	76
461	Band structure and Schottky barrier modulation in multilayer black phosphorene and black phosphorene/graphene heterostructure through out-of-plane strain. Physica B: Condensed Matter, 2020, 580, 411923.	1.3	14
462	Black Phosphorus: Degradation Mechanism, Passivation Method, and Application for In Situ Tissue Regeneration. Advanced Materials Interfaces, 2020, 7, 2001538.	1.9	33
463	Noncovalent Functionalization and Passivation of Black Phosphorus with Optimized Perylene Diimides for Hybrid Field Effect Transistors. Advanced Materials Interfaces, 2020, 7, 2001290.	1.9	19
464	Degradation of Black Phosphorus and Strategies to Enhance Its Ambient Lifetime. Advanced Materials Interfaces, 2020, 7, 2001102.	1.9	28
465	Stabilization of Black Phosphorus by Sonicationâ€Assisted Simultaneous Exfoliation and Functionalization. Chemistry - A European Journal, 2020, 26, 17581-17587.	1.7	3
466	Room-Temperature and Humidity-Resistant Trace Nitrogen Dioxide Sensing of Few-Layer Black Phosphorus Nanosheet by Incorporating Zinc Oxide Nanowire. Analytical Chemistry, 2020, 92, 11007-11017.	3.2	64
467	Anisotropic interfacial properties of monolayer C ₂ N field effect transistors. Physical Chemistry Chemical Physics, 2020, 22, 28074-28085.	1.3	9
468	Electronic and structural characterisation of polycrystalline platinum disulfide thin films. RSC Advances, 2020, 10, 42001-42007.	1.7	10
469	Recent advances of low-dimensional phosphorus-based nanomaterials for solar-driven photocatalytic reactions. Coordination Chemistry Reviews, 2020, 424, 213516.	9.5	64
470	<i>In Situ</i> Cleaning and Fluorination of Black Phosphorus for Enhanced Performance of Transistors with High Stability. ACS Applied Materials & Samp; Interfaces, 2020, 12, 37375-37383.	4.0	20

#	Article	IF	Citations
471	Self-powered photodetectors based on OD/2D mixed dimensional heterojunction with black phosphorus quantum dots as hole accepters. Applied Materials Today, 2020, 20, 100765.	2.3	44
472	Quantifying the Covalent Functionalization of Black Phosphorus. Angewandte Chemie - International Edition, 2020, 59, 20230-20234.	7.2	25
473	Recent developments in mid-infrared fiber lasers: Status and challenges. Optics and Laser Technology, 2020, 132, 106497.	2.2	57
474	Quantifizierung der kovalenten Funktionalisierung von schwarzem Phosphor. Angewandte Chemie, 2020, 132, 20406-20411.	1.6	3
475	Effect of surface oxidation on nonlinear optical absorption in WS2 nanosheets. Applied Surface Science, 2020, 532, 147409.	3.1	23
476	Wireless Hand-Held Device Based on Polylactic Acid-Protected, Highly Stable, CTAB-Functionalized Phosphorene for CO ₂ Gas Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38365-38375.	4.0	18
477	WS ₂ /GeSe/WS ₂ Bipolar Transistor-Based Chemical Sensor with Fast Response and Recovery Times. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39524-39532.	4.0	48
478	Understanding and Mapping Sensitivity in MoS ₂ Field-Effect-Transistor-Based Sensors. ACS Nano, 2020, 14, 11637-11647.	7. 3	11
479	Two-Dimensional Black Phosphorus Nanomaterials: Emerging Advances in Electrochemical Energy Storage Science. Nano-Micro Letters, 2020, 12, 179.	14.4	82
480	Band gap reconstruction at the interface between black phosphorus and a gold electrode. Physical Review B, 2020, 101, .	1.1	9
481	Bioelectronicsâ€Related 2D Materials Beyond Graphene: Fundamentals, Properties, and Applications. Advanced Functional Materials, 2020, 30, 2003732.	7.8	39
482	Nanolayered Black Arsenic–Silicon Lateral Heterojunction Photodetector for Visible to Mid-Infrared Wavelengths. ACS Applied Nano Materials, 2020, 3, 9401-9409.	2.4	14
483	The Role of the Height Fluctuation Effect in the Tunable Interfacial Electronic Structure of the Vertically Stacked BP/MoS ₂ Heterojunction. Journal of Physical Chemistry C, 2020, 124, 20256-20261.	1.5	4
484	Stabilizing black phosphorus <i>via</i> inorganic small-molecular H ₃ BO ₃ . Chemical Communications, 2020, 56, 11418-11421.	2.2	9
485	A new single-element layered two-dimensional semiconductor: black arsenic. Journal of Semiconductors, 2020, 41, 080402.	2.0	3
486	Computational prediction of a two-dimensional semiconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>SnO</mml:mi><mml .<="" 102,="" 2020,="" and="" b,="" by="" doping.="" magnetism="" negative="" physical="" poisson's="" ratio="" review="" td="" tunable="" with=""><td>:mn12<td>nml:ønn></td></td></mml></mml:msub></mml:mrow></mml:math>	:m n1 2 <td>nml:ønn></td>	nm l:ø nn>
487	Dangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene. Journal of Physical Chemistry C, 2020, 124, 24066-24072.	1.5	8
488	Layer Dependence of Dielectric Response and Water-Enhanced Ambient Degradation of Highly Anisotropic Black As. ACS Nano, 2020, 14, 5988-5997.	7.3	10

#	Article	IF	CITATIONS
489	Lattice vibration characteristics in layered InSe films and the electronic behavior of field-effect transistors. Nanotechnology, 2020, 31, 335702.	1.3	3
490	Ultrasensitive ambient-stable SnSe ₂ -based broadband photodetectors for room-temperature IR/THz energy conversion and imaging. 2D Materials, 2020, 7, 035026.	2.0	34
491	Synthesis and electrical properties of single crystalline black phosphorus nanoribbons. CrystEngComm, 2020, 22, 3824-3830.	1.3	19
492	Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. Nanoscale, 2020, 12, 11364-11394.	2.8	41
493	Electrical scattering mechanism evolution in un-doped and halogen-doped Bi2O2Se single crystals. Journal of Physics Condensed Matter, 2020, 32, 365705.	0.7	0
494	The interaction of two-dimensional \hat{l}_{\pm} - and \hat{l}^2 -phosphorus carbide with environmental molecules: a DFT study. Physical Chemistry Chemical Physics, 2020, 22, 11307-11313.	1.3	6
495	Transitionâ€Metal Phosphorus Trisulfides and its Vacancy Defects: Emergence of a New Class of Anode Material for Liâ€Ion Batteries. ChemSusChem, 2020, 13, 3855-3864.	3.6	30
496	Two-Dimensional Black Phosphorus: An Emerging Anode Material for Lithium-Ion Batteries. Nano-Micro Letters, 2020, 12, 120.	14.4	68
497	Defect-induced diverse electronic, magnetic and optical properties in monolayer CaP3. Materials Today Communications, 2020, 23, 100925.	0.9	1
498	Recent breakthroughs in two-dimensional van der Waals magnetic materials and emerging applications. Nano Today, 2020, 34, 100902.	6.2	49
499	Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nature Photonics, 2020, 14, 578-584.	15.6	172
500	State of the art two-dimensional materials-based photodetectors: Prospects, challenges and future outlook. Journal of Industrial and Engineering Chemistry, 2020, 89, 28-46.	2.9	11
501	Wafer-scale 2D PtTe2 layers-enabled Kirigami heaters with superior mechanical stretchability and electro-thermal responsiveness. Applied Materials Today, 2020, 20, 100718.	2.3	21
502	Review on wavelength-tunable pulsed fiber lasers based on 2D materials. Optics and Laser Technology, 2020, 131, 106375.	2.2	39
503	Thickness determination of anisotropic van der Waals crystals by raman spectroscopy: the case of black phosphorus. Nanotechnology, 2020, 31, 415703.	1.3	8
504	Synthesis, properties, and applications of 2D amorphous inorganic materials. Journal of Applied Physics, 2020, 127, .	1.1	22
505	Black phosphorus synthesized by solvothermal reaction from red phosphorus and its catalytic activity for water splitting. Journal of Materials Chemistry A, 2020, 8, 7368-7376.	5.2	38
506	Acetonitrile-assisted exfoliation of layered grey and black arsenic: contrasting properties. Nanoscale Advances, 2020, 2, 1282-1289.	2.2	21

#	Article	IF	CITATIONS
507	Oxidation Behaviors of Twoâ€dimensional Metal Chalcogenides. ChemNanoMat, 2020, 6, 838-849.	1.5	11
508	A Scalable Method for Thickness and Lateral Engineering of 2D Materials. ACS Nano, 2020, 14, 4861-4870.	7.3	14
509	Visualizing Oxidation Mechanisms in Few-Layered Black Phosphorus via <i>In Situ</i> Transmission Electron Microscopy. ACS Applied Materials & Interfaces, 2020, 12, 15844-15854.	4.0	17
510	Combination of PEG-decorated black phosphorus nanosheets and immunoadjuvant for photoimmunotherapy of melanoma. Journal of Materials Chemistry B, 2020, 8, 2805-2813.	2.9	42
511	Facile liquid-phase exfoliated few-layer GeP nanosheets and their optoelectronic device applications. Journal of Materials Chemistry C, 2020, 8, 5547-5553.	2.7	24
512	Raman tensor of layered black arsenic. Journal of Raman Spectroscopy, 2020, 51, 1324-1330.	1.2	19
513	Hydrogen Sensors Using 2â€Dimensional Materials: A Review. ChemistrySelect, 2020, 5, 7277-7297.	0.7	23
514	Two-dimensional Bi2Se3 monolayer with high mobility and enhanced optical absorption in the UV–visible light region. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114272.	1.3	20
515	Harnessing biological applications of quantum materials: opportunities and precautions. Journal of Materials Chemistry C, 2020, 8, 10498-10525.	2.7	4
516	Phosphoreneâ€Based Electrocatalysts. Chemistry - A European Journal, 2020, 26, 6437-6446.	1.7	39
517	Recent advances in black phosphorus/carbon hybrid composites: from improved stability to applications. Journal of Materials Chemistry A, 2020, 8, 4647-4676.	5.2	39
518	Recent Advances of 2D Materials in Nonlinear Photonics and Fiber Lasers. Advanced Optical Materials, 2020, 8, 1901631.	3.6	122
519	Applications of Two-Dimensional Nanomaterials in Breast Cancer Theranostics. ACS Biomaterials Science and Engineering, 2020, 6, 1852-1873.	2.6	61
520	Environmentally stable black phosphorus saturable absorber for ultrafast laser. Nanophotonics, 2020, 9, 2445-2449.	2.9	21
521	Recent advances in doping engineering of black phosphorus. Journal of Materials Chemistry A, 2020, 8, 5421-5441.	5.2	93
522	Strain Effects on the 2D van der Waals Heterostructure C ₃ B/C ₃ N: A Density Functional Theory and a Tightâ€Binding Study. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000012.	1.2	10
523	First-principles study of structural and electronic properties of substitutionally doped arsenene. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 114018.	1.3	11
524	The environmental stability characterization of exfoliated few-layer CrXTe3 (XÂ=ÂSi, Ge) nanosheets. Applied Surface Science, 2020, 511, 145452.	3.1	15

#	Article	IF	CITATIONS
525	Property–Activity Relationship of Black Phosphorus at the Nano–Bio Interface: From Molecules to Organisms. Chemical Reviews, 2020, 120, 2288-2346.	23.0	158
526	Large-Scale Production of Nanocrystalline Black Phosphorus Ceramics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7381-7391.	4.0	23
527	Phosphorene Degradation: Visualization and Quantification of Nanoscale Phase Evolution by Scanning Transmission X-ray Microscopy. Chemistry of Materials, 2020, 32, 1272-1280.	3.2	17
528	Studies of band structures and electrical properties of uniaxially strained phosphorene by a simplified two-band $\langle i \rangle k \langle i \rangle \hat{A} \langle i \rangle p \langle i \rangle$ method. Semiconductor Science and Technology, 2020, 35, 045002.	1.0	0
529	Work function and band alignment of few-layer violet phosphorene. Journal of Materials Chemistry A, 2020, 8, 8586-8592.	5.2	43
530	Surface charge transfer doping and effective passivation of black phosphorus field effect transistors. Journal of Materials Chemistry C, 2020, 8, 6595-6604.	2.7	15
531	Tunable Photodetectors via In Situ Thermal Conversion of TiS3 to TiO2. Nanomaterials, 2020, 10, 711.	1.9	14
532	Tunable adsorption behavior of small molecule on GeP monolayer by applied strain and electric field. Applied Surface Science, 2020, 520, 146257.	3.1	15
533	Noncovalent Functionalization of Few‣ayered Antimonene with Fullerene Clusters and Photoinduced Charge Separation in the Composite. Chemistry - A European Journal, 2020, 26, 6726-6735.	1.7	7
534	Q-switched fiber laser based on CdS quantum dots as a saturable absorber. Results in Physics, 2020, 16, 103123.	2.0	24
535	Black phosphorus as a versatile nanoplatform: From unique properties to biomedical applications. Journal of Innovative Optical Health Sciences, 2020, 13, .	0.5	18
536	Internal Fields in Multilayer WS 2 /MoS 2 Heterostructures Epitaxially Grown on Sapphire Substrates. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000033.	0.8	1
537	Environmental Analysis with 2D Transition-Metal Dichalcogenide-Based Field-Effect Transistors. Nano-Micro Letters, 2020, 12, 95.	14.4	73
538	Recent insights into the robustness of two-dimensional black phosphorous in optoelectronic applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 43, 100354.	5.6	25
539	Tungsten Diselenide Top-gate Transistors with Multilayer Antimonene Electrodes: Gate Stacks and Epitaxially Grown 2D Material Heterostructures. Scientific Reports, 2020, 10, 5967.	1.6	4
540	<p>Advanced Black Phosphorus Nanomaterials for Bone Regeneration</p> . International Journal of Nanomedicine, 2020, Volume 15, 2045-2058.	3.3	50
541	Polarizationâ€Dependent and Wavelength‶unable Optical Limiting and Transparency of Multilayer Seleniumâ€Doped Black Phosphorus. Advanced Optical Materials, 2021, 9, .	3.6	12
542	Phosphate imbalance conducting by BPs-based cancer-targeting phosphate anions carrier induces necrosis. Chinese Chemical Letters, 2021, 32, 1550-1554.	4.8	7

#	Article	IF	CITATIONS
543	A review on the 2D black phosphorus materials for energy applications. Inorganic Chemistry Communication, 2021, 124, 108242.	1.8	27
544	Ag/black phosphorus composite based on multilayer black phosphorus: Its preparation and photocatalytic methyl orange degradation performance. Materials Science in Semiconductor Processing, 2021, 121, 105309.	1.9	13
545	<scp>Heteroatomâ€Doped</scp> Black Phosphorus and Its Application: A Review. Chinese Journal of Chemistry, 2021, 39, 690-700.	2.6	15
546	Design of Black Phosphorous Derivatives with Excellent Stability and Ion-Kinetics for Alkali Metal-Ion Battery. Energy Storage Materials, 2021, 35, 283-309.	9.5	8
547	Layered PtSe ₂ for Sensing, Photonic, and (Optoâ€)Electronic Applications. Advanced Materials, 2021, 33, e2004070.	11.1	44
548	Recent Advances in Electrochemical Water Splitting and Reduction of CO ₂ into Green Fuels on 2D Phosphoreneâ€Based Catalyst. Energy Technology, 2021, 9, .	1.8	14
549	Complexly electronic structure induced largely tunable anisotropic mobility for monolayer GeTe by uniaxial strain. Applied Surface Science, 2021, 538, 148009.	3.1	2
550	Low-power microwave-induced fabrication of functionalised few-layer black phosphorus electrodes: A novel route towards Haemophilus Influenzae pathogen biosensing devices. Applied Surface Science, 2021, 539, 148286.	3.1	16
551	Investigations of the stability and electronic properties of two-dimensional Ga2O3 nanosheet in air from first-principles calculations. Applied Surface Science, 2021, 537, 147883.	3.1	14
552	Effects of the thickness and laser irradiation on the electrical properties of e-beam evaporated 2D bismuth. Nanoscale, 2021, 13, 2648-2657.	2.8	13
553	Wound healing acceleration by antibacterial biodegradable black phosphorus nanosheets loaded with cationic carbon dots. Journal of Materials Science, 2021, 56, 6411-6426.	1.7	27
554	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	18.7	96
555	Recent advances in 2D black phosphorus based materials for gas sensing applications. Journal of Materials Chemistry C, 2021, 9, 3773-3794.	2.7	51
556	PASSIVELY Q-SWITCHED YTTERBIUM-DOPED FIBER LASER EMPLOYING SAMARIUM OXIDE AS SATURABLE ABSORBER. IIUM Engineering Journal, 2021, 22, 58-67.	0.5	0
557	Current Advances in Black Phosphorusâ€Based Drug Delivery Systems for Cancer Therapy. Advanced Science, 2021, 8, 2003033.	5.6	70
558	Research progress of puckered honeycomb monolayers. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 148101.	0.2	7
559	Graphether: a reversible and high-capacity anode material for sodium-ion batteries with ultrafast directional Na-ion diffusion. Physical Chemistry Chemical Physics, 2021, 23, 12371-12375.	1.3	7
560	Novel synthesis, properties and applications of emerging group VA two-dimensional monoelemental materials (2D-Xenes). Materials Chemistry Frontiers, 2021, 5, 6333-6391.	3.2	18

#	Article	IF	CITATIONS
561	2D phosphorene nanosheets, quantum dots, nanoribbons: synthesis and biomedical applications. Biomaterials Science, 2021, 9, 2768-2803.	2.6	29
562	Chemical functionalization of <scp>2D</scp> black phosphorus. InformaÄnÃ-Materiály, 2021, 3, 231-251.	8.5	41
563	A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms*. Chinese Physics B, 2021, 30, 027305.	0.7	0
564	Photodetectors of 2D Materials from Ultraviolet to Terahertz Waves. Advanced Materials, 2021, 33, e2008126.	11.1	282
565	Antimony Thin Film as a Robust Broadband Saturable Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-7.	1.9	9
566	Liquidâ€Exfoliated 2D Materials for Optoelectronic Applications. Advanced Science, 2021, 8, e2003864.	5.6	77
567	Mid infrared polarization engineering via sub-wavelength biaxial hyperbolic van der Waals crystals. Scientific Reports, 2021, 11, 6612.	1.6	23
568	Multilayer 2D germanium phosphide (GeP) infrared phototransistor. Optics Express, 2021, 29, 9419.	1.7	15
569	Broken-Gap PtS ₂ /WSe ₂ van der Waals Heterojunction with Ultrahigh Reverse Rectification and Fast Photoresponse. ACS Nano, 2021, 15, 8328-8337.	7.3	102
570	Signatures of subband excitons in few-layer black phosphorus. Physical Review B, 2021, 103, .	1.1	6
571	Probing the Laser Ablation of Black Phosphorus by Raman Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 8704-8711.	1.5	4
572	Q-switched EDF LASER Cavity using ITO as Saturable Absorber. Sir Syed Research Journal of Engineering & Technology, 2021, 11, .	0.2	0
573	Layerâ€Dependent Electronic and Optical Properties of 2D Black Phosphorus: Fundamentals and Engineering. Laser and Photonics Reviews, 2021, 15, 2000399.	4.4	25
574	Enhancing the Surface Reactivity of Black Phosphorus on Hydrogen Evolution by Covalent Chemistry. Journal of Physical Chemistry C, 2021, 125, 7581-7589.	1.5	14
575	Recent research and advances of material-based saturable absorber in mode-locked fiber laser. Optics and Laser Technology, 2021, 137, 106826.	2.2	24
576	Ultrafast Fiber Lasers with Low-Dimensional Saturable Absorbers: Status and Prospects. Sensors, 2021, 21, 3676.	2.1	19
577	Q-switched and mode-locked laser based on aluminium zinc oxide deposited onto D-shape fiber as a saturable absorber. Results in Optics, 2021, 3, 100057.	0.9	10
578	Planar Multilayered 2D GeAs Schottky Photodiode for High-Performance Visible–Near-Infrared Photodetection. ACS Applied Materials & Interfaces, 2021, 13, 21499-21506.	4.0	25

#	Article	IF	CITATIONS
579	Arsenic carbide allotropes prediction: An efficient platform for hole-conductions, optical and photocatalysis applications. Applied Surface Science, 2021, 562, 150109.	3.1	2
580	Surface architectured black phosphorous nanoconstructs based smart and versatile platform for cancer theranostics. Coordination Chemistry Reviews, 2021, 435, 213826.	9.5	29
581	Two-dimensional black phosphorus: Properties, fabrication and application for flexible supercapacitors. Chemical Engineering Journal, 2021, 412, 128744.	6.6	37
582	2D Materials for Nonlinear Photonics and Electroâ€Optical Applications. Advanced Materials Interfaces, 2021, 8, 2100367.	1.9	30
583	Enhanced responsivity and detectivity of fast WSe2 phototransistor using electrostatically tunable in-plane lateral p-n homojunction. Nature Communications, 2021, 12, 3336.	5.8	63
584	Ambient-Stable Two-Dimensional Crl ₃ <i>via</i> Organic-Inorganic Encapsulation. ACS Nano, 2021, 15, 10659-10667.	7. 3	20
585	Optical Signatures of Dirac Electrodynamics for hBN-Passivated Silicene on Au(111). Nano Letters, 2021, 21, 5301-5307.	4.5	9
586	Emerging twoâ€dimensional bismuth oxychalcogenides for electronics and optoelectronics. InformaÄnÃ- Materiály, 2021, 3, 1251-1271.	8.5	51
587	Double-layer honeycomb AlP as a promising catalyst for Li-O2 and Na-O2 batteries. Applied Surface Science, 2021, 550, 149392.	3.1	8
588	Peering into few-layer black phosphorus nanosheets: from preparation to battery applications. JPhys Energy, 2021, 3, 032018.	2.3	2
589	Improved thermal stability and tunable interfacial thermal resistance in a phosphorene/hBN bilayer heterostructure. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 131, 114761.	1.3	5
590	Sensitivity Enhancement of Surface Plasmon Resonance Biosensor with 2-D Franckeite Nanosheets. Plasmonics, 2022, 17, 71-78.	1.8	23
591	Recent Progress of Two-Dimensional Materials for Ultrafast Photonics. Nanomaterials, 2021, 11, 1778.	1.9	31
592	Plasmonic hot electron induced layer dependent anomalous Fr $\tilde{A}\P$ hlich interaction in InSe. Communications Physics, 2021, 4, .	2.0	13
593	Recent advances in black phosphorus-based electrochemical sensors: A review. Analytica Chimica Acta, 2021, 1170, 338480.	2.6	154
594	Recent progress of black phosphorus and its emerging multifunction applications in biomedicine. JPhys Materials, 2021, 4, 042004.	1.8	3
595	Conceptually Novel Few-Layer Black Phosphorus/Supramolecular Coalition: Noncovalent Functionalization Toward Fire Safety Enhancement. Industrial & Engineering Chemistry Research, 2021, 60, 12579-12591.	1.8	10
596	Copper Tetracyanoquinodimethane (CuTCNQ): A Metal–Organic Semiconductor for Room-Temperature Visible to Long-Wave Infrared Photodetection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38544-38552.	4.0	10

#	Article	IF	CITATIONS
597	Direct Visualization of Largeâ€Scale Intrinsic Atomic Lattice Structure and Its Collective Anisotropy in Airâ€Sensitive Monolayer 1T'―WTe ₂ . Advanced Science, 2021, 8, e2101563.	5.6	11
598	Black Phosphorus—Diketopyrrolopyrrole Polymer Semiconductor Hybrid for Enhanced Charge Transfer and Photodetection. Advanced Photonics Research, 2021, 2, 2100150.	1.7	3
599	B ₂ S ₃ monolayer: a two-dimensional direct-gap semiconductor with tunable band-gap and high carrier mobility. Nanotechnology, 2021, 32, 475709.	1.3	10
600	Sub-10Ânm two-dimensional transistors: Theory and experiment. Physics Reports, 2021, 938, 1-72.	10.3	80
601	Development of non-enzymatic and photothermal immuno-sensing assay for detecting the enrofloxacin in animal derived food by utilizing black phosphorus-platinum two-dimensional nanomaterials. Food Chemistry, 2021, 357, 129766.	4.2	16
602	Thermodynamic Perspective on the Oxidation of Layered Materials and Surface Oxide Amelioration in 2D Devices. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43282-43289.	4.0	10
603	Atomic-Scale Investigation of Oxidation at the Black Phosphorus Surface. ACS Applied Electronic Materials, 2021, 3, 4066-4072.	2.0	6
604	Recent Progress on Metalâ€Based Nanomaterials: Fabrications, Optical Properties, and Applications in Ultrafast Photonics. Advanced Functional Materials, 2021, 31, 2107363.	7.8	23
605	Synthesis and stabilization of black phosphorus and phosphorene: Recent progress and perspectives. IScience, 2021, 24, 103116.	1.9	30
606	Revisiting the Chemical Stability of Germanium Selenide (GeSe) and the Origin of its Photocatalytic Efficiency. Advanced Functional Materials, 2021, 31, 2106228.	7.8	11
607	Photoluminescence as a probe of phosphorene properties. Npj 2D Materials and Applications, 2021, 5, .	3.9	11
608	Long-term environmental stability of nitrogen-healed black phosphorus. Applied Surface Science, 2021, 564, 150450.	3.1	7
609	Recent applications of quantum dots in optical and electrochemical aptasensing detection of Lysozyme. Analytical Biochemistry, 2021, 630, 114334.	1.1	7
610	Stability studies of few-layer InSe nanosheets by Raman spectroscopy. Solid State Communications, 2021, 336, 114417.	0.9	4
611	Graphene-like BSi as a promising anode material for Li- and Mg-ion batteries: A first principle study. Applied Surface Science, 2021, 563, 150278.	3.1	35
612	Strain-controlled Rashba spin-orbit coupling effect in SnS and SnSe monolayers. Materials and Design, 2021, 209, 110005.	3.3	9
613	Anisotropic Raman characterization and electrical properties of black phosphorus. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 037801-037801.	0.2	1
614	Gate-controlled ambipolar transport in b-AsP crystals and their VIS-NIF photodetection. Nanoscale, 2021, 13, 10579-10586.	2.8	15

#	Article	IF	CITATIONS
615	Covalent and non-covalent chemistry of 2D black phosphorus. RSC Advances, 2021, 11, 26093-26101.	1.7	8
616	Thickness-dependent ultrafast charge-carrier dynamics and coherent acoustic phonon oscillations in mechanically exfoliated PdSe ₂ flakes. Physical Chemistry Chemical Physics, 2021, 23, 20666-20674.	1.3	7
617	New materials for water-splitting. Interface Science and Technology, 2021, 32, 791-870.	1.6	5
618	Two-Dimensional (2D) Materials for Next-Generation Nanoelectronics and Optoelectronics: Advances and Trends. Advances in Material Research and Technology, 2021, , 65-96.	0.3	1
619	Prediction of unexpected B _n P _n structures: promising materials for non-linear optical devices and photocatalytic activities. Nanoscale Advances, 2021, 3, 2846-2861.	2.2	9
620	Structural and mechanical properties of antimonene monolayers doped with transition metals: a DFT-based study. Journal of Molecular Modeling, 2021, 27, 15.	0.8	18
621	Mechanics of free-standing inorganic and molecular 2D materials. Nanoscale, 2021, 13, 1443-1484.	2.8	28
622	Band-structure-engineered high-gain LWIR photodetector based on a type-II superlattice. Light: Science and Applications, 2021, 10, 17.	7.7	30
623	Palladium Diselenide Long-Wavelength Infrared Photodetector with High Sensitivity and Stability. ACS Nano, 2019, 13, 2511-2519.	7.3	198
624	Graphene and 2D Materials Based Membranes for Water Treatment. RSC Nanoscience and Nanotechnology, 2018, , 211-224.	0.2	1
625	A system for the deterministic transfer of 2D materials under inert environmental conditions. 2D Materials, 2020, 7, 025034.	2.0	21
626	A system to test 2D optoelectronic devices in high vacuum. JPhys Materials, 2020, 3, 036001.	1.8	5
627	Tunable half-metallicity and edge magnetism of H-saturated InSe nanoribbons. Physical Review Materials, 2018, 2, .	0.9	11
628	Protective layer enhanced the stability and superconductivity of tailored antimonene bilayer. Physical Review Materials, 2018, 2, .	0.9	13
629	Multiwavelength erbium-doped fiber laser based on black phosphorus quantum dots packaged by polytetrafluoroethylene. Optical Engineering, 2019, 58, 1.	0.5	1
630	All-optical signal processing in few-layer bismuthene coated microfiber: towards applications in optical fiber systems. Optics Express, 2019, 27, 16798.	1.7	24
631	Revealing of the ultrafast third-order nonlinear optical response and enabled photonic application in two-dimensional tin sulfide. Photonics Research, 2019, 7, 494.	3.4	159
632	Room temperature wideband tunable photoluminescence of pulsed thermally annealed layered black phosphorus. Nanophotonics, 2020, 9, 4253-4264.	2.9	5

#	Article	IF	CITATIONS
633	Black Phosphorus as Multifaceted Advanced Material Nanoplatforms for Potential Biomedical Applications. Nanomaterials, 2021, 11, 13.	1.9	33
634	Topological insulator bismuth selenide grown on black phosphorus for sensitive broadband photodetection. Journal of Materials Chemistry C, 2021, 9, 15150-15157.	2.7	6
635	Interlayer Excitons in Transition Metal Dichalcogenide Semiconductors for 2D Optoelectronics. Advanced Materials, 2022, 34, e2107138.	11.1	28
636	Tip-Enhanced Raman Spectroscopy of 2D Semiconductors. , 0, , .		2
637	pâ€GeSe/nâ€ReS ₂ Heterojunction Rectifier Exhibiting A Fast Photoresponse with Ultraâ€High Frequencyâ€Switching Applications. Advanced Materials Interfaces, 2021, 8, 2100705.	1.9	29
638	Direct fabrication and characterization of vertically stacked Graphene/h-BN/Graphene tunnel junctions. Nano Express, 2021, 2, 040010.	1.2	3
639	Theoretical Study of Anisotropic Carrier Mobility for Two-Dimensional Nb ₂ Se ₉ Material. ACS Omega, 2021, 6, 26782-26790.	1.6	8
640	Localized surface plasmons on periodic monolayer black phosphorene nanoribbons tuned in the infrared region with a dielectric substrate. , 2018, , .		1
641	Surface Etching and Passivation of Black Phosphorus by Thermal Annealing. Journal of Surface Analysis (Online), 2019, 26, 172-173.	0.1	0
642	Nano-configured Opto-electric Ceramic Systems for Photo-electrochemical Hydrogen Energy. , 2019, , 1-34.		0
643	Stable Yb-doped all-fiber nanosecond pulse laser based on electrochemical delamination black phosphorus., 2019,,.		1
644	Black Phosphorous Photodetectors. Engineering Materials, 2020, , 171-186.	0.3	0
645	Black Phosphorous Based Nanodevices. Engineering Materials, 2020, , 31-58.	0.3	1
646	New RTDs with enhanced operation based on black phosphorus–graphene heterostructures and a semianalytical vdW tunneling model. Journal of Computational Electronics, 2021, 20, 70-80.	1.3	0
647	Chemical Functionalization of 2D Black Phosphorus toward Its Applications in Energy Devices and Catalysis: A Review. Energy Technology, 2021, 9, 2100581.	1.8	12
648	Nano-configured Opto-electric Ceramic Systems for Photo-electrochemical Hydrogen Energy. , 2020, , 1335-1368.		0
649	All-optical devices based on two-dimensional materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 184216.	0.2	6
650	Facile and efficient preparation of high-quality black phosphorus quantum dot films for sensing applications. RSC Advances, 2020, 10, 13379-13385.	1.7	2

#	Article	IF	CITATIONS
651	Tailored nano-electronics and photonics with two-dimensional materials at terahertz frequencies. Journal of Applied Physics, 2021, 130, .	1.1	11
652	First-principle studies on the metal/semiconductor properties and strain-tuned electronic structures of SnP3 monolayer. Computational Materials Science, 2022, 203, 111047.	1.4	3
653	Quantitative Determination of Contradictory Bandgap Values of Bulk PdSe ₂ from Electrical Transport Properties. Advanced Functional Materials, 2022, 32, 2108061.	7.8	11
654	Bioengineering applications of black phosphorus and their toxicity assessment. Environmental Science: Nano, 2021, 8, 3452-3477.	2.2	12
655	First-Principles Study on Metal-Modified N ₂ P ₆ Nanoscale Layers for Adsorption Performance and Sensing Capability. ACS Applied Nano Materials, 2022, 5, 1102-1109.	2.4	3
656	Apparent Colors of 2D Materials. Advanced Photonics Research, 2022, 3, 2100221.	1.7	8
657	Enhanced four-wave mixing in borophene-microfiber waveguides at telecom C-band. Applied Optics, 2022, 61, 1261.	0.9	3
658	Flower-like composites of black phosphorus and reduced graphene oxide: Its synergistic energy storage performance. Diamond and Related Materials, 2022, 121, 108794.	1.8	6
659	Interface and surface engineering of black phosphorus: a review for optoelectronic and photonic applications. Materials Futures, 2022, 1, 012301.	3.1	53
660	2D Ultrathin pâ€ŧype ZnTe with High Environmental Stability. Advanced Electronic Materials, 2022, 8, .	2.6	9
661	Directly Evaluating the Optical Anisotropy of Few‣ayered Black Phosphorus during Ambient Oxidization. Advanced Optical Materials, 2022, 10, .	3.6	9
662	Influence of the interface structure and strain on the rectification performance of lateral MoS ₂ /graphene heterostructure devices. Physical Chemistry Chemical Physics, 2022, 24, 2265-2274.	1.3	4
663	First-Principles Molecular Dynamics Insight into the Atomic Level Degradation Pathway of Phosphorene. ACS Omega, 2022, 7, 696-704.	1.6	5
664	Study on Black Phosphorus Characteristics Using a Two-Step Thinning Method. Materials, 2022, 15, 615.	1.3	3
665	Anisotropic Goos–Hächen shift in few-layer two-dimensional materials. Applied Physics Letters, 2022, 120, .	1.5	1
666	Telecom-Band Waveguide-Integrated MoS ₂ Photodetector Assisted by Hot Electrons. ACS Photonics, 2022, 9, 282-289.	3.2	17
667	High-Performance, Polarization-Sensitive, Long-Wave Infrared Photodetection <i>via</i> Photothermoelectric Effect with Asymmetric van der Waals Contacts. ACS Nano, 2022, 16, 295-305.	7.3	47
668	Flexible 2D Materials beyond Graphene: Synthesis, Properties, and Applications. Small, 2022, 18, e2105383.	5.2	55

#	Article	IF	CITATIONS
669	Balancing the toxicity, photothermal effect, and promotion of osteogenesis: Photothermal scaffolds for malignant bone tumor therapy. Materials Today Advances, 2022, 13, 100209.	2.5	17
670	Tin Diselenide (SnSe2) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors. Materials, 2022, 15, 1154.	1.3	11
671	GeAs ₂ Saturable Absorber for Ultrafast and Ultranarrow Photonic Applications. Advanced Functional Materials, 2022, 32, .	7.8	17
672	Smart Synthetic and Surfaceâ€Engineering Approaches to Functionalize 2D Black Phosphorus for Realâ€Setting Applications. Advanced Materials Interfaces, 0, , 2102149.	1.9	2
673	Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting. Light: Science and Applications, 2022, 11, 53.	7.7	35
674	Effect of fully functionalization on carrier mobility of two-dimensional BN. Solid State Communications, 2022, 346, 114698.	0.9	4
675	Mono-elemental saturable absorber in near-infrared mode-locked fiber laser: A review. Infrared Physics and Technology, 2022, 122, 104103.	1.3	8
676	Memory effects in black phosphorus field effect transistors. 2D Materials, 2022, 9, 015028.	2.0	17
677	On-chip integration of 2D Van der Waals germanium phosphide (GeP) for active silicon photonics devices. Optics Express, 2022, 30, 15986.	1.7	5
678	Review of recent progress, challenges, and prospects of 2D materials-based short wavelength infrared photodetectors. Journal Physics D: Applied Physics, 2022, 55, 313001.	1.3	12
679	Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility. Nano-Micro Letters, 2022, 14, 109.	14.4	31
680	Stabilization of Black Phosphorene by Edge-Selective Adsorption of C ₆₀ Molecules. Journal of Physical Chemistry C, 2022, 126, 6874-6879.	1.5	2
681	A first-principles study on the adsorption properties of phosphorene oxide for pollutant removal from water. Journal of Molecular Liquids, 2022, 357, 119103.	2.3	2
682	Significant pressure-induced enhancement of photoelectric properties of WS ₂ in the near-infrared region. Materials Research Letters, 2022, 10, 547-555.	4.1	8
683	Recent Advances and Challenges in Ultrafast Photonics Enabled by Metal Nanomaterials. Advanced Optical Materials, 2022, 10, .	3.6	7
684	Two-dimensional ZnO/BlueP van der Waals heterostructure used for visible-light driven water splitting: A first-principles study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 278, 121359.	2.0	9
685	Formation of a two-dimensional oxide <i>via</i> oxidation of a layered material. Physical Chemistry Chemical Physics, 2022, 24, 13935-13940.	1.3	1
686	Layered gallium telluride for inducing mode-locked pulse laser in thulium/holmium-doped fiber. Journal of Luminescence, 2022, 248, 119002.	1.5	3

#	Article	IF	CITATIONS
687	Recent Progress in 1D Contacts for 2Dâ€Materialâ€Based Devices. Advanced Materials, 2022, 34, e2202408.	11.1	13
688	Low-Temperature Synthesis of Boron Nitride as a Large-Scale Passivation and Protection Layer for Two-Dimensional Materials and High-Performance Devices. ACS Applied Materials & Lamp; Interfaces, 0, , .	4.0	3
689	2D BP/InSe Heterostructures as a Nonlinear Optical Material for Ultrafast Photonics. Nanomaterials, 2022, 12, 1809.	1.9	11
690	Tungsten disulfide coated sideâ€polished fibre as polarisation state modulator in allâ€optical system. IET Optoelectronics, 0, , .	1.8	1
691	Impact of the Channel Thickness on the Photoresponse of Black Arsenic Mid-Infrared Photodetectors. ACS Applied Materials & Diterfaces, 2022, 14, 27444-27455.	4.0	4
693	Improving performance of monolayer arsenene tunnel field-effect transistors by defects. Nanoscale Advances, 2022, 4, 3023-3032.	2.2	2
694	Understanding random telegraph noise in two-dimensional BP/ReS ₂ heterointerface. Applied Physics Letters, 2022, 120, 253507.	1.5	3
695	High-performance broadband photodetector based on PdSe2/black phosphorus heterodiode. Applied Physics Letters, 2022, 120, .	1.5	6
696	Boron-pnictogens: Highly anisotropic two-dimensional semiconductors for nanoelectronics and optoelectronics. Physical Review Materials, 2022, 6, .	0.9	1
697	Recent progress in two-dimensional nanomaterials for cancer theranostics. Coordination Chemistry Reviews, 2022, 469, 214654.	9.5	15
698	Selenene and Tellurene. , 2022, , 197-224.		2
699	NiSe and CoSe Topological Nodalâ€Line Semimetals: A Sustainable Platform for Efficient Thermoplasmonics and Solarâ€Driven Photothermal Membrane Distillation. Small, 2022, 18, .	5.2	21
700	Fundamentals on Synthesis and Properties of Ultrananocrystalline Diamond (UNCDâ,,¢) Coatings. , 2022, , 1-85.		0
701	MXene Saturable Absorbers in Mode‣ocked Fiber Laser. Laser and Photonics Reviews, 2022, 16, .	4.4	21
702	Black Phosphorus: Fundamental Properties and Influence of Impurities Induced by Its Synthesis. ACS Applied Materials & Synthesis. ACS Applied Materials & Synthesis. ACS	4.0	5
703	Lowâ€Cost and Biodegradable Thermoelectric Devices Based on van der Waals Semiconductors on Paper Substrates. Energy and Environmental Materials, 2024, 7, .	7.3	0
704	Alkene-Catalyzed Rapid Layer-by-Layer Thinning of Black Phosphorus for Precise Nanomanufacturing. ACS Nano, 2022, 16, 13111-13122.	7.3	8
705	Transfer-free, scalable vertical heterostructure FET on MoS ₂ /WS ₂ continuous films. Nanotechnology, 2022, 33, 475201.	1.3	2

#	ARTICLE	IF	CITATIONS
706	Antimonene-based saturable absorber for a soliton mode-locked and Q-switched fiber laser in the 2 \hat{l} 4m wavelength region. Chinese Physics B, 2023, 32, 064205.	0.7	4
707	Synergistic Lubrication Effect between Oxidized Black Phosphorus and Oil Molecules Triggers Superlubricity. Journal of Physical Chemistry Letters, 0, , 8245-8253.	2.1	4
708	High-frequency enhanced response based on Sb2Te3 topological insulators. Photonics Research, 0, , .	3.4	2
709	Structure design and properties investigation of Bi2O2Se/graphene van der Waals heterojunction from first-principles study. Surfaces and Interfaces, 2022, 33, 102289.	1.5	49
710	Two-Dimensional Black Phosphorus: Preparation, Passivation and Lithium-Ion Battery Applications. Molecules, 2022, 27, 5845.	1.7	4
711	A metallic CP3 monolayer with very high absorption coefficients for visible light and as the CO2 absorbent. Chemical Physics Letters, 2022, 806, 140041.	1.2	0
712	Oxidation behavior of layered Fe $<$ sub $<$ i $>ni></sub>GeTe₂ (<i>ni>= 3, 4, 5) and Cr₂Ge₂Te₆ governed by interlayer coupling. Nanoscale, 2022, 14, 11452-11460.$	2.8	1
713	W ₄ PCl ₁₁ monolayer: an unexplored 2D material with moderate direct bandgap and strong visible-light absorption for highly efficient solar cells. Nanoscale, 2022, 14, 12386-12394.	2.8	4
714	Co-Operative Influence of O ₂ and H ₂ O in the Degradation of Layered Black Arsenic. Journal of Physical Chemistry C, 2022, 126, 15222-15228.	1.5	1
715	A Weyl semimetal WTe2/GaAs 2D/3D Schottky diode with high rectification ratio and unique photocurrent behavior. Applied Physics Letters, 2022, 121, .	1.5	7
716	Oneâ€Pot Covalent Functionalization of 2D Black Phosphorus by Anionic Ring Opening Polymerization. Advanced Materials Interfaces, 2022, 9, .	1.9	7
717	Single-atom rhodium anchored on S-doped black phosphorene as a promising bifunctional electrocatalyst for overall water splitting. Chinese Chemical Letters, 2023, 34, 107812.	4.8	2
718	Phosphorus based hybrid materials for green fuel generation. Wiley Interdisciplinary Reviews: Energy and Environment, 2023, 12, .	1.9	0
719	Functional Ink Formulation for Printing and Coating of Graphene and Other 2D Materials: Challenges and Solutions. Small Science, 2022, 2, .	5.8	6
720	Exfoliation mechanisms of 2D materials and their applications. Applied Physics Reviews, 2022, 9, .	5.5	23
721	Schottky barrier heights and mechanism of charge transfer at metal-Bi2OS2 interfaces. Science China Materials, 2023, 66, 811-818.	3.5	6
722	The Photoluminescence and Vibrational Properties of Black Phosphorous Sheets Chemically/Electrochemically Functionalized in the Presence of Diphenylamine. Polymers, 2022, 14, 4479.	2.0	1
723	Advanced Two-Dimensional Materials for Green Hydrogen Generation: Strategies toward Corrosion Resistance Seawater Electrolysis─Review and Future Perspectives. Energy & Samp; Fuels, 2022, 36, 13417-13450.	2.5	18

#	Article	IF	Citations
724	Effect of surface Se concentration on stability and electronic structure of monolayer Bi2O2Se. Applied Surface Science, 2023, 611, 155528.	3.1	4
725	Intrinsic and engineered properties of black phosphorus. Materials Today Physics, 2022, 28, 100895.	2.9	9
726	Air-stable van der Waals PtTe2 conductors with high current-carrying capacity and strong spin-orbit interaction. IScience, 2022, 25, 105346.	1.9	3
727	Progress in the preparation, application, and recycling of black phosphorus. Chemosphere, 2023, 311, 137161.	4.2	3
728	Progress in performance development of room temperature direct terahertz detectors. Journal of Infrared, Millimeter, and Terahertz Waves, 2022, 43, 709-727.	1.2	9
729	Recent advances in 2D organicâ^inorganic heterostructures for electronics and optoelectronics. SmartMat, 2023, 4, .	6.4	15
730	Anisotropic Van Der Waals 2D GeAs Integrated on Silicon Four-Waveguide Crossing. Journal of Lightwave Technology, 2023, 41, 1784-1789.	2.7	1
731	Recent progress in mid-infrared photodetection devices using 2D/nD (n=0, 1, 2, 3) heterostructures. Materials and Design, 2023, 225, 111446.	3.3	4
732	Emerging trends in van der Waals 2D TMD heterojunction bipolar transistors. Journal of Materials Chemistry C, 2023, 11, 1648-1667.	2.7	3
733	Anisotropy of the Optical Properties of Pentacene:Black Phosphorus Interfaces. Journal of Physical Chemistry C, 2022, 126, 20694-20701.	1.5	0
734	High-performance junction-free field-effect transistor based on blue phosphorene. Npj 2D Materials and Applications, 2022, 6, .	3.9	5
735	Robust and Enhanced Short-Wave Near-Infrared Light Emission in Phosphorene through Photon-Activated Oxidation. ACS Photonics, 2022, 9, 3935-3942.	3.2	1
736	High-performance flexible broadband photodetectors enabled by 2D Ta ₂ NiSe ₅ nanosheets. 2D Materials, 2023, 10, 025004.	2.0	7
737	Disorder effects on the ballistic transport of gated phosphorene superlattices. Physical Review B, 2023, 107, .	1.1	7
738	Ionic liquid passivated black phosphorus for stabilized compliant electronics. Nano Research, 0, , .	5.8	1
739	DFT study on the chemical stability of monolayer BeN4 and the electronic properties of graphene/BeN4 heterostructure. Vacuum, 2023, 209, 111802.	1.6	3
740	Phosphorene polymeric nanocomposites for biomedical applications: a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 292-309.	1.8	22
741	Exploring the oxidation mechanisms of black phosphorus: a review. Journal of Materials Science, 2023, 58, 2068-2086.	1.7	6

#	Article	IF	CITATIONS
742	Optical properties and polaritons of low symmetry 2D materials., 2023, 2, R03.		11
743	Multifunctional indium selenide devices based on van der Waals contacts: High-quality Schottky diodes and optoelectronic memories. Nano Energy, 2023, 108, 108238.	8.2	5
744	Insight into the growth mechanism of black phosphorus. Frontiers of Physics, 2023, 18, .	2.4	6
745	Recent advancements review in zinc oxide and titanium dioxide saturable absorber for ultrafast pulsed fiber laser. Optik, 2023, 283, 170855.	1.4	4
746	High-efficiency recovery of palladium and platinum using black phosphorus for in-situ synthesis of long-term stable hydrogen evolution catalysts. Separation and Purification Technology, 2023, 316, 123771.	3.9	2
747	Metallic 1H-BeP2 monolayer as a potential anode material for Li-ion/Na-ion batteries: A first principles study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662, 131037.	2.3	3
748	Metal Ion-Incorporated Lead-Free Perovskites toward Broadband Photodetectors. ACS Applied Electronic Materials, 2023, 5, 5291-5302.	2.0	5
749	Deep ultraviolet optical limiting materials: 2D Ti ₃ C ₂ and Ti ₃ AlC ₂ nanosheets. Journal of Materials Chemistry C, 2023, 11, 2355-2363.	2.7	6
750	Protection mechanism of N,N-dimethylformamide on stability of few-layer black phosphorus. Frontiers in Environmental Science, $0,11,.$	1.5	1
751	A hint from phosphine complex: The π back-bonding in cobalt-phosphorene composite enables enhanced electrocatalytic performance. Progress in Natural Science: Materials International, 2023, 33, 100-107.	1.8	2
752	Towards the Future of Polymeric Hybrids of Two-Dimensional Black Phosphorus or Phosphorene: From Energy to Biological Applications. Polymers, 2023, 15, 947.	2.0	1
753	Trends in the Preparation and Passivation Techniques of Black Phosphorus Nanostructures for Optoelectronics Applications: A Review. ACS Applied Nano Materials, 2023, 6, 3159-3183.	2.4	2
754	Environmentally sustainable implementations of two-dimensional nanomaterials. Frontiers in Chemistry, 0, 11 , .	1.8	4
755	Ultrafast Carbon Nanotube Photodetectors with Bandwidth over 60 GHz. ACS Photonics, 0, , .	3.2	1
756	Co2CrAl Heuslerene: Mechanical, Thermodynamic and Electronic Properties. Metals, 2023, 13, 582.	1.0	0
757	Fabrication and applications of van der Waals heterostructures. International Journal of Extreme Manufacturing, 2023, 5, 022007.	6.3	6
758	Fabrication and Applications of Heterostructure Materials for Broadband Ultrafast Photonics. Advanced Optical Materials, 2023, 11, .	3.6	7
759	Q-switched and vector soliton pulses from an Er-doped fiber laser with high stability based on a \hat{l}^3 -graphyne saturable absorber. Nanoscale, 2023, 15, 7566-7576.	2.8	4

#	Article	IF	CITATIONS
760	Theoretical Study of Intercalation Effects: Graphene and hBN Layers in Metal and Monolayer Black Phosphorus Contacts. ACS Applied Electronic Materials, 0, , .	2.0	0
761	Interaction of Water and Oxygen Molecules with Phosphorene: An Ab Initio Study. Molecules, 2023, 28, 3570.	1.7	0
762	Chemistry of two-dimensional pnictogens: emerging post-graphene materials for advanced applications. Chemical Communications, 2023, 59, 6453-6474.	2.2	7
765	Two-Dimensional (2D) Nanostructures for Hazardous Gas Sensing Applications. , 2023, , 2033-2053.		O
781	2D black phosphorous based electrochemical sensors. , 2023, , 281-301.		0
784	Negative-Bias-Stress-Induced Current Instability in Quasi-2D Tellurium Field-Effect-Transistors. , 2023, , .		1
805	Environmental Stability Study of Solution-Processed Black Phosphorus. , 2023, , .		O