Fabrication and Characterization of Antioxidant Picker Zein/Chitosan Complex Particles (ZCPs)

Journal of Agricultural and Food Chemistry 63, 2514-2524 DOI: 10.1021/jf505227a

Citation Report

#	Article	IF	CITATIONS
1	Plant protein-based delivery systems for bioactive ingredients in foods. Food and Function, 2015, 6, 2876-2889.	2.1	138
2	Pickering Emulsion Gels Prepared by Hydrogen-Bonded Zein/Tannic Acid Complex Colloidal Particles. Journal of Agricultural and Food Chemistry, 2015, 63, 7405-7414.	2.4	311
3	Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and inÂvitro digestibility. Food Hydrocolloids, 2016, 60, 138-147.	5.6	158
4	Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends in Food Science and Technology, 2016, 55, 48-60.	7.8	390
5	Design, fabrication and biomedical applications of zein-based nano/micro-carrier systems. International Journal of Pharmaceutics, 2016, 513, 191-210.	2.6	97
6	Binary Complex Based on Zein and Propylene Glycol Alginate for Delivery of Quercetagetin. Biomacromolecules, 2016, 17, 3973-3985.	2.6	88
7	Pickering emulsion gels based on insoluble chitosan/gelatin electrostatic complexes. RSC Advances, 2016, 6, 89776-89784.	1.7	70
8	Fabrication and characterization of Pickering emulsions and oil gels stabilized by highly charged zein/chitosan complex particles (ZCCPs). Food Chemistry, 2016, 213, 462-469.	4.2	159
9	Engineering functional alginate beads for encapsulation of Pickering emulsions stabilized byÂcolloidal particles. RSC Advances, 2016, 6, 101267-101276.	1.7	13
10	Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles. Food Hydrocolloids, 2016, 61, 300-310.	5.6	229
11	Dynamic high pressure microfluidization treatment of zein in aqueous ethanol solution. Food Chemistry, 2016, 210, 388-395.	4.2	34
12	Effects of Dynamic High-Pressure Microfluidization Treatment and the Presence of Quercetagetin on the Physical, Structural, Thermal, and Morphological Characteristics of Zein Nanoparticles. Food and Bioprocess Technology, 2016, 9, 320-330.	2.6	51
13	Food-grade particles for emulsion stabilization. Trends in Food Science and Technology, 2016, 50, 159-174.	7.8	288
14	Surface modification of zein colloidal particles with sodium caseinate to stabilize oil-in-water pickering emulsion. Food Hydrocolloids, 2016, 56, 292-302.	5.6	199
15	Colloidal complexation of zein hydrolysate with tannic acid: Constructing peptides-based nanoemulsions for alga oil delivery. Food Hydrocolloids, 2016, 54, 40-48.	5.6	94
16	Development and characterization of novel chitosan emulsion films via pickering emulsions incorporation approach. Food Hydrocolloids, 2016, 52, 253-264.	5.6	75
17	Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocolloids, 2017, 68, 219-231.	5.6	323
18	Gelatin-Based Nanocomplex-Stabilized Pickering Emulsions: Regulating Droplet Size and Wettability through Assembly with Glucomannan. Journal of Agricultural and Food Chemistry, 2017, 65, 1401-1409.	2.4	78

#	Article	IF	CITATIONS
19	Zein/tannic acid complex nanoparticlesâ€stabilised emulsion as a novel delivery system for controlled release of curcumin. International Journal of Food Science and Technology, 2017, 52, 1221-1228.	1.3	52
20	Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size. Food Chemistry, 2017, 234, 339-347.	4.2	202
21	Development of stable Pickering emulsions/oil powders and Pickering HIPEs stabilized by gliadin/chitosan complex particles. Food and Function, 2017, 8, 2220-2230.	2.1	105
22	Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs. Food Chemistry, 2017, 231, 122-130.	4.2	235
23	Amorphous nano-curcumin stabilized oil in water emulsion: Physico chemical characterization. Food Chemistry, 2017, 224, 191-200.	4.2	31
24	Protein–polysaccharide associative interactions in the design of tailor-made colloidal particles. Current Opinion in Colloid and Interface Science, 2017, 28, 15-21.	3.4	92
25	Gelâ€like emulsions prepared with zein nanoparticles produced through phase separation from acetic acid solutions. International Journal of Food Science and Technology, 2017, 52, 2670-2676.	1.3	22
26	Microfluidization initiated cross-linking of gliadin particles for structured algal oil emulsions. Food Hydrocolloids, 2017, 73, 153-161.	5.6	50
27	Pickering emulsions immobilized within hydrogel matrix with enhanced resistance against harsh processing conditions and sequential digestion. Food Hydrocolloids, 2017, 62, 35-42.	5.6	47
28	Tunable assembly of hydrophobic protein nanoparticle at fluid interfaces with tannic acid. Food Hydrocolloids, 2017, 63, 364-371.	5.6	24
29	Tuning hydrophobicity of zein nanoparticles to control rheological behavior of Pickering emulsions. Food Hydrocolloids, 2018, 80, 130-140.	5.6	67
30	In vitro digestion models suitable for foods: Opportunities for new fields of application and challenges. Food Research International, 2018, 107, 423-436.	2.9	146
31	Slowing the Starch Digestion by Structural Modification through Preparing Zein/Pectin Particle Stabilized Water-in-Water Emulsion. Journal of Agricultural and Food Chemistry, 2018, 66, 4200-4207.	2.4	29
32	Formation and characterization of zein-propylene glycol alginate-surfactant ternary complexes: Effect of surfactant type. Food Chemistry, 2018, 258, 321-330.	4.2	52
34	Development of Pickering Emulsions Stabilized by Gliadin/Proanthocyanidins Hybrid Particles (GPHPs) and the Fate of Lipid Oxidation and Digestion. Journal of Agricultural and Food Chemistry, 2018, 66, 1461-1471.	2.4	108
35	Fabrication of chitosan gel droplets via crosslinking of inverse Pickering emulsifications. Carbohydrate Polymers, 2018, 186, 1-8.	5.1	15
36	Development of antioxidant gliadin particle stabilized Pickering high internal phase emulsions (HIPEs) as oral delivery systems and the <i>in vitro</i> digestion fate. Food and Function, 2018, 9, 959-970.	2.1	125
37	Development and characterization of novel antimicrobial bilayer films based on Polylactic acid (PLA)/Pickering emulsions. Carbohydrate Polymers, 2018, 181, 727-735.	5.1	92

#	Article	IF	CITATIONS
38	Gel-like emulsions stabilized by tyrosinase-crosslinked potato and zein proteins. Food Hydrocolloids, 2018, 82, 53-63.	5.6	65
39	Fabrication and Utilization of Bifunctional Protein/Polysaccharide Coprecipitates for the Independent Codelivery of Two Model Actives from Simple Oil-in-Water Emulsions. Langmuir, 2018, 34, 3934-3948.	1.6	12
40	Rheological behavior of emulsion gels stabilized by zein/tannic acid complex particles. Food Hydrocolloids, 2018, 77, 363-371.	5.6	60
41	Investigation into the physicochemical stability and rheological properties of rutin emulsions stabilized by chitosan and lecithin. Journal of Food Engineering, 2018, 229, 12-20.	2.7	42
42	Formulation optimization of lecithin-enhanced pickering emulsions stabilized by chitosan nanoparticles for hesperidin encapsulation. Journal of Food Engineering, 2018, 229, 2-11.	2.7	54
43	Characterization of Pickering emulsion gels stabilized by zein/gum arabic complex colloidal nanoparticles. Food Hydrocolloids, 2018, 74, 239-248.	5.6	295
44	Cellular Uptake and Intracellular Antioxidant Activity of Zein/Chitosan Nanoparticles Incorporated with Quercetin. Journal of Agricultural and Food Chemistry, 2018, 66, 12783-12793.	2.4	75
45	Fabrication of Zein/Pectin Hybrid Particle-Stabilized Pickering High Internal Phase Emulsions with Robust and Ordered Interface Architecture. Journal of Agricultural and Food Chemistry, 2018, 66, 11113-11123.	2.4	190
46	Spontaneous microencapsulation of geraniol by zein. EXPRESS Polymer Letters, 2018, 12, 986-995.	1.1	9
47	Enhancing the Viability of <i>Lactobacillus plantarum</i> as Probiotics through Encapsulation with High Internal Phase Emulsions Stabilized with Whey Protein Isolate Microgels. Journal of Agricultural and Food Chemistry, 2018, 66, 12335-12343.	2.4	87
48	Zein and zein -based nano-materials for food and nutrition applications: A review. Trends in Food Science and Technology, 2018, 79, 184-197.	7.8	262
49	Properties of Ternary Biopolymer Nanocomplexes of Zein, Sodium Caseinate, and Propylene Glycol Alginate and Their Functions of Stabilizing High Internal Phase Pickering Emulsions. Langmuir, 2018, 34, 9215-9227.	1.6	65
50	Composite zein - propylene glycol alginate particles prepared using solvent evaporation: Characterization and application as Pickering emulsion stabilizers. Food Hydrocolloids, 2018, 85, 281-290.	5.6	112
51	One-step formation of a double Pickering emulsion <i>via</i> modulation of the oil phase composition. Food and Function, 2018, 9, 4508-4517.	2.1	34
52	Foams for Food Applications. , 2018, , 271-327.		7
53	Zein/gum Arabic nanoparticle-stabilized Pickering emulsion with thymol as an antibacterial delivery system. Carbohydrate Polymers, 2018, 200, 416-426.	5.1	131
54	Interfacial and emulsion stabilized behavior of lysozyme/xanthan gum nanoparticles. International Journal of Biological Macromolecules, 2018, 117, 280-286.	3.6	40
55	Active gelatin films incorporated with Pickering emulsions encapsulating hesperidin: Preparation and physicochemical characterization. Journal of Food Engineering, 2019, 240, 9-20.	2.7	71

		CITATION R	EPORT	
# 56	ARTICLE Nanoparticles at Fluid Interfaces: From Surface Properties to Biomedical Applications. , 20)19, , 127-146.	IF	CITATIONS
57	Pickering emulsions: Preparation processes, key parameters governing their properties ar for pharmaceutical applications. Journal of Controlled Release, 2019, 309, 302-332.	d potential	4.8	250
58	Food-Grade Gelatin Nanoparticles: Preparation, Characterization, and Preliminary Applica Stabilizing Pickering Emulsions. Foods, 2019, 8, 479.	tion for	1.9	42
59	Paleoproterozoic Granitoids on Liaodong Peninsula, North China Craton. Acta Geologica 93, 1377-1396.	Sinica, 2019,	0.8	2
60	Fabrication of OSA Starch/Chitosan Polysaccharide-Based High Internal Phase Emulsion v Interfacial Behaviors. Journal of Agricultural and Food Chemistry, 2019, 67, 10937-10946	a Altering	2.4	142
61	Fabrication of Gel-Like Emulsions with Whey Protein Isolate Using Microfluidization: Rhec Properties and 3D Printing Performance. Food and Bioprocess Technology, 2019, 12, 196	logical 7-1979.	2.6	64
62	Bioparticles of flaxseed protein and mucilage enhance the physical and oxidative stability oil emulsions as a potential natural alternative for synthetic surfactants. Colloids and Sur Biointerfaces, 2019, 184, 110489.	of flaxseed faces B:	2.5	34
63	Formulation of Pickering sunflower oil-in-water emulsion stabilized by chitosan-stearic aci and studying its oxidative stability. Carbohydrate Polymers, 2019, 210, 47-55.	d nanogel	5.1	89
64	Complex of raw chitin nanofibers and zein colloid particles as stabilizer for producing stal pickering emulsions. Food Hydrocolloids, 2019, 97, 105178.	ole	5.6	62
65	Pickering emulsion stabilized by protein nanogel particles for delivery of curcumin: Effect ionic strength on curcumin retention. Food Structure, 2019, 21, 100113.	s of pH and	2.3	58
66	Chitosan-coated zein nanoparticles for oral delivery of resveratrol: Formation, characteriz stability, mucoadhesive properties and antioxidant activity. Food Hydrocolloids, 2019, 94	ation, , 411-417.	5.6	120
67	Whole cereal protein-based Pickering emulsions prepared by zein-gliadin complex particle Cereal Science, 2019, 87, 46-51.	s. Journal of	1.8	52
68	Cereal proteins in nanotechnology: formulation of encapsulation and delivery systems. Co Opinion in Food Science, 2019, 25, 28-34.	urrent	4.1	29
69	Novel Bilayer Emulsions Costabilized by Zein Colloidal Particles and Propylene Glycol Algin Fabrication and Characterization. Journal of Agricultural and Food Chemistry, 2019, 67, 1	nate, Part 1: 197-1208.	2.4	58
70	Food-grade Pickering stabilizers obtained from a protein-rich lupin cultivar (AluProt-CGNA Chemical characterization and emulsifying properties. Food Hydrocolloids, 2019, 87, 847	®): -857.	5.6	39
71	The formation and characterization of antioxidant pickering emulsions: Effect of the inter between gliadin and chitosan. Food Hydrocolloids, 2019, 90, 482-489.	actions	5.6	118
72	Development and characterization of pickering emulsion stabilized by zein/corn fiber gun complex colloidal particles. Food Hydrocolloids, 2019, 91, 204-213.	ו (CFG)	5.6	113
73	Tuning particle properties to control rheological behavior of high internal phase emulsion stabilized by zein/tannic acid complex particles. Food Hydrocolloids, 2019, 89, 163-170.	gels	5.6	60

#	Article	IF	CITATIONS
74	Characterization and Mechanisms of Novel Emulsions and Nanoemulsion Gels Stabilized by Edible Cyclodextrin-Based Metal–Organic Frameworks and Glycyrrhizic Acid. Journal of Agricultural and Food Chemistry, 2019, 67, 391-398.	2.4	46
75	Edible Delivery Systems Based on Favorable Interactions for Encapsulation ofÂPhytochemicals. , 2019, , 727-732.		1
76	Functional and Engineered Colloids from Edible Materials for Emerging Applications in Designing the Food of the Future. Advanced Functional Materials, 2020, 30, 1806809.	7.8	87
77	Characterization and formation mechanism of lutein pickering emulsion gels stabilized by β-lactoglobulin-gum arabic composite colloidal nanoparticles. Food Hydrocolloids, 2020, 98, 105276.	5.6	48
78	Protein particles ameliorate the mechanical properties of highly polyunsaturated oil-based whipped cream: A possible mode of action. Food Hydrocolloids, 2020, 99, 105350.	5.6	28
79	Antioxidant Pickering emulsions stabilised by zein/tannic acid colloidal particles with low concentration. International Journal of Food Science and Technology, 2020, 55, 1924-1934.	1.3	38
80	Food-Grade Emulsions and Emulsion Gels Prepared by Soy Protein–Pectin Complex Nanoparticles and Glycyrrhizic Acid Nanofibrils. Journal of Agricultural and Food Chemistry, 2020, 68, 1051-1063.	2.4	75
81	Pickering emulsions with enhanced storage stabilities by using hybrid β-cyclodextrin/short linear glucan nanoparticles as stabilizers. Carbohydrate Polymers, 2020, 229, 115418.	5.1	41
82	Preparation of eco-friendly alginate-based Pickering stabilizers using a dual ultrasonic nebulizer spray method. Journal of Industrial and Engineering Chemistry, 2020, 84, 96-105.	2.9	10
83	Preparation of Pickering Flaxseed Oil-in-Water Emulsion Stabilized by Chitosan-Myristic Acid Nanogels and Investigation of Its Oxidative Stability in Presence of Clove Essential Oil as Antioxidant. Food Biophysics, 2020, 15, 216-228.	1.4	27
84	Fabrication and characterization of emulsion stabilized by table eggâ€yolk granules at different pH levels. Journal of the Science of Food and Agriculture, 2020, 100, 1470-1478.	1.7	15
85	The development of a direct approach to formulate high oil content zein-based emulsion gels using moderate temperatures. Food Hydrocolloids, 2020, 101, 105528.	5.6	29
86	Ultra-stable Pickering emulsion stabilized by a natural particle bilayer. Chemical Communications, 2020, 56, 14011-14014.	2.2	36
87	Protein-stabilized Pickering emulsions: Formation, stability, properties, and applications in foods. Trends in Food Science and Technology, 2020, 103, 293-303.	7.8	195
88	Edible polymers: An insight into its application in food, biomedicine and cosmetics. Trends in Food Science and Technology, 2020, 103, 248-263.	7.8	106
89	Metal–Phenolic Network Covering on Zein Nanoparticles as a Regulator on the Oil/Water Interface. Journal of Agricultural and Food Chemistry, 2020, 68, 8471-8482.	2.4	27
90	Influence of interfacial compositions on the microstructure, physiochemical stability, lipid digestion and β-carotene bioaccessibility of Pickering emulsions. Food Hydrocolloids, 2020, 104, 105738.	5.6	96
91	Food-Grade Pickering Emulsions: Preparation, Stabilization and Applications. Molecules, 2020, 25, 3202.	1.7	107

#	Article	IF	CITATIONS
92	Zein/carboxymethyl dextrin nanoparticles stabilized pickering emulsions as delivery vehicles: Effect of interfacial composition on lipid oxidation and in vitro digestion. Food Hydrocolloids, 2020, 108, 106020.	5.6	95
93	Nanocellulose for Stabilization of Pickering Emulsions and Delivery of Nutraceuticals and Its Interfacial Adsorption Mechanism. Food and Bioprocess Technology, 2020, 13, 1292-1328.	2.6	46
94	Recent advances on proteinâ€based Pickering high internal phase emulsions (Pickering HIPEs): Fabrication, characterization, and applications. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1934-1968.	5.9	105
95	Fabrication and characterization of Pickering emulsion stabilized by soy protein isolate-chitosan nanoparticles. Carbohydrate Polymers, 2020, 247, 116712.	5.1	126
96	Chitosan hydrochloride/carboxymethyl starch complex nanogels stabilized Pickering emulsions for oral delivery of β-carotene: Protection effect and in vitro digestion study. Food Chemistry, 2020, 315, 126288.	4.2	96
97	Characteristics of alkali-extracted peanut polysaccharide-protein complexes and their ability as Pickering emulsifiers. International Journal of Biological Macromolecules, 2020, 162, 1178-1186.	3.6	17
98	Development and evaluation of tea polyphenols loaded water in oil emulsion with zein as stabilizer. Journal of Drug Delivery Science and Technology, 2020, 56, 101528.	1.4	19
99	Modulation of interfacial phenolic antioxidant distribution in Pickering emulsions via interactions between zein nanoparticles and gallic acid. International Journal of Biological Macromolecules, 2020, 152, 223-233.	3.6	46
100	Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends in Food Science and Technology, 2020, 98, 117-128.	7.8	73
101	Rapeseed Protein Nanogels As Novel Pickering Stabilizers for Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2020, 68, 3607-3614.	2.4	65
102	Characterization and enhanced functionality of nanoparticles based on linseed protein and linseed gum biocomplexes. International Journal of Biological Macromolecules, 2020, 151, 116-123.	3.6	18
103	Preparation and characterization of potato proteinâ€based microcapsules with an emphasis on the mechanism of interaction among the main components. Journal of the Science of Food and Agriculture, 2020, 100, 2866-2872.	1.7	15
104	Improving Stability and Accessibility of Quercetin in Olive Oil-in-Soy Protein Isolate/Pectin Stabilized O/W Emulsion. Foods, 2020, 9, 123.	1.9	34
105	Structures, fabrication mechanisms, and emulsifying properties of self-assembled and spray-dried ternary complexes based on lactoferrin, oat β-glucan and curcumin: A comparison study. Food Research International, 2020, 131, 109048.	2.9	20
106	Potential Pickering emulsion stabilized with chitosan-stearic acid nanogels incorporating clove essential oil to produce fish-oil-enriched mayonnaise. Carbohydrate Polymers, 2020, 241, 116340.	5.1	58
107	Starch nanoparticles produced via acidic dry heat treatment as a stabilizer for a Pickering emulsion: Influence of the physical properties of particles. Carbohydrate Polymers, 2020, 239, 116241.	5.1	40
108	Preparation of powdered oil particles by spray drying of cellulose nanocrystals stabilized Pickering hempseed oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 598, 124823.	2.3	29
109	Improving the emulsifying property of gliadin nanoparticles as stabilizer of Pickering emulsions: Modification with sodium carboxymethyl cellulose. Food Hydrocolloids, 2020, 107, 105936.	5.6	45

	CITATION RE	PORT	
		IF	CITATIONS
ering emulsion stabilize ogical Macromolecules	ed by , 2020, 157,	3.6	93
of bioactives. Trends in	Food Science	7.8	172
high internal phase Pick 42, 1009-1020.	ering emulsion	1.3	18

110	Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles. International Journal of Biological Macromolecules, 2020, 157, 202-211.	3.6	93
111	Food-grade Pickering emulsions for encapsulation and delivery of bioactives. Trends in Food Science and Technology, 2020, 100, 320-332.	7.8	172
112	Whey protein isolate—low methoxyl pectin coacervates as a high internal phase Pickering emulsion stabilizer. Journal of Dispersion Science and Technology, 2021, 42, 1009-1020.	1.3	18
113	Fabrication and characterization of bi-crosslinking Pickering emulsions stabilized by gliadin/alginate coacervate particles. Journal of Food Engineering, 2021, 291, 110318.	2.7	25
114	Preparation and characterization of pickering emulsion stabilized by hordein-chitosan complex particles. Journal of Food Engineering, 2021, 292, 110275.	2.7	39
115	Electrostatic deposition of polysaccharide onto soft protein colloidal particles: Enhanced rigidity and potential application as Pickering emulsifiers. Food Hydrocolloids, 2021, 110, 106147.	5.6	45
116	Biomolecule-based pickering food emulsions: Intrinsic components of food matrix, recent trends and prospects. Food Hydrocolloids, 2021, 112, 106303.	5.6	75
117	Bacterial cellulose nanofibers improved the emulsifying capacity of soy protein isolate as a stabilizer for pickering high internal-phase emulsions. Food Hydrocolloids, 2021, 112, 106279.	5.6	63
118	Design and characterization of double-cross-linked emulsion gels using mixed biopolymers: Zein and sodium alginate. Food Hydrocolloids, 2021, 113, 106473.	5.6	65
119	Evaluation of meat-quality and myofibrillar protein of chicken drumsticks treated with plasma-activated lactic acid as a novel sanitizer. LWT - Food Science and Technology, 2021, 138, 110642.	2.5	30
120	Oleogel-structured emulsion for enhanced oxidative stability of perilla oil: Influence of crystal morphology and cooling temperature. LWT - Food Science and Technology, 2021, 139, 110560.	2.5	17
121	High-internal-phase emulsions (HIPEs) for co-encapsulation of probiotics and curcumin: enhanced survivability and controlled release. Food and Function, 2021, 12, 70-82.	2.1	53
122	Enteric rice protein-shellac composite coating to enhance the viability of probiotic Lactobacillus salivarius NRRL B-30514. Food Hydrocolloids, 2021, 113, 106469.	5.6	19
123	Fabrication and characterization of <scp>Pickering</scp> emulsion gels stabilized by zein/pullulan complex colloidal particles. Journal of the Science of Food and Agriculture, 2021, 101, 3630-3643.	1.7	23
124	Utilization of dried Japanese apricot and avocado fruit powders as an emulsifying agent: The importance of the powder-dispersed phase in emulsification. Journal of Food Engineering, 2021, 294, 110411.	2.7	5
125	Fabrication and characterization of starch/zein nanocomposites with pH-responsive emulsion behavior. Food Hydrocolloids, 2021, 112, 106341.	5.6	52
126	Emulsifying Properties. , 2021, , 171-206.		1
127	Curcumin, a potent therapeutic nutraceutical and its enhanced delivery and bioaccessibility by pickering emulsions. Drug Delivery and Translational Research, 2022, 12, 124-157.	3.0	18

#

ARTICLE

#	Article	IF	CITATIONS
128	Fabrication of Pickering emulsion based on particles combining pectin and zein: Effects of pectin methylation. Carbohydrate Polymers, 2021, 256, 117515.	5.1	53
129	Novel Pickering High Internal Phase Emulsion Stabilized by Food Waste-Hen Egg Chalaza. Foods, 2021, 10, 599.	1.9	11
130	Application of Advanced Emulsion Technology in the Food Industry: A Review and Critical Evaluation. Foods, 2021, 10, 812.	1.9	119
131	Chitin nanofibers improve the stability and functional performance of Pickering emulsions formed from colloidal zein. Journal of Colloid and Interface Science, 2021, 589, 388-400.	5.0	39
132	Sonochemical effects on formation and emulsifying properties of zein-gum Arabic complexes. Food Hydrocolloids, 2021, 114, 106557.	5.6	28
133	The physicochemical properties and stability of flaxseed oil emulsions: effects of emulsification methods and the ratio of soybean protein isolate to soy lecithin. Journal of the Science of Food and Agriculture, 2021, 101, 6407-6416.	1.7	7
134	Effect of combination of ultrasonic treatment and anti-solvent methods as a high-efficiency method of nanoparticle production on the tragacanth gum properties. Journal of Food Science and Technology, 2022, 59, 1131-1139.	1.4	3
135	Studies on the Molecular Interactions between Plant-Derived Protein Zein and Small Molecules. ACS Food Science & Technology, 2021, 1, 1077-1084.	1.3	1
136	Complexing hemp seed protein with pectin for improved emulsion stability. Journal of Food Science, 2021, 86, 3137-3147.	1.5	12
137	Microencapsulation of camellia oil to maintain thermal and oxidative stability with focus on protective mechanism. International Journal of Food Science and Technology, 2021, 56, 4780-4788.	1.3	5
138	A comprehensive review on polarity, partitioning, and interactions of phenolic antioxidants at oil–water interface of food emulsions. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4250-4277.	5.9	55
139	Novel protein-based nanoparticles from perilla oilseed residues as sole Pickering stabilizers for high internal phase emulsions. LWT - Food Science and Technology, 2021, 145, 111340.	2.5	26
140	Pickering Emulsions Based on the pH-Responsive Assembly of Food-Grade Chitosan. ACS Omega, 2021, 6, 17915-17922.	1.6	27
141	Facile and Robust Route for Preparing Pickering High Internal Phase Emulsions Stabilized by Bare Zein Particles. ACS Food Science & Technology, 2021, 1, 1481-1491.	1.3	7
142	Recent Developments in the Formulation and Use of Polymers and Particles of Plantâ€based Origin for Emulsion Stabilizations. ChemSusChem, 2021, 14, 4850-4877.	3.6	10
143	New Trends in Natural Emulsifiers and Emulsion Technology for the Food Industry. , 0, , .		4
144	Characterization, Bioactivity and Application of Chitosan-Based Nanoparticles in a Food Emulsion Model. Polymers, 2021, 13, 3331.	2.0	12
145	Fabrication of Bacterial Cellulose Nanofibers/Soy Protein Isolate Colloidal Particles for the Stabilization of High Internal Phase Pickering Emulsions by Anti-solvent Precipitation and Their Application in the Delivery of Curcumin. Frontiers in Nutrition, 2021, 8, 734620.	1.6	20

#	Article	IF	CITATIONS
146	Encapsulation of resveratrol in zein-polyglycerol conjugate stabilized O/W nanoemulsions: Chemical stability, in vitro gastrointestinal digestion, and antioxidant activity. LWT - Food Science and Technology, 2021, 149, 112049.	2.5	16
147	Protein- and polysaccharide-based particles used for Pickering emulsion stabilisation. Food Hydrocolloids, 2021, 119, 106839.	5.6	132
148	Recent progress on Pickering emulsions stabilized by polysaccharides-based micro/nanoparticles. Advances in Colloid and Interface Science, 2021, 296, 102522.	7.0	50
149	Fabrication and characterization of oil-in-water pickering emulsions stabilized by ZEIN-HTCC nanoparticles as a composite layer. Food Research International, 2021, 148, 110606.	2.9	12
150	Plant protein-based antioxidant Pickering emulsions and high internal phase Pickering emulsions against broad pH range and high ionic strength: Effects of interfacial rheology and microstructure. LWT - Food Science and Technology, 2021, 150, 111953.	2.5	29
151	Bioavailability of quercetin in zein-based colloidal particles-stabilized Pickering emulsions investigated by the in vitro digestion coupled with Caco-2 cell monolayer model. Food Chemistry, 2021, 360, 130152.	4.2	31
152	Soft κ-carrageenan microgels stabilized pickering emulsion gels: Compact interfacial layer construction and particle-dominated emulsion gelation. Journal of Colloid and Interface Science, 2021, 602, 822-833.	5.0	30
153	Effect of acetylation modification on the emulsifying and antioxidant properties of polysaccharide from Millettia speciosa Champ. Food Hydrocolloids, 2022, 124, 107217.	5.6	28
154	Ethanol-soluble polysaccharide from sugar beet pulp for stabilizing zein nanoparticles and improving encapsulation of curcumin. Food Hydrocolloids, 2022, 124, 107208.	5.6	30
155	Protein particle-based vehicles for encapsulation and delivery of nutrients: Fabrication, digestion, and release properties. Food Hydrocolloids, 2022, 123, 106963.	5.6	19
156	Pickering emulsions stabilized by aminated gelatin nanoparticles: Are gelatin nanoparticles acting as genuine Pickering stabilizers or structuring agents?. Food Hydrocolloids, 2022, 123, 107151.	5.6	24
157	Preparation of camellia oil pickering emulsion stabilized by glycated whey protein isolate and chitooligosaccharide: Effect on interfacial behavior and emulsion stability. LWT - Food Science and Technology, 2022, 153, 112515.	2.5	44
158	Development of food-grade Pickering oil-in-water emulsions: Tailoring functionality using mixtures of cellulose nanocrystals and lauric arginate. Food Chemistry, 2020, 327, 127039.	4.2	30
159	Preparation, Physicochemical Characterization and Oxidative Stability of Omega-3 Fish Oil/α-Tocopherol-co-Loaded Nanostructured Lipidic Carriers. Advanced Pharmaceutical Bulletin, 2019, 9, 393-400.	0.6	17
160	Silica-Lipid Hybrid Microparticles as Efficient Vehicles for Enhanced Stability and Bioaccessibility of Curcumin. Food Technology and Biotechnology, 2019, 57, 319-330.	0.9	5
161	Novel Fabrication of Zein-Soluble Soybean Polysaccharide Nanocomposites Induced by Multifrequency Ultrasound, and Their Roles on Microstructure, Rheological Properties and Stability of Pickering Emulsions. Gels, 2021, 7, 166.	2.1	10
162	Chitosan functionalized cellulose nanocrystals for stabilizing Pickering emulsion: Fabrication, characterization and stability evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127769.	2.3	21
163	Pickering Emulsions. Journal of the Japan Society of Colour Material, 2016, 89, 203-206.	0.0	2

#	Article	IF	CITATIONS
164	Influence of solvent polarity of ethonal/water binary solvent on the structural, emulsifying, interfacial rheology properties of gliadin nanoparticles. Journal of Molecular Liquids, 2021, 344, 117976.	2.3	8
165	Acrylamide mitigation using zein–polysaccharide complex particles. Food Hydrocolloids, 2022, 124, 107317.	5.6	18
166	Utilizing protein-polyphenol molecular interactions to prepare moringa seed residue protein/tannic acid Pickering stabilizers. LWT - Food Science and Technology, 2022, 154, 112814.	2.5	17
167	One‣tep Preparation of Allâ€Natural Pickering Double Emulsions Stabilized by Oppositely Charged Biopolymer Particles. Advanced Materials Interfaces, 2021, 8, 2101568.	1.9	7
168	Improved Oxidation Stability of Camellia Oil-in-Water Emulsions Stabilized by the Mixed Monolayer of Soy Protein Isolate/Bamboo Shoot Protein Complexes. Frontiers in Nutrition, 2021, 8, 782212.	1.6	1
169	Construction of dual-compartmental micro-droplet via shrimp ferritin nanocages stabilized Pickering emulsions for co-encapsulation of hydrophobic/hydrophilic bioactive compounds. Food Hydrocolloids, 2022, 126, 107443.	5.6	19
170	Starch-based nanoparticles for fabrication of nutraceutical delivery system. , 2022, , 341-375.		1
171	High internal phase Pickering emulsions stabilized by eggÂyolk low density lipoprotein for delivery of curcumin. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112334.	2.5	23
172	Pickering emulsions stabilized by pea protein isolate-chitosan nanoparticles: fabrication, characterization and delivery EPA for digestion in vitro and in vivo. Food Chemistry, 2022, 378, 132090.	4.2	54
173	Co-encapsulation of vitamin D and rutin in chitosan-zein microparticles. Journal of Food Measurement and Characterization, 2022, 16, 2060-2070.	1.6	8
174	Recent advances on formation mechanism and functionality of chitosan-based conjugates and their application in o/w emulsion systems: A review. Food Chemistry, 2022, 380, 131838.	4.2	24
175	Oxidative stability of Pickering emulsions. Food Chemistry: X, 2022, 14, 100279.	1.8	9
176	pH-driven-assembled soy peptide nanoparticles as particulate emulsifier for oil-in-water Pickering emulsion and their potential for encapsulation of vitamin D3. Food Chemistry, 2022, 383, 132489.	4.2	20
177	Novel strategy for color-controllable Pickering emulsion: Location control of pigments at different phase. Journal of Food Engineering, 2022, 326, 111038.	2.7	0
178	Utilization of zein-based particles in Pickering emulsions: A review. Food Reviews International, 2023, 39, 4040-4060.	4.3	2
179	Pickering emulsions stabilized by zein particles and their complexes and possibilities of use in the food industry: A review. Food Hydrocolloids, 2022, 131, 107781.	5.6	27
180	Gelatin microgel-stabilized high internal phase emulsion for easy industrialization: Preparation, interfacial behavior and physical stability. Innovative Food Science and Emerging Technologies, 2022, 78, 103011.	2.7	24
181	Characterization of Pickering Emulsion Stabilized by Colloidal Sodium Caseinate Nanoparticles Prepared Using Complexation and Antisolvent Method. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
182	Tannic acid enhanced the emulsion stability, rheology and interface characteristics of <i>Clanis Bilineata Tingtauica Mell</i> protein stabilised oilâ€inâ€water emulsion. International Journal of Food Science and Technology, 2022, 57, 5228-5238.	1.3	5
183	Development and application of hydrophilic-hydrophobic dual-protein Pickering emulsifiers: EGCG-modified caseinate-zein complexes. Food Research International, 2022, 157, 111451.	2.9	15
184	New Perspective on Natural Plant Protein-Based Nanocarriers for Bioactive Ingredients Delivery. Foods, 2022, 11, 1701.	1.9	10
185	Starch-lauric acid complex-stabilised Pickering emulsion gels enhance the thermo-oxidative resistance of flaxseed oil. Carbohydrate Polymers, 2022, 292, 119715.	5.1	21
187	Development of Millettia speciosa champ polysaccharide conjugate stabilized oil-in-water emulsion for oral delivery of β-carotene: Protection effect and in vitro digestion fate. Food Chemistry, 2022, 397, 133764.	4.2	9
188	Zein molecules in aqueous acetic acid solution: Self-assembling behaviors and formation mechanism of gluten-free doughs. Innovative Food Science and Emerging Technologies, 2022, 80, 103092.	2.7	9
189	EGCC-decorated zein complex particles: Relationship to synergistic interfacial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129879.	2.3	3
190	Fabrication and characterization of low-fat Pickering emulsion gels stabilized by zein/phytic acid complex nanoparticles. Food Chemistry, 2023, 402, 134179.	4.2	14
191	Development of Zein/tannic acid nanoparticles as antioxidants for oxidation inhibition of blackberry seed oil emulsions. Food Chemistry, 2023, 403, 134236.	4.2	9
192	Colloidal nanoparticles prepared from zein and casein: interactions, characterizations and emerging food applications. Food Science and Human Wellness, 2023, 12, 337-350.	2.2	12
193	Formation, stability and the application of Pickering emulsions stabilized with OSA starch/chitosan complexes. Carbohydrate Polymers, 2023, 299, 120149.	5.1	16
194	Property and Stability of Astaxanthin Emulsion Based on Pickering Emulsion Templating with Zein and Sodium Alginate as Stabilizer. International Journal of Molecular Sciences, 2022, 23, 9386.	1.8	2
195	Preparation and optimization of Pickering emulsion stabilized by alginate-lysozyme nanoparticles for β-carotene encapsulation. Colloid and Polymer Science, 2022, 300, 1291-1300.	1.0	2
196	Water-in-Oil Pickering Emulsions Stabilized by Hydrophobized Protein Microspheres. Langmuir, 2022, 38, 12273-12280.	1.6	7
197	Storage stability and in vitro digestion of apigenin encapsulated in Pickering emulsions stabilized by whey protein isolate–chitosan complexes. Frontiers in Nutrition, 0, 9, .	1.6	2
198	Incorporating surfactants within protein-polysaccharide hybrid particles for high internal phase emulsions (HIPEs): Toward plant-based mayonnaise. Food Hydrocolloids, 2023, 136, 108211.	5.6	11
199	Recent Progress on Biopolymer-based Technologies on Nutraceutical and Natural Plant-based Extracts. RSC Polymer Chemistry Series, 2022, , 361-398.	0.1	1
200	The Effect of Different Induction Methods on the Structure and Physicochemical Properties of Glycosylated Soybean Isolate Gels. Foods, 2022, 11, 3595.	1.9	5

#	Article	IF	CITATIONS
201	Valorizing protein-polysaccharide conjugates from sugar beet pulp as an emulsifier. International Journal of Biological Macromolecules, 2023, 226, 679-689.	3.6	7
202	Effect of oil phases on the stability of myofibrillar protein microgel particles stabilized Pickering emulsions: The leading role of viscosity. Food Chemistry, 2023, 413, 135653.	4.2	14
203	Influence of degree of substitution of octenyl succinic anhydride starch on complexation with chitosan and complex-stabilized high internal phase Pickering emulsions. Food Hydrocolloids, 2023, 139, 108526.	5.6	7
204	Amphiphilic O(Phe-r-Glu) oligopeptides randomly polymerized via papain exhibiting a pH-insensitive emulsification property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 664, 131141.	2.3	1
205	Recent developments in improving the emulsifying properties of chitosan. International Journal of Biological Macromolecules, 2023, 239, 124210.	3.6	2
206	Stability of protein particle based Pickering emulsions in various environments: Review on strategies to inhibit coalescence and oxidation. Food Chemistry: X, 2023, 18, 100651.	1.8	2
208	Highly stable solid-like Pickering emulsions stabilized by kafirin-chitosan complex particles. LWT - Food Science and Technology, 2023, 177, 114591.	2.5	3
209	The droplet breakup model and characteristics of pH-shifted peanut protein isolate-high methoxyl pectin stabilised emulsions under ultrasound. Ultrasonics Sonochemistry, 2023, 94, 106340.	3.8	7
210	Characterization of pickering emulsion stabilized by colloidal sodium caseinate nanoparticles prepared using complexation and antisolvent method. LWT - Food Science and Technology, 2023, 180, 114686.	2.5	4
211	Cellulose nanocrystal-stabilized Pickering emulsion improved sesamolin's physicochemical properties, stability, and anti-tyrosinase activity. Food Structure, 2023, 36, 100324.	2.3	3
220	Preparations, application of polysaccharide–protein nanoparticles and their assembly at the oil–water interface. Food Science and Biotechnology, 0, , .	1.2	0