Effect of Alcohol Treatment on the Performance of PTB Heterojunction Solar Cells

ACS Applied Materials & amp; Interfaces 7, 4641-4649 DOI: 10.1021/am5079418

Citation Report

#	Article	IF	CITATIONS
1	Neutrons for industry. EPJ Web of Conferences, 2015, 104, 01001.	0.3	5
2	Organic/Organic Cathode Bi-Interlayers Based on a Water-Soluble Nonconjugated Polymer and an Alcohol-Soluble Conjugated Polymer for High Efficiency Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 27871-27877.	8.0	21
3	A two-step strategy to clarify the roles of a solution processed PFN interfacial layer in highly efficient polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 18432-18441.	10.3	79
4	Alternative Spectral Photoresponse in a <i>p</i> -Cu ₂ ZnSnS ₄ / <i>n</i> -GaN Heterojunction Photodiode by Modulating Applied Voltage. ACS Applied Materials & Interfaces, 2015, 7, 16653-16658.	8.0	22
5	A facile approach to alleviate photochemical degradation in high efficiency polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 16313-16319.	10.3	38
6	Microscopic Investigations into the Effect of Surface Treatment of Cathode and Electron Transport Layer on the Performance of Inverted Organic Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 16418-16427.	8.0	19
7	Constructing bulk heterojunction with componential gradient for enhancing the efficiency of polymer solar cells. Journal of Power Sources, 2015, 300, 238-244.	7.8	23
8	Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%. Energy and Environmental Science, 2015, 8, 2902-2909.	30.8	159
9	Effect of aggregation behavior and phenolic hydroxyl group content on the performance of lignosulfonate doped PEDOT as a hole extraction layer in polymer solar cells. RSC Advances, 2015, 5, 90913-90921.	3.6	18
10	An efficient hole transport material based on PEDOT dispersed with lignosulfonate: preparation, characterization and performance in polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 21537-21544.	10.3	71
11	Improving the efficiency of polymer solar cells based on furan-flanked diketopyrrolopyrrole copolymer via solvent additive and methanol treatment. Nanoscale, 2015, 7, 15945-15952.	5.6	24
12	Integrated Effects of Two Additives on the Enhanced Performance of PTB7:PC71BM Polymer Solar Cells. Materials, 2016, 9, 171.	2.9	16
13	Squareâ€Centimeterâ€Sized Highâ€Efficiency Polymer Solar Cells: How the Processing Atmosphere and Film Quality Influence Performance at Large Scale. Advanced Energy Materials, 2016, 6, 1600290.	19.5	26
14	Understanding Solvent Manipulation of Morphology in Bulkâ€Heterojunction Organic Solar Cells. Chemistry - an Asian Journal, 2016, 11, 2620-2632.	3.3	24
15	Realizing Highly Efficient Inverted Photovoltaic Cells by Combination of Nonconjugated Small-Molecule Zwitterions with Polyethylene Glycol. ACS Applied Materials & Interfaces, 2016, 8, 18593-18599.	8.0	15
16	A Crossâ€Linkable Donor Polymer as the Underlying Layer to Tune the Active Layer Morphology of Polymer Solar Cells. Advanced Functional Materials, 2016, 26, 226-232.	14.9	41
17	Improving the efficiency of polymer solar cells via a treatment of methanol : water on the active layers. Journal of Materials Chemistry A, 2016, 4, 9644-9652.	10.3	23
18	High Efficiency Inverted Organic Solar Cells with a Neutral Fulleropyrrolidine Electron-Collecting Interlayer. ACS Applied Materials & amp; Interfaces, 2016, 8, 14293-14300.	8.0	40

#	Article	IF	CITATIONS
19	Synthesis of alternating D–A1–D–A2 terpolymers comprising two electron-deficient moieties, quinoxaline and benzothiadiazole units for photovoltaic applications. Polymer Chemistry, 2016, 7, 4025-4035.	3.9	11
20	Controlling additive behavior to reveal an alternative morphology formation mechanism in polymer : fullerene bulk-heterojunctions. Journal of Materials Chemistry A, 2016, 4, 16136-16147.	10.3	22
21	A Simple Approach to Fabricate an Efficient Inverted Polymer Solar Cell with a Novel Small Molecular Electrolyte as the Cathode Buffer Layer. ACS Applied Materials & Interfaces, 2016, 8, 32992-32997.	8.0	21
22	New PDI-based small-molecule cathode interlayer material with strong electron extracting ability for polymer solar cells. RSC Advances, 2016, 6, 101645-101651.	3.6	16
23	High-Efficiency Nonfullerene Polymer Solar Cell Enabling by Integration of Film-Morphology Optimization, Donor Selection, and Interfacial Engineering. ACS Applied Materials & Interfaces, 2016, 8, 15415-15421.	8.0	33
24	Grazing incidence resonant soft X-ray scattering for analysis of multi-component polymer-fullerene blend thin films. Polymer, 2016, 105, 357-367.	3.8	18
25	Enhanced Performance of Inverted Polymer Solar Cells by Combining ZnO Nanoparticles and Poly[(9,9-bis(3′-(<i>N</i> , <i>N</i> -dimethylamino)propyl)-2,7-fluorene)- <i>alt</i> -2,7-(9,9-dioctyfluorene)] as Electron Transport Layer. ACS Applied Materials & Interfaces, 2016, 8, 3301-3307.	8.0	43
26	Probing Ternary Solvent Effect in High <i>V</i> _{oc} Polymer Solar Cells Using Advanced AFM Techniques. ACS Applied Materials & Interfaces, 2016, 8, 4730-4738.	8.0	7
27	An organic–inorganic hybrid interlayer for improved electron extraction in inverted polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 2463-2469.	5.5	59
28	Enhanced carrier dynamics of PTB7:PC 71 BM based bulk heterojunction organic solar cells by the incorporation of formic acid. Organic Electronics, 2016, 28, 275-280.	2.6	11
29	Triphenylamine Based Random Copolymers: The Effect of Molecular Weight on Performance of Solar Cell and Optoelectronic Properties. Macromolecular Chemistry and Physics, 2017, 218, 1600544.	2.2	9
30	Solvent–Morphology–Property Relationship of PTB7:PC ₇₁ BM Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 3740-3748.	8.0	50
31	Liquid eutectic Galn as an alternative electrode for PTB7:PCBM organic solar cells. Japanese Journal of Applied Physics, 2017, 56, 046501.	1.5	5
32	Morphological characterization of fullerene and fullerene-free organic photovoltaics by combined real and reciprocal space techniques. Journal of Materials Research, 2017, 32, 1921-1934.	2.6	28
33	The effect of uni- and binary solvent additives in PTB7:PC61BM based solar cells. Solar Energy, 2017, 150, 66-72.	6.1	36
34	Three-Dimensional Morphology Control Yielding Enhanced Hole Mobility in Air-Processed Organic Photovoltaics: Demonstration with Grazing-Incidence Wide-Angle X-ray Scattering. ACS Applied Materials & Interfaces, 2017, 9, 22764-22772.	8.0	4
35	Low Work Function Lacunary Polyoxometalates as Electron Transport Interlayers for Inverted Polymer Solar Cells of Improved Efficiency and Stability. ACS Applied Materials & Interfaces, 2017, 9, 22773-22787.	8.0	23
36	Visualizing nanoscale phase morphology for understanding photovoltaic performance of PTB7: PC71BM solar cell. Applied Surface Science, 2017, 422, 509-517.	6.1	16

		CITATION REPORT	
#	Article	IF	CITATIONS
37	Effect of methanol treatment on the performance of P3HT:PC71BM bulk heterojunction solar cells with various cathodes. Journal of Materials Science: Materials in Electronics, 2017, 28, 12909-12915.	2.2	5
38	Recent Advances to Understand Morphology Stability of Organic Photovoltaics. Nano-Micro Letters, 2017, 9, 10.	27.0	58
39	Improving the Efficiency of Bulk Heterojunction Polymer Solar Cells Via Binary-Solvent Treatment. IEEE Journal of Photovoltaics, 2017, 7, 214-220.	2.5	11
40	A PTB7-based narrow band-gap conjugated polyelectrolyte as an efficient cathode interlayer in PTB7-based polymer solar cells. Chemical Communications, 2017, 53, 2005-2008.	4.1	25
41	Elementary Processes in Organic Photovoltaics. Advances in Polymer Science, 2017, , .	0.8	15
42	Controlled Morphologies by Molecular Design and Nano-Imprint Lithography. Advances in Polymer Science, 2017, , 215-242.	0.8	0
43	Authigenic buffer layer: Tuning surface work function in all polymer blend solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 535, 149-156.	4.7	2
44	Exploring the influence of acceptor content on semiâ€random conjugated polymers. Journal of Polymer Science Part A, 2017, 55, 3884-3892.	2.3	5
45	Improved Performance in nâ€Type Organic Fieldâ€Effect Transistors via Polyelectrolyteâ€Mediated Interfacial Doping. Advanced Electronic Materials, 2017, 3, 1700184.	5.1	20
46	Methanol solvent treatment: A simple strategy to significantly boost efficiency and stability of air-processed ternary organic solar cells based on PTB7-Th:PCDTBT:PC70BM. Organic Electronics, 2017, 50, 63-69.	2.6	11
47	π onjugated Donor Polymers: Structure Formation and Morphology in Solution, Bulk and Photovoltaic Blends. Advanced Energy Materials, 2017, 7, 1700314.	19.5	63
48	Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells. Energy and Environmental Science, 2017, 10, 2570-2578.	30.8	155
49	Enhancing the power conversion efficiency of polymer solar cells via selection of quinoxaline substituents. New Journal of Chemistry, 2017, 41, 14635-14645.	2.8	1
50	Polymer solar cells with enhanced power conversion efficiency using nanomaterials and laser techniques. Materials Technology, 2017, 32, 279-298.	3.0	7
51	Effect of Processing Additives on Organic Photovoltaics: Recent Progress and Future Prospects. Advanced Energy Materials, 2017, 7, 1601496.	19.5	71
52	Correlation between the performance of organic bulkâ€heterojunction solar cells and the molecular structures of alcohol solvents. Journal of Applied Polymer Science, 2017, 134, .	2.6	3
53	Co-solvent additives influence on the performance of PTB7:PCBM based Thin film organic solar cell. Materials Today: Proceedings, 2017, 4, 12558-12564.	1.8	23
54	Effects of Chain Orientation in Self-Organized Buffer Layers Based on Poly(3-alkylthiophene)s for Organic Photovoltaics. ACS Applied Materials & amp; Interfaces, 2018, 10, 8901-8908.	8.0	17

#	Article	IF	CITATIONS
55	Perylene Diimide-Based Zwitterion as the Cathode Interlayer for High-Performance Nonfullerene Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 14986-14992.	8.0	35
57	Tetraphenylphosphonium Bromide as a Cathode Buffer Layer Material for Highly Efficient Polymer Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 5569-5576.	8.0	22
58	Alkali Salt-Doped Highly Transparent and Thickness-Insensitive Electron-Transport Layer for High-Performance Polymer Solar Cell. ACS Applied Materials & Interfaces, 2018, 10, 1939-1947.	8.0	18
59	Negative Correlation between Intermolecular vs Intramolecular Disorder in Bulk-Heterojunction Organic Solar Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 44576-44582.	8.0	19
60	Polymer solar cell textiles with interlaced cathode and anode fibers. Journal of Materials Chemistry A, 2018, 6, 19947-19953.	10.3	62
61	The effect of alcohol solvent treatment on the performance of inverted polymer solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 11672-11678.	2.2	3
62	Wide-bandgap polymers containing fluorinated phenylene units for polymer solar cells with high open-circuit voltage. Synthetic Metals, 2018, 244, 134-142.	3.9	3
63	Lignin-Based Composite Materials for Photocatalysis and Photovoltaics. Topics in Current Chemistry, 2018, 376, 20.	5.8	53
64	Organic electrolyte hybridized ZnO as the electron transport layer for inverted polymer solar cells. Journal of Industrial and Engineering Chemistry, 2018, 65, 175-179.	5.8	9
65	Organic Electrolytes Doped ZnO Layer as the Electron Transport Layer for Bulk Heterojunction Polymer Solar Cells. Solar Rrl, 2018, 2, 1800086.	5.8	22
66	Recent Advances in Morphology Optimization for Organic Photovoltaics. Advanced Materials, 2018, 30, e1800453.	21.0	175
67	Observing electron transport and percolation in selected bulk heterojunctions bearing fullerene derivatives, non-fullerene small molecules, and polymeric acceptors. Nano Energy, 2019, 64, 103950.	16.0	31
68	Enhanced Organic Photovoltaic Performance through Modulating Vertical Composition Distribution and Promoting Crystallinity of the Photoactive Layer by Diphenyl Sulfide Additives. ACS Applied Materials & Materia	8.0	79
69	Simple alcohol solvent treatment enables efficient non-fullerene organic solar cells. Journal Physics D: Applied Physics, 2019, 52, 195104.	2.8	8
70	Efficient Polymer Solar Cells With High Fill Factor Enabled by A Furo[3,4]pyrroleâ€4,6â€dioneâ€Based Copolymer. Solar Rrl, 2019, 3, 1900012.	5.8	17
71	Thiadiazoloquinoxaline and benzodithiophene bearing polymers for electrochromic and organic photovoltaic applications. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 937-946.	1.6	5
72	Effects of IPA treatment on the photovoltaic performance of bulk heterojunction organic solar cells. Journal of Physics and Chemistry of Solids, 2019, 130, 136-143.	4.0	6
73	Solution-dispersed copper iodide anode buffer layer gives P3HT:PCBM-based organic solar cells an efficiency boost. Journal of Materials Science: Materials in Electronics, 2019, 30, 2726-2731.	2.2	8

CITATION REPORT

#	Article	IF	CITATIONS
74	Performance and Stability of Organic Solar Cells Bearing Nitrogen Containing Electron Extraction Layers. Energy Technology, 2020, 8, 2000117.	3.8	2
75	High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells. Scientific Reports, 2020, 10, 18055.	3.3	25
76	Investigation of Molecular Dynamics of a PTB7:PCBM Polymer Blend with Quasi-Elastic Neutron Scattering. ACS Applied Polymer Materials, 2020, 2, 3797-3804.	4.4	8
77	Orthogonal Printable Reduced Graphene Oxide 2D Materials as Hole Transport Layers for High-Performance Inverted Polymer Solar Cells: Sheet Size Effect on Photovoltaic Properties. ACS Applied Materials & Interfaces, 2020, 12, 42811-42820.	8.0	14
78	Universal and versatile morphology engineering via hot fluorous solvent soaking for organic bulk heterojunction. Nature Communications, 2020, 11, 5585.	12.8	29
79	Lignin Chemistry. Topics in Current Chemistry Collections, 2020, , .	0.5	7
80	Organic solar cells probed with advanced neutron scattering techniques. Applied Physics Letters, 2020, 116, 120504.	3.3	5
81	Techniques to Facilitate 3D Analysis of Selfâ€Organized Nanostructure Mechanism in Polymer/Fullerene Bulk Heterojunction Device. Advanced Materials Technologies, 2021, 6, 2000999.	5.8	0
82	Fullerenes and their applications. , 2021, , 19-158.		2
83	The Influence of the Blend Ratio, Solvent Additive, and Post-production Treatment on the Polymer Dynamics in PTB7:PCBM Blend Films. Macromolecules, 2021, 54, 6534-6542.	4.8	3
84	Green syntheses of stable and efficient organic dyes for organic hybrid light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 7274-7283.	5.5	8
85	3D printed spherical environmental chamber for neutron reflectometry and grazing-incidence small-angle neutron scattering experiments. Review of Scientific Instruments, 2020, 91, 113903.	1.3	14
86	Tin Oxide Electron Transport Layers for Air-/Solution-Processed Conventional Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 1568-1577.	8.0	9
87	Highâ€Efficiency Sequentialâ€Cast Organic Solar Cells Enabled by Dual Solventâ€Controlled Polymer Aggregation. Solar Rrl, 2022, 6, .	5.8	14
89	Enhancing Efficiency of Nonfullerene Organic Solar Cells via Using Polyelectrolyte-Coated Plasmonic Gold Nanorods as Rear Interfacial Modifiers. ACS Applied Materials & Interfaces, 2022, 14, 16185-16196.	8.0	8
90	PTB7:PC ₇₁ BM bulk heterojunction solar cells exhibiting 9.64% efficiency via adopting moderate polarity solvent vapor annealing treatment. Molecular Crystals and Liquid Crystals, 0, , 1-11.	0.9	1
91	PTB7 and PTB7-Th as universal polymers to evaluate materials development aspects of organic solar cells including interfacial layers, new fullerenes, and non-fullerene electron acceptors. Synthetic Metals, 2022, 287, 117088.	3.9	6
92	Introduction of Water Treatment in Slotâ€Die Coated Organic Solar Cells to Improve Device Performance and Stability. Advanced Functional Materials, 2022, 32, .	14.9	5

CITATION REPORT

#	Article	IF	CITATIONS
93	Ethanolâ€Processable Polyfuran Derivative for Ecoâ€Friendly Fabrication of Organic Solar Cells Featuring Selfâ€Healing Function. Solar Rrl, 2022, 6, .	5.8	9
94	Sodium Alginate as a Natural Substrate for Efficient and Sustainable Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2022, 10, 15608-15617.	6.7	3
95	Scalable Non-Halogenated Co-solvent System for Large-Area, Four-Layer Slot-Die-Coated Organic Photovoltaics. ACS Applied Materials & Interfaces, 2022, 14, 57055-57063.	8.0	6
96	Dramatic improvement in stability and mechanism of high-performance inverted polymer solar cells featuring solution-processed buffer layer. Nanoscale, 0, , .	5.6	3
97	Bay-Functionalized Perylene Diimide Derivative Cathode Interfacial Layer for High-Performance Organic Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 8367-8376.	8.0	10
98	Application of neutron scattering in organic photovoltaic materials. , 2023, 42, 100023.		1
99	Enhanced charge separation by interchain hole delocalization in nonfullerene acceptorâ€based bulk heterojunction materials. , 2023, 5, .		2
100	A review on smart strategies for active layer phase separation regulation of organic solar cells. APL Materials, 2023, 11, .	5.1	1