Alternatively activated (M2) macrophages promote tum hepatocellular carcinoma

Journal of Hepatology 62, 607-616 DOI: 10.1016/j.jhep.2014.10.029

Citation Report

#	Article	IF	CITATIONS
1	Myeloid cells in hepatocellular carcinoma. Hepatology, 2015, 62, 1304-1312.	3.6	123
2	Scavenger Receptors. Advances in Cancer Research, 2015, 128, 309-364.	1.9	90
3	Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin. Cell Death and Disease, 2015, 6, e1942-e1942.	2.7	106
4	Overexpression of semaphorin 3A promotes tumor progression and predicts poor prognosis in hepatocellular carcinoma after curative resection. Oncotarget, 2016, 7, 51733-51746.	0.8	34
5	The Clinical Significance and Potential Therapeutic Role of GPx3 in Tumor Recurrence after Liver Transplantation. Theranostics, 2016, 6, 1934-1946.	4.6	27
6	Systemic and intratumoral balances between monocytes/macrophages and lymphocytes predict prognosis in hepatocellular carcinoma patients after surgery. Oncotarget, 2016, 7, 30951-30961.	0.8	29
7	Inter- and Intratumor Heterogeneity in Hepatocellular Carcinoma. , 2016, , 211-228.		0
8	Weight loss following diet-induced obesity does not alter colon tumorigenesis in the AOM mouse model. American Journal of Physiology - Renal Physiology, 2016, 311, G699-G712.	1.6	14
9	Fucoidan inhibits CCL22 production through NF-κB pathway in M2 macrophages: a potential therapeutic strategy for cancer. Scientific Reports, 2016, 6, 35855.	1.6	55
10	Role of the Immune System in Hepatocellular Carcinoma: Implications for Existing and Novel Therapies. , 2016, , 199-210.		0
11	Reply. Hepatology, 2016, 64, 1373-1374.	3.6	0
12	miRâ€28â€5pâ€ILâ€34â€macrophage feedback loop modulates hepatocellular carcinoma metastasis. Hepatolog 2016, 63, 1560-1575.	^{y,} 3.6	166
13	Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Medical Oncology, 2016, 33, 17.	1.2	48
14	Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. International Immunology, 2016, 28, 383-391.	1.8	223
15	Macrophage activation marker soluble CD163 may predict disease progression in hepatocellular carcinoma. Scandinavian Journal of Clinical and Laboratory Investigation, 2016, 76, 64-73.	0.6	29
16	Role of chemokine pathways in hepatobiliary cancer. Cancer Letters, 2016, 379, 173-183.	3.2	64
17	Tissue-resident versus monocyte-derived macrophages in the tumor microenvironment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 23-34.	3.3	90
18	Hepatocellular carcinoma: Mouse models and the potential roles of proteases. Cancer Letters, 2017, 387, 106-113.	3.2	13

TION RE

#	Article	IF	CITATIONS
19	Tumor-Associated Neutrophils and Macrophages Promote Gender Disparity in Hepatocellular Carcinoma in Zebrafish. Cancer Research, 2017, 77, 1395-1407.	0.4	55
20	Tumor regulation of the tissue environment in the liver. , 2017, 173, 47-57.		68
21	Targeting hepatic macrophages to treat liver diseases. Journal of Hepatology, 2017, 66, 1300-1312.	1.8	712
22	Host antitumor resistance improved by the macrophage polarization in a chimera model of patients with HCC. Oncolmmunology, 2017, 6, e1299301.	2.1	24
23	β-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer. Biochemical and Biophysical Research Communications, 2017, 490, 514-520.	1.0	58
24	PKCζ in prostate cancer cells represses the recruitment and M2 polarization of macrophages in the prostate cancer microenvironment. Tumor Biology, 2017, 39, 101042831770144.	0.8	16
25	Colony-stimulating factor-1-induced AIF1 expression in tumor-associated macrophages enhances the progression of hepatocellular carcinoma. Oncolmmunology, 2017, 6, e1333213.	2.1	51
26	<scp>NLRP3</scp> inflammasome induced liver graft injury through activation of telomereâ€independent <scp>RAP1</scp> / <scp>KC</scp> axis. Journal of Pathology, 2017, 242, 284-296.	2.1	24
27	Liver macrophages in tissue homeostasis and disease. Nature Reviews Immunology, 2017, 17, 306-321.	10.6	935
28	Comparative analysis of hepatocellular carcinoma and cirrhosis gene expression profiles. Molecular Medicine Reports, 2017, 15, 380-386.	1.1	16
29	Relationship Between PD-L1 Expression and CD8+ T-cell Immune Responses in Hepatocellular Carcinoma. Journal of Immunotherapy, 2017, 40, 323-333.	1.2	68
30	Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy. Immunotherapy, 2017, 9, 819-835.	1.0	41
31	CTGF secreted by mesenchymal-like hepatocellular carcinoma cells plays a role in the polarization of macrophages in hepatocellular carcinoma progression. Biomedicine and Pharmacotherapy, 2017, 95, 111-119.	2.5	16
32	Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. Nanoscale, 2017, 9, 18129-18152.	2.8	113
33	Liver immunotolerance and hepatocellular carcinoma: Patho-physiological mechanisms and therapeutic perspectives. European Journal of Cancer, 2017, 87, 101-112.	1.3	56
34	Arginine methylation regulates c-Myc–dependent transcription by altering promoter recruitment of the acetyltransferase p300. Journal of Biological Chemistry, 2017, 292, 13333-13344.	1.6	49
35	Macrophage-derived foam cells impair endothelial barrier function by inducing endothelial-mesenchymal transition via CCL-4. International Journal of Molecular Medicine, 2017, 40, 558-568.	1.8	40
36	The Anti-Tumor Effects of M1 Macrophage-Loaded Poly (ethylene glycol) and Gelatin-Based Hydrogels on Hepatocellular Carcinoma. Theranostics, 2017, 7, 3732-3744.	4.6	60

#	Article	IF	CITATIONS
37	Dietary oleuropein inhibits tumor angiogenesis and lymphangiogenesis in the B16F10 melanoma allograft model: a mechanism for the suppression of high-fat diet-induced solid tumor growth and lymph node metastasis. Oncotarget, 2017, 8, 32027-32042.	0.8	31
38	Serum IgG4:IgG Ratio Predicts Recurrence of Patients with Hepatocellular Carcinoma after Curative Resection. Journal of Cancer, 2017, 8, 1338-1346.	1.2	11
39	A hemoglobin-based oxygen carrier sensitized Cisplatin based chemotherapy in hepatocellular carcinoma. Oncotarget, 2017, 8, 85311-85325.	0.8	16
40	Effect of small and radical surgical injury on the level of different populations of circulating tumor cells in the blood of breast cancer patients. Neoplasma, 2017, 64, 437-443.	0.7	9
41	pH regulators to target the tumor immune microenvironment in human hepatocellular carcinoma. Oncolmmunology, 2018, 7, e1445452.	2.1	54
42	Fatty acid oxidation contributes to IL- $1\hat{l}^2$ secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Molecular Immunology, 2018, 94, 27-35.	1.0	121
43	Distinct alterations of CD68+CD163+ M2-like macrophages and myeloid-derived suppressor cells in newly diagnosed primary immune thrombocytopenia with or without CR after high-dose dexamethasone treatment. Journal of Translational Medicine, 2018, 16, 48.	1.8	27
44	Abberent expression of NOR1 protein in tumor associated macrophages contributes to the development of DENâ€induced hepatocellular carcinoma. Journal of Cellular Physiology, 2018, 233, 5002-5013.	2.0	22
45	Immunometabolism: A novel perspective of liver cancer microenvironment and its influence on tumor progression. World Journal of Gastroenterology, 2018, 24, 3500-3512.	1.4	58
46	Preclinical and Clinical Therapeutic Strategies Affecting Tumor-Associated Macrophages in Hepatocellular Carcinoma. Journal of Immunology Research, 2018, 2018, 1-9.	0.9	44
47	Macrophages in the Aging Liver and Age-Related Liver Disease. Frontiers in Immunology, 2018, 9, 2795.	2.2	116
48	Nrf2 activation drive macrophages polarization and cancer cell epithelial-mesenchymal transition during interaction. Cell Communication and Signaling, 2018, 16, 54.	2.7	118
49	The Aryl Hydrocarbon Receptor and Tumor Immunity. Frontiers in Immunology, 2018, 9, 286.	2.2	102
50	Role of nonresolving inflammation in hepatocellular carcinoma development and progression. Npj Precision Oncology, 2018, 2, 6.	2.3	199
51	ILâ€1β from M2 macrophages promotes migration and invasion of ESCC cells enhancing epithelialâ€mesenchymal transition and activating NFâ€₽B signaling pathway. Journal of Cellular Biochemistry, 2018, 119, 7040-7052.	1.2	45
52	Molecular Targets in Hepatocarcinogenesis and Implications for Therapy. Journal of Clinical Medicine, 2018, 7, 213.	1.0	24
53	Down-regulated paxillin suppresses cell proliferation and invasion by inhibiting M2 macrophage polarization in colon cancer. Biological Chemistry, 2018, 399, 1285-1295.	1.2	23
54	Chronic liver injury promotes hepatocarcinoma cell seeding and growth, associated with infiltration by macrophages. Cancer Science, 2018, 109, 2141-2152.	1.7	21

#	Article	IF	CITATIONS
55	Obesity-Induced Defects in Dendritic Cell and T Cell Functions. , 2018, , 171-181.		1
57	Intestinal dysbacteriosis-induced IL-25 promotes development of HCC via alternative activation of macrophages in tumor microenvironment. Journal of Experimental and Clinical Cancer Research, 2019, 38, 303.	3.5	58
58	Clinicopathologic and prognostic significance of tumor-associated macrophages in patients with hepatocellular carcinoma: A meta-analysis. PLoS ONE, 2019, 14, e0223971.	1.1	28
59	Tannic acid prevents macrophage-induced pro-fibrotic response in lung epithelial cells via suppressing TLR4-mediated macrophage polarization. Inflammation Research, 2019, 68, 1011-1024.	1.6	32
60	Macrophages and hepatocellular carcinoma. Cell and Bioscience, 2019, 9, 79.	2.1	94
61	Enhanced macrophage delivery to the colon using magnetic lipoplexes with a magnetic field. Drug Delivery, 2019, 26, 935-943.	2.5	15
62	Expression of CD38 on Macrophages Predicts Improved Prognosis in Hepatocellular Carcinoma. Frontiers in Immunology, 2019, 10, 2093.	2.2	51
63	The CCR2+ Macrophage Subset Promotes Pathogenic Angiogenesis for Tumor Vascularization in Fibrotic Livers. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 371-390.	2.3	71
64	Tumour-associated macrophages in hepatocellular carcinoma: Pressing the metabolic switch to prevent T cell responses. Journal of Hepatology, 2019, 71, 243-245.	1.8	4
65	Absent in melanoma 2 suppresses epithelialâ€mesenchymal transition via Akt and inflammasome pathways in human colorectal cancer cells. Journal of Cellular Biochemistry, 2019, 120, 17744-17756.	1.2	8
66	M2 macrophages mediate sorafenib resistance by secreting HGF in a feed-forward manner in hepatocellular carcinoma. British Journal of Cancer, 2019, 121, 22-33.	2.9	92
67	<p>M2 macrophages confer resistance to 5-fluorouracil in colorectal cancer through the activation of CCL22/PI3K/AKT signaling</p> . OncoTargets and Therapy, 2019, Volume 12, 3051-3063.	1.0	64
68	The Role of Myeloid-Derived Cells in the Progression of Liver Disease. Frontiers in Immunology, 2019, 10, 893.	2.2	74
69	Elevated CD163 ⁺ /CD68 ⁺ Ratio at Tumor Invasive Front is Closely Associated with Aggressive Phenotype and Poor Prognosis in Colorectal Cancer. International Journal of Biological Sciences, 2019, 15, 984-998.	2.6	86
70	Macrophageâ€specific hypoxiaâ€inducible factorâ€1α deletion suppresses the development of liver tumors in highâ€fat dietâ€fed obese and diabetic mice. Journal of Diabetes Investigation, 2019, 10, 1411-1418.	1.1	4
71	Discovery and mechanisms of host defense to oncogenesis: targeting the β-defensin-1 peptide as a natural tumor inhibitor. Cancer Biology and Therapy, 2019, 20, 774-786.	1.5	12
72	Induction of breast cancer stem cells by M1 macrophages through Lin-28B-let-7-HMGA2 axis. Cancer Letters, 2019, 452, 213-225.	3.2	53
73	Iron metabolism and its contribution to cancer (Review). International Journal of Oncology, 2019, 54, 1143-1154.	1.4	60

#	Article	IF	Citations
74	CKLF1 Enhances Inflammation-Mediated Carcinogenesis and Prevents Doxorubicin-Induced Apoptosis via IL6/STAT3 Signaling in HCC. Clinical Cancer Research, 2019, 25, 4141-4154.	3.2	49
75	Endoplasmic Reticulum Stress Causes Liver Cancer Cells to Release Exosomal miRâ€⊋3aâ€3p and Upâ€regulate Programmed Death Ligand 1 Expression in Macrophages. Hepatology, 2019, 70, 241-258.	3.6	304
76	Evaluation of the Effects of Cultured Bone Marrow Mesenchymal Stem Cell Infusion on Hepatocarcinogenesis in Hepatocarcinogenic Mice With Liver Cirrhosis. Transplantation Proceedings, 2019, 51, 925-935.	0.3	1
77	Rationale for Combining Radiotherapy and Immune Checkpoint Inhibition for Patients With Hypoxic Tumors. Frontiers in Immunology, 2019, 10, 407.	2.2	44
78	Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 2019, 68, 2055-2066.	2.0	94
79	Fibroblastic FAP promotes intrahepatic cholangiocarcinoma growth via MDSCs recruitment. Neoplasia, 2019, 21, 1133-1142.	2.3	44
80	Macrophages in Zebrafish Models of Liver Diseases. Frontiers in Immunology, 2019, 10, 2840.	2.2	34
81	Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis. Cancer Letters, 2019, 440-441, 116-125.	3.2	117
82	Challenges and Opportunities in the Clinical Development of Immune Checkpoint Inhibitors for Hepatocellular Carcinoma. Hepatology, 2019, 69, 2258-2270.	3.6	64
83	CCL18 secreted from M2 macrophages promotes migration and invasion via the PI3K/Akt pathway in gallbladder cancer. Cellular Oncology (Dordrecht), 2019, 42, 81-92.	2.1	45
84	The time-dependent shift in the hepatic graft and recipient macrophage pool following liver transplantation. Cellular and Molecular Immunology, 2020, 17, 412-414.	4.8	10
85	A retrospective analysis of 1,717 paranasal sinus fungus ball cases from 2008 to 2017. Laryngoscope, 2020, 130, 75-79.	1.1	22
86	Long non-coding RNA MALAT1 promotes angiogenesis and immunosuppressive properties of HCC cells by sponging miR-140. American Journal of Physiology - Cell Physiology, 2020, 318, C649-C663.	2.1	81
87	Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radical Biology and Medicine, 2020, 147, 48-60.	1.3	104
88	Impact of Viral Etiologies on the Development of Novel Immunotherapy for Hepatocellular Carcinoma. Seminars in Liver Disease, 2020, 40, 131-142.	1.8	3
89	Inflammation and Ectopic Fat Deposition in the Aging Murine Liver Is Influenced by CCR2. American Journal of Pathology, 2020, 190, 372-387.	1.9	22
90	LncRNA TP73-AS1/miR-539/MMP-8 axis modulates M2 macrophage polarization in hepatocellular carcinoma via TGF-β1 signaling. Cellular Signalling, 2020, 75, 109738.	1.7	18
91	Prognostic Value and Potential Immunoregulatory Role of SCARF1 in Hepatocellular Carcinoma. Frontiers in Oncology, 2020, 10, 565950.	1.3	7

#	Article	IF	CITATIONS
92	Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. Journal of Hepatology, 2020, 73, 1460-1469.	1.8	254
93	Hepatocarcinoma Induces a Tumor Necrosis Factor-Dependent Kupffer Cell Death Pathway That Favors Its Proliferation Upon Partial Hepatectomy. Frontiers in Oncology, 2020, 10, 547013.	1.3	7
94	Current perspectives on the tumor microenvironment in hepatocellular carcinoma. Hepatology International, 2020, 14, 947-957.	1.9	46
95	Modulating the Crosstalk between the Tumor and Its Microenvironment Using RNA Interference: A Treatment Strategy for Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2020, 21, 5250.	1.8	12
96	Role of Liver-Mediated Tolerance in Nanoparticle-Based Tumor Therapy. Cells, 2020, 9, 1985.	1.8	7
97	The efficacy of etanercept as anti-breast cancer treatment is attenuated by residing macrophages. BMC Cancer, 2020, 20, 836.	1.1	6
98	Targeting Lipid Metabolism in Liver Cancer. Biochemistry, 2020, 59, 3951-3964.	1.2	57
99	Intrahepatic cholangiocarcinoma induced M2-polarized tumor-associated macrophages facilitate tumor growth and invasiveness. Cancer Cell International, 2020, 20, 586.	1.8	30
100	Comprehensive analysis of prognostic gene signatures based on immune infiltration of ovarian cancer. BMC Cancer, 2020, 20, 1205.	1.1	17
101	Regulations of Glycolytic Activities on Macrophages Functions in Tumor and Infectious Inflammation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 287.	1.8	45
102	Elevated serum chemokine CCL22 levels in first-episode psychosis: associations with symptoms, peripheral immune state and in vivo brain glial cell function. Translational Psychiatry, 2020, 10, 94.	2.4	16
103	Tumor-Associated Macrophages: Recent Insights and Therapies. Frontiers in Oncology, 2020, 10, 188.	1.3	401
104	M2-Like Tumor-Associated Macrophage-Targeted Codelivery of STAT6 Inhibitor and IKKβ siRNA Induces M2-to-M1 Repolarization for Cancer Immunotherapy with Low Immune Side Effects. ACS Central Science, 2020, 6, 1208-1222.	5.3	133
105	Prognostic Value of Complement Component 2 and Its Correlation with Immune Infiltrates in Hepatocellular Carcinoma. BioMed Research International, 2020, 2020, 1-12.	0.9	11
106	Polarization of Tumor-Associated Macrophages by Chinese Medicine Intervention: Mechanisms and Applications. , 2020, , .		0
107	The miR-92a-2-5p in exosomes from macrophages increases liver cancer cells invasion via altering the AR/PHLPP/p-AKT/l²-catenin signaling. Cell Death and Differentiation, 2020, 27, 3258-3272.	5.0	54
108	Are Glucosylceramide-Related Sphingolipids Involved in the Increased Risk for Cancer in Gaucher Disease Patients? Review and Hypotheses. Cancers, 2020, 12, 475.	1.7	13
109	M2 Macrophages Promote HCC Cells Invasion and Migration via miR-149-5p/MMP9 Signaling. Journal of Cancer, 2020, 11, 1277-1287.	1.2	38

#	Article	IF	CITATIONS
110	The prognostic value of neuromedin U in patients with hepatocellular carcinoma. BMC Cancer, 2020, 20, 95.	1.1	9
111	CCL22 signaling contributes to sorafenib resistance in hepatitis B virus-associated hepatocellular carcinoma. Pharmacological Research, 2020, 157, 104800.	3.1	23
112	The Crosstalk between Tumor Cells and the Microenvironment in Hepatocellular Carcinoma: The Role of Exosomal microRNAs and Their Clinical Implications. Cancers, 2020, 12, 823.	1.7	40
113	Sphingomyelin synthase 2 facilitates M2-like macrophage polarization and tumor progression in a mouse model of triple-negative breast cancer. Acta Pharmacologica Sinica, 2021, 42, 149-159.	2.8	27
114	S100 calciumâ€binding protein A9 from tumorâ€associated macrophage enhances cancer stem cellâ€like properties of hepatocellular carcinoma. International Journal of Cancer, 2021, 148, 1233-1244.	2.3	45
115	The cellular and molecular components involved in pre-metastatic niche formation in colorectal cancer liver metastasis. Expert Review of Gastroenterology and Hepatology, 2021, 15, 389-399.	1.4	15
116	Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cellular and Molecular Immunology, 2021, 18, 112-127.	4.8	159
117	Molecular subtypes based on immune-related genes predict the prognosis for hepatocellular carcinoma patients. International Immunopharmacology, 2021, 90, 107164.	1.7	15
118	Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Advances in Cancer Research, 2021, 149, 171-255.	1.9	13
119	Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cellular and Molecular Immunology, 2021, 18, 18-37.	4.8	70
120	Meta-Analysis of the Prognostic and Clinical Value of Tumor-Associated Macrophages in Hepatocellular Carcinoma. Journal of Investigative Surgery, 2021, 34, 297-306.	0.6	20
121	IL‑6 plays a crucial role in epithelial‑mesenchymal transition and pro‑metastasis induced by sorafenib in liver cancer. Oncology Reports, 2021, 45, 1105-1117.	1.2	10
123	Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. Journal of Experimental and Clinical Cancer Research, 2021, 40, 13.	3.5	46
124	Perspectives of Radiotherapy in Immuno-oncology Era. , 2021, , 325-337.		0
125	The role of IL-4 gene polymorphism in HCV-related hepatocellular carcinoma in Egyptian patients. Egyptian Liver Journal, 2021, 11, .	0.3	4
126	Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduction and Targeted Therapy, 2021, 6, 75.	7.1	323
127	PIWIL1 governs the crosstalk of cancer cell metabolism and immunosuppressive microenvironment in hepatocellular carcinoma. Signal Transduction and Targeted Therapy, 2021, 6, 86.	7.1	25
128	Activated Hepatic Stellate Cells Induce Infiltration and Formation of CD163+ Macrophages via CCL2/CCR2 Pathway. Frontiers in Medicine, 2021, 8, 627927.	1.2	31

#	Article	IF	CITATIONS
129	Preoperative immune landscape predisposes adverse outcomes in hepatocellular carcinoma patients with liver transplantation. Npj Precision Oncology, 2021, 5, 27.	2.3	11
130	Recent Advancements in Nanomedicine for â€~Cold' Tumor Immunotherapy. Nano-Micro Letters, 2021, 13, 92.	14.4	41
131	Type III TGF-β Receptor Down-Regulation Promoted Tumor Progression via Complement Component C5a Induction in Hepatocellular Carcinoma. Cancers, 2021, 13, 1503.	1.7	3
132	Hepatocellular Carcinoma Immune Landscape and the Potential of Immunotherapies. Frontiers in Immunology, 2021, 12, 655697.	2.2	126
133	Immunotherapy for Hepatocellular Carcinoma: Current Limits and Prospects. Frontiers in Oncology, 2021, 11, 589680.	1.3	23
134	Characterization of the inflammatory microenvironment and hepatic macrophage subsets in experimental hepatocellular carcinoma models. Oncotarget, 2021, 12, 562-577.	0.8	11
135	4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Scientific Reports, 2021, 11, 6310.	1.6	13
136	High-density lipoprotein modulates tumor-associated macrophage for chemoimmunotherapy of hepatocellular carcinoma. Nano Today, 2021, 37, 101064.	6.2	20
137	Advances in immunotherapy for hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 525-543.	8.2	609
138	Construction of the Prediction Model for Locally Advanced Rectal Cancer Following Neoadjuvant Chemoradiotherapy Based on Pretreatment Tumor-Infiltrating Macrophage-Associated Biomarkers. OncoTargets and Therapy, 2021, Volume 14, 2599-2610.	1.0	6
139	A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Molecular Therapy, 2021, 29, 1572-1584.	3.7	47
140	Preferential Expression of Programmed Death Ligand 1 Protein in Tumor-Associated Macrophages and Its Potential Role in Immunotherapy for Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2021, 22, 4710.	1.8	22
141	Monocytic MDSC mobilization promotes tumor recurrence after liver transplantation via CXCL10/TLR4/MMP14 signaling. Cell Death and Disease, 2021, 12, 489.	2.7	37
142	Nanomedicine Approach to Immunotherapy of Hepatocellular Carcinoma. Journal of Biomedical Nanotechnology, 2021, 17, 771-792.	0.5	1
143	Ligustilide counteracts carcinogenesis and hepatocellular carcinoma cell-evoked macrophage M2 polarization by regulating yes-associatedÂprotein-mediated interleukin-6 secretion. Experimental Biology and Medicine, 2021, 246, 1928-1937.	1.1	10
144	OVOL2 inhibits macrophage M2 polarization by regulating IL-10 transcription, and thus inhibits the tumor metastasis by modulating the tumor microenvironment. Immunology Letters, 2022, 242, 17-26.	1.1	8
145	A Novel Classification of Glioma Subgroup, Which Is Highly Correlated With the Clinical Characteristics and Tumor Tissue Characteristics, Based on the Expression Levels of GÎ ² and GÎ ³ Genes. Frontiers in Oncology, 2021, 11, 685823.	1.3	5
146	Profiles of immune infiltration in the tumor microenvironment of hepatocellular carcinoma. Journal of Gastrointestinal Oncology, 2021, 12, 1152-1163.	0.6	4

#	Article	IF	CITATIONS
147	Macrophage Polarization States in the Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 6995.	1.8	539
148	Blocking the CCL5–CCR5 Axis Using Maraviroc Promotes M1 Polarization of Macrophages Cocultured with Irradiated Hepatoma Cells. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 599-611.	1.8	14
149	Imbalance of TGF-β1/BMP-7 pathways induced by M2-polarized macrophages promotes hepatocellular carcinoma aggressiveness. Molecular Therapy, 2021, 29, 2067-2087.	3.7	42
150	Identification of hub genes associated with prognosis, diagnosis, immune infiltration and therapeutic drug in liver cancer by integrated analysis. Human Genomics, 2021, 15, 39.	1.4	11
151	New Insights in Mechanisms and Therapeutics for Short- and Long-Term Impacts of Hepatic Ischemia Reperfusion Injury Post Liver Transplantation. International Journal of Molecular Sciences, 2021, 22, 8210.	1.8	30
152	Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update. World Journal of Clinical Cases, 2021, 9, 4890-4917.	0.3	15
153	Activation of autophagy reverses gemcitabine-induced immune inhibition of RAW264.7 macrophages by promoting TNF-1±, IL-6 and MHC-II expression. Immunologic Research, 2021, 69, 352-362.	1.3	7
154	M2 macrophage-derived extracellular vesicles facilitate CD8+T cell exhaustion in hepatocellular carcinoma via the miR-21-5p/YOD1/YAP/β-catenin pathway. Cell Death Discovery, 2021, 7, 182.	2.0	42
155	Metabolic reprogramming of immune cells: Shaping the tumor microenvironment in hepatocellular carcinoma. Cancer Medicine, 2021, 10, 6374-6383.	1.3	19
156	Stimuli-Sheddable Nanomedicine Overcoming Pathophysiological Barriers for Potentiating Immunotherapy of Cancer. Journal of Biomedical Nanotechnology, 2021, 17, 1486-1509.	0.5	1
157	Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 719355.	1.3	1
158	Interferon alpha-inducible protein 27 (IFI27) is a prognostic marker for pancreatic cancer based on comprehensive bioinformatics analysis. Bioengineered, 2021, 12, 8515-8528.	1.4	14
159	The Landscape of Immune Cells Indicates Prognosis and Applicability of Checkpoint Therapy in Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 744951.	1.3	9
161	Scavenger Receptors: Novel Roles in the Pathogenesis of Liver Inflammation and Cancer. Seminars in Liver Disease, 2022, 42, 061-076.	1.8	9
162	Macrophage-derived implantable vaccine prevents postsurgical tumor recurrence. Biomaterials, 2021, 278, 121161.	5.7	17
163	Plasmacytoid dendritic cells recruited by HIF-1α/eADO/ADORA1 signaling induce immunosuppression in hepatocellular carcinoma. Cancer Letters, 2021, 522, 80-92.	3.2	37
164	Iron oxide-based enzyme mimic nanocomposite for dual-modality imaging guided chemical phototherapy and anti-tumor immunity against immune cold triple-negative breast cancer. Chemical Engineering Journal, 2021, 425, 130579.	6.6	9
165	The role of tumor-associated macrophages in primary hepatocellular carcinoma and its related targeting therapy. International Journal of Medical Sciences, 2021, 18, 2109-2116.	1.1	28

\sim	T	ON	DEDODT
\sim			

#	Article	IF	CITATIONS
167	A hypoxia-linked gene signature for prognosis prediction and evaluating the immune microenvironment in patients with hepatocellular carcinoma. Translational Cancer Research, 2021, 10, 3979-3992.	0.4	3
168	Lipid Metabolism and Tumor Antigen Presentation. Advances in Experimental Medicine and Biology, 2021, 1316, 169-189.	0.8	4
169	Stromal and Immune Drivers of Hepatocarcinogenesis. Molecular and Translational Medicine, 2019, , 317-331.	0.4	5
170	Role of Tumor Microenvironment in Hepatocellular Carcinoma Resistance. Resistance To Targeted Anti-cancer Therapeutics, 2017, , 45-64.	0.1	1
171	Soluble CD163 (sCD163): Biomarker of Kupffer Cell Activation in Liver Disease. Biomarkers in Disease, 2017, , 321-348.	0.0	1
172	Soluble CD163 (sCD163): Biomarker of Kupffer Cell Activation in Liver Disease. Biomarkers in Disease, 2016, , 1-28.	0.0	2
173	Transplant Oncology in Primary and Metastatic Liver Tumors. Annals of Surgery, 2021, 273, 483-493.	2.1	33
174	Inhibition of Carnitine Palmitoyltransferase 1A Aggravates Fatty Liver Graft Injury via Promoting Mitochondrial Permeability Transition. Transplantation, 2021, 105, 550-560.	0.5	4
175	Aberrant lipid metabolism in hepatocellular carcinoma cells as well as immune microenvironment: A review. Cell Proliferation, 2020, 53, e12772.	2.4	80
176	Recipient Hepatic Tumor-Associated Immunologic Infiltrates Predict Outcomes After Liver Transplantation for Hepatocellular Carcinoma. Annals of Transplantation, 2020, 25, e919414.	0.5	4
177	CDK1, CCNB1, and CCNB2 are Prognostic Biomarkers and Correlated with Immune Infiltration in Hepatocellular Carcinoma. Medical Science Monitor, 2020, 26, e925289.	0.5	65
178	M2a macrophages induce contact-dependent dispersion of carcinoma cell aggregates. Macrophage, 0, ,	1.0	6
179	M2 tumor-associated macrophages produce interleukin-17 to suppress oxaliplatin-induced apoptosis in hepatocellular carcinoma. Oncotarget, 2017, 8, 44465-44476.	0.8	43
180	Early-phase circulating miRNAs predict tumor recurrence and survival of hepatocellular carcinoma patients after liver transplantation. Oncotarget, 2016, 7, 19824-19839.	0.8	33
181	IRE1α inhibition by natural compound genipin on tumour associated macrophages reduces growth of hepatocellular carcinoma. Oncotarget, 2016, 7, 43792-43804.	0.8	24
182	Tumorâ€associated macrophages as treatment targets in glioma. Brain Science Advances, 2020, 6, 306-323.	0.3	9
183	Macrophage Phenotype and Function in Liver Disorder. Frontiers in Immunology, 2019, 10, 3112.	2.2	116
184	Tumor‑associated macrophages in lung cancer: Friendly or evil? (Review). Molecular Medicine Reports, 2020, 22, 4107-4115.	1.1	35

#	Article	IF	CITATIONS
185	Innate immune cells and their interaction with TÂcells in hepatocellular carcinoma (Review). Oncology Letters, 2020, 21, 57.	0.8	11
186	Inflammatory Microenvironment: Problems of Liver Tumor Cells and Liver Cancer Stem Cells. Advances in Clinical Medicine, 2021, 11, 4591-4603.	0.0	0
187	Pulmonary macrophages and their different roles in health and disease. International Journal of Biochemistry and Cell Biology, 2021, 141, 106095.	1.2	12
188	miR-660-5p-loaded M2 macrophages-derived exosomes augment hepatocellular carcinoma development through regulating KLF3. International Immunopharmacology, 2021, 101, 108157.	1.7	22
189	Mechanisms of Invasion and Metastasis: Role of the Liver Cancer Microenvironment. , 2016, , 1-24.		0
190	Mechanisms of Invasion and Metastasis: Role of the Stromal Liver Cancer Microenvironment, Epithelial-Mesenchymal Transition, and the Tumor Vascular Bed. , 2017, , 3375-3398.		0
191	Modulating Immune Responses to Overcome Resistance in Hepatocellular Carcinoma. Resistance To Targeted Anti-cancer Therapeutics, 2017, , 25-43.	0.1	0
192	Kupffer Cells Regulate Natural Killer Cells Via the NK group 2, Member D (NKG2D)/Retinoic Acid Early Inducible-1 (RAE-1) Interaction and Cytokines in a Primary Biliary Cholangitis Mouse Model. Medical Science Monitor, 2020, 26, e923726.	0.5	10
193	Liver Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1296, 227-241.	0.8	8
194	In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers, 2021, 13, 5583.	1.7	18
195	LC3-associated phagocytosis in bone marrow macrophages suppresses acute myeloid leukemia progression through STING activation. Journal of Clinical Investigation, 2022, 132, .	3.9	26
196	Macrophages-aPKCÉ©-CCL5 Feedback Loop Modulates the Progression and Chemoresistance in Cholangiocarcinoma. Journal of Experimental and Clinical Cancer Research, 2022, 41, 23.	3.5	27
197	Injectable Hydrogel as a Unique Platform for Antitumor Therapy Targeting Immunosuppressive Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 832942.	2.2	18
198	Tumorâ€derived exosomes induce immunosuppressive macrophages to foster intrahepatic cholangiocarcinoma progression. Hepatology, 2022, 76, 982-999.	3.6	37
199	SLAMF6/Ly108 promotes the development of hepatocellular carcinoma via facilitating macrophage M2 polarization. Oncology Letters, 2022, 23, 83.	0.8	9
200	Chemotherapeutic Drug-Regulated Cytokines Might Influence Therapeutic Efficacy in HCC. International Journal of Molecular Sciences, 2021, 22, 13627.	1.8	16
201	Functional Roles of Chemokine Receptor CCR2 and Its Ligands in Liver Disease. Frontiers in Immunology, 2022, 13, 812431.	2.2	38
202	OIT3 mediates macrophage polarization and facilitates hepatocellular carcinoma progression. Cancer Immunology, Immunotherapy, 2022, 71, 2677-2689.	2.0	7

#	Article	IF	CITATIONS
203	Therapeutic Approaches Targeting Proteins in Tumor-Associated Macrophages and Their Applications in Cancers. Biomolecules, 2022, 12, 392.	1.8	6
204	Drug delivery strategy in hepatocellular carcinoma therapy. Cell Communication and Signaling, 2022, 20, 26.	2.7	21
205	The Transcription of ZIP9 Is Associated With the Macrophage Polarization and the Pathogenesis of Hepatocellular Carcinoma. Frontiers in Immunology, 2022, 13, 725595.	2.2	15
206	Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis. Journal of Hepatology, 2022, 77, 453-466.	1.8	50
207	An antigen self-assembled and dendritic cell-targeted nanovaccine for enhanced immunity against cancer. Acta Pharmaceutica Sinica B, 2022, , .	5.7	0
208	Proteasome inhibitor immunotherapy for the epithelial to mesenchymal transition: assessing the A549 lung cancer cell microenvironment and the role of M1, M2a and M2c â€`hydrocortisone-polarised' macrophages. Molecular Biology Reports, 2022, 49, 4777-4793.	1.0	4
209	Emodin suppresses hepatocellular carcinoma growth by regulating macrophage polarization via microRNA-26a/transforming growth factor beta 1/protein kinase B. Bioengineered, 2022, 13, 9549-9564.	1.4	8
210	Emerging immunotherapy for HCC: A guide for hepatologists. Hepatology, 2022, 75, 1604-1626.	3.6	97
211	Role of Intrahepatic Regional Immunity in Post-Transplant Cancer Recurrence. Engineering, 2022, 10, 57-64.	3.2	4
212	Cell Death in Hepatocellular Carcinoma: Pathogenesis and Therapeutic Opportunities. Cancers, 2022, 14, 48.	1.7	30
213	Macrophages play a role in inflammatory transformation of colorectal cancer. World Journal of Gastrointestinal Oncology, 2021, 13, 2013-2028.	0.8	6
214	MicroRNA-23a-3p influences the molecular mechanism of gastric cancer cells via CCL22/PI3K/Akt axis. Bioengineered, 2021, 12, 11277-11287.	1.4	6
225	Macrophages as key regulators of liver health and disease. International Review of Cell and Molecular Biology, 2022, , 143-212.	1.6	18
226	The Somatic Mutational Landscape and Role of ARID1A Gene in Hepatocellular Carcinoma. SSRN Electronic Journal, 0, , .	0.4	0
227	Scavenger receptor A in immunity and autoimmune diseases: Compelling evidence for targeted therapy. Expert Opinion on Therapeutic Targets, 2022, 26, 461-477.	1.5	1
228	Immune cell infiltration and immunotherapy in hepatocellular carcinoma. Mathematical Biosciences and Engineering, 2022, 19, 7178-7200.	1.0	2
229	Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm, 2022, 3, .	3.1	43
230	Combination therapy using microwave ablation and d-mannose-chelated iron oxide nanoparticles inhibits hepatocellular carcinoma progression. Acta Pharmaceutica Sinica B, 2022, 12, 3475-3485.	5.7	15

# 231	ARTICLE A pyroptosis-related gene signature predicts prognosis and immune microenvironment in hepatocellular carcinoma. World Journal of Surgical Oncology, 2022, 20, .	IF 0.8	CITATIONS 2
232	Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules, 2022, 12, 850.	1.8	17
233	Secretome of senescent hepatoma cells modulate immune cell fate by macrophage polarization and neutrophil extracellular traps formation. , 2022, 39, .		4
234	Msr1 Characterized by Chromatin Accessibility Mediates M2 Macrophages Polarization to Promote Gastric Cancer Progression. SSRN Electronic Journal, 0, , .	0.4	0
235	Crosstalk between angiogenesis and immune regulation in the tumor microenvironment. Archives of Pharmacal Research, 2022, 45, 401-416.	2.7	32
236	Low MARCO Expression is Associated with Poor Survival in Patients with Hepatocellular Carcinoma Following Liver Transplantation. Cancer Management and Research, 0, Volume 14, 1935-1944.	0.9	1
237	Bioinformatics Analysis for Constructing a Six-Immune-Related Long Noncoding RNA Signature as a Prognostic Model of Hepatocellular Carcinoma. BioMed Research International, 2022, 2022, 1-15.	0.9	0
238	Myeloid-Derived Suppressor Cells and CD68+CD163+M2-Like Macrophages as Therapeutic Response Biomarkers Are Associated with Plasma Inflammatory Cytokines: A Preliminary Study for Non-Small Cell Lung Cancer Patients in Radiotherapy. Journal of Immunology Research, 2022, 2022, 1-16.	0.9	1
239	Identifying a Novel Endoplasmic Reticulum-Related Prognostic Model for Hepatocellular Carcinomas. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-24.	1.9	9
240	Exploring prognostic value and regulation network of PPP1R1A in hepatocellular carcinoma. Human Cell, 2022, 35, 1856-1868.	1.2	0
241	The role of macrophage <scp>TAM</scp> receptor family in the acuteâ€ŧo hronic progression of liver disease: From friend to foe?. Liver International, 2022, 42, 2620-2631.	1.9	7
242	Tumor-associated macrophage (TAM)-derived CCL22 induces FAK addiction in esophageal squamous cell carcinoma (ESCC). , 2022, 19, 1054-1066.		19
243	Exploring pathological signatures for predicting the recurrence of early-stage hepatocellular carcinoma based on deepÂlearning. Frontiers in Oncology, 0, 12, .	1.3	9
244	Inflammation-targeted nanomedicine against brain cancer: From design strategies to future developments. Seminars in Cancer Biology, 2022, 86, 101-116.	4.3	4
245	MSR1 characterized by chromatin accessibility mediates M2 macrophage polarization to promote gastric cancer progression. International Immunopharmacology, 2022, 112, 109217.	1.7	10
246	The immunosuppressive tumor microenvironment in hepatocellular carcinoma-current situation and outlook. Molecular Immunology, 2022, 151, 218-230.	1.0	7
247	Metformin and histone deacetylase inhibitor based anti-inflammatory nanoplatform for epithelial-mesenchymal transition suppression and metastatic tumor treatment. Journal of Nanobiotechnology, 2022, 20, .	4.2	8
248	Targeting lipid metabolism reprogramming of immunocytes in response to the tumor microenvironment stressor: A potential approach for tumor therapy. Frontiers in Immunology, 0, 13,	2.2	7

#	Article	IF	CITATIONS
250	Association of peripheral basophils with tumor M2 macrophage infiltration and outcomes of the anti-PD-1 inhibitor plus chemotherapy combination in advanced gastric cancer. Journal of Translational Medicine, 2022, 20, .	1.8	9
251	Predicting Prognosis of Hepatocellular Carcinoma Patients Based on the Expression Signatures of Mitophagy Genes. Disease Markers, 2022, 2022, 1-17.	0.6	0
252	Integrated Analysis of C16orf54 as a Potential Prognostic, Diagnostic, and Immune Marker across Pan-Cancer. Disease Markers, 2022, 2022, 1-25.	0.6	3
253	Tumorâ€associated macrophages in liver cancer: From mechanisms to therapy. Cancer Communications, 2022, 42, 1112-1140.	3.7	75
254	Immunotherapy for nonalcoholic fatty liver disease-related hepatocellular carcinoma: Lights and shadows. World Journal of Gastrointestinal Oncology, 2022, 14, 1622-1636.	0.8	6
255	Multi-perspective comparison of the immune microenvironment of primary colorectal cancer and liver metastases. Journal of Translational Medicine, 2022, 20, .	1.8	5
256	Development and verification of the glycolysis-associated and immune-related prognosis signature for hepatocellular carcinoma. Frontiers in Genetics, 0, 13, .	1.1	1
257	Immunotherapy for hepatocellular carcinoma: A promising therapeutic option for advanced disease. World Journal of Hepatology, 0, 14, 1862-1874.	0.8	5
259	Understanding the Immunoenvironment of Primary Liver Cancer: A Histopathology Perspective. Journal of Hepatocellular Carcinoma, 0, Volume 9, 1149-1169.	1.8	3
260	Overcoming the therapeutic resistance of hepatomas by targeting the tumor microenvironment. Frontiers in Oncology, 0, 12, .	1.3	1
261	Single-cell sequencing reveals the landscape of the tumor microenvironment in a skeletal undifferentiated pleomorphic sarcoma patient. Frontiers in Immunology, 0, 13, .	2.2	1
262	Regulation of epithelial-mesenchymal transition by tumor microenvironmental signals and its implication in cancer therapeutics. Seminars in Cancer Biology, 2023, 88, 46-66.	4.3	23
263	Immune checkpoint inhibitor resistance in hepatocellular carcinoma. Cancer Letters, 2023, 555, 216038.	3.2	23
264	Emerging role of aging in the progression of NAFLD to HCC. Ageing Research Reviews, 2023, 84, 101833.	5.0	21
266	DDX1 is a prognostic biomarker and correlates with immune infiltrations in hepatocellular carcinoma. BMC Immunology, 2022, 23, .	0.9	3
267	Activated Hepatic Stellate Cells in Hepatocellular Carcinoma: Their Role as a Potential Target for Future Therapies. International Journal of Molecular Sciences, 2022, 23, 15292.	1.8	6
268	Infiltration of LPAR5+ macrophages in osteosarcoma tumor microenvironment predicts better outcomes. Frontiers in Immunology, 0, 13, .	2.2	2
269	Establishing a signature based on immunogenic cell death-related gene pairs to predict immunotherapy and survival outcomes of patients with hepatocellular carcinoma. Aging, 0, , .	1.4	2

#	Article	IF	CITATIONS
270	Roles of IL-7R Induced by Interactions between Cancer Cells and Macrophages in the Progression of Esophageal Squamous Cell Carcinoma. Cancers, 2023, 15, 394.	1.7	5
271	Role of <scp>NCF2</scp> as a potential prognostic factor and immune infiltration indicator in hepatocellular carcinoma. Cancer Medicine, 2023, 12, 8991-9004.	1.3	3
273	The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment. Biomedicine and Pharmacotherapy, 2023, 161, 114504.	2.5	5
274	Macrophage CD5L is a target for cancer immunotherapy. EBioMedicine, 2023, 91, 104555.	2.7	4
275	The Roles of Epigenetic Regulation and the Tumor Microenvironment in the Mechanism of Resistance to Systemic Therapy in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2023, 24, 2805.	1.8	6
276	Tumorâ^'associated macrophage polarization in the inflammatory tumor microenvironment. Frontiers in Oncology, 0, 13, .	1.3	14
277	Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Frontiers in Immunology, 0, 14, .	2.2	19
278	The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancer—Challenges and opportunities. Frontiers in Molecular Biosciences, 0, 10, .	1.6	4
279	Tumor-associated macrophage-derived GDNF promotes gastric cancer liver metastasis via a GFRA1-modulated autophagy flux. Cellular Oncology (Dordrecht), 2023, 46, 315-330.	2.1	4
280	Mechanistic Insight and Clinical Implications of Ischemia/Reperfusion Injury Post Liver Transplantation. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 1463-1474.	2.3	6
281	<scp>RHBDF2</scp> is correlated with immune infiltrates in hepatocellular carcinoma and may have potential as a biomarker. FEBS Open Bio, 2023, 13, 881-897.	1.0	0