The 6Â year incidence of diabetes-associated autoantibe the TEDDY study

Diabetologia 58, 980-987

DOI: 10.1007/s00125-015-3514-y

Citation Report

#	Article	IF	CITATIONS
1	Elevated Serum GAD65 and GAD65-GADA Immune Complexes in Stiff Person Syndrome. Scientific Reports, 2015, 5, 11196.	1.6	5
2	Screening for T1D risk to reduce DKA is not economically viable. Pediatric Diabetes, 2015, 16, 565-572.	1.2	25
3	General population screening for type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2015, 22, 270-276.	1.2	39
4	Evaluation of Candidate Biomarkers of Type 1 Diabetes via the Core for Assay Validation. Biomarker Insights, 2015, 10s4, BMI.S29697.	1.0	11
5	Predicting Type 1 Diabetes Using Biomarkers. Diabetes Care, 2015, 38, 989-996.	4.3	136
6	Infant Feeding and Timing of Complementary Foods in the Development of Type 1 Diabetes. Current Diabetes Reports, 2015, 15, 62.	1.7	20
7	Compromised immune response in infants at risk for type 1 diabetes born by Caesarean Section. Clinical Immunology, 2015, 160, 282-285.	1.4	12
8	Staging Presymptomatic Type 1 Diabetes: A Scientific Statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care, 2015, 38, 1964-1974.	4.3	690
9	Islet autoantibody phenotypes and incidence in children at increased risk for type 1 diabetes. Diabetologia, 2015, 58, 2317-2323.	2.9	71
10	Non-HLA type 1 diabetes genes modulate disease risk together with HLA-DQ and islet autoantibodies. Genes and Immunity, 2015, 16, 541-551.	2.2	15
11	Type 1 Diabetes. , 2016, , 159-167.		9
12	Feasibility of screening for T1D and celiac disease in a pediatric clinic setting. Pediatric Diabetes, 2016, 17, 441-448.	1.2	19
13	Preclinical disease and preventive strategies in IBD: perspectives, challenges and opportunities. Gut, 2016, 65, 1061-1069.	6.1	68
15	Incomplete immune response to coxsackie B viruses associates with early autoimmunity against insulin. Scientific Reports, 2016, 6, 32899.	1.6	35
16	Viral infections in type 1 diabetes mellitus $\hat{a} \in \text{``}$ why the \hat{l}^2 cells?. Nature Reviews Endocrinology, 2016, 12, 263-273.	4.3	232
17	Prognostic Classification Factors Associated With Development of Multiple Autoantibodies, Dysglycemia, and Type 1 Diabetes—A Recursive Partitioning Analysis. Diabetes Care, 2016, 39, 1036-1044.	4.3	38
18	Type 1 Diabetes Genetic Risk Score: A Novel Tool to Discriminate Monogenic and Type 1 Diabetes. Diabetes, 2016, 65, 2094-2099.	0.3	146
19	Primary prevention of beta-cell autoimmunity and type 1 diabetes â€" The Global Platform for the Prevention of Autoimmune Diabetes (GPPAD) perspectives. Molecular Metabolism, 2016, 5, 255-262.	3.0	54

#	Article	IF	CITATIONS
20	Gut Immunity and Type 1 Diabetes: a Mélange of Microbes, Diet, and Host Interactions?. Current Diabetes Reports, 2016, 16, 60.	1.7	13
21	Islet Autoantibodies. Current Diabetes Reports, 2016, 16, 53.	1.7	76
22	Capillary blood islet autoantibody screening for identifying pre-type 1 diabetes in the general population: design and initial results of the Fr1da study. BMJ Open, 2016, 6, e011144.	0.8	89
23	Dysregulation of glucose metabolism in preclinical type 1 diabetes. Pediatric Diabetes, 2016, 17, 25-30.	1.2	27
24	Immune Intervention and Preservation of Pancreatic Beta Cell Function in Type 1 Diabetes. Current Diabetes Reports, 2016, 16, 97.	1.7	20
25	Environmental factors in the etiology of type 1 diabetes, celiac disease, and narcolepsy. Pediatric Diabetes, 2016, 17, 65-72.	1.2	19
26	Metabolomic Biomarkers in the Progression to Type 1 Diabetes. Current Diabetes Reports, 2016, 16, 127.	1.7	11
27	Type 1 Diabetes Prevention: A Goal Dependent on Accepting a Diagnosis of an Asymptomatic Disease. Diabetes, 2016, 65, 3233-3239.	0.3	20
28	Reversion of \hat{I}^2 -Cell Autoimmunity Changes Risk of Type 1 Diabetes: TEDDY Study. Diabetes Care, 2016, 39, 1535-1542.	4.3	56
29	Environmental risk factors for type 1 diabetes. Lancet, The, 2016, 387, 2340-2348.	6.3	501
30	Genetic risk factors for type 1 diabetes. Lancet, The, 2016, 387, 2331-2339.	6.3	389
31	Maintenance of peripheral tolerance to islet antigens. Journal of Autoimmunity, 2016, 72, 118-125.	3.0	7
32	Next-Generation Sequencing Reveals That <i>HLA-DRB3</i> , <i>-DRB4</i> , and <i-drb5< i=""> May Be Associated With Islet Autoantibodies and Risk for Childhood Type 1 Diabetes. Diabetes, 2016, 65, 710-718.</i-drb5<>	0.3	58
33	Immune recognition and response to the intestinal microbiome in type 1 diabetes. Journal of Autoimmunity, 2016, 71, 10-18.	3.0	52
34	The role of the intestinal microbiota in type 1 diabetes mellitus. Nature Reviews Endocrinology, 2016, 12, 154-167.	4.3	335
35	The implications of autoantibodies to a single islet antigen in relatives with normal glucose tolerance: development of other autoantibodies and progression to type 1 diabetes. Diabetologia, 2016, 59, 542-549.	2.9	50
36	T cells in type 1 diabetes: Instructors, regulators and effectors: A comprehensive review. Journal of Autoimmunity, 2016, 66, 7-16.	3.0	54
37	First Infant Formula Type and Risk of Islet Autoimmunity in The Environmental Determinants of Diabetes in the Young (TEDDY) Study. Diabetes Care, 2017, 40, 398-404.	4.3	35

#	Article	IF	Citations
38	The Influence of the Microbiome on Type 1 Diabetes. Journal of Immunology, 2017, 198, 590-595.	0.4	112
39	A divergent population of autoantigen-responsive CD4 $<$ sup $>$ + $<$ /sup $>$ T cells in infants prior to \hat{l}^2 cell autoimmunity. Science Translational Medicine, 2017, 9, .	5.8	67
40	Genetics and its potential to improve type 1 diabetes care. Current Opinion in Endocrinology, Diabetes and Obesity, 2017, 24, 279-284.	1.2	17
41	T1D Autoantibodies. Current Opinion in Endocrinology, Diabetes and Obesity, 2017, 24, 285-291.	1.2	17
42	Late-onset islet autoimmunity in childhood: the Diabetes Autoimmunity Study in the Young (DAISY). Diabetologia, 2017, 60, 998-1006.	2.9	18
43	Type 1 diabetes mellitus. Nature Reviews Disease Primers, 2017, 3, 17016.	18.1	790
44	C1858T Polymorphism of Protein Tyrosine Phosphatase Non-receptor Type 22 (PTPN22): an eligible target for prevention of type 1 diabetes?. Expert Review of Clinical Immunology, 2017, 13, 189-196.	1.3	10
45	Longitudinal monitoring of gene expression in ultra-low-volume blood samples self-collected at home. Clinical and Experimental Immunology, 2017, 188, 226-233.	1.1	13
46	An Increased Diagnostic Sensitivity of Truncated GAD65 Autoantibodies in Type 1 Diabetes May Be Related to HLA-DQ8. Diabetes, 2017, 66, 735-740.	0.3	6
47	Kinin receptors: Key regulators of autoimmunity. Autoimmunity Reviews, 2017, 16, 192-207.	2.5	45
48	Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes, 2017, 66, 241-255.	0.3	454
49	Co-occurrence of Type 1 Diabetes and Celiac Disease Autoimmunity. Pediatrics, 2017, 140, .	1.0	70
50	Association Between Early-Life Antibiotic Use and the Risk of Islet or Celiac Disease Autoimmunity. JAMA Pediatrics, 2017, 171, 1217.	3.3	79
51	Joint modeling of longitudinal autoantibody patterns and progression to type 1 diabetes: results from the TEDDY study. Acta Diabetologica, 2017, 54, 1009-1017.	1.2	24
52	The Influence of Type 1 Diabetes Genetic Susceptibility Regions, Age, Sex, and Family History on the Progression From Multiple Autoantibodies to Type 1 Diabetes: A TEDDY Study Report. Diabetes, 2017, 66, 3122-3129.	0.3	93
53	Modulation of Type 1 Diabetes Risk by the Intestinal Microbiome. Current Diabetes Reports, 2017, 17, 105.	1.7	84
54	Building and validating a prediction model for paediatric type 1 diabetes risk using next generation targeted sequencing of class II HLA genes. Diabetes/Metabolism Research and Reviews, 2017, 33, e2921.	1.7	2
55	Respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity: the TEDDY study. Diabetologia, 2017, 60, 1931-1940.	2.9	112

#	ARTICLE	IF	Citations
57	Genetic and Environmental Interactions Modify the Risk of Diabetes-Related Autoimmunity by 6 Years of Age: The TEDDY Study. Diabetes Care, 2017, 40, 1194-1202.	4.3	138
58	Early prediction of autoimmune (type 1) diabetes. Diabetologia, 2017, 60, 1370-1381.	2.9	136
59	Metabolically inactive insulin: friend or foe in the prevention of autoimmune diabetes?. Diabetologia, 2017, 60, 1382-1384.	2.9	1
60	My Child Is Islet Autoantibody Positive: Impact on Parental Anxiety. Diabetes Care, 2017, 40, 1167-1172.	4.3	25
61	Impact of Age and Antibody Type on Progression From Single to Multiple Autoantibodies in Type 1 Diabetes Relatives. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2881-2886.	1.8	35
62	Peptide serum markers in islet autoantibody-positive children. Diabetologia, 2017, 60, 287-295.	2.9	24
63	Early life origin of type 1 diabetes. Seminars in Immunopathology, 2017, 39, 653-667.	2.8	23
65	Type 1 Diabetes: Disease Stratification. Biomedicine Hub, 2017, 2, 1-16.	0.4	10
66	Conclusions and Future Trends. , 2017, , 199-212.		0
67	Coxsackievirus B1 infections are associated with the initiation of insulin-driven autoimmunity that progresses to type 1 diabetes. Diabetologia, 2018, 61, 1193-1202.	2.9	95
68	Genetics of type 1 diabetes. Current Opinion in Genetics and Development, 2018, 50, 7-16.	1.5	58
69	Lack of Association Between Maternal or Neonatal Vitamin D Status and Risk of Childhood Type 1 Diabetes: A Scandinavian Case-Cohort Study. American Journal of Epidemiology, 2018, 187, 1174-1181.	1.6	31
70	A novel LIPS assay for insulin autoantibodies. Acta Diabetologica, 2018, 55, 263-270.	1.2	36
71	Identification of non-HLA genes associated with development of islet autoimmunity and type 1 diabetes in the prospective TEDDY cohort. Journal of Autoimmunity, 2018, 89, 90-100.	3.0	46
72	Coeliac disease in children with type 1 diabetes. The Lancet Child and Adolescent Health, 2018, 2, 133-143.	2.7	28
73	Aspectos clÃnicos y diagnósticos de la diabetes infantil. EMC Pediatria, 2018, 53, 1-22.	0.0	0
74	Type 1 Diabetes TrialNet: A Multifaceted Approach to Bringing Disease-Modifying Therapy to Clinical Use in Type 1 Diabetes. Diabetes Care, 2018, 41, 653-661.	4.3	55
75	Electrochemiluminescence Assays for Human Islet Autoantibodies. Journal of Visualized Experiments, 2018, , .	0.2	4

#	Article	IF	Citations
76	Primary islet autoantibody at initial seroconversion and autoantibodies at diagnosis of type 1 diabetes as markers of disease heterogeneity. Pediatric Diabetes, 2018, 19, 284-292.	1.2	39
77	Pathways governing development of stem cellâ€derived pancreatic β cells: lessons from embryogenesis. Biological Reviews, 2018, 93, 364-389.	4.7	37
78	Hyperglycemia induced reactive species trigger structural changes in human serum albumin of type 1 diabetic subjects. International Journal of Biological Macromolecules, 2018, 107, 2141-2149.	3.6	7
79	Gestational respiratory infections interacting with offspring HLA and CTLA-4 modifies incident \hat{l}^2 -cell autoantibodies. Journal of Autoimmunity, 2018, 86, 93-103.	3.0	22
80	Allele-specific methylation of type 1 diabetes susceptibility genes. Journal of Autoimmunity, $2018,89,63-74$.	3.0	27
81	Understanding childhood diabetes mellitus: new pathophysiological aspects. Journal of Inherited Metabolic Disease, 2018, 41, 19-27.	1.7	10
82	Safety and efficacy of autoantigenâ€specific therapy with 2 doses of alumâ€formulated glutamate decarboxylase in children with multiple islet autoantibodies and risk for type 1 diabetes: A randomized clinical trial. Pediatric Diabetes, 2018, 19, 410-419.	1,2	45
83	Pandemrix \hat{A}^{\otimes} vaccination is not associated with increased risk of islet autoimmunity or type 1 diabetes in the TEDDY study children. Diabetologia, 2018, 61, 193-202.	2.9	18
85	Maternal dietary supplement use and development of islet autoimmunity in the offspring: TEDDY study. Pediatric Diabetes, 2019, 20, 86-92.	1.2	17
86	Childhood thyroid autoimmunity and relation to islet autoantibodies in children at risk for type 1 diabetes in the diabetes prediction in skåne (DiPiS) study. Autoimmunity, 2018, 51, 228-237.	1.2	18
87	Pancreas Pathology During the Natural History of Type 1 Diabetes. Current Diabetes Reports, 2018, 18, 124.	1.7	39
88	Transcription Factor 7-Like 2 (<i>TCF7L2</i>) Gene Polymorphism and Progression From Single to Multiple Autoantibody Positivity in Individuals at Risk for Type 1 Diabetes. Diabetes Care, 2018, 41, 2480-2486.	4.3	23
90	Lifestyle Factors Affecting the Gut Microbiota's Relationship with Type 1 Diabetes. Current Diabetes Reports, 2018, 18, 111.	1.7	19
91	The Environmental Determinants of Diabetes in the Young (TEDDY) Study: 2018 Update. Current Diabetes Reports, 2018, 18, 136.	1.7	77
92	Dietary Cows' Milk Protein A1 Beta-Casein Increases the Incidence of T1D in NOD Mice. Nutrients, 2018, 10, 1291.	1.7	30
93	Enteroviral Infections as a Trigger for Type 1 Diabetes. Current Diabetes Reports, 2018, 18, 106.	1.7	18
94	ISPAD Clinical Practice Consensus Guidelines 2018: Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatric Diabetes, 2018, 19, 7-19.	1.2	424
95	Conclusions and Future Trends. , 2018, , 221-227.		0

#	Article	IF	CITATIONS
96	Immune Mechanisms and Pathways Targeted in Type 1 Diabetes. Current Diabetes Reports, 2018, 18, 90.	1.7	29
97	Strength in Numbers: Opportunities for Enhancing the Development of Effective Treatments for Type 1 Diabetes—The TrialNet Experience. Diabetes, 2018, 67, 1216-1225.	0.3	29
99	Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: A prospective study in children. PLoS Medicine, 2018, 15, e1002548.	3.9	101
100	A cell-based assay for the detection of pathogenic anti-voltage-gated calcium channel autoantibodies in immunoglobulin G from patients with type 1 diabetes. Journal of Immunological Methods, 2018, 460, 79-86.	0.6	0
101	Association of protein tyrosine phosphatase non-receptor type 22 gene functional variant C1858T, HLA-DQ/DR genotypes and autoantibodies with susceptibility to type-1 diabetes mellitus in Kuwaiti Arabs. PLoS ONE, 2018, 13, e0198652.	1.1	8
102	Understanding Pre-Type 1 Diabetes: The Key to Prevention. Frontiers in Endocrinology, 2018, 9, 70.	1.5	25
103	CTLA-4 +49 G/A, a functional T1D risk SNP, affects CTLA-4 level in Treg subsets and IA-2A positivity, but not beta-cell function. Scientific Reports, 2018, 8, 10074.	1.6	21
104	Influence of early-life parental severe life events on the risk of type 1 diabetes in children: the DiPiS study. Acta Diabetologica, 2018, 55, 797-804.	1.2	9
105	Reduction in White Blood Cell, Neutrophil, and Red Blood Cell Counts Related to Sex, HLA, and Islet Autoantibodies in Swedish TEDDY Children at Increased Risk for Type 1 Diabetes. Diabetes, 2018, 67, 2329-2336.	0.3	15
106	Prospects for primary prevention of type 1 diabetes by restoring a disappearing microbe. Pediatric Diabetes, 2018, 19, 1400-1406.	1.2	39
107	Class II HLA Genotype Association With First-Phase Insulin Response Is Explained by Islet Autoantibodies. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 2870-2878.	1.8	7
108	Type 1 diabetes. Lancet, The, 2018, 391, 2449-2462.	6.3	888
109	Common ground: shared risk factors for type 1 diabetes and celiac disease. Nature Immunology, 2018, 19, 685-695.	7.0	33
110	Identical and Nonidentical Twins: Risk and Factors Involved in Development of Islet Autoimmunity and Type 1 Diabetes. Diabetes Care, 2019, 42, 192-199.	4.3	27
111	Harnessing CXCL12 signaling to protect and preserve functional \hat{l}^2 -cell mass and for cell replacement in type 1 diabetes., 2019, 193, 63-74.		18
112	Birth and coming of age of islet autoantibodies. Clinical and Experimental Immunology, 2019, 198, 294-305.	1.1	35
113	Landmark models to define the age-adjusted risk of developing stage $1\ \rm type\ 1$ diabetes across childhood and adolescence. BMC Medicine, 2019, 17, 125.	2.3	10
114	Age, HLA, and Sex Define a Marked Risk of Organ-Specific Autoimmunity in First-Degree Relatives of Patients With Type 1 Diabetes. Diabetes Care, 2019, 42, 1684-1691.	4.3	12

#	Article	IF	CITATIONS
115	Characteristics of Slow Progression to Type 1 Diabetes in Children With Increased HLA-Conferred Disease Risk. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5585-5594.	1.8	11
116	Chaperones may cause the focus of diabetes autoimmunity on distinct (pro)insulin peptides. Journal of Autoimmunity, 2019, 105, 102304.	3.0	6
117	Oral insulin therapy for primary prevention of type 1 diabetes in infants with high genetic risk: the GPPAD-POInT (global platform for the prevention of autoimmune diabetes primary oral insulin trial) study protocol. BMJ Open, 2019, 9, e028578.	0.8	62
118	Identification of infants with increased type 1 diabetes genetic risk for enrollment into Primary Prevention Trialsâ€"GPPADâ€02 study design and first results. Pediatric Diabetes, 2019, 20, 720-727.	1.2	31
119	Proinsulin peptide promotes autoimmune diabetes in a novel HLA-DR3-DQ2-transgenic murine model of spontaneous disease. Diabetologia, 2019, 62, 2252-2261.	2.9	7
120	Metabolite-related dietary patterns and the development of islet autoimmunity. Scientific Reports, 2019, 9, 14819.	1.6	34
121	What Have Slow Progressors Taught Us About T1Dâ€"Mind the Gap!. Current Diabetes Reports, 2019, 19, 99.	1.7	3
122	The heterogeneous pathogenesis of type 1 diabetes mellitus. Nature Reviews Endocrinology, 2019, 15, 635-650.	4.3	249
123	New Insights into Immunotherapy Strategies for Treating Autoimmune Diabetes. International Journal of Molecular Sciences, 2019, 20, 4789.	1.8	24
124	Oral delivery of single-chain insulin (SCI-59) analog by bacterium-like particles (BLPs) induces oral tolerance and prevents autoimmune diabetes in NOD mice. Immunology Letters, 2019, 214, 37-44.	1.1	15
125	Association of HLA-dependent islet autoimmunity with systemic antibody responses to intestinal commensal bacteria in children. Science Immunology, 2019, 4, .	5.6	49
126	Genetic Contribution to the Divergence in Type 1 Diabetes Risk Between Children From the General Population and Children From Affected Families. Diabetes, 2019, 68, 847-857.	0.3	22
127	Common patterns of gene regulation associated with Cesarean section and the development of islet autoimmunity $\hat{a} \in \text{``indications of immune cell activation. Scientific Reports, 2019, 9, 6250.}$	1.6	4
128	Determining Antigen Specificity of Human Islet Infiltrating T Cells in Type 1 Diabetes. Frontiers in Immunology, 2019, 10, 365.	2.2	9
129	Adeno-associated virus neutralising antibodies in type 1 diabetes mellitus. Gene Therapy, 2019, 26, 250-263.	2.3	3
130	Predicting Islet Cell Autoimmunity and Type 1 Diabetes: An 8-Year TEDDY Study Progress Report. Diabetes Care, 2019, 42, 1051-1060.	4.3	7 5
131	Prevalence of diabetes and presence of autoantibodies against zinc transporter 8 and glutamic decarboxylase at diagnosis and at follow up of Graves' disease. Endocrine, 2019, 64, 48-54.	1.1	9
132	Pathophysiology, Etiology, Epidemiology of Type 1 Diabetes and Computational Approaches for Immune Targets and Therapy. Critical Reviews in Immunology, 2019, 39, 239-265.	1.0	9

#	Article	IF	CITATIONS
133	Rationally designed small molecules to prevent type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2019, 26, 90-95.	1.2	5
134	Tetraspanin 7 autoantibodies predict progressive decline of beta cell function in individuals with LADA. Diabetologia, 2019, 62, 399-407.	2.9	19
135	A multi-epitope DNA vaccine enables a broad engagement of diabetogenic T cells for tolerance in Type 1 diabetes. Journal of Autoimmunity, 2019, 98, 13-23.	3.0	20
136	Disease-Modifying Therapies in Type 1 Diabetes: A Look into the Future of Diabetes Practice. Drugs, 2019, 79, 43-61.	4.9	37
137	Time-Resolved Autoantibody Profiling Facilitates Stratification of Preclinical Type 1 Diabetes in Children. Diabetes, 2019, 68, 119-130.	0.3	28
138	A stochastic epigenetic Mendelian oligogenic disease model for type 1 diabetes. Journal of Autoimmunity, 2019, 96, 123-133.	3.0	4
139	Progression from islet autoimmunity to clinical type 1 diabetes is influenced by genetic factors: results from the prospective TEDDY study. Journal of Medical Genetics, 2019, 56, 602-605.	1.5	22
140	Reduced display of conformational epitopes in the Nâ€terminal truncated <scp>GAD</scp> 65 isoform: relevance for people with stiff person syndrome or <scp>DQ</scp> 8/8â€positive Type 1 diabetes mellitus. Diabetic Medicine, 2019, 36, 1375-1383.	1.2	3
141	Antibodies in the Diagnosis, Prognosis, and Prediction of Psychotic Disorders. Schizophrenia Bulletin, 2019, 45, 233-246.	2.3	28
142	Harmonization of immunoassays for biomarkers in diabetes mellitus. Biotechnology Advances, 2020, 39, 107359.	6.0	34
143	Autoimmune (Type 1) Diabetes. , 2020, , 769-787.		4
144	Plasma ascorbic acid and the risk of islet autoimmunity and type 1 diabetes: the TEDDY study. Diabetologia, 2020, 63, 278-286.	2.9	18
145	Autoimmune thyroid disease and type 1 diabetes mellitus: same pathogenesis; new perspective?. Therapeutic Advances in Endocrinology and Metabolism, 2020, 11, 204201882095832.	1.4	13
146	Characterization of plasma lipidomics in adolescent subjects with increased risk for type 1 diabetes in the DiPiS cohort. Metabolomics, 2020, 16 , 109 .	1.4	1
147	Extended family history of type 1 diabetes in <scp>HLA</scp> â€predisposed children with and without islet autoantibodies. Pediatric Diabetes, 2020, 21, 1447-1456.	1.2	4
148	Relevance of Essential Trace Elements in Nutrition and Drinking Water for Human Health and Autoimmune Disease Risk. Nutrients, 2020, 12, 2074.	1.7	67
149	A combined risk score enhances prediction of type 1 diabetes among susceptible children. Nature Medicine, 2020, 26, 1247-1255.	15.2	83
150	Biomarkers in diabetic kidney disease. , 2020, , 185-208.		0

#	Article	IF	Citations
151	Next-Generation HLA Sequence Analysis Uncovers Seven HLA-DQ Amino Acid Residues and Six Motifs Resistant to Childhood Type 1 Diabetes. Diabetes, 2020, 69, 2523-2535.	0.3	7
152	Dynamics of Islet Autoantibodies During Prospective Follow-Up From Birth to Age 15 Years. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4638-e4651.	1.8	35
153	Funding of Hispanic/Latino Health-Related Research by the National Institutes of Health: An Analysis of the Portfolio of Research Program Grants on Six Health Topic Areas. Frontiers in Public Health, 2020, 8, 330.	1.3	12
154	Efficacy of GAD-alum immunotherapy associated with HLA-DR3-DQ2 in recently diagnosed type 1 diabetes. Diabetologia, 2020, 63, 2177-2181.	2.9	38
155	A Question of Tolerance—Antigen-Specific Immunotherapy for Type 1 Diabetes. Current Diabetes Reports, 2020, 20, 70.	1.7	7
156	Distinct Growth Phases in Early Life Associated With the Risk of Type 1 Diabetes: The TEDDY Study. Diabetes Care, 2020, 43, 556-562.	4.3	28
157	Longitudinal Metabolome-Wide Signals Prior to the Appearance of a First Islet Autoantibody in Children Participating in the TEDDY Study. Diabetes, 2020, 69, 465-476.	0.3	30
158	Decreased HLA-DQ expression on peripheral blood cells in children with varying number of beta cell autoantibodies. Journal of Translational Autoimmunity, 2020, 3, 100052.	2.0	5
159	Prediction and Prevention of Type 1 Diabetes. Frontiers in Endocrinology, 2020, 11, 248.	1.5	41
160	Primary DQ effect in the association between HLA and neurological syndromes with anti-GAD65 antibodies. Journal of Neurology, 2020, 267, 1906-1911.	1.8	18
161	Maternal and child gluten intake and association with type 1 diabetes: The Norwegian Mother and Child Cohort Study. PLoS Medicine, 2020, 17, e1003032.	3.9	14
162	Dietary SCFAs Immunotherapy: Reshaping the Gut Microbiota in Diabetes. Advances in Experimental Medicine and Biology, 2020, 1307, 499-519.	0.8	12
163	Characterization of Proinsulin T Cell Epitopes Restricted by Type 1 Diabetes–Associated HLA Class II Molecules. Journal of Immunology, 2020, 204, 2349-2359.	0.4	13
164	Hierarchical Order of Distinct Autoantibody Spreading and Progression to Type 1 Diabetes in the TEDDY Study. Diabetes Care, 2020, 43, 2066-2073.	4.3	41
165	<scp>HLAâ€DRâ€DQ</scp> haplotypes and specificity of the initial autoantibody in islet specific autoimmunity. Pediatric Diabetes, 2020, 21, 1218-1226.	1.2	16
166	Maternal respiratory infections in early pregnancy increases the risk of type 1 diabetes. Pediatric Diabetes, 2020, 21, 1193-1201.	1.2	6
167	Occurrence, biological properties and potential effects on human health of \hat{l}^2 -casomorphin 7: Current knowledge and concerns. Critical Reviews in Food Science and Nutrition, 2020, 60, 3705-3723.	5.4	32
168	Effect of maternal smoking during pregnancy on childhood type 1 diabetes: a whole-of-population study. Diabetologia, 2020, 63, 1162-1173.	2.9	8

#	Article	IF	CITATIONS
169	Yield of a Public Health Screening of Children for Islet Autoantibodies in Bavaria, Germany. JAMA - Journal of the American Medical Association, 2020, 323, 339.	3.8	139
170	Maternal Type 1 Diabetes Reduces Autoantigen-Responsive CD4+ T Cells in Offspring. Diabetes, 2020, 69, 661-669.	0.3	8
171	Perinatal factors and the risk of type 1 diabetes in childhood and adolescenceâ€"A registerâ€based caseâ€cohort study in Finland, years 1987 to 2009. Pediatric Diabetes, 2020, 21, 586-596.	1.2	10
172	Oral therapy with colonization factor antigen I prevents development of type 1 diabetes in Non-obese Diabetic mice. Scientific Reports, 2020, 10, 6156.	1.6	9
173	Motifs of Three HLA-DQ Amino Acid Residues (\hat{l} ±44, \hat{l} 257, \hat{l} 2135) Capture Full Association With the Risk of Type 1 Diabetes in DQ2 and DQ8 Children. Diabetes, 2020, 69, 1573-1587.	0.3	17
174	Fulminant type 1 diabetes: A comprehensive review of an autoimmune condition. Diabetes/Metabolism Research and Reviews, 2020, 36, e3317.	1.7	10
175	Antipyretics might occupy a narrow temporal position in aetiology of type 1 diabetes: Immunological and intestinal studies required. Medical Hypotheses, 2020, 141, 109708.	0.8	0
176	N-glycans as functional effectors of genetic and epigenetic disease risk. Molecular Aspects of Medicine, 2021, 79, 100891.	2.7	32
177	Plasma Metabolome and Circulating Vitamins Stratified Onset Age of an Initial Islet Autoantibody and Progression to Type 1 Diabetes: The TEDDY Study. Diabetes, 2021, 70, 282-292.	0.3	13
178	Insulin ist notwendig, aber nicht ausreichend: Paradigmenwechsel in der Behandlung des Typ-1-Diabetes. Karger Kompass Autoimmun, 2021, 3, 55-62.	0.0	0
179	Oral insulin immunotherapy in children at risk for type 1 diabetes in a randomised controlled trial. Diabetologia, 2021, 64, 1079-1092.	2.9	31
180	Deâ€ <i>coding</i> genetic risk variants in type 1 diabetes. Immunology and Cell Biology, 2021, 99, 496-508.	1.0	26
181	An Age-Related Exponential Decline in the Risk of Multiple Islet Autoantibody Seroconversion During Childhood. Diabetes Care, 2021, 44, 2260-2268.	4.3	23
182	Maternal food consumption during late pregnancy and offspring risk of islet autoimmunity and type 1 diabetes. Diabetologia, 2021, 64, 1604-1612.	2.9	5
183	Diabetes type 1: Can it be treated as an autoimmune disorder?. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 859-876.	2.6	8
185	Lack of effect of <i>Lactobacillus rhamnosus</i> GG and <i>Bifidobacterium lactis</i> Bb12 on beta-cell function in children with newly diagnosed type 1 diabetes: a randomised controlled trial. BMJ Open Diabetes Research and Care, 2021, 9, e001523.	1.2	18
186	Transcriptional networks in at-risk individuals identify signatures of type 1 diabetes progression. Science Translational Medicine, 2021, 13 , .	5.8	22
187	Nine residues in HLA-DQ molecules determine with susceptibility and resistance to type 1 diabetes among young children in Sweden. Scientific Reports, 2021, 11, 8821.	1.6	6

#	Article	IF	CITATIONS
188	Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era. Journal of Translational Medicine, 2021, 19, 137.	1.8	41
189	Associations of breastfeeding with childhood autoimmunity, allergies, and overweight: The Environmental Determinants of Diabetes in the Young (TEDDY) study. American Journal of Clinical Nutrition, 2021, 114, 134-142.	2.2	14
190	Type 1 diabetes mellitus: much progress, many opportunities. Journal of Clinical Investigation, 2021, 131 , .	3.9	57
191	Advances in Type 1 Diabetes Prediction Using Islet Autoantibodies: Beyond a Simple Count. Endocrine Reviews, 2021, 42, 584-604.	8.9	31
192	Neutralizing Ljungan virus antibodies in children with newly diagnosed type 1 diabetes. Journal of General Virology, $2021,102,.$	1.3	3
193	Islet autoantibody <scp>types mark</scp> differential clinical characteristics at diagnosis of pediatric type 1 diabetes. Pediatric Diabetes, 2021, 22, 882-888.	1.2	3
194	HLA class I hyper-expression unmasks beta cells but not alpha cells to the immune system in pre-diabetes. Journal of Autoimmunity, 2021, 119, 102628.	3.0	14
196	100 YEARS OF INSULIN: Arresting or curing type 1 diabetes: an elusive goal, but closing the gap. Journal of Endocrinology, 2021, 249, T1-T11.	1.2	4
197	The \hat{l}^2 Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocrine Reviews, 2021, 42, 528-583.	8.9	21
198	Etiology of Autoimmune Islet Disease: Timing Is Everything. Diabetes, 2021, 70, 1431-1439.	0.3	9
199	Islet Autoimmunity and HLA Markers of Presymptomatic and Clinical Type 1 Diabetes: Joint Analyses of Prospective Cohort Studies in Finland, Germany, Sweden, and the U.S Diabetes Care, 2021, 44, 2269-2276.	4.3	27
200	Immunological predictors of type 1 diabetes mellitus (literature review). Diabetes Mellitus, 2021, 24, 167-174.	0.5	0
201	Preventing type 1 diabetes in childhood. Science, 2021, 373, 506-510.	6.0	52
202	100 years of insulin: celebrating the past, present and future of diabetes therapy. Nature Medicine, 2021, 27, 1154-1164.	15.2	94
203	Viruses and Type 1 Diabetes: From Enteroviruses to the Virome. Microorganisms, 2021, 9, 1519.	1.6	23
204	The Multifactorial Progression from the Islet Autoimmunity to Type 1 Diabetes in Children. International Journal of Molecular Sciences, 2021, 22, 7493.	1.8	11
205	Characteristics of children diagnosed with type 1 diabetes before vs after 6Âyears of age in the TEDDY cohort study. Diabetologia, 2021, 64, 2247-2257.	2.9	14
206	The KAG motif of HLA-DRB1 (\hat{i}^2 71, \hat{i}^2 74, \hat{i}^2 86) predicts seroconversion and development of type 1 diabetes. EBioMedicine, 2021, 69, 103431.	2.7	6

#	Article	IF	Citations
207	Ten years follow up of first degree relatives of type 1 diabetes patients: presence of autoimmune biomarkers and the progression to diabetes in a retrospective cohort. Archives of Endocrinology and Metabolism, 2021, 65, 436-442.	0.3	0
208	The Kynurenine Pathway—New Linkage between Innate and Adaptive Immunity in Autoimmune Endocrinopathies. International Journal of Molecular Sciences, 2021, 22, 9879.	1.8	34
209	Clinical features, epidemiology, autoantibody status, HLA haplotypes and genetic mechanisms of type 1 diabetes mellitus among children in Qatar. Scientific Reports, 2021, 11, 18887.	1.6	7
210	A comprehensive integrated post-GWAS analysis of Type 1 diabetes reveals enhancer-based immune dysregulation. PLoS ONE, 2021, 16, e0257265.	1.1	9
211	Higher ultraviolet radiation during early life is associated with lower risk of childhood type 1 diabetes among boys. Scientific Reports, 2021, 11, 18597.	1.6	5
212	100 Years of insulin: Lifesaver, immune target, and potential remedy for prevention. Med, 2021, 2, 1120-1137.	2.2	4
213	Improving Prediction of Risk for the Development of Type 1 Diabetesâ€"Insights From Populations at High Risk. Diabetes Care, 2021, , dci210018.	4.3	1
214	Proinsulin:C-peptide ratio trajectories over time in relatives at increased risk of progression to type 1 diabetes. Journal of Translational Autoimmunity, 2021, 4, 100089.	2.0	3
215	Gut microbiota and metabolites in the pathogenesis of endocrine disease. Biochemical Society Transactions, 2020, 48, 915-931.	1.6	31
218	Insulin is necessary but not sufficient: changing the therapeutic paradigm in type 1 diabetes. F1000Research, 2020, 9, 827.	0.8	8
219	Islet Autoantibody Measurements from Dried Blood Spots on Filter Paper Strongly Correlate to Serum Levels. PLoS ONE, 2016, 11, e0166213.	1.1	5
220	LADA: A Type of Diabetes in its Own Right?. Current Diabetes Reviews, 2019, 15, 174-177.	0.6	6
221	Type 1 Diabetes-related Autoantibodies in Different Forms of Diabetes. Current Diabetes Reviews, 2019, 15, 199-204.	0.6	30
222	Type 1 diabetes mellitus and its oral tolerance therapy. World Journal of Diabetes, 2020, 11, 400-415.	1.3	9
223	Pancreas Islet Cell-Specific Antibody Detection by ELISA. journal of applied laboratory medicine, The, 2022, 7, 66-74.	0.6	4
224	The Prediction of Type 1 Diabetes Development and Diagnosis of Its Asymptomatic Phase Using Autoantibodies to Human Islets of Langerhans Long Before the Onset of the Disease. Mìžnarodnij EndokrinologìÄnij Žzurnal, 2016, .	0.1	0
227	General population screening for childhood type 1 diabetes: is it time for a UK strategy?. Archives of Disease in Childhood, 2022, 107, 790-795.	1.0	8
230	Modeling Disease Progression Trajectories from Longitudinal Observational Data. AMIA Annual Symposium proceedings, 2020, 2020, 668-676.	0.2	3

#	Article	IF	CITATIONS
231	Supplementation with <i>Bifidobacterium longum</i> subspecies <i>infantis</i> EVC001 for mitigation of type 1 diabetes autoimmunity: the GPPAD-SINT1A randomised controlled trial protocol. BMJ Open, 2021, 11, e052449.	0.8	15
232	Index60 Identifies Individuals at Appreciable Risk for Stage 3 Among an Autoantibody-Positive Population With Normal 2-Hour Glucose Levels: Implications for Current Staging Criteria of Type 1 Diabetes. Diabetes Care, 2022, 45, 311-318.	4.3	11
233	Pathogenic Mechanism of Autoimmune Diabetes Mellitus in Humans: Potential Role of Streptozotocin-Induced Selective Autoimmunity against Human Islet β-Cells. Cells, 2022, 11, 492.	1.8	6
234	Peculiar characteristics of new-onset Type 1ÂDiabetes during COVID-19 pandemic. Italian Journal of Pediatrics, 2022, 48, 26.	1.0	14
235	Heterogeneity of Type 1 Diabetes at Diagnosis Supports Existence of Age-Related Endotypes. Diabetes Care, 2022, 45, 871-879.	4.3	20
236	Evaluation of the RSR 3 screen ICAâ,, $^{\circ}$ and 2 screen ICAâ,, $^{\circ}$ as screening assays for type 1 diabetes in Sweden. Acta Diabetologica, 2022, , 1.	1.2	2
237	Progression of type 1 diabetes from latency to symptomatic disease is predicted by distinct autoimmune trajectories. Nature Communications, 2022, 13, 1514.	5.8	16
238	GAD65 Antibody Epitopes and Genetic Background in Latent Autoimmune Diabetes in Youth (LADY). Frontiers in Immunology, 2022, 13, 836952.	2.2	5
239	Multiplex agglutination-PCR (ADAP) autoantibody assays compared to radiobinding autoantibodies in type 1 diabetes and celiac disease. Journal of Immunological Methods, 2022, 506, 113265.	0.6	9
240	Differential HLA Association of GAD65 and IA2 Autoantibodies in North Indian Type 1 Diabetes Patients. Journal of Diabetes Research, 2021, 2021, 1-13.	1.0	1
241	Cepharanthine Blocks Presentation of Thyroid and Islet Peptides in a Novel Humanized Autoimmune Diabetes and Thyroiditis Mouse Model. Frontiers in Immunology, 2021, 12, 796552.	2.2	5
242	Heterogeneity in the presentation of clinical type 1 diabetes defined by the level of risk conferred by human leukocyte antigen class II genotypes. Pediatric Diabetes, 2022, 23, 219-227.	1.2	5
243	Heterogeneity of beta-cell function in subjects with multiple islet autoantibodies in the TEDDY family prevention study - TEFA. Clinical Diabetes and Endocrinology, 2021, 7, 23.	1.3	1
244	Associations between deduced first islet specific autoantibody with sex, age at diagnosis and genetic risk factors in young children with type 1 diabetes. Pediatric Diabetes, 2022, 23, 693-702.	1.2	8
245	Changes in early intestinal flora and Type 1 diabetes. Journal of Central South University (Medical) Tj ETQq 000 r	rgB∏ (Over	lock 10 Tf 50
247	Serum ILâ€17A concentration and a <i>IL17RA</i> single nucleotide polymorphism contribute to the risk of autoimmune type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2022, 38, e3547.	1.7	6
248	Association of HLA-DQ Heterodimer Residues â^18β and β57 With Progression From Islet Autoimmunity to Diabetes in the Diabetes Prevention Trial–Type 1. Diabetes Care, 2022, 45, 1610-1620.	4.3	1
249	A Contemporary Insight of Metabolomics Approach for Type 1 Diabetes: Potential for Novel Diagnostic Targets. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 0, Volume 15, 1605-1625.	1.1	0

#	Article	IF	CITATIONS
251	Association of long-term environmental exposures in pregnancy and early life with islet autoimmunity development in children in Bavaria, Germany. Environmental Research, 2022, 212, 113503.	3.7	1
252	Umbilical cord blood DNA methylation in children who later develop type 1 diabetes. Diabetologia, 2022, 65, 1534-1540.	2.9	4
253	Preclinical Autoimmune Disease: a Comparison of Rheumatoid Arthritis, Systemic Lupus Erythematosus, Multiple Sclerosis and Type 1 Diabetes. Frontiers in Immunology, 0, 13, .	2.2	27
254	Antigen-specific immunotherapies in type 1 diabetes. Journal of Trace Elements in Medicine and Biology, 2022, 73, 127040.	1.5	7
255	First-emerging islet autoantibody and glucose metabolism: search for type 1 diabetes subtypes. Endocrine Connections, 2022, , .	0.8	0
256	Possible Relationship between the HLA-DRA1 Intron Haplotype of Three Single-Nucleotide Polymorphisms in Intron 1 of the HLA-DRA1 Gene and Autoantibodies in Children at Increased Genetic Risk for Autoimmune Type 1 Diabetes. ImmunoHorizons, 2022, 6, 614-629.	0.8	0
257	Host-microbiota interactions shaping T-cell response and tolerance in type 1 diabetes. Frontiers in Immunology, $0,13,1$	2.2	4
258	Precision medicine in type 1 diabetes. Diabetologia, 2022, 65, 1854-1866.	2.9	18
259	Clinical and experimental treatment of type 1 diabetes. Clinical and Experimental Immunology, 2022, 210, 105-113.	1.1	4
260	Predictors of the Initiation of Islet Autoimmunity and Progression to Multiple Autoantibodies and Clinical Diabetes: The TEDDY Study. Diabetes Care, 2022, 45, 2271-2281.	4.3	21
261	Successful integration of newborn genetic testing into UK routine screening using prospective consent to determine eligibility for clinical trials. Archives of Disease in Childhood, 2023, 108, 26-30.	1.0	0
262	<scp>ISPAD</scp> Clinical Practice Consensus Guidelines 2022: Stages of type 1 diabetes in children and adolescents. Pediatric Diabetes, 2022, 23, 1175-1187.	1.2	35
263	Anti-CD3 monoclonal antibodies for the prevention and treatment of type 1 diabetes: A literature review. American Journal of Health-System Pharmacy, 2022, 79, 2099-2117.	0.5	7
264	Islet Autoantibody Levels Differentiate Progression Trajectories in Individuals With Presymptomatic Type 1 Diabetes. Diabetes, 2022, 71, 2632-2641.	0.3	3
265	Insulin resistance relates to DKA severity and affects insulin requirement in children with type 1 diabetes at onset. Pediatric Diabetes, 2022, 23, 1613-1620.	1.2	1
266	Quantifying the utility of islet autoantibody levels in the prediction of type 1 diabetes in children. Diabetologia, 2023, 66, 93-104.	2.9	6
267	Preventing type 1 diabetes in late-stage pre-diabetic NOD mice with insulin: A central role for alum as adjuvant. Frontiers in Endocrinology, 0 , 13 , .	1.5	1
268	Elevations in blood glucose before and after the appearance of islet autoantibodies in children. Journal of Clinical Investigation, 2022, 132, .	3.9	14

#	Article	IF	CITATIONS
269	Molar-incisor hypomineralisation prevalence in a cohort of Australian children with type 1 diabetes. European Archives of Paediatric Dentistry: Official Journal of the European Academy of Paediatric Dentistry, $0, , .$	0.7	0
270	Distribution of autoantibodies to insulinomaâ€associated antigenâ€2 and zinc transporter 8 in type 1 diabetes and latent autoimmune diabetes: A nationwide, multicentre, crossâ€sectional study. Diabetes/Metabolism Research and Reviews, 2023, 39, .	1.7	1
271	Gut microbiome in type 1 diabetes: the immunological perspective. Expert Review of Clinical Immunology, 2023, 19, 93-109.	1.3	4
272	Affinity purification of serum-derived anti-IA-2 autoantibodies in type 1 diabetes using a novel MBP-IA-2 fusion protein. Biochemistry and Biophysics Reports, 2023, 33, 101413.	0.7	0
273	Stratifying risk for onset of type 1 diabetes using islet autoantibody trajectory clustering. Diabetologia, 0 , , .	2.9	4
274	Epitope-based precision immunotherapy of Type 1 diabetes. Human Vaccines and Immunotherapeutics, 2023, 19, .	1.4	2
275	Islet autoantibody screening in at-risk adolescents to predict type 1 diabetes until young adulthood: a prospective cohort study. The Lancet Child and Adolescent Health, 2023, 7, 261-268.	2.7	3
276	Autoimmune diseases., 2023,, 123-244.		2
277	The protective roles of allicin on type 1 diabetes mellitus through AMPK/mTOR mediated autophagy pathway. Frontiers in Pharmacology, 0 , 14 , .	1.6	1
278	The prevalence of diabetes and thyroid related autoantibodies in Sri Lankan children with type 1 diabetes and their unaffected siblings $\hat{a} \in \mathbb{C}$ The utility of a new screening assay. Frontiers in Endocrinology, 0, 14, .	1.5	1
279	Dietary Intake and Body Mass Index Influence the Risk of Islet Autoimmunity in Genetically At-Risk Children: A Mediation Analysis Using the TEDDY Cohort. Pediatric Diabetes, 2023, 2023, 1-11.	1.2	0
281	Interaction Between Dietary Iron Intake and Genetically Determined Iron Overload: Risk of Islet Autoimmunity and Progression to Type 1 Diabetes in the TEDDY Study. Diabetes Care, 2023, 46, 1014-1018.	4.3	3
282	Examining the associations between COVID-19 infection and pediatric type 1 diabetes. Expert Review of Clinical Immunology, 2023, 19, 489-497.	1.3	2
283	Peripheral blood mononuclear cells reactivity in recent-onset type I diabetes patients is directed against the leader peptide of preproinsulin, GAD65271-285 and GAD65431-450. Frontiers in Immunology, 0, 14, .	2.2	2
284	HLAâ€DQâ€conferred risk for type 1 diabetes does not alter neutralizing antibody response to a widely used enterovirus vaccine, the poliovirus vaccine. Journal of Medical Virology, 2023, 95, .	2.5	1
293	The countdown to type 1 diabetes: when, how and why does the clock start?. Diabetologia, 2023, 66, 1169-1178.	2.9	4
296	Diabetes in the Tropics. , 2024, , 879-885.		0
302	Epidemiology and Pathogenesis of Type 1 Diabetes. , 2023, , 13-39.		0

CITATION REPORT

#	Article	IF	CITATIONS
304	Inflammation and Diabetes Mellitus. Contemporary Endocrinology, 2023, , 55-77.	0.3	0
308	Autoimmune diseases: targets, biology, and drug discovery. Acta Pharmacologica Sinica, 0, , .	2.8	1