Design of electrocatalysts for oxygen- and hydrogen-inreactions

Chemical Society Reviews 44, 2060-2086 DOI: 10.1039/c4cs00470a

Citation Report

#	Article	IF	CITATIONS
6	Three-dimensional Nitrogen-Doped Graphene Supported Molybdenum Disulfide Nanoparticles as an Advanced Catalyst for Hydrogen Evolution Reaction. Scientific Reports, 2015, 5, 17542.	1.6	156
8	Creating Highly Active Atomic Layer Deposited NiO Electrocatalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2015, 5, 1500412.	10.2	217
10	Singleâ€Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 10718-10732.	7.2	123
11	Nanoporous Graphene with Singleâ€Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 14031-14035.	7.2	628
12	Selfâ€Supported Cobalt Phosphide Mesoporous Nanorod Arrays: A Flexible and Bifunctional Electrode for Highly Active Electrocatalytic Water Reduction and Oxidation. Advanced Functional Materials, 2015, 25, 7337-7347.	7.8	688
13	Coupling Mo ₂ C with Nitrogenâ€Rich Nanocarbon Leads to Efficient Hydrogenâ€Evolution Electrocatalytic Sites. Angewandte Chemie - International Edition, 2015, 54, 10752-10757.	7.2	674
14	Combinatorial Search for Highâ€Activity Hydrogen Catalysts Based on Transitionâ€Metalâ€Embedded Graphitic Carbons. Advanced Energy Materials, 2015, 5, 1501423.	10.2	66
17	Metalâ€Free Carbonaceous Materials as Promising Heterogeneous Catalysts. ChemCatChem, 2015, 7, 2765-2787.	1.8	118
18	Smallâ€Sized Tungsten Nitride Particles Strongly Anchored on Carbon Nanotubes and their Use as Supports for Pt for Methanol Electroâ€oxidation. Chemistry - A European Journal, 2015, 21, 18345-18353.	1.7	16
19	Engineering of Carbonâ€Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality. Advanced Materials, 2015, 27, 5372-5378.	11.1	246
20	Spatially Confined Hybridization of Nanometerâ€Sized NiFe Hydroxides into Nitrogenâ€Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity. Advanced Materials, 2015, 27, 4516-4522.	11.1	612
21	Charge Mediated Semiconducting-to-Metallic Phase Transition in Molybdenum Disulfide Monolayer and Hydrogen Evolution Reaction in New 1T′ Phase. Journal of Physical Chemistry C, 2015, 119, 13124-13128.	1.5	295
22	Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 14942-14962.	5.2	1,061
23	Enhanced Cycling Stability of Hybrid Li–Air Batteries Enabled by Ordered Pd ₃ Fe Intermetallic Electrocatalyst. Journal of the American Chemical Society, 2015, 137, 7278-7281.	6.6	149
24	Graphitic Carbon Nitride/Graphene Hybrids as New Active Materials for Energy Conversion and Storage. ChemNanoMat, 2015, 1, 298-318.	1.5	117
25	Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese Journal of Catalysis, 2015, 36, 2049-2070.	6.9	458
26	Polydopamine–graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. Nanoscale, 2015, 7, 12598-12605.	2.8	104
27	Enhanced photocatalytic H ₂ evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g-C ₃ N ₄ heterojunctions. Journal of Materials Chemistry A, 2015, 3, 18244-18255	5.2	306

#	ARTICLE	IF	CITATIONS
28	Towards superior oxygen evolution through graphene barriers between metal substrates and hydroxide catalysts. Journal of Materials Chemistry A, 2015, 3, 16183-16189.	5.2	54
29	Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis, 2015, 5, 5207-5234.	5.5	800
30	Porous Two-Dimensional Nanosheets Converted from Layered Double Hydroxides and Their Applications in Electrocatalytic Water Splitting. Chemistry of Materials, 2015, 27, 5702-5711.	3.2	291
31	A nickel nanoparticle/carbon quantum dot hybrid as an efficient electrocatalyst for hydrogen evolution under alkaline conditions. Journal of Materials Chemistry A, 2015, 3, 18598-18604.	5.2	87
32	Novel Fe–Ni-Graphene composite electrode for hydrogen production. International Journal of Hydrogen Energy, 2015, 40, 10453-10462.	3.8	78
33	Customized casting of unstacked graphene with high surface area (>1300 m2gâ^'1) and its application in oxygen reduction reaction. Carbon, 2015, 93, 702-712.	5.4	20
34	Nanoelectrochemical Approach To Detecting Short-Lived Intermediates of Electrocatalytic Oxygen Reduction. Journal of the American Chemical Society, 2015, 137, 6517-6523.	6.6	59
35	Aminothiazole-derived N,S,Fe-doped graphene nanosheets as high performance electrocatalysts for oxygen reduction. Chemical Communications, 2015, 51, 17092-17095.	2.2	85
36	Structural Evolution from Metal–Organic Framework to Hybrids of Nitrogen-Doped Porous Carbon and Carbon Nanotubes for Enhanced Oxygen Reduction Activity. Chemistry of Materials, 2015, 27, 7610-7618.	3.2	217
37	Metal-free graphitic carbon nitride as mechano-catalyst for hydrogen evolution reaction. Journal of Catalysis, 2015, 332, 149-155.	3.1	127
38	Fe– and Co–P ₄ -embedded graphenes as electrocatalysts for the oxygen reduction reaction: theoretical insights. Physical Chemistry Chemical Physics, 2015, 17, 30687-30694.	1.3	48
39	Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale, 2015, 7, 19764-19788.	2.8	327
40	Carbon-based electrocatalysts for advanced energy conversion and storage. Science Advances, 2015, 1, e1500564.	4.7	567
41	Component-controllable synthesis of Co(S Se1â^)2 nanowires supported by carbon fiber paper as high-performance electrode for hydrogen evolution reaction. Nano Energy, 2015, 18, 1-11.	8.2	130
42	Artificial photosynthesis: Where are we now? Where can we go?. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 25, 32-45.	5.6	158
43	Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nature Communications, 2015, 6, 7992.	5.8	575
44	3d–4f {Co ^{II} ₃ Ln(OR) ₄ } Cubanes as Bio-Inspired Water Oxidation Catalysts. Journal of the American Chemical Society, 2015, 137, 11076-11084.	6.6	134
45	Activity and stability of the oxygen evolution reaction on electrodeposited Ru and its thermal oxides. Applied Surface Science, 2015, 359, 227-235.	3.1	31

#	Article	IF	CITATIONS
46	Oxygen reduction reaction on M-S4 embedded graphene: A density functional theory study. Chemical Physics Letters, 2015, 641, 112-116.	1.2	16
47	Two-Dimensional π-Conjugated Metal Bis(dithiolene) Complex Nanosheets as Selective Catalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2015, 119, 28028-28037.	1.5	76
48	Atomic Mechanism of Electrocatalytically Active Co–N Complexes in Graphene Basal Plane for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 27405-27413.	4.0	139
49	Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review. ACS Catalysis, 2015, 5, 7288-7298.	5.5	78
50	Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. Journal of Materials Chemistry A, 2015, 3, 24540-24546.	5.2	124
51	Metalâ€Organic Frameworks and their Applications in Hydrogen and Oxygen Evolution Reactions. , 0, , .		5
52	Porous Nickel–Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 19386-19392.	4.0	284
53	Hierarchically structured layered-double-hydroxide@zeolitic-imidazolate-framework derivatives for high-performance electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 12526-12534.	5.2	79
54	Graphitic Mesoporous Carbon Loaded with Iron–Nickel Hydroxide for Superior Oxygen Evolution Reactivity. ChemSusChem, 2016, 9, 1835-1842.	3.6	32
55	Ultralong PtNi alloy nanowires enabled by the coordination effect with superior ORR durability. RSC Advances, 2016, 6, 71501-71506.	1.7	37
56	Hybrid Spinel Oxides/Nâ€Doped Reduced Graphene Oxide as Highlyâ€Active Bifunctional Electrocatalysts for Oxygen Reduction/Evolution Reactions. ChemElectroChem, 2016, 3, 1107-1115.	1.7	34
57	Advances in Hybrid Electrocatalysts for Oxygen Evolution Reactions: Rational Integration of NiFe Layered Double Hydroxides and Nanocarbon. Particle and Particle Systems Characterization, 2016, 33, 473-486.	1.2	106
58	Activity and Stability of Ruddlesden–Popperâ€Type La _{<i>n</i>+1} Ni _{<i>n</i>} O _{3<i>n</i>+1} (<i>n</i> =1, 2, 3, and â^ž) Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media. Chemistry - A European Journal, 2016, 22, 2719-2727.	1.7	90
59	Threeâ€Dimensional Electrocatalysts for Sustainable Water Splitting Reactions. European Journal of Inorganic Chemistry, 2016, 2016, 1916-1923.	1.0	44
60	Generalized Synthesis of Hierarchical Transition Metal Dichalcogenide Nanosheets from Polyoxometalates. ChemNanoMat, 2016, 2, 665-670.	1.5	2
61	N,Pâ€Codoped Carbon Networks as Efficient Metalâ€free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angewandte Chemie - International Edition, 2016, 55, 2230-2234.	7.2	748
62	Significant Enhancement of Water Splitting Activity of Nâ€Carbon Electrocatalyst by Trace Level Co Doping. Small, 2016, 12, 3703-3711.	5.2	111
63	Monodisperse Mesoporous Carbon Nanoparticles from Polymer/Silica Self-Aggregates and Their Electrocatalytic Activities. ACS Applied Materials & Interfaces, 2016, 8, 18891-18903.	4.0	36

#	Article	IF	CITATIONS
64	Chalcogenide and Phosphide Solid‧tate Electrocatalysts for Hydrogen Generation. ChemPlusChem, 2016, 81, 1045-1055.	1.3	74
65	Wellâ€Dispersed ZIFâ€Derived Co,Nâ€Coâ€doped Carbon Nanoframes through Mesoporousâ€6ilicaâ€Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. Advanced Materials, 2016, 28, 1668-1674.	11.1	663
66	Porous MoO ₂ Nanosheets as Nonâ€noble Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials, 2016, 28, 3785-3790.	11.1	729
67	Design and Synthesis of FeOOH/CeO ₂ Heterolayered Nanotube Electrocatalysts for the Oxygen Evolution Reaction. Advanced Materials, 2016, 28, 4698-4703.	11.1	592
68	<i>GW</i> and Bethe-Salpeter study of small water clusters. Journal of Chemical Physics, 2016, 144, 034109.	1.2	38
70	In situ preparation of multi-wall carbon nanotubes/Au composites for oxygen electroreduction. RSC Advances, 2016, 6, 91209-91215.	1.7	7
71	Nanostructured MnxOy for oxygen reduction reaction (ORR) catalysts. Applied Surface Science, 2016, 388, 631-639.	3.1	42
72	The plausible role of carbonate in photo-catalytic water oxidation processes. Physical Chemistry Chemical Physics, 2016, 18, 11069-11072.	1.3	16
73	Ni0.85Se as an efficient non-noble bifunctional electrocatalyst for full water splitting. International Journal of Hydrogen Energy, 2016, 41, 10688-10694.	3.8	92
74	Machine-learning prediction of the d-band center for metals and bimetals. RSC Advances, 2016, 6, 52587-52595.	1.7	113
75	The era of water-enabled electricity generation from graphene. Journal of Materials Chemistry A, 2016, 4, 9730-9738.	5.2	53
76	Pd supported on Ti-suboxides as bifunctional catalyst for air electrodes of metal-air batteries. International Journal of Hydrogen Energy, 2016, 41, 19579-19586.	3.8	23
77	Performance of titanium oxynitrides in the electrocatalytic oxygen evolution reaction. Nano Energy, 2016, 29, 136-148.	8.2	26
78	Metal Doping Effect of the M–Co ₂ P/Nitrogen-Doped Carbon Nanotubes (M = Fe, Ni, Cu) Hydrogen Evolution Hybrid Catalysts. ACS Applied Materials & Interfaces, 2016, 8, 13890-13901.	4.0	172
79	Graphene and its electrochemistry – an update. Chemical Society Reviews, 2016, 45, 2458-2493.	18.7	366
80	Noble Metal-Free Oxygen Reduction Reaction Catalysts Derived from Prussian Blue Nanocrystals Dispersed in Polyaniline. ACS Applied Materials & Interfaces, 2016, 8, 8436-8444.	4.0	76
81	Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 2016, 11, 218-230.	15.6	1,833
82	Atomically monodisperse nickel nanoclusters as highly active electrocatalysts for water oxidation. Nanoscale, 2016, 8, 9695-9703.	2.8	80

#	Article	IF	CITATIONS
83	Template-directed approach to two-dimensional molybdenum phosphide–carbon nanocomposites with high catalytic activities in the hydrogen evolution reaction. New Journal of Chemistry, 2016, 40, 6015-6021.	1.4	25
84	Co nanoparticles embedded in a 3D CoO matrix for electrocatalytic hydrogen evolution. RSC Advances, 2016, 6, 38515-38520.	1.7	26
85	Hierarchical porous N-doped graphene foams with superior oxygen reduction reactivity for polymer electrolyte membrane fuel cells. Applied Energy, 2016, 175, 459-467.	5.1	51
86	An efficient Co–N–C oxygen reduction catalyst with highly dispersed Co sites derived from a ZnCo bimetallic zeolitic imidazolate framework. RSC Advances, 2016, 6, 37965-37973.	1.7	72
87	Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 7245-7250.	5.2	178
88	Hierarchical iron nickel oxide architectures derived from metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2016, 208, 17-24.	2.6	86
89	In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Research, 2016, 9, 1856-1865.	5.8	78
90	Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy, 2016, 25, 110-119.	8.2	434
91	Reproducibly creating hierarchical 3D carbon to study the effect of Si surface functionalization on the oxygen reduction reaction. Nanoscale, 2016, 8, 11617-11624.	2.8	1
92	Enhancing Activity and Stability of Cobalt Oxide Electrocatalysts for the Oxygen Evolution Reaction via Transition Metal Doping. Journal of the Electrochemical Society, 2016, 163, F3020-F3028.	1.3	55
93	Co ₃ ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 9204-9212.	5.2	154
94	A comparative investigation of electrocatalysis at Pt monolayers on shape-controlled Au nanocrystals: facet effect versus strain effect. Journal of Materials Chemistry A, 2016, 4, 15845-15850.	5.2	19
95	Uniform Deposition of Co3O4 Nanosheets on Exfoliated MoS2 Nanosheets as Advanced Catalysts for Water Splitting. Electrochimica Acta, 2016, 212, 890-897.	2.6	34
96	Dealloyed AuNi Dendrite Anchored on a Functionalized Conducting Polymer for Improved Catalytic Oxygen Reduction and Hydrogen Peroxide Sensing in Living Cells. Advanced Functional Materials, 2016, 26, 1590-1601.	7.8	85
97	Electrochemical Preparation of Ru/Co Biâ€layered Catalysts on Ti Substrates for the Oxygen Evolution Reaction. Bulletin of the Korean Chemical Society, 2016, 37, 1270-1277.	1.0	5
98	Top-Down Preparation of Active Cobalt Oxide Catalyst. ACS Catalysis, 2016, 6, 6699-6703.	5.5	113
99	A monolithic metal-free electrocatalyst for oxygen evolution reaction and overall water splitting. Energy and Environmental Science, 2016, 9, 3411-3416.	15.6	197
100	Layered SnS versus SnS ₂ : Valence and Structural Implications on Electrochemistry and Clean Energy Electrocatalysis. Journal of Physical Chemistry C, 2016, 120, 24098-24111.	1.5	85

#	Article	IF	CITATIONS
101	Fe ₃ O ₄ @NiFe _{<i>x</i>} O _{<i>y</i>} Nanoparticles with Enhanced Electrocatalytic Properties for Oxygen Evolution in Carbonate Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 29461-29469.	4.0	34
102	Kohlenstoffbasierte Metallfreie Katalysatoren für die Elektrokatalyse jenseits der ORR. Angewandte Chemie, 2016, 128, 11910-11933.	1.6	58
103	Electrospun carbon nanofiber@CoS ₂ core/sheath hybrid as an efficient all-pH hydrogen evolution electrocatalyst. Inorganic Chemistry Frontiers, 2016, 3, 1280-1288.	3.0	37
104	Controlling catalytic dehydrogenation of formic acid over low-cost transition metal-substituted AuPd nanoparticles immobilized by functionalized metal–organic frameworks at room temperature. Journal of Materials Chemistry A, 2016, 4, 16645-16652.	5.2	49
105	Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction. Chemical Communications, 2016, 52, 13233-13236.	2.2	176
106	A Highly Efficient and Selfâ€Stabilizing Metallicâ€Glass Catalyst for Electrochemical Hydrogen Generation. Advanced Materials, 2016, 28, 10293-10297.	11.1	195
107	Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis. Journal of Power Sources, 2016, 332, 305-311.	4.0	104
108	Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers. Advanced Functional Materials, 2016, 26, 8255-8265.	7.8	65
109	Carbon-Coated Nickel Phosphide Nanosheets as Efficient Dual-Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 27850-27858.	4.0	113
110	Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications. Nanoscale, 2016, 8, 18250-18269.	2.8	79
111	A Robust Versatile Hybrid Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 29356-29364.	4.0	36
112	Heteroatom-doped graphene â€~ldli': A green and foody approach towards development of metal free bifunctional catalyst for rechargeable zinc-air battery. Nano Energy, 2016, 30, 118-129.	8.2	50
113	Metallic Ni ₃ N nanosheets with exposed active surface sites for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 17363-17369.	5.2	233
114	Cuboctahedral vs. octahedral platinum nanoclusters: insights into the shape-dependent catalytic activity for fuel cell applications. Catalysis Science and Technology, 2016, 6, 7913-7923.	2.1	27
115	Pt ₃ Ti (Ti ₁₉ @Pt ₆₀)-Based Cuboctahedral Core–Shell Nanocluster Favors a Direct over Indirect Oxygen Reduction Reaction. ACS Energy Letters, 2016, 1, 797-805.	8.8	33
116	Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Research, 2016, 9, 2234-2243.	5.8	215
117	Cu,N-codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 21431-21439.	4.0	205
118	Crystallization design of MnO ₂ via acid towards better oxygen reduction activity. CrystEngComm, 2016, 18, 6895-6902.	1.3	32

		EPORT	
#	Article	IF	CITATIONS
119	Oxygen Electrocatalysis on Dealloyed Pt Nanocatalysts. Topics in Catalysis, 2016, 59, 1628-1637.	1.3	27
120	Coralloid Co ₂ P ₂ O ₇ Nanocrystals Encapsulated by Thin Carbon Shells for Enhanced Electrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 22534-22544.	4.0	91
121	Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Letters, 2016, 1, 589-594.	8.8	1,100
122	Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy, 2016, 28, 29-43.	8.2	603
123	Porous cobalt phosphide/graphitic carbon polyhedral hybrid composites for efficient oxygen evolution reactions. Journal of Materials Chemistry A, 2016, 4, 13742-13745.	5.2	117
124	Solution Growth of Vertical VS ₂ Nanoplate Arrays for Electrocatalytic Hydrogen Evolution. Chemistry of Materials, 2016, 28, 5587-5591.	3.2	173
125	Two-dimensional iron–tetracyanoquinodimethane (Fe–TCNQ) monolayer: an efficient electrocatalyst for the oxygen reduction reaction. RSC Advances, 2016, 6, 72952-72958.	1.7	22
126	Assembling pore-rich FeP nanorods on the CNT backbone as an advanced electrocatalyst for oxygen evolution. Journal of Materials Chemistry A, 2016, 4, 13005-13010.	5.2	82
127	Anchoring CoO Domains on CoSe ₂ Nanobelts as Bifunctional Electrocatalysts for Overall Water Splitting in Neutral Media. Advanced Science, 2016, 3, 1500426.	5.6	236
128	Boosting oxygen reduction/evolution reaction activities with layered perovskite catalysts. Chemical Communications, 2016, 52, 10739-10742.	2.2	83
129	Mo2C nanoparticles embedded within bacterial cellulose-derived 3D N-doped carbon nanofiber networks for efficient hydrogen evolution. NPG Asia Materials, 2016, 8, e288-e288.	3.8	153
130	Ternary FeNiS2 ultrathin nanosheets as an electrocatalyst for both oxygen evolution and reduction reactions. Nano Energy, 2016, 27, 526-534.	8.2	166
131	Hydrogen intercalation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2Physical Review B, 2016, 94, .</mml:mn></mml:msub></mml:math 	า l:m๓.ฆ <td>nl:msub></td>	nl:msub>
132	Self-Supported Cedarlike Semimetallic Cu ₃ P Nanoarrays as a 3D High-Performance Janus Electrode for Both Oxygen and Hydrogen Evolution under Basic Conditions. ACS Applied Materials & Interfaces, 2016, 8, 23037-23048.	4.0	170
133	Rational design of Pt–Ni–Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale, 2016, 8, 16379-16386.	2.8	128
134	High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. Journal of the American Chemical Society, 2016, 138, 16174-16181.	6.6	852
135	Strongly Coupled FeNi Alloys/NiFe ₂ O ₄ @Carbonitride Layers-Assembled Microboxes for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 34396-34404.	4.0	130
136	Nanostructured energy materials for electrochemical energy conversion and storage: A review. Journal of Energy Chemistry, 2016, 25, 967-984.	7.1	409

#	Article	IF	CITATIONS
137	Porous cobalt–iron nitride nanowires as excellent bifunctional electrocatalysts for overall water splitting. Chemical Communications, 2016, 52, 12614-12617.	2.2	251
138	NiMnO ₃ /NiMn ₂ O ₄ Oxides Synthesized via the Aid of Pollen: Ilmenite/Spinel Hybrid Nanoparticles for Highly Efficient Bifunctional Oxygen Electrocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 26740-26757.	4.0	88
139	Facile synthesis of ZnCo ₂ O ₄ mesoporous structures with enhanced electrocatalytic oxygen evolution reaction properties. RSC Advances, 2016, 6, 92699-92704.	1.7	38
140	Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Advanced Materials, 2016, 28, 9532-9538.	11.1	961
141	Carbonâ€Based Metalâ€Free Catalysts for Electrocatalysis beyond the ORR. Angewandte Chemie - International Edition, 2016, 55, 11736-11758.	7.2	598
142	Achieving High Aqueous Energy Storage via Hydrogenâ€Generation Passivation. Advanced Materials, 2016, 28, 7626-7632.	11.1	51
143	Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: conductivity versus active sites. Journal of Materials Chemistry A, 2016, 4, 12658-12666.	5.2	99
144	Interlaced NiS ₂ –MoS ₂ nanoflake-nanowires as efficient hydrogen evolution electrocatalysts in basic solutions. Journal of Materials Chemistry A, 2016, 4, 13439-13443.	5.2	241
145	In-Situ Platinum Deposition on Nitrogen-Doped Carbon Films as a Source of Catalytic Activity in a Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 21531-21538.	4.0	53
146	Enhanced electrocatalytic activity of nitrogen-doped olympicene/graphene hybrids for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2016, 18, 22799-22804.	1.3	7
147	Nitrogen-doped mesoporous carbon nanosheet/carbon nanotube hybrids as metal-free bi-functional electrocatalysts for water oxidation and oxygen reduction. Journal of Materials Chemistry A, 2016, 4, 13133-13141.	5.2	116
148	Simultaneous H ₂ Generation and Biomass Upgrading in Water by an Efficient Nobleâ€Metalâ€Free Bifunctional Electrocatalyst. Angewandte Chemie - International Edition, 2016, 55, 9913-9917.	7.2	435
149	Simultaneous H ₂ Generation and Biomass Upgrading in Water by an Efficient Nobleâ€Metalâ€Free Bifunctional Electrocatalyst. Angewandte Chemie, 2016, 128, 10067-10071.	1.6	94
150	Electrospun Nitrogenâ€Doped Carbon Nanofibers Encapsulating Cobalt Nanoparticles as Efficient Oxygen Reduction Reaction Catalysts. ChemElectroChem, 2016, 3, 1437-1445.	1.7	35
151	Oxygen reduction reaction on nitrogen-doped graphene nanoribbons: A density functional theory study. Chemical Physics Letters, 2016, 663, 123-127.	1.2	28
152	Activity origin and catalyst design principles forÂelectrocatalytic hydrogen evolution on heteroatom-dopedÂgraphene. Nature Energy, 2016, 1, .	19.8	927
153	A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 17587-17603.	5.2	1,037
154	Morphology Control and Electro catalytic Activity towards Oxygen Reduction of Peptideâ€Templated Metal Nanomaterials: A Comparison between Au and Pt. ChemistrySelect, 2016, 1, 6044-6052.	0.7	19

#	Article	IF	CITATIONS
155	Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting. Nano Letters, 2016, 16, 7718-7725.	4.5	1,079
156	An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance. Science Advances, 2016, 2, e1600495.	4.7	75
157	CuCo Hybrid Oxides as Bifunctional Electrocatalyst for Efficient Water Splitting. Advanced Functional Materials, 2016, 26, 8555-8561.	7.8	251
158	Copper–Organic Framework Fabricated with CuS Nanoparticles: Synthesis, Electrical Conductivity, and Electrocatalytic Activities for Oxygen Reduction Reaction. Angewandte Chemie, 2016, 128, 15527-15531.	1.6	54
159	Copper–Organic Framework Fabricated with CuS Nanoparticles: Synthesis, Electrical Conductivity, and Electrocatalytic Activities for Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2016, 55, 15301-15305.	7.2	157
160	Electrochemically activated NiSe-Ni x S y hybrid nanorods as efficient electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2016, 220, 536-544.	2.6	60
161	Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016, 2, e1501122.	4.7	1,078
162	Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nature Communications, 2016, 7, 11510.	5.8	316
163	Highly active and stable AuNi dendrites as an electrocatalyst for the oxygen reduction reaction in alkaline media. Journal of Materials Chemistry A, 2016, 4, 17828-17837.	5.2	43
164	A highly active molybdenum multisulfide electrocatalyst for the hydrogen evolution reaction. RSC Advances, 2016, 6, 107158-107162.	1.7	14
165	A nitrogen-doped ordered mesoporous carbon/graphene framework as bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy, 2016, 30, 503-510.	8.2	140
166	FeP embedded in N, P dual-doped porous carbon nanosheets: an efficient and durable bifunctional catalyst for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 18723-18729.	5.2	136
167	Hierarchical porous activated carbon in OER with high efficiency. RSC Advances, 2016, 6, 102422-102427.	1.7	23
168	Nanostructured electrocatalysts with tunable activity and selectivity. Nature Reviews Materials, 2016, 1, .	23.3	675
169	N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction. Scientific Reports, 2016, 6, 34004.	1.6	104
170	Oxygen Evolution Reaction on Perovskite Electrocatalysts with Localized Spins and Orbital Rotation Symmetry. ChemCatChem, 2016, 8, 3762-3768.	1.8	35
171	3D Binder-free MoSe2 Nanosheets/Carbon Cloth Electrodes for Efficient and Stable Hydrogen Evolution Prepared by Simple Electrophoresis Deposition Strategy. Scientific Reports, 2016, 6, 22516.	1.6	75
172	Graphene in Photocatalysis: A Review. Small, 2016, 12, 6640-6696.	5.2	836

#	Article	IF	CITATIONS
173	Graphene Quantum Sheet Catalyzed Silicon Photocathode for Selective CO ₂ Conversion to CO. Advanced Functional Materials, 2016, 26, 233-242.	7.8	77
174	Hierarchically Porous Nickel Sulfide Multifunctional Superstructures. Advanced Energy Materials, 2016, 6, 1502333.	10.2	268
175	Nanostructured MoS ₂ Nanorose/Graphene Nanoplatelet Hybrids for Electrocatalysis. Chemistry - A European Journal, 2016, 22, 5969-5975.	1.7	14
176	Amorphous Cobalt Boride (Co ₂ B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1502313.	10.2	686
177	Opening of Bottleneck Pores for the Improvement of Nitrogen Doped Carbon Electrocatalysts. Advanced Energy Materials, 2016, 6, 1502389.	10.2	207
178	Ni ₃ FeN Nanoparticles Derived from Ultrathin NiFe‣ayered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst. Advanced Energy Materials, 2016, 6, 1502585.	10.2	668
179	Interface Engineering of MoS ₂ /Ni ₃ S ₂ Heterostructures for Highly Enhanced Electrochemical Overallâ€Waterâ€Splitting Activity. Angewandte Chemie - International Edition, 2016, 55, 6702-6707.	7.2	1,159
180	Strongly Coupled Architectures of Cobalt Phosphide Nanoparticles Assembled on Graphene as Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2016, 3, 719-725.	1.7	82
181	Size-Dependent Activity Trends Combined with in Situ X-ray Absorption Spectroscopy Reveal Insights into Cobalt Oxide/Carbon Nanotube-Catalyzed Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2016, 6, 4347-4355.	5.5	125
182	Heterodinuclear Ni(<scp>ii</scp>) and Cu(<scp>ii</scp>) Schiff base complexes and their activity in oxygen reduction. Dalton Transactions, 2016, 45, 14725-14733.	1.6	12
183	2D-HfS ₂ as an efficient photocatalyst for water splitting. Catalysis Science and Technology, 2016, 6, 6605-6614.	2.1	71
184	Design, synthesis, and energy-related applications of metal sulfides. Materials Horizons, 2016, 3, 402-421.	6.4	243
185	NiCo2O4/rGO hybrid nanostructures for efficient electrocatalytic oxygen evolution. Journal of Solid State Electrochemistry, 2016, 20, 2725-2736.	1.2	60
186	Magnesium cobalt silicate as a bifunctional catalyst for the O2 electrode and its application in Li–O2 cells. Catalysis Science and Technology, 2016, 6, 6716-6725.	2.1	10
187	Single-layered platinum nanocage: a highly selective and efficient catalyst for fuel cells. Journal of Materials Chemistry A, 2016, 4, 12756-12767.	5.2	33
188	Oxygen Reduction Reaction on Graphene in an Electroâ€Fenton System: Inâ€Situ Generation of H ₂ O ₂ for the Oxidation of Organic Compounds. ChemSusChem, 2016, 9, 1194-1199.	3.6	93
189	Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling. ChemSusChem, 2016, 9, 1223-1242.	3.6	87
190	Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H2O2 detection. Nano Research, 2016, 9, 2260-2269.	5.8	41

#	Article	IF	CITATIONS
191	2D Transitionâ€Metalâ€Dichalcogenideâ€Nanosheetâ€Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Advanced Materials, 2016, 28, 1917-1933.	11.1	1,214
192	Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. Advanced Materials, 2016, 28, 3423-3452.	11.1	1,256
193	Graphitic Nanoshell/Mesoporous Carbon Nanohybrids as Highly Efficient and Stable Bifunctional Oxygen Electrocatalysts for Rechargeable Aqueous Na–Air Batteries. Advanced Energy Materials, 2016, 6, 1501794.	10.2	120
194	N,Pâ€Codoped Carbon Networks as Efficient Metalâ€free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angewandte Chemie, 2016, 128, 2270-2274.	1.6	224
195	Interface Engineering of MoS ₂ /Ni ₃ S ₂ Heterostructures for Highly Enhanced Electrochemical Overallâ€Waterâ€Splitting Activity. Angewandte Chemie, 2016, 128, 6814-6819.	1.6	403
196	Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45, 1529-1541.	18.7	2,664
197	Pyridine derivative/graphene nanoribbon composites as molecularly tunable heterogeneous electrocatalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2016, 18, 5040-5047.	1.3	11
198	A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Research, 2016, 9, 713-725.	5.8	171
199	A â€~point–line–point' hybrid electrocatalyst for bi-functional catalysis of oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2016, 4, 3379-3385.	5.2	56
200	Integrated Three-Dimensional Carbon Paper/Carbon Tubes/Cobalt-Sulfide Sheets as an Efficient Electrode for Overall Water Splitting. ACS Nano, 2016, 10, 2342-2348.	7.3	575
201	Decoration of the inert basal plane of defect-rich MoS ₂ with Pd atoms for achieving Pt-similar HER activity. Journal of Materials Chemistry A, 2016, 4, 4025-4031.	5.2	122
202	Ordered Mesoporous Nickel Sphere Arrays for Highly Efficient Electrocatalytic Water Oxidation. ACS Catalysis, 2016, 6, 1446-1450.	5.5	105
203	Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy, 2016, 29, 83-110.	8.2	650
204	Facet-controlled hollow Rh ₂ S ₃ hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction. Energy and Environmental Science, 2016, 9, 850-856.	15.6	118
205	Etched and doped Co ₉ S ₈ /graphene hybrid for oxygen electrocatalysis. Energy and Environmental Science, 2016, 9, 1320-1326.	15.6	774
206	Binary nickel–iron nitride nanoarrays as bifunctional electrocatalysts for overall water splitting. Inorganic Chemistry Frontiers, 2016, 3, 630-634.	3.0	145
207	Hollow Cobalt-Based Bimetallic Sulfide Polyhedra for Efficient All-pH-Value Electrochemical and Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 1359-1365.	6.6	656
208	2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy and Environmental Science, 2016, 9, 709-728.	15.6	529

#	Article	IF	CITATIONS
209	Morphology–activity correlation in hydrogen evolution catalyzed by cobalt sulfides. Inorganic Chemistry Frontiers, 2016, 3, 279-285.	3.0	33
210	Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chemical Society Reviews, 2016, 45, 715-752.	18.7	249
211	Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chemical Society Reviews, 2016, 45, 1273-1307.	18.7	589
212	Platinum–titanium intermetallic nanoparticle catalysts for oxygen reduction reaction with enhanced activity and durability. Electrochemistry Communications, 2016, 66, 66-70.	2.3	23
213	General urea-assisted synthesis of carbon-coated metal phosphide nanoparticles for efficient hydrogen evolution electrocatalysis. Electrochimica Acta, 2016, 199, 99-107.	2.6	49
214	Singleâ^'sided fluorine–functionalized graphene: A metal–free electrocatalyst with high efficiency for oxygen reduction reaction. Carbon, 2016, 104, 56-63.	5.4	51
215	A novel CoP/MoS ₂ -CNTs hybrid catalyst with Pt-like activity for hydrogen evolution. Catalysis Science and Technology, 2016, 6, 1611-1615.	2.1	121
216	Research progresses of cathodic hydrogen evolution in advanced lead–acid batteries. Science Bulletin, 2016, 61, 451-458.	4.3	55
217	N-Doped graphene-coated molybdenum carbide nanoparticles as highly efficient electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 3947-3954.	5.2	177
218	Mechanism for Forming B,C,N,O Rings from NH ₃ BH ₃ and CO ₂ via Reaction Discovery Computations. Journal of Physical Chemistry A, 2016, 120, 1135-1144.	1.1	15
219	Guest–host modulation of multi-metallic (oxy)hydroxides for superb water oxidation. Journal of Materials Chemistry A, 2016, 4, 3210-3216.	5.2	62
220	Can metal–nitrogen–carbon catalysts satisfy oxygen electrochemistry?. Journal of Materials Chemistry A, 2016, 4, 4998-5001.	5.2	72
221	Concave and duck web-like platinum nanopentagons with enhanced electrocatalytic properties for formic acid oxidation. Journal of Materials Chemistry A, 2016, 4, 807-812.	5.2	27
222	3D Tungsten-Doped MoS ₂ Nanostructure: A Low-Cost, Facile Prepared Catalyst for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, H299-H304.	1.3	28
223	Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy and Environmental Science, 2016, 9, 1246-1250.	15.6	839
224	The nanostructure preservation of 3D porous graphene: New insights into the graphitization and surface chemistry of non-stacked double-layer templated graphene after high-temperature treatment. Carbon, 2016, 103, 36-44.	5.4	30
225	Raman in situ characterization of the species present in Co/CeO2 and Co/ZrO2 catalysts during the COPrOx reaction. International Journal of Hydrogen Energy, 2016, 41, 4993-5002.	3.8	27
226	Biochemistry-inspired direct synthesis of nitrogen and phosphorus dual-doped microporous carbon spheres for enhanced electrocatalysis. Chemical Communications, 2016, 52, 2118-2121.	2.2	58

#	Article	IF	CITATIONS
227	Hierarchically Porous Urchin-Like Ni ₂ P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis, 2016, 6, 714-721.	5.5	737
228	Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER. Physical Chemistry Chemical Physics, 2016, 18, 1699-1711.	1.3	77
229	Core–Shell Nanocomposites Based on Gold Nanoparticle@Zinc–Iron-Embedded Porous Carbons Derived from Metal–Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Catalysis, 2016, 6, 1045-1053.	5.5	151
230	Insight into the Catalytic Mechanism of Bimetallic Platinum–Copper Core–Shell Nanostructures for Nonaqueous Oxygen Evolution Reactions. Nano Letters, 2016, 16, 781-785.	4.5	39
231	Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy and Environmental Science, 2016, 9, 478-483.	15.6	774
232	Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co ₉ S ₈ double-shelled nanocages for efficient oxygen reduction. Energy and Environmental Science, 2016, 9, 107-111.	15.6	499
233	Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chemical Communications, 2016, 52, 1633-1636.	2.2	271
234	Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy and Environmental Science, 2016, 9, 123-129.	15.6	683
235	Microwave-assisted synthesis of porous Mn ₂ O ₃ nanoballs as bifunctional electrocatalyst for oxygen reduction and evolution reaction. Catalysis Science and Technology, 2016, 6, 1417-1429.	2.1	72
236	NiSe ₂ pyramids deposited on N-doped graphene encapsulated Ni foam for high-performance water oxidation. Journal of Materials Chemistry A, 2017, 5, 3981-3986.	5.2	67
237	Nickel Nanoparticles Encapsulated in Few‣ayer Nitrogenâ€Doped Graphene Derived from Metal–Organic Frameworks as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials, 2017, 29, 1605957.	11.1	507
238	Hierarchically Porous Electrocatalyst with Vertically Aligned Defect-Rich CoMoS Nanosheets for the Hydrogen Evolution Reaction in an Alkaline Medium. ACS Applied Materials & Interfaces, 2017, 9, 5288-5294.	4.0	93
239	A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy and Environmental Science, 2017, 10, 893-899.	15.6	412
240	Highly Active and Stable Pt–Pd Alloy Catalysts Synthesized by Roomâ€Temperature Electron Reduction for Oxygen Reduction Reaction. Advanced Science, 2017, 4, 1600486.	5.6	101
241	Highly dispersed iron nitride nanoparticles embedded in N doped carbon as a high performance electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 2996-3005.	3.8	34
242	Modular and Stepwise Synthesis of a Hybrid Metal–Organic Framework for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 2017, 139, 1778-1781.	6.6	341
243	Graphene-coated hybrid electrocatalysts derived from bimetallic metal–organic frameworks for efficient hydrogen generation. Journal of Materials Chemistry A, 2017, 5, 5000-5006.	5.2	92
244	Gas-solid phase growth of hierarchical nanoporous nanoplates for water splitting in acidic conditions. Journal of Alloys and Compounds, 2017, 701, 122-126.	2.8	2

#	Article	IF	Citations
π 245	Efficient Synthesis of Nitrogen- and Sulfur-co-Doped Ketjenblack with a Single-Source Precursor for	1.7	25
- 10	Enhancing Oxygen Reduction Reaction Activity. Chemistry - A European Journal, 2017, 23, 3674-3682.		
246	Facile synthesis of pyrite-type binary nickel iron diselenides as efficient electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2017, 401, 17-24.	3.1	63
247	Cobalt Assisted Synthesis of IrCu Hollow Octahedral Nanocages as Highly Active Electrocatalysts toward Oxygen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1604688.	7.8	186
248	Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes. Nano Energy, 2017, 32, 511-519.	8.2	143
249	Quantifying Single-Carbon Nanotube–Electrode Contact via the Nanoimpact Method. Journal of Physical Chemistry Letters, 2017, 8, 507-511.	2.1	23
250	Three-dimensional porous MoNi ₄ networks constructed by nanosheets as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 2508-2513.	5.2	122
251	Hybrid carbon nanowire networks with Fe–P bond active site for efficient oxygen/hydrogen-based electrocatalysis. Nano Energy, 2017, 33, 221-228.	8.2	121
252	In Situ Coupling of CoP Polyhedrons and Carbon Nanotubes as Highly Efficient Hydrogen Evolution Reaction Electrocatalyst. Small, 2017, 13, 1602873.	5.2	212
253	Template synthesis of CoSe ₂ /Co ₃ Se ₄ nanotubes: tuning of their crystal structures for photovoltaics and hydrogen evolution in alkaline medium. Journal of Materials Chemistry A, 2017, 5, 4513-4526.	5.2	165
254	Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small, 2017, 13, 1603793.	5.2	277
255	Peptide capped Pd nanoparticles for oxygen electroreduction: Strong surface effects. Journal of Alloys and Compounds, 2017, 702, 146-152.	2.8	18
256	Energy-efficient electrolytic hydrogen generation using a Cu ₃ P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction. Inorganic Chemistry Frontiers, 2017, 4, 420-423.	3.0	101
257	A New Type of Scaling Relations to Assess the Accuracy of Computational Predictions of Catalytic Activities Applied to the Oxygen Evolution Reaction. ChemCatChem, 2017, 9, 1261-1268.	1.8	75
258	Hierarchical Ni 3.5 Co 5.5 S 8 nanosheet-assembled hollow nanocages: Superior electrocatalyst towards oxygen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 5985-5992.	3.8	36
259	Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355, .	6.0	7,837
260	High-efficiency electrochemical hydrogen evolution based on the intermetallic Pt ₂ Si compound prepared by magnetron-sputtering. RSC Advances, 2017, 7, 1553-1560.	1.7	37
261	Emerging nanostructured electrode materials for water electrolysis and rechargeable beyond Li-ion batteries. Advances in Physics: X, 2017, 2, 211-253.	1.5	25
262	Complex Hollow Nanostructures: Synthesis and Energyâ€Related Applications. Advanced Materials, 2017, 29, 1604563.	11.1	627

ARTICLE IF CITATIONS Interlayer Expansion of Layered Cobalt Hydroxide Nanobelts to Highly Improve Oxygen Evolution 263 4.0 101 Electrocatalysis. ACS Applied Materials & amp; Interfaces, 2017, 9, 7059-7067. Self-Templated Formation of Hollow Structures for Electrochemical Energy Applications. Accounts 264 397 of Chemical Research, 2017, 50, 293-301. Cobalt nanoparticles encapsulated in carbon nanotube-grafted nitrogen and sulfur co-doped 265 multichannel carbon fibers as efficient bifunctional oxygen electrocatalysts. Journal of Materials 5.2 129 Chemistry A, 2017, 5, 4949-4961. Bioinspired Cobalt–Citrate Metal–Organic Framework as an Efficient Electrocatalyst for Water 266 206 Oxidation. ACS Applied Materials & amp; Interfaces, 2017, 9, 7193-7201. Advent of 2D Rhenium Disulfide (ReS₂): Fundamentals to Applications. Advanced 267 7.8 296 Functional Materials, 2017, 27, 1606129. Molecule-Level g-C₃N₄ Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. Journal of the American Chemical Society, 2017, 139, 1,094 6.6 3336-3339. Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen 269 5.8 139 evolution. Nano Research, 2017, 10, 1732-1739. Nonâ€Noble Metalâ€based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to 1,199 11.1 Applications. Advanced Materials, 2017, 29, 1605838. Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds. Journal of 271 5.2 142 Materials Chemistry A, 2017, 5, 5995-6012. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy 824 Conversion Processes. Accounts of Chemical Research, 2017, 50, 915-923. Graphene and Their Hybrid Electrocatalysts for Water Splitting. ChemCatChem, 2017, 9, 1554-1568. 273 1.8 88 Sulfur-Modified Graphitic Carbon Nitride Nanostructures as an Efficient Electrocatalyst for Water 274 5.2 Oxidation. Small, 2017, 13, 1603893. Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall 275 8.2 258 water splitting. Nano Energy, 2017, 34, 472-480. Meshâ€onâ€Mesh Graphiticâ€C₃N₄@Graphene for Highly Efficient Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1606352. 145 The activity origin of core–shell and alloy AgCu bimetallic nanoparticles for the oxygen reduction 277 5.260 reaction. Journal of Materials Chemistry A, 2017, 5, 7043-7054. Controllable Synthesis of Caterpilliar-like Molybdenum Sulfide @carbon Nanotube Hybrids with Core Shell Structure for Hydrogen Evolution. Electrochimica Acta, 2017, 235, 422-428. Cation modulating electrocatalyst derived from bimetallic metalâ€"organic frameworks for overall 279 5.258 water splitting. Journal of Materials Chemistry A, 2017, 5, 6170-6177. Pt-like electrocatalytic behavior of Ru–MoO₂ nanocomposites for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 5475-5485.

#	Article	IF	CITATIONS
281	Enhancing Water Oxidation Catalysis on a Synergistic Phosphorylated NiFe Hydroxide by Adjusting Catalyst Wettability. ACS Catalysis, 2017, 7, 2535-2541.	5.5	292
282	Design and Application of Foams for Electrocatalysis. ChemCatChem, 2017, 9, 1721-1743.	1.8	245
283	A host-guest approach to fabricate metallic cobalt nanoparticles embedded in silk-derived N-doped carbon fibers for efficient hydrogen evolution. Green Energy and Environment, 2017, 2, 151-159.	4.7	17
284	Sandwich‣ike Nanocomposite of CoNiO <i>_x</i> /Reduced Graphene Oxide for Enhanced Electrocatalytic Water Oxidation. Advanced Functional Materials, 2017, 27, 1606325.	7.8	87
285	Three-dimensional hollow porous Co6Mo6C nanoframe as an highly active and durable electrocatalyst for water splitting. Journal of Catalysis, 2017, 347, 63-71.	3.1	39
286	Co@Pt Core@Shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. Journal of Power Sources, 2017, 343, 458-466.	4.0	99
287	Facile synthesis of 3D porous Co ₃ V ₂ O ₈ nanoroses and 2D NiCo ₂ V ₂ O ₈ nanoplates for high performance supercapacitors and their electrocatalytic oxygen evolution reaction properties. Dalton Transactions, 2017, 46, 3295-3302.	1.6	68
288	Non-precious metal electrocatalysts for hydrogen production in proton exchange membrane water electrolyzer. Applied Catalysis B: Environmental, 2017, 206, 608-616.	10.8	54
289	Ultrasensitive Ironâ€Triggered Nanosized Fe–CoOOH Integrated with Graphene for Highly Efficient Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1602148.	10.2	216
290	Nickel–Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An Allâ€pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution. Advanced Materials, 2017, 29, 1606521.	11.1	370
291	MoSe ₂ Embedded CNT-Reduced Graphene Oxide Composite Microsphere with Superior Sodium Ion Storage and Electrocatalytic Hydrogen Evolution Performances. ACS Applied Materials & Interfaces, 2017, 9, 10673-10683.	4.0	174
292	Amorphous Cobalt–Iron Hydroxide Nanosheet Electrocatalyst for Efficient Electrochemical and Photoâ€Electrochemical Oxygen Evolution. Advanced Functional Materials, 2017, 27, 1603904.	7.8	260
293	Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	36
294	Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors. Coordination Chemistry Reviews, 2017, 337, 80-96.	9.5	282
295	Regulating the active species of Ni(OH) ₂ using CeO ₂ : 3D CeO ₂ /Ni(OH) ₂ /carbon foam as an efficient electrode for the oxygen evolution reaction. Chemical Science, 2017, 8, 3211-3217.	3.7	141
296	Nobleâ€Metalâ€Free Metallic Glass as a Highly Active and Stable Bifunctional Electrocatalyst for Water Splitting. Advanced Materials Interfaces, 2017, 4, 1601086.	1.9	60
297	Facile Integration of Hierarchical Pores and N,P-Codoping in Carbon Networks Enables Efficient Oxygen Reduction Reaction. Electrochimica Acta, 2017, 238, 375-383.	2.6	34
298	Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods, 2017, 1, 1700090.	4.6	106

#	Article	IF	CITATIONS
299	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2017, 56, 6937-6941.	7.2	1,542
300	Recent Advances in Atomic Metal Doping of Carbonâ€based Nanomaterials for Energy Conversion. Small, 2017, 13, 1700191.	5.2	290
301	Isolated Single Iron Atoms Anchored on Nâ€Đoped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2017, 129, 7041-7045.	1.6	306
302	Amorphous NiFe-OH/NiFeP Electrocatalyst Fabricated at Low Temperature for Water Oxidation Applications. ACS Energy Letters, 2017, 2, 1035-1042.	8.8	505
303	Ultrathin Graphene Layers Encapsulating Nickel Nanoparticles Derived Metal–Organic Frameworks for Highly Efficient Electrocatalytic Hydrogen and Oxygen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 4771-4777.	3.2	176
304	Highly active, durable and pH-universal hybrid oxide nanocrystals for efficient oxygen evolution. Sustainable Energy and Fuels, 2017, 1, 1123-1129.	2.5	18
305	Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts. Angewandte Chemie, 2017, 129, 5961-5965.	1.6	84
306	Layered Double Hydroxide Nanosheets with Multiple Vacancies Obtained by Dry Exfoliation as Highly Efficient Oxygen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 5867-5871.	7.2	808
307	Computational screening for high-activity MoS ₂ monolayer-based catalysts for the oxygen reduction reaction via substitutional doping with transition metal. Journal of Materials Chemistry A, 2017, 5, 9842-9851.	5.2	81
308	Ultrathin Nitrogen-Doped Carbon Coated with CoP for Efficient Hydrogen Evolution. ACS Catalysis, 2017, 7, 3824-3831.	5.5	404
309	Facile Surface Modification of Ubiquitous Stainless Steel Led to Competent Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2017, 5, 4778-4784.	3.2	78
310	Ironâ€Doped Cobalt Monophosphide Nanosheet/Carbon Nanotube Hybrids as Active and Stable Electrocatalysts for Water Splitting. Advanced Functional Materials, 2017, 27, 1606635.	7.8	206
311	Bifunctional porous non-precious metal WO ₂ hexahedral networks as an electrocatalyst for full water splitting. Journal of Materials Chemistry A, 2017, 5, 9655-9660.	5.2	72
312	Anionic Regulated NiFe (Oxy)Sulfide Electrocatalysts for Water Oxidation. Small, 2017, 13, 1700610.	5.2	150
313	Constructing three-dimensional porous Ni/Ni ₃ S ₂ nano-interfaces for hydrogen evolution electrocatalysis under alkaline conditions. Dalton Transactions, 2017, 46, 10700-10706.	1.6	41
314	Hierarchically porous nitrogen-doped carbon nanotubes derived from core–shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. Journal of Materials Chemistry A, 2017, 5, 12322-12329.	5.2	93
315	Recent Methods for the Synthesis of Noble-Metal-Free Hydrogen-Evolution Electrocatalysts: From Nanoscale to Sub-nanoscale. Small Methods, 2017, 1, 1700118.	4.6	96
316	Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. Nano Energy, 2017, 37, 98-107.	8.2	129

#	Article	IF	CITATIONS
317	Mechanistic insight into oxygen evolution electrocatalysis of surface phosphate modified cobalt phosphide nanorod bundles and their superior performance for overall water splitting. Electrochimica Acta, 2017, 242, 355-363.	2.6	127
318	Component-Controlled Synthesis of Necklace-Like Hollow Ni _{<i>X</i>} Ru _{<i>y</i>} Nanoalloys as Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 17326-17336.	4.0	60
319	Anodically Grown Binder-Free Nickel Hexacyanoferrate Film: Toward Efficient Water Reduction and Hexacyanoferrate Film Based Full Device for Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 18015-18021.	4.0	56
320	Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Materials Today, 2017, 20, 425-451.	8.3	339
321	Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, 136-157.	8.2	1,257
322	Nest-like NiCoP for Highly Efficient Overall Water Splitting. ACS Catalysis, 2017, 7, 4131-4137.	5.5	480
324	Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nature Communications, 2017, 8, 15377.	5.8	284
325	Molybdenum Carbideâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Chemistry - A European Journal, 2017, 23, 10947-10961.	1.7	267
326	Design of ultralong single-crystal nanowire-based bifunctional electrodes for efficient oxygen and hydrogen evolution in a mild alkaline electrolyte. Journal of Materials Chemistry A, 2017, 5, 10895-10901.	5.2	23
327	A PEGylated deep eutectic solvent for controllable solvothermal synthesis of porous NiCo ₂ S ₄ for efficient oxygen evolution reaction. Green Chemistry, 2017, 19, 3023-3031.	4.6	143
328	Cu, Coâ€Embedded Nâ€Enriched Mesoporous Carbon for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. Advanced Energy Materials, 2017, 7, 1700193.	10.2	487
329	Synthesis of Zn0.3Co2.7O4 porous willow-leaf like structure for enhanced electrocatalytic oxygen evolution reaction. Materials Letters, 2017, 198, 196-200.	1.3	5
330	MoP/Mo ₂ C@C: A New Combination of Electrocatalysts for Highly Efficient Hydrogen Evolution over the Entire pH Range. ACS Applied Materials & Interfaces, 2017, 9, 16270-16279.	4.0	197
331	Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nature Communications, 2017, 8, 14969.	5.8	656
332	Ultrathin Co–Fe hydroxide nanosheet arrays for improved oxygen evolution during water splitting. RSC Advances, 2017, 7, 22818-22824.	1.7	43
333	Selfâ€Templating Synthesis of Hollow Co ₃ O ₄ Microtube Arrays for Highly Efficient Water Electrolysis. Angewandte Chemie, 2017, 129, 1344-1348.	1.6	79
334	Selfâ€Templating Synthesis of Hollow Co ₃ O ₄ Microtube Arrays for Highly Efficient Water Electrolysis. Angewandte Chemie - International Edition, 2017, 56, 1324-1328.	7.2	648
335	One-step electroreductively deposited iron-cobalt composite films as efficient bifunctional electrocatalysts for overall water splitting. Nano Energy, 2017, 38, 576-584.	8.2	65

#	Article	IF	CITATIONS
336	Efficient Overall Waterâ€6plitting Electrocatalysis Using Lepidocrocite VOOH Hollow Nanospheres. Angewandte Chemie, 2017, 129, 588-592.	1.6	63
337	Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 1211-1220.	5.2	161
338	2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2017, 7, 494-500.	5.5	825
339	Controlled synthesis of Mo-doped Ni ₃ S ₂ nano-rods: an efficient and stable electro-catalyst for water splitting. Journal of Materials Chemistry A, 2017, 5, 1595-1602.	5.2	148
340	MoSe ₂ Nanosheets Grown on Polydopamineâ€Derived Porous Fibers: A Highâ€Performance Catalyst for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1600825.	1.9	24
341	Efficient Overall Waterâ€Splitting Electrocatalysis Using Lepidocrocite VOOH Hollow Nanospheres. Angewandte Chemie - International Edition, 2017, 56, 573-577.	7.2	209
342	Uncovering the Nature of Active Species of Nickel Phosphide Catalysts in High-Performance Electrochemical Overall Water Splitting. ACS Catalysis, 2017, 7, 103-109.	5.5	350
343	In situ surface engineering of nickel inverse opal for enhanced overall electrocatalytic water splitting. Journal of Materials Chemistry A, 2017, 5, 14873-14880.	5.2	31
344	Cu2O@C core/shell nanoparticle as an electrocatalyst for oxygen evolution reaction. Journal of Catalysis, 2017, 352, 239-245.	3.1	70
345	CoS2 nanoneedle array on Ti mesh: A stable and efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production. Electrochimica Acta, 2017, 246, 776-782.	2.6	104
346	Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti ₃ C ₂ T _{<i>x</i>} Nanosheets for Electrocatalytic Oxygen Evolution. ACS Nano, 2017, 11, 5800-5807.	7.3	557
347	Tri-Functional OER, HER and ORR Electrocatalyst Electrodes from In Situ Metal-Nitrogen Co-Doped Oxidized Graphite Rods. Bulletin of the Chemical Society of Japan, 2017, 90, 950-954.	2.0	21
348	Water splitting in near-neutral media: using an Mn–Co-based nanowire array as a complementary electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 12091-12095.	5.2	36
349	Colloidal synthesis of iridium-iron nanoparticles for electrocatalytic oxygen evolution. Sustainable Energy and Fuels, 2017, 1, 1199-1203.	2.5	19
350	Facile fabrication of PtPd alloyed worm-like nanoparticles for electrocatalytic reduction of oxygen. International Journal of Hydrogen Energy, 2017, 42, 17112-17121.	3.8	25
351	Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery. Nano Energy, 2017, 39, 77-85.	8.2	216
352	Two-dimensional graphene-like N, Co-codoped carbon nanosheets derived from ZIF-67 polyhedrons for efficient oxygen reduction reactions. Chemical Communications, 2017, 53, 7840-7843.	2.2	70
353	Topotactic reduction of layered double hydroxides for atomically thick two-dimensional non-noble-metal alloy. Nano Research, 2017, 10, 2988-2997.	5.8	38

#	Article	IF	CITATIONS
354	Highly active and durable carbon nitride fibers as metal-free bifunctional oxygen electrodes for flexible Zn–air batteries. Nanoscale Horizons, 2017, 2, 333-341.	4.1	73
355	Post‣ynthetic Immobilization of Ni Ions in a Porousâ€Organic Polymerâ€Graphene Composite for Nonâ€Noble Metal Electrocatalytic Water Oxidation. ChemCatChem, 2017, 9, 2946-2951.	1.8	16
356	Effectively incorporating iron, nitrogen, and sulfur functionalities on carbon surface for a superior electrocatalyst toward oxygen reduction reaction. Electrochemistry Communications, 2017, 81, 34-37.	2.3	20
357	Lithium manganese phosphate-carbon composite as a highly active and durable electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2017, 245, 219-226.	2.6	10
358	Integrated 3D MoSe2@Ni0.85Se Nanowire Network with Synergistic Cooperation as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Medium. Electrochimica Acta, 2017, 246, 712-719.	2.6	69
359	Three-Dimensional Dendritic Structures of NiCoMo as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2017, 9, 22420-22431.	4.0	100
360	Iodine-Doped Graphene for Enhanced Electrocatalytic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell Applications. Journal of Electrochemical Energy Conversion and Storage, 2017, 14,	1.1	21
361	2D Porous Carbons prepared from Layered Organic–Inorganic Hybrids and their Use as Oxygenâ€Reduction Electrocatalysts. Advanced Materials, 2017, 29, 1700707.	11.1	129
362	Ni/Fe Ratio Dependence of Catalytic Activity in Monodisperse Ternary Nickel Iron Phosphide for Efficient Water Oxidation. ChemElectroChem, 2017, 4, 2150-2157.	1.7	44
363	Hierarchical Co9S8 hollow microspheres as multifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Electrochimica Acta, 2017, 246, 380-390.	2.6	77
364	Molybdenum Disulfide–Black Phosphorus Hybrid Nanosheets as a Superior Catalyst for Electrochemical Hydrogen Evolution. Nano Letters, 2017, 17, 4311-4316.	4.5	211
365	MO o@Nâ€Đoped Carbon (M = Zn or Co): Vital Roles of Inactive Zn and Highly Efficient Activity toward Oxygen Reduction/Evolution Reactions for Rechargeable Zn–Air Battery. Advanced Functional Materials, 2017, 27, 1700795.	7.8	224
366	Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites. Applied Surface Science, 2017, 423, 185-196.	3.1	77
367	0D/2D heterojunctions of molybdenum carbide-tungsten carbide quantum dots/N-doped graphene nanosheets as superior and durable electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 18494-18501.	5.2	39
368	The synergy effect and reaction pathway in the oxygen reduction reaction on the sulfur and nitrogen dual doped graphene catalyst. Chemical Physics Letters, 2017, 677, 65-69.	1.2	29
369	Threeâ€Dimensional Nickel–Borate Nanosheets Array for Efficient Oxygen Evolution at Nearâ€Neutral pH. Chemistry - A European Journal, 2017, 23, 6959-6963.	1.7	43
370	Core–Shell‧tructured NiS ₂ @Niâ€8 _i Nanoarray for Efficient Water Oxidation at Nearâ€Neutral pH. ChemCatChem, 2017, 9, 3138-3143.	1.8	32
371	Efficient Electrocatalyst for the Hydrogen Evolution Reaction Derived from Polyoxotungstate/Polypyrrole/Graphene. ChemSusChem, 2017, 10, 2402-2407.	3.6	41

#	Article	IF	CITATIONS
372	Engineering Highâ€Energy Interfacial Structures for Highâ€Performance Oxygenâ€Involving Electrocatalysis. Angewandte Chemie - International Edition, 2017, 56, 8539-8543.	7.2	314
373	Selfâ€Supported NiS Nanoparticleâ€Coupled Ni ₂ P Nanoflake Array Architecture: An Advanced Catalyst for Electrochemical Hydrogen Evolution. ChemElectroChem, 2017, 4, 1341-1348.	1.7	17
374	Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 8187-8208.	5.2	229
375	Engineering Highâ€Energy Interfacial Structures for Highâ€Performance Oxygenâ€Involving Electrocatalysis. Angewandte Chemie, 2017, 129, 8659-8663.	1.6	36
376	Facile Synthesis of <scp>Mo₂C</scp> Nanocrystals Embedded in Nanoporous Carbon Network for Efficient Hydrogen Evolution. Chinese Journal of Chemistry, 2017, 35, 911-917.	2.6	12
377	Self-surface-passivation of titanium doped hematite photoanode for efficient solar water and formaldehyde oxidation. Materials Research Bulletin, 2017, 96, 354-359.	2.7	14
378	A facile fabrication method for ultrathin NiO/Ni nanosheets as a high-performance electrocatalyst for the oxygen evolution reaction. RSC Advances, 2017, 7, 18539-18544.	1.7	11
379	Ultrafast Formation of Amorphous Bimetallic Hydroxide Films on 3D Conductive Sulfide Nanoarrays for Largeâ€Currentâ€Density Oxygen Evolution Electrocatalysis. Advanced Materials, 2017, 29, 1700404.	11.1	462
380	A Co-N/C hollow-sphere electrocatalyst derived from a metanilic CoAl layered double hydroxide for the oxygen reduction reaction, and its active sites in various pH media. Nano Research, 2017, 10, 2508-2518.	5.8	62
381	Orthorhombic α-NiOOH Nanosheet Arrays: Phase Conversion and Efficient Bifunctional Electrocatalysts for Full Water Splitting. ACS Sustainable Chemistry and Engineering, 2017, 5, 3808-3818.	3.2	92
382	2D Layered Graphitic Carbon Nitride Sandwiched with Reduced Graphene Oxide as Nanoarchitectured Anode for Highly Stable Lithium-ion Battery. Electrochimica Acta, 2017, 237, 69-77.	2.6	51
383	Sulfurizing-Induced Hollowing of Co ₉ S ₈ Microplates with Nanosheet Units for Highly Efficient Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 11634-11641.	4.0	129
384	Bridged-multi-octahedral cobalt oxide nanocrystals with a Co-terminated surface as an oxygen evolution and reduction electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 7416-7422.	5.2	23
385	Electrochemical synthesis of nanoporous tungsten carbide and its application as electrocatalysts for photoelectrochemical cells. Nanoscale, 2017, 9, 5413-5424.	2.8	26
386	Novel Iron/Cobaltâ€Containing Polypyrrole Hydrogelâ€Derived Trifunctional Electrocatalyst for Selfâ€Powered Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1606497.	7.8	320
387	Bifunctional Oxygen Electrocatalysis through Chemical Bonding of Transition Metal Chalcogenides on Conductive Carbons. Advanced Energy Materials, 2017, 7, 1602217.	10.2	105
388	Metal-Free Motifs for Solar Fuel Applications. Annual Review of Physical Chemistry, 2017, 68, 305-331.	4.8	14
389	Unexpected catalytic behavior of core-satellite gold nanostructures towards electroreduction of oxygen. Electrochemistry Communications, 2017, 78, 1-5.	2.3	4

#	Article	IF	CITATIONS
390	Peptide A4 based AuAg alloyed nanoparticle networks for electrocatalytic reduction of oxygen. International Journal of Hydrogen Energy, 2017, 42, 11295-11303.	3.8	16
391	Nitrogen-doped carbon encapsulating $\hat{1}^3$ -MoC/Ni heterostructures for efficient oxygen evolution electrocatalysts. Nanoscale, 2017, 9, 5583-5588.	2.8	66
392	Cu ₂ O–Cu Hybrid Foams as High-Performance Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. ACS Catalysis, 2017, 7, 986-991.	5.5	188
393	Multifunctional Carbonâ€Based Metalâ€Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. Advanced Materials, 2017, 29, 1604942.	11.1	606
394	One-pot synthesis of holey MoS2 nanostructures as efficient electrocatalysts for hydrogen evolution. Applied Surface Science, 2017, 396, 1719-1725.	3.1	17
395	Atomically and Electronically Coupled Pt and CoO Hybrid Nanocatalysts for Enhanced Electrocatalytic Performance. Advanced Materials, 2017, 29, 1604607.	11.1	224
396	Oneâ€Dimensional Earthâ€Abundant Nanomaterials for Waterâ€Splitting Electrocatalysts. Advanced Science, 2017, 4, 1600380.	5.6	253
397	Small Dopants Make Big Differences: Enhanced Electrocatalytic Performance of MoS2 Monolayer for Oxygen Reduction Reaction (ORR) by N– and P–Doping. Electrochimica Acta, 2017, 225, 543-550.	2.6	106
398	Unusual formation of tetragonal microstructures from nitrogen-doped carbon nanocapsules with cobalt nanocores as a bi-functional oxygen electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 2271-2279.	5.2	80
399	Polydopamineâ€Inspired, Dual Heteroatomâ€Doped Carbon Nanotubes for Highly Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1602068.	10.2	319
400	Porous molybdenum carbide microspheres as efficient binder-free electrocatalysts for suspended hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 6448-6454.	3.8	24
401	Fe/N decorated mulberry-like hollow mesoporous carbon fibers as efficient electrocatalysts for oxygen reduction reaction. Carbon, 2017, 114, 706-716.	5.4	40
402	Monolayer group IVA monochalcogenides as potential and efficient catalysts for the oxygen reduction reaction from first-principles calculations. Journal of Materials Chemistry A, 2017, 5, 1734-1741.	5.2	53
403	The Reaction Mechanism with Free Energy Barriers at Constant Potentials for the Oxygen Evolution Reaction at the IrO ₂ (110) Surface. Journal of the American Chemical Society, 2017, 139, 149-155.	6.6	243
404	PdAu alloyed clusters supported by carbon nanosheets asÂefficient electrocatalysts forÂoxygenÂreduction. International Journal of Hydrogen Energy, 2017, 42, 218-227.	3.8	49
405	Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers. Nanoscale Horizons, 2017, 2, 72-80.	4.1	85
406	Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 2017, 8, 13907.	5.8	1,496
407	Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. Nano Research, 2017, 10, 814-825.	5.8	71

#	Article	IF	CITATIONS
408	The Role of Intrinsic Defects in Electrocatalytic Activity of Monolayer VS ₂ Basal Planes for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2017, 121, 1530-1536.	1.5	93
409	Spontaneous linker-free binding of polyoxometalates on nitrogen-doped carbon nanotubes for efficient water oxidation. Journal of Materials Chemistry A, 2017, 5, 1941-1947.	5.2	46
410	Energy and fuels from electrochemical interfaces. Nature Materials, 2017, 16, 57-69.	13.3	1,484
411	Mixed-valence NaSb ₃ O ₇ support toward improved electrocatalytic performance in the oxygen-reduction reaction. Journal of Materials Chemistry A, 2017, 5, 1667-1671.	5.2	24
412	Liberation of three dihydrogens from two ethene molecules as mediated by the tantalum nitride anion cluster Ta ₃ N ₂ ^{â^'} at room temperature. Physical Chemistry Chemical Physics, 2017, 19, 3136-3142.	1.3	9
413	Electropolymerization Fabrication of Co Phosphate Nanoparticles Encapsulated in N,P-Codoped Mesoporous Carbon Networks as a 3D Integrated Electrode for Full Water Splitting. ACS Sustainable Chemistry and Engineering, 2017, 5, 571-579.	3.2	34
414	Vertical Growth of 2D Amorphous FePO ₄ Nanosheet on Ni Foam: Outer and Inner Structural Design for Superior Water Splitting. Advanced Materials, 2017, 29, 1704574.	11.1	278
415	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 16086-16090.	7.2	431
416	Polyoxometalate–Surfactant Hybrids Directed Assembly of Ni ₃ S ₂ into Hollow Microsphere as Pt-Comparable Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Medium. ACS Applied Materials & Interfaces, 2017, 9, 40162-40170.	4.0	40
417	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 16302-16306.	1.6	82
418	lridiumâ€Based Multimetallic Porous Hollow Nanocrystals for Efficient Overallâ€Waterâ€Splitting Catalysis. Advanced Materials, 2017, 29, 1703798.	11.1	460
419	Hierarchically Structured Cu-Based Electrocatalysts with Nanowires Array for Water Splitting. Journal of Physical Chemistry C, 2017, 121, 25875-25881.	1.5	69
420	Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting. Nano Energy, 2017, 41, 327-336.	8.2	252
421	Highly Active IrO _{<i>x</i>} Nanoparticles/Black Si Electrode for Efficient Water Splitting with Conformal TiO ₂ Interface Engineering. ACS Sustainable Chemistry and Engineering, 2017, 5, 10940-10946.	3.2	27
422	Flowerâ€Like Nickel Phosphide Microballs Assembled by Nanoplates with Exposed Highâ€Energy (0 0 1) Facets: Efficient Electrocatalyst for the Hydrogen Evolution Reaction. ChemSusChem, 2017, 10, 4899-4908.	3.6	55
423	Encased Copper Boosts the Electrocatalytic Activity of N-Doped Carbon Nanotubes for Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2017, 9, 36857-36864.	4.0	75
424	Engineering Co ₉ S ₈ /WS ₂ array films as bifunctional electrocatalysts for efficient water splitting. Journal of Materials Chemistry A, 2017, 5, 23361-23368.	5.2	117
425	CoSe _x nanocrystalline-dotted CoCo layered double hydroxide nanosheets: a synergetic engineering process for enhanced electrocatalytic water oxidation. Nanoscale, 2017, 9, 16256-16263.	2.8	38

#	Article	IF	CITATIONS
426	Oxygen Vacancies Dominated NiS ₂ /CoS ₂ Interface Porous Nanowires for Portable Zn–Air Batteries Driven Water Splitting Devices. Advanced Materials, 2017, 29, 1704681.	11.1	533
427	Loading Pt Nanoparticles on Metal–Organic Frameworks for Improved Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2017, 5, 11577-11583.	3.2	37
428	Self-Supported Hierarchical FeCoNi-LTH/NiCo ₂ O ₄ /CC Electrodes with Enhanced Bifunctional Performance for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 36917-36926.	4.0	76
429	Structure Confined Porous Mo ₂ C for Efficient Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1703933.	7.8	148
430	Ionic Processes in Water Electrolysis: The Role of Ion-Selective Membranes. ACS Energy Letters, 2017, 2, 2625-2634.	8.8	68
431	Active Sites Intercalated Ultrathin Carbon Sheath on Nanowire Arrays as Integrated Core–Shell Architecture: Highly Efficient and Durable Electrocatalysts for Overall Water Splitting. Small, 2017, 13, 1702018.	5.2	91
432	Amorphous Phosphorus-Incorporated Cobalt Molybdenum Sulfide on Carbon Cloth: An Efficient and Stable Electrocatalyst for Enhanced Overall Water Splitting over Entire pH Values. ACS Applied Materials & Interfaces, 2017, 9, 37739-37749.	4.0	122
433	Engineering a nanotubular mesoporous cobalt phosphide electrocatalyst by the Kirkendall effect towards highly efficient hydrogen evolution reactions. Nanoscale, 2017, 9, 16313-16320.	2.8	43
434	Complex Nanostructures from Materials based on Metal–Organic Frameworks for Electrochemical Energy Storage and Conversion. Advanced Materials, 2017, 29, 1703614.	11.1	629
435	Enhancing bimetallic synergy with light: the effect of UV light pre-treatment on catalytic oxygen activation by bimetallic Au–Pt nanoparticles on a TiO ₂ support. Catalysis Science and Technology, 2017, 7, 4792-4805.	2.1	24
436	CuCoO _{<i>x</i>} /FeOOH Core–Shell Nanowires as an Efficient Bifunctional Oxygen Evolution and Reduction Catalyst. ACS Energy Letters, 2017, 2, 2498-2505.	8.8	109
437	Graphitized carbon-coated vanadium carbide nanoboscages modified by nickel with enhanced electrocatalytic activity for hydrogen evolution in both acid and alkaline solutions. Journal of Materials Chemistry A, 2017, 5, 23028-23034.	5.2	65
438	Mixed-Metal–Organic Framework Self-Template Synthesis of Porous Hybrid Oxyphosphides for Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 38621-38628.	4.0	40
439	Hierarchically Porous Co3C/Co-N-C/G Modified Graphitic Carbon: A Trifunctional Corrosion-Resistant Electrode for Oxygen Reduction, Hydrogen Evolution and Oxygen Evolution Reactions. Electrochimica Acta, 2017, 257, 40-48.	2.6	58
440	Three-dimensional SnS2 nanopetals for hybrid sodium-air batteries. Electrochimica Acta, 2017, 257, 328-334.	2.6	53
441	Molybdenum carbide on hierarchical porous carbon synthesized from Cu-MoO2 as efficient electrocatalysts for electrochemical hydrogen generation. Nano Energy, 2017, 41, 749-757.	8.2	103
442	Regulating p-block metals in perovskite nanodots for efficient electrocatalytic water oxidation. Nature Communications, 2017, 8, 934.	5.8	102
443	Filling the oxygen vacancies in Co ₃ O ₄ with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy and Environmental Science, 2017, 10, 2563-2569.	15.6	859

#	Article	IF	Citations
444	Co Nanoparticles Encapsulated in N-Doped Carbon Nanosheets: Enhancing Oxygen Reduction Catalysis without Metal–Nitrogen Bonding. ACS Applied Materials & Interfaces, 2017, 9, 38499-38506.	4.0	42
445	New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. Journal of Materials Chemistry A, 2017, 5, 23530-23535.	5.2	253
446	Highly Efficient and Stable Waterâ€Oxidation Electrocatalysis with a Very Low Overpotential using FeNiP Substitutionalâ€6olidâ€6olution Nanoplate Arrays. Advanced Materials, 2017, 29, 1704075.	11.1	163
447	Atomically Dispersed Copper–Platinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 16263-16267.	1.6	53
448	Atomically Dispersed Copper–Platinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 16047-16051.	7.2	231
449	A nanohybrid consisting of NiPS ₃ nanoparticles coupled with defective graphene as a pH-universal electrocatalyst for efficient hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 23536-23542.	5.2	118
450	A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites. Journal of Energy Chemistry, 2017, 26, 1077-1093.	7.1	287
451	Metal–Organic-Framework-Derived Yolk–Shell-Structured Cobalt-Based Bimetallic Oxide Polyhedron with High Activity for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 31777-31785.	4.0	58
452	Symmetric synergy of hybrid CoS ₂ –WS ₂ electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 15552-15558.	5.2	81
453	One-Step Growth of Iron–Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 28627-28634.	4.0	116
454	A general polymer-assisted strategy enables unexpected efficient metal-free oxygen-evolution catalysis on pure carbon nanotubes. Energy and Environmental Science, 2017, 10, 2312-2317.	15.6	113
455	From <i>Chlorella</i> to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 32168-32178.	4.0	63
456	High-Valence-State NiO/Co ₃ O ₄ Nanoparticles on Nitrogen-Doped Carbon for Oxygen Evolution at Low Overpotential. ACS Energy Letters, 2017, 2, 2177-2182.	8.8	200
457	Mechanical bending induced catalytic activity enhancement of monolayer 1ÂT'-MoS2 for hydrogen evolution reaction. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	12
458	Controlled Electrodeposition Synthesis of Co–Ni–P Film as a Flexible and Inexpensive Electrode for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 31887-31896.	4.0	116
459	Gold atom-decorated CoSe ₂ nanobelts with engineered active sites for enhanced oxygen evolution. Journal of Materials Chemistry A, 2017, 5, 20202-20207.	5.2	57
460	Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 20422-20427.	5.2	48
461	Nanohybridization of MoS2 with Layered Double Hydroxides Efficiently Synergizes the Hydrogen Evolution in Alkaline Media. Joule, 2017, 1, 383-393.	11.7	386

#	Article	IF	CITATIONS
462	Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and water. Nano Energy, 2017, 41, 367-376.	8.2	87
463	Conductingâ€Polymerâ€Based Materials for Electrochemical Energy Conversion and Storage. Advanced Materials, 2017, 29, 1703044.	11.1	88
464	Improved electrode materials for Li-ion batteries using microscale and sub-micrometer scale porous materials - A review. Journal of Alloys and Compounds, 2017, 729, 463-474.	2.8	20
465	The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis. Journal of Power Sources, 2017, 366, 105-114.	4.0	110
466	Metallic Transition Metal Selenide Holey Nanosheets for Efficient Oxygen Evolution Electrocatalysis. ACS Nano, 2017, 11, 9550-9557.	7.3	273
467	Superaerophobic Ultrathin Ni–Mo Alloy Nanosheet Array from In Situ Topotactic Reduction for Hydrogen Evolution Reaction. Small, 2017, 13, 1701648.	5.2	190
468	Acid promoted Ni/NiO monolithic electrode for overall water splitting in alkaline medium. Science China Materials, 2017, 60, 918-928.	3.5	32
469	Reduced graphene oxide supporting hollow bimetallic phosphide nanoparticle hybrids for electrocatalytic oxygen evolution. Electrochemistry Communications, 2017, 83, 85-89.	2.3	24
470	Defective MoS2 electrocatalyst for highly efficient hydrogen evolution through a simple ball-milling method. Science China Materials, 2017, 60, 849-856.	3.5	23
471	Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting. ACS Nano, 2017, 11, 10303-10312.	7.3	187
472	Unraveling the Intrinsic Structures that Influence the Transport of Charges in TiO ₂ Electrodes. Advanced Energy Materials, 2017, 7, 1700886.	10.2	28
473	NiSe ₂ /FeSe ₂ nanodendrites: a highly efficient electrocatalyst for oxygen evolution reaction. Catalysis Science and Technology, 2017, 7, 4604-4608.	2.1	53
474	CdS-Polydopamine-Derived N,S-Codoped Hierarchically Porous Carbons as Highly Active Electrocatalyst for Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 9914-9922.	3.2	41
475	On the impedance response of reactions influenced by mass transfer. Russian Journal of Electrochemistry, 2017, 53, 932-940.	0.3	16
476	Enhanced electrocatalytic performance of Pt nanoparticles on triazine-functionalized graphene nanoplatelets for both oxygen and iodine reduction reactions. Journal of Materials Chemistry A, 2017, 5, 21936-21946.	5.2	10
477	Chemical etching of graphene-supported PdPt alloy nanocubes into concave nanostructures for enhanced catalytic hydrogen production from alkaline formaldehyde aqueous solution. Inorganic Chemistry Frontiers, 2017, 4, 1704-1713.	3.0	7
478	Threeâ€Dimensional Hierarchical Architectures Derived from Surfaceâ€Mounted Metal–Organic Framework Membranes for Enhanced Electrocatalysis. Angewandte Chemie - International Edition, 2017, 56, 13781-13785.	7.2	193
479	Glucose-derived carbon sphere supported CoP as efficient and stable electrocatalysts for hydrogen evolution reaction. Journal of Energy Chemistry, 2017, 26, 1147-1152.	7.1	30

#	Article	IF	CITATIONS
480	Phosphorene for energy and catalytic application—filling the gap between graphene and 2D metal chalcogenides. 2D Materials, 2017, 4, 042006.	2.0	46
481	New insights into the stability of a high performance nanostructured catalyst for sustainable water electrolysis. Nano Energy, 2017, 40, 618-632.	8.2	112
482	Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting. Nano Energy, 2017, 39, 444-453.	8.2	117
483	Ternary Porous Cobalt Phosphoselenide Nanosheets: An Efficient Electrocatalyst for Electrocatalytic and Photoelectrochemical Water Splitting. Advanced Materials, 2017, 29, 1701589.	11.1	219
484	Nitrogenâ€Doped Graphene with a Threeâ€Dimensional Architecture Assisted by Carbon Nitride Tetrapods as an Efficient Metalâ€Free Electrocatalyst for Hydrogen Evolution. ChemElectroChem, 2017, 4, 2643-2652.	1.7	29
485	Straightforward synthesis of nitrogen-doped carbon nanotubes as highly active bifunctional electrocatalysts for full water splitting. Journal of Catalysis, 2017, 353, 19-27.	3.1	105
486	Supercriticalâ€Fluidâ€Assisted Decoration of MoS ₂ @ MWCNTs and Their Superior Performance in the Electrochemical Hydrogen Evolution Reaction. ChemistrySelect, 2017, 2, 5978-5983.	0.7	5
487	Bifunctional Transition Metal Hydroxysulfides: Roomâ€Temperature Sulfurization and Their Applications in Zn–Air Batteries. Advanced Materials, 2017, 29, 1702327.	11.1	334
488	In Situ Electrochemical Production of Ultrathin Nickel Nanosheets for Hydrogen Evolution Electrocatalysis. CheM, 2017, 3, 122-133.	5.8	214
489	Computational screening of two-dimensional coordination polymers as efficient catalysts for oxygen evolution and reduction reaction. Journal of Catalysis, 2017, 352, 579-585.	3.1	130
490	Molybdenum carbides embedded on carbon nanotubes for efficient hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2017, 801, 7-13.	1.9	23
491	Cobaltâ€Tungstenâ€Boron as an Active Electrocatalyst for Water Electrolysis. ChemistrySelect, 2017, 2, 6187-6193.	0.7	33
492	Electrocatalysts Derived from Metal–Organic Frameworks for Oxygen Reduction and Evolution Reactions in Aqueous Media. Small, 2017, 13, 1701143.	5.2	150
493	Nickel Diselenide Ultrathin Nanowires Decorated with Amorphous Nickel Oxide Nanoparticles for Enhanced Water Splitting Electrocatalysis. Small, 2017, 13, 1701487.	5.2	99
494	Plasma for Rapid Conversion Reactions and Surface Modification of Electrode Materials. Small Methods, 2017, 1, 1700164.	4.6	60
495	Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale, 2017, 9, 12231-12247.	2.8	403
496	Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS ₂): basal vs. edge plane activity. Chemical Science, 2017, 8, 6583-6593.	3.7	159
497	Cobalt-based nanosheet arrays as efficient electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 17640-17646.	5.2	40

#	Article	IF	CITATIONS
498	Bifunctional hydrous RuO2 nanocluster electrocatalyst embedded in carbon matrix for efficient and durable operation of rechargeable zinc–air batteries. Scientific Reports, 2017, 7, 7150.	1.6	25
499	Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 13001-13005.	7.2	334
500	Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets. Journal of Materials Chemistry A, 2017, 5, 18261-18269.	5.2	136
501	Surfactantâ€Assisted Phaseâ€Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 13181-13185.	1.6	58
502	NaCl Crystallites as Dual-Functional and Water-Removable Templates To Synthesize a Three-Dimensional Graphene-like Macroporous Fe-N-C Catalyst. ACS Catalysis, 2017, 7, 6144-6149.	5.5	131
503	Rational design of hollow N/Co-doped carbon spheres from bimetal-ZIFs for high-efficiency electrocatalysis. Chemical Engineering Journal, 2017, 330, 736-745.	6.6	97
504	Structure-engineered electrocatalyst enables highly active and stable oxygen evolution reaction over layered perovskite LaSr3Co1.5Fe1.5O10-δ. Nano Energy, 2017, 40, 115-121.	8.2	67
505	Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews, 2017, 117, 10121-10211.	23.0	1,157
506	Tri-metallic phytate in situ electrodeposited on 3D Ni foam as a highly efficient electrocatalyst for enhanced overall water splitting. Journal of Materials Chemistry A, 2017, 5, 18786-18792.	5.2	24
507	Post-Synthetic Immobilization of Ni Ions in Porous-Organic Polymer-Graphene Composite for the Non-Noble Metal Electrocatalytic Water Oxidation. ChemCatChem, 2017, 9, 2894-2894.	1.8	0
508	Rhenium doping induced structural transformation in mono-layered MoS ₂ with improved catalytic activity for hydrogen evolution reaction. Journal Physics D: Applied Physics, 2017, 50, 405303.	1.3	23
509	Hierarchical (Ni,Co)Se 2 /Carbon Hollow Rhombic Dodecahedra Derived from Metal-Organic Frameworks for Efficient Water-Splitting Electrocatalysis. Electrochimica Acta, 2017, 250, 167-173.	2.6	63
510	Iron–Cobalt Phosphomolybdate with High Electrocatalytic Activity for Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2017, 12, 2694-2702.	1.7	11
511	Influence of Phosphorus Configuration on Electronic Structure and Oxygen Reduction Reactions of Phosphorus-Doped Graphene. Journal of Physical Chemistry C, 2017, 121, 19321-19328.	1.5	86
512	Hierarchical Porous Co ₉ S ₈ /Nitrogen-Doped Carbon@MoS ₂ Polyhedrons as pH Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 28394-28405.	4.0	179
513	Prussian Blue Analogues Derived Penroseite (Ni,Co)Se ₂ Nanocages Anchored on 3D Graphene Aerogel for Efficient Water Splitting. ACS Catalysis, 2017, 7, 6394-6399.	5.5	242
514	Facile and fast fabrication of iron-phosphate supported on nickel foam as a highly efficient and stable oxygen evolution catalyst. Journal of Materials Chemistry A, 2017, 5, 18627-18633.	5.2	59
515	Pulsed laser deposition of amorphous molybdenum disulfide films for efficient hydrogen evolution reaction. Electrochimica Acta, 2017, 258, 876-882.	2.6	30

ARTICLE IF CITATIONS An amorphous dual action electrocatalyst based on oxygen doped cobalt sulfide for the hydrogen 1.7 41 516 and oxygen evolution reactions. RSC Advances, 2017, 7, 54995-55004. A bifunctional two dimensional TM₃(HHTP)₂ monolayer and its variations for 1.7 oxygen electrode reactions. RSC Advances, 2017, 7, 54332-54340. Amorphous Coâ€"Feâ€"P nanospheres for efficient water oxidation. Journal of Materials Chemistry A, 518 5.2 100 2017, 5, 25378-25384. Hierarchical CoS/MoS₂ and Co₃S₄/MoS₂/Ni₂P nanotubes for efficient electrocatalytic hydrogen evolution in alkaline media. Journal of Materials Chemistry A, 2017, 5, 25410-25419 Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline 520 5.2 136 solution. Journal of Materials Chemistry A, 2017, 5, 25314-25318. Carbon fiber paper supported interlayer space enlarged Ni2Fe-LDHs improved OER electrocatalytic activity. Electrochimica Acta, 2017, 258, 554-560. 2.6 Molecular Scaffolding Strategy with Synergistic Active Centers To Facilitate Electrocatalytic 522 CO₂ Reduction to Hydrocarbon/Alcohol. Journal of the American Chemical Society, 2017, 6.6 439 139, 18093-18100. Defect Engineering in MoSe₂ for the Hydrogen Evolution Reaction: From Point Defects to 523 4.0 171 Edges. ACS Applied Materials & amp; Interfaces, 2017, 9, 42688-42698. Oxygen Evolution Reaction at Microporous Pt Layers: Differentiated Electrochemical Activity between 524 1.6 18 Acidic and Basic Media. Scientific Reports, 2017, 7, 15382. In-situ structure reconstitution of NiCo2P for enhanced electrochemical water oxidation. Science 4.3 Bulletin, 2017, 62, 1510-1518. Interface Engineering of Ni₃N@Fe₃N Heterostructure Supported on Carbon Fiber for Enhanced Water Oxidation. Industrial & amp; Engineering Chemistry Research, 2017, 56, 526 35 1.8 14245-14251. General Oriented Synthesis of Precise Carbon-Confined Nanostructures by Low-Pressure Vapor 4.5 Superassembly and Controlled Pyrolysis. Nano Letters, 2017, 17, 7773-7781. Engineering transition metal phosphide nanomaterials as highly active electrocatalysts for water 528 1.6 28 splitting. Dalton Transactions, 2017, 46, 16770-16773. Identifying "Optimal―Electrocatalysts: Impact of Operating Potential and Charge Transfer Model. ACS Catalysis, 2017, 7, 8641-8652. 529 5.5 Crystal lattice distortion in ultrathin Co(OH)₂nanosheets inducing elongated Có–O_{OH}bonds for highly efficient oxygen evolution reaction. Green Chemistry, 2017, 19, 530 43 4.6 5809-5817. Enhanced electrochemical water oxidation: the impact of nanoclusters and nanocavities. Physical Chemistry Chemical Physics, 2017, 19, 31300-31305. Heterostructured Arrays of Ni_{<i>x</i>/i>}P/S/Se Nanosheets on Co_{<i>x</i>}P/S/Se 532 Nanowires for Efficient Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2017, 9, 4.0 53 41347-41353. Colloidal synthesis of monodisperse trimetallic IrNiFe nanoparticles as highly active bifunctional electrocatalysts for acidic overall water splitting. Journal of Materials Chemistry A, 2017, 5, 24836-24841.

#	Article	IF	CITATIONS
534	MXene: an emerging two-dimensional material for future energy conversion and storage applications. Journal of Materials Chemistry A, 2017, 5, 24564-24579.	5.2	450
535	Unprecedented carbon sub-microspheres with a porous hierarchy for highly efficient oxygen electrochemistry. Nanoscale, 2017, 9, 18731-18736.	2.8	17
536	Transition-Metal Phosphide–Carbon Nanosheet Composites Derived from Two-Dimensional Metal-Organic Frameworks for Highly Efficient Electrocatalytic Water-Splitting. ACS Applied Materials & Interfaces, 2017, 9, 40171-40179.	4.0	83
537	IrO ₂ –ZnO Hybrid Nanoparticles as Highly Efficient Trifunctional Electrocatalysts. Journal of Physical Chemistry C, 2017, 121, 14899-14906.	1.5	35
538	A convenient miniature test platform for polyelectrolyte membrane fuel-cell research. Journal of Electroanalytical Chemistry, 2017, 797, 8-15.	1.9	14
539	Macroporous Inverse Opal-like Mo _{<i>x</i>} C with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. ACS Nano, 2017, 11, 7527-7533.	7.3	102
540	Oxygenophilic ionic liquids promote the oxygen reduction reaction in Pt-free carbon electrocatalysts. Materials Horizons, 2017, 4, 895-899.	6.4	56
541	Co ₉ S ₈ activated N/S co-doped carbon tubes in situ grown on carbon nanofibers for efficient oxygen reduction. RSC Advances, 2017, 7, 34763-34769.	1.7	11
542	Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 2017, 5, 16929-16935.	5.2	258
543	Constructing Ohmic contact in cobalt selenide/Ti dyadic electrode: The third aspect to promote the oxygen evolution reaction. Nano Energy, 2017, 39, 321-327.	8.2	39
544	Graphdiyne: A Promising Catalyst–Support To Stabilize Cobalt Nanoparticles for Oxygen Evolution. ACS Catalysis, 2017, 7, 5209-5213.	5.5	150
545	Bifunctional Iron–Nickel Nitride Nanoparticles as Flexible and Robust Electrode for Overall Water Splitting. Electrochimica Acta, 2017, 247, 666-673.	2.6	92
546	Defect locating: One-step to monodispersed CoFe2O4/rGO nanoparticles for oxygen reduction andÂoxygen evolution. International Journal of Hydrogen Energy, 2017, 42, 17075-17083.	3.8	21
547	Synthesis of lawn-like NiS2 nanowires on carbon fiber paper as bifunctional electrode for water splitting. International Journal of Hydrogen Energy, 2017, 42, 17038-17048.	3.8	65
548	High-index faceted CuFeS ₂ nanosheets with enhanced behavior for boosting hydrogen evolution reaction. Nanoscale, 2017, 9, 9230-9237.	2.8	70
549	Boosting the bifunctional electrocatalytic oxygen activities of CoO _x nanoarrays with a porous N-doped carbon coating and their application in Zn–air batteries. Journal of Materials Chemistry A, 2017, 5, 17804-17810.	5.2	46
550	MOF-derived CoSe ₂ microspheres with hollow interiors as high-performance electrocatalysts for the enhanced oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 15310-15314.	5.2	174
551	Graphene Dots Embedded Phosphide Nanosheet-Assembled Tubular Arrays for Efficient and Stable Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 24600-24607.	4.0	52

#	ARTICLE	IF	CITATIONS
552	A highly active and stable La0.5Sr0.5Ni0.4Fe0.6O3-Î′ perovskite electrocatalyst for oxygen evolution reaction in alkaline media. Electrochimica Acta, 2017, 246, 997-1003.	2.6	41
553	High-Content Metallic 1T Phase in MoS ₂ -Based Electrocatalyst for Efficient Hydrogen Evolution. Journal of Physical Chemistry C, 2017, 121, 15071-15077.	1.5	85
554	Nitrogen-doped graphene anchored with mixed growth patterns of CuPt alloy nanoparticles as a highly efficient and durable electrocatalyst for the oxygen reduction reaction in an alkaline medium. Nanoscale, 2017, 9, 9009-9017.	2.8	25
555	One-pot synthesis of 3D freestanding porous PtAg hollow chain-like networks as efficient electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2017, 245, 883-892.	2.6	33
556	Twoâ€Dimensional Non‣ayered Materials: Synthesis, Properties and Applications. Advanced Functional Materials, 2017, 27, 1603254.	7.8	161
557	Transition metal–phosphorus-based materials for electrocatalytic energy conversion reactions. Catalysis Science and Technology, 2017, 7, 330-347.	2.1	132
558	Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chemical Reviews, 2017, 117, 3717-3797.	23.0	1,042
559	Highly active non-precious metal electrocatalyst for the hydrogen evolution reaction based on nitrogen-doped graphene supported MoO2/WN/Mo2N. Journal of Alloys and Compounds, 2017, 692, 614-621.	2.8	41
560	Spray-drying of milk for oxygen evolution electrocatalyst and solar water splitting. Journal of Colloid and Interface Science, 2017, 487, 118-122.	5.0	8
561	Bimetalâ€Organic Framework Derived CoFe ₂ O ₄ /C Porous Hybrid Nanorod Arrays as Highâ€Performance Electrocatalysts for Oxygen Evolution Reaction. Advanced Materials, 2017, 29, 1604437.	11.1	677
562	Efficient Electrochemical and Photoelectrochemical Water Splitting by a 3D Nanostructured Carbon Supported on Flexible Exfoliated Graphene Foil. Advanced Materials, 2017, 29, 1604480.	11.1	157
563	Electrocatalytic investigation on the water oxidation ability of a hangman complex based on the [Ru(tpy)(bpy)(OH 2)] 2+ motif. Catalysis Today, 2017, 290, 28-32.	2.2	5
564	Ultrathin CNTs@FeOOH nanoflake core/shell networks as efficient electrocatalysts for the oxygen evolution reaction. Materials Chemistry Frontiers, 2017, 1, 709-715.	3.2	62
565	Template Free Preparation of Heteroatoms Doped Carbon Spheres with Trace Fe for Efficient Oxygen Reduction Reaction and Supercapacitor. Advanced Energy Materials, 2017, 7, 1602002.	10.2	160
566	Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiOx/TiO2 anode and stainless steel cathode: Current and energy efficiency. Applied Catalysis B: Environmental, 2017, 202, 671-682.	10.8	36
567	A one-dimensional porous carbon-supported Ni/Mo ₂ C dual catalyst for efficient water splitting. Chemical Science, 2017, 8, 968-973.	3.7	372
568	Bifunctional Oxygen Reaction Catalysis of Quadruple Manganese Perovskites. Advanced Materials, 2017, 29, 1603004.	11.1	148
569	Engineering NiMo3S4 Ni3S2 interface for excellent hydrogen evolution reaction in alkaline medium. Electrochimica Acta, 2017, 258, 669-676.	2.6	15

#	Article	IF	CITATIONS
570	Role of MoS ₂ and WS ₂ monolayers on photocatalytic hydrogen production and the pollutant degradation of monoclinic BiVO ₄ : a first-principles study. New Journal of Chemistry, 2017, 41, 11701-11713.	1.4	48
571	Simultaneous modulation of surface composition, oxygen vacancies and assembly in hierarchical Co ₃ O ₄ mesoporous nanostructures for lithium storage and electrocatalytic oxygen evolution. Nanoscale, 2017, 9, 14431-14441.	2.8	77
573	Two-Dimensional Material Molybdenum Disulfides as Electrocatalysts for Hydrogen Evolution. Catalysts, 2017, 7, 285.	1.6	72
574	Graphitization and Pore Structure Adjustment of Graphene for Energy Storage and Conversion. Current Graphene Science, 2017, 1, .	0.5	2
575	Atomically Dispersed Metal Sites in MOFâ€Based Materials for Electrocatalytic and Photocatalytic Energy Conversion. Angewandte Chemie - International Edition, 2018, 57, 9604-9633.	7.2	452
576	Electrochemical Exfoliation of Pillared‣ayer Metal–Organic Framework to Boost the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 4632-4636.	7.2	275
577	Fe3O4@NiSx/rGO composites with amounts of heterointerfaces and enhanced electrocatalytic properties for oxygen evolution. Applied Surface Science, 2018, 442, 256-263.	3.1	51
578	Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 5740-5745.	5.2	113
579	Iron Hydroxide-Modified Nickel Hydroxylphosphate Single-Wall Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 9407-9414.	4.0	38
580	Photocatalytic Hydrogen Production Coupled with Selective Benzylamine Oxidation over MOF Composites. Angewandte Chemie - International Edition, 2018, 57, 5379-5383.	7.2	430
581	In Situ Synthesis of Core–Shell-Ni ₃ Fe(OH) ₉ /Ni ₃ Fe Hybrid Nanostructures as Highly Active and Stable Bifunctional Catalysts for Water Electrolysis. ACS Applied Energy Materials, 2018, 1, 986-992.	2.5	15
582	Designing Binary Ru–Sn Oxides with Optimized Performances for the Air Electrode of Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 10064-10075.	4.0	46
583	Core–Shell NiO@Niâ€₽ Hybrid Nanosheet Array for Synergistically Enhanced Oxygen Evolution Electrocatalysis: Experimental and Theoretical Insights. Chemistry - an Asian Journal, 2018, 13, 944-949.	1.7	9
584	A novel metal organic framework-derived carbon-based catalyst for oxygen reduction reaction in a microbial fuel cell. Journal of Power Sources, 2018, 384, 98-106.	4.0	74
585	Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy, 2018, 47, 494-502.	8.2	383
586	Reversing the Tradeoff between Rate and Overpotential in Molecular Electrocatalysts for H ₂ Production. ACS Catalysis, 2018, 8, 3286-3296.	5.5	79
587	Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 3876-3879.	6.6	817
588	Ultrathin NiCo ₂ P _x nanosheets strongly coupled with CNTs as efficient and robust electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 7420-7427.	5.2	302

#	Article	IF	CITATIONS
589	A structurally versatile nickel phosphite acting as a robust bifunctional electrocatalyst for overall water splitting. Energy and Environmental Science, 2018, 11, 1287-1298.	15.6	205
590	Atomar dispergierte Metallzentren in Metallâ€organischen Gerüststrukturen für die elektrokatalytische und photokatalytische Energieumwandlung. Angewandte Chemie, 2018, 130, 9750-9780.	1.6	58
591	A Roomâ€Temperature Postsynthetic Ligand Exchange Strategy to Construct Mesoporous Feâ€Doped CoP Hollow Triangle Plate Arrays for Efficient Electrocatalytic Water Splitting. Small, 2018, 14, e1704233.	5.2	244
592	CoFe Layered Double Hydroxide Supported on Graphitic Carbon Nitrides: An Efficient and Durable Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions. ACS Applied Energy Materials, 2018, 1, 1200-1209.	2.5	106
593	Evaluation of the intrinsic catalytic activity of nanoparticles without prior knowledge of the mass loading. Faraday Discussions, 2018, 210, 317-332.	1.6	13
594	Selfâ€Templated Synthesis of Co _{1â€<i>x</i>} S Porous Hexagonal Microplates for Efficient Electrocatalytic Oxygen Evolution. ChemElectroChem, 2018, 5, 1167-1172.	1.7	13
595	Anchoring Mn ₃ O ₄ Nanoparticles on Oxygen Functionalized Carbon Nanotubes as Bifunctional Catalyst for Rechargeable Zinc-Air Battery. ACS Applied Energy Materials, 2018, 1, 963-969.	2.5	80
596	Rational Design of Nanostructured Functional Interlayer/Separator for Advanced Li–S Batteries. Advanced Functional Materials, 2018, 28, 1707411.	7.8	272
597	Improved Electrocatalytic Performance in Overall Water Splitting with Rational Design of Hierarchical Co ₃ O ₄ @NiFe Layered Double Hydroxide Core‧hell Nanostructure. ChemElectroChem, 2018, 5, 1357-1363.	1.7	34
598	One-step growth of nitrogen-decorated iron–nickel sulfide nanosheets for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 5592-5597.	5.2	55
599	Folded nanosheet-like Co0.85Se array for overall water splitting. Journal of Solid State Electrochemistry, 2018, 22, 1785-1794.	1.2	19
600	Effective Oxygen Reduction and Evolution Catalysts Derived from Metal Organic Frameworks by Optimizing Active Sites. Journal of the Electrochemical Society, 2018, 165, F158-F165.	1.3	13
601	Total Water Splitting Catalyzed by Co@Ir Core–Shell Nanoparticles Encapsulated in Nitrogen-Doped Porous Carbon Derived from Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2018, 6, 5105-5114.	3.2	113
602	Earthworm-likeÂN, S-Doped carbon tube-encapsulated Co ₉ S ₈ nanocomposites derived from nanoscaled metal–organic frameworks for highly efficient bifunctional oxygen catalysis. Journal of Materials Chemistry A, 2018, 6, 5935-5943.	5.2	101
603	Bimetallic Co ₂ Mo ₃ O ₈ suboxides coupled with conductive cobalt nanowires for efficient and durable hydrogen evolution in alkaline electrolyte. Journal of Materials Chemistry A, 2018, 6, 5217-5228.	5.2	63
604	Template Conversion of Covalent Organic Frameworks into 2D Conducting Nanocarbons for Catalyzing Oxygen Reduction Reaction. Advanced Materials, 2018, 30, e1706330.	11.1	151
605	Electrochemical Exfoliation of Pillared‣ayer Metal–Organic Framework to Boost the Oxygen Evolution Reaction. Angewandte Chemie, 2018, 130, 4722-4726.	1.6	86
606	Promotion of electrochemical oxygen evolution reaction by chemical coupling of cobalt to molybdenum carbide. Applied Catalysis B: Environmental, 2018, 227, 340-348.	10.8	110

# 607	ARTICLE Room temperature-formed iron-doped nickel hydroxide on nickel foam as a 3D electrode for low polarized and high-current-density oxygen evolution. Chemical Communications, 2018, 54, 3262-3265.	IF 2.2	CITATIONS
608	Ultrasmall Ir nanoparticles for efficient acidic electrochemical water splitting. Inorganic Chemistry Frontiers, 2018, 5, 1121-1125.	3.0	49
609	Core@shell structured Co–CoO@NC nanoparticles supported on nitrogen doped carbon with high catalytic activity for oxygen reduction reaction. RSC Advances, 2018, 8, 14462-14472.	1.7	38
610	The Design of Water Oxidation Electrocatalysts from Nanoscale Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 15143-15155.	1.7	74
611	Bioinspired Electrocatalysis of Oxygen Reduction Reaction in Fuel Cells Using Molecular Catalysts. Advanced Materials, 2018, 30, e1800406.	11.1	61
612	Nanostructured Materials for Advanced Energy Conversion and Storage Devices: Safety Implications at End-of-Life Disposal. , 2018, , 517-542.		13
613	Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal–Organic Framework System. Angewandte Chemie, 2018, 130, 9808-9812.	1.6	54
614	Exploring the Performance Improvement of the Oxygen Evolution Reaction in a Stable Bimetal–Organic Framework System. Angewandte Chemie - International Edition, 2018, 57, 9660-9664.	7.2	340
615	Strongly Coupled CoO Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for Electrochemical Water Oxidation. Small, 2018, 14, e1800195.	5.2	91
616	Vertically Aligned Oxygenated-CoS ₂ –MoS ₂ Heteronanosheet Architecture from Polyoxometalate for Efficient and Stable Overall Water Splitting. ACS Catalysis, 2018, 8, 4612-4621.	5.5	290
617	Trace Level Co–N Doped Graphite Foams as High-Performance Self-Standing Electrocatalytic Electrodes for Hydrogen and Oxygen Evolution. ACS Catalysis, 2018, 8, 4637-4644.	5.5	53
618	Controllable Synthesis of Ruthenium Phosphides (RuP and RuP ₂) for pH-Universal Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 6388-6394.	3.2	83
619	Co Nanoparticles@N-doped carbon coated on carbon Nanotube@Defective silica as non-noble photocathode for efficient photoelectrochemical hydrogen generation. International Journal of Hydrogen Energy, 2018, 43, 9279-9286.	3.8	5
620	Multimetallic nanosheets: synthesis and applications in fuel cells. Chemical Society Reviews, 2018, 47, 6175-6200.	18.7	171
621	Engineering crystalline CoOOH anchored on an N-doped carbon support as a durable electrocatalyst for the oxygen reduction reaction. Dalton Transactions, 2018, 47, 6069-6074.	1.6	13
622	Defect electrocatalytic mechanism: concept, topological structure and perspective. Materials Chemistry Frontiers, 2018, 2, 1250-1268.	3.2	119
623	Revealing the Contribution of Individual Factors to Hydrogen Evolution Reaction Catalytic Activity. Advanced Materials, 2018, 30, e1706076.	11.1	86
624	Precursorâ€Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts. Chemistry - A European Journal, 2018, 24, 10280-10290.	1.7	9

#	Article	IF	CITATIONS
625	Universal molecular-confined synthesis of interconnected porous metal oxides-N-C frameworks for electrocatalytic water splitting. Nano Energy, 2018, 48, 600-606.	8.2	61
626	Highly effective electrosynthesis of hydrogen peroxide from oxygen on a redox-active cationic covalent triazine network. Chemical Communications, 2018, 54, 4433-4436.	2.2	55
627	MOF-mediated synthesis of monodisperse Co(OH)2 flower-like nanosheets for enhanced oxygen evolution reaction. Electrochimica Acta, 2018, 273, 327-334.	2.6	48
628	Nitrogen-doped porous carbon: highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 7762-7769.	5.2	131
629	Impact of Textural Properties of Mesoporous Porphyrinic Carbon Electrocatalysts on Oxygen Reduction Reaction Activity. ChemElectroChem, 2018, 5, 1928-1936.	1.7	25
630	Hierarchically porous Mo-doped Ni–Fe oxide nanowires efficiently catalyzing oxygen/hydrogen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 8430-8440.	5.2	65
631	Janus effect of O2 plasma modification on the electrocatalytic hydrogen evolution reaction of MoS2. Journal of Catalysis, 2018, 361, 384-392.	3.1	40
632	Transitionâ€Metalâ€Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review. Small, 2018, 14, e1704179.	5.2	182
633	Co oxide nanostructures for electrocatalytic water-oxidation: effects of dimensionality and related properties. Nanoscale, 2018, 10, 8806-8819.	2.8	56
634	Prereduction of Metal Oxides via Carbon Plasma Treatment for Efficient and Stable Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1800340.	5.2	39
635	Tuning active sites on cobalt/nitrogen doped graphene for electrocatalytic hydrogen and oxygen evolution. Electrochimica Acta, 2018, 265, 497-506.	2.6	56
636	Amorphous NiFe Nanotube Arrays Bifunctional Electrocatalysts for Efficient Electrochemical Overall Water Splitting. ACS Applied Energy Materials, 2018, 1, 1210-1217.	2.5	84
637	One-dimensional MoO ₂ –Co ₂ Mo ₃ O ₈ @C nanorods: a novel and highly efficient oxygen evolution reaction catalyst derived from metal–organic framework composites. Chemical Communications, 2018, 54, 2739-2742.	2.2	61
638	Blending Fe 3 O 4 into a Ni/NiO composite for efficient and stable bifunctional electrocatalyst. Electrochimica Acta, 2018, 264, 225-232.	2.6	42
639	FeS-decorated hierarchical porous N, S-dual-doped carbon derived from silica-ionogel as an efficient catalyst for oxygen reduction reaction in alkaline media. Electrochimica Acta, 2018, 265, 221-231.	2.6	51
640	Confined organometallic Au1N single-site as an efficient bifunctional oxygen electrocatalyst. Nano Energy, 2018, 46, 110-116.	8.2	77
641	Recent developments of metallic nanoparticle-graphene nanocatalysts. Progress in Materials Science, 2018, 94, 306-383.	16.0	102
642	Dual-Functional Starfish-like P-Doped Co–Ni–S Nanosheets Supported on Nickel Foams with Enhanced Electrochemical Performance and Excellent Stability for Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 7087-7095.	4.0	103

#	Article	IF	CITATIONS
643	Ultrathin Alumina Mask-Assisted Nanopore Patterning on Monolayer MoS ₂ for Highly Catalytic Efficiency in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 8026-8035.	4.0	55
644	Degradation issues of PEM electrolysis MEAs. Renewable Energy, 2018, 123, 52-57.	4.3	80
645	Enhanced oxygen electroreduction over nitrogen-free carbon nanotube-supported CuFeO ₂ nanoparticles. Journal of Materials Chemistry A, 2018, 6, 4331-4336.	5.2	27
646	An electrocatalyst with anti-oxidized capability for overall water splitting. Nano Research, 2018, 11, 3411-3418.	5.8	16
647	Polymer-Brush-Templated Three-Dimensional Molybdenum Sulfide Catalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 6253-6261.	4.0	28
648	Promotion of Oxygen Reduction with Both Amorphous and Crystalline MnO _{<i>x</i>} through the Surface Engineering of La _{0.8} Sr _{0.2} MnO _{3â€<i>Î</i>} Perovskite. ChemElectroChem, 2018, 5, 1105-1112.	1.7	43
649	A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis. Inorganic Chemistry Frontiers, 2018, 5, 521-534.	3.0	123
650	Metal–Organic Framework-Derived Co ₃ ZnC/Co Embedded in Nitrogen-Doped Carbon Nanotube-Grafted Carbon Polyhedra as a High-Performance Electrocatalyst for Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 6245-6252.	4.0	72
651	Nanocatalysts for hydrogen evolution reactions. Physical Chemistry Chemical Physics, 2018, 20, 6777-6799.	1.3	100
652	Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis. Accounts of Chemical Research, 2018, 51, 881-889.	7.6	437
653	Well-Coupled Nanohybrids Obtained by Component-Controlled Synthesis and in Situ Integration of Mn _{<i>x</i>} Pd _{<i>y</i>} Nanocrystals on Vulcan Carbon for Electrocatalytic Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 8155-8164.	4.0	20
654	Few-layer NiPS ₃ nanosheets as bifunctional materials for Li-ion storage and oxygen evolution reaction. Nanoscale, 2018, 10, 4890-4896.	2.8	82
655	CdS nanosphere-decorated hollow polyhedral ZCO derived from a metal–organic framework (MOF) for effective photocatalytic water evolution. Nanoscale, 2018, 10, 4463-4474.	2.8	80
656	Metalâ€Organicâ€Frameworkâ€Derived Co Nanoparticles Deposited on Nâ€Doped Bimodal Mesoporous Carbon Nanorods as Efficient Bifunctional Catalysts for Rechargeable Zincâ°'Air Batteries. ChemElectroChem, 2018, 5, 1868-1873.	1.7	32
657	A Universal Approach To Determine the Free Energy Diagram of an Electrocatalytic Reaction. ACS Catalysis, 2018, 8, 1864-1879.	5.5	128
658	Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 3224-3230.	5.2	170
659	Vertexâ€Reinforced PtCuCo Ternary Nanoframes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction and the Methanol Oxidation Reaction. Advanced Functional Materials, 2018, 28, 1706440.	7.8	161
660	Die Wasserstoffentwicklungsreaktion in alkalischer Lösung: Von der Theorie und Einkristallmodellen zu praktischen Elektrokatalysatoren. Angewandte Chemie, 2018, 130, 7690-7702.	1.6	78

#	Article	IF	CITATIONS
661	High-Index Faceted Porous Co ₃ O ₄ Nanosheets with Oxygen Vacancies for Highly Efficient Water Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 7079-7086.	4.0	179
662	Tuning Electronic Structure of NiFe Layered Double Hydroxides with Vanadium Doping toward High Efficient Electrocatalytic Water Oxidation. Advanced Energy Materials, 2018, 8, 1703341.	10.2	505
663	Size-Effect on Electrochemical Hydrogen Evolution Reaction by Single-Size Platinum Nanocluster Catalysts Immobilized on Strontium Titanate. Topics in Catalysis, 2018, 61, 126-135.	1.3	22
664	Strain Engineering to Enhance the Electrooxidation Performance of Atomic-Layer Pt on Intermetallic Pt ₃ Ga. Journal of the American Chemical Society, 2018, 140, 2773-2776.	6.6	193
665	Lowâ€Cost Chitosanâ€Derived Nâ€Doped Carbons Boost Electrocatalytic Activity of Multiwall Carbon Nanotubes. Advanced Functional Materials, 2018, 28, 1707284.	7.8	68
666	Plasmaâ€Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy. Advanced Materials, 2018, 30, e1705850.	11.1	476
667	Novel Nâ€Mo ₂ C Active Sites for Efficient Solarâ€ŧoâ€Hydrogen Generation. ChemElectroChem, 2018, 5, 1186-1190.	1.7	6
668	Co ₃ O ₄ and Fe _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Nanoparticles/Films Synthesized in a Vapor-Fed Flame Aerosol Reactor for Oxygen Evolution. ACS Applied Energy Materials, 2018, 1, 655-665.	2.5	20
669	Facile synthesis of FeCo alloys encapsulated in nitrogen-doped graphite/carbon nanotube hybrids: efficient bi-functional electrocatalysts for oxygen and hydrogen evolution reactions. New Journal of Chemistry, 2018, 42, 3409-3414.	1.4	32
670	Selfâ€Powered Waterâ€5plitting Devices by Core–Shell NiFe@Nâ€Graphiteâ€Based Zn–Air Batteries. Advance Functional Materials, 2018, 28, 1706928.	ed 7.8	155
671	Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries. Advanced Science, 2018, 5, 1700691.	5.6	645
672	Synergism of Geometric Construction and Electronic Regulation: 3D Seâ€{NiCo)S <i>_x</i> /(OH) <i>_x</i> Nanosheets for Highly Efficient Overall Water Splitting. Advanced Materials, 2018, 30, e1705538.	11.1	236
673	POM & MOFâ€based Electrocatalysts for Energyâ€related Reactions. ChemCatChem, 2018, 10, 1703-1730.	1.8	107
674	Facile Synthesis of Mesoporous and Thin-Walled Ni–Co Sulfide Nanotubes as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 495-502.	2.5	28
675	Co ₃ O ₄ -doped Co/CoFe nanoparticles encapsulated in carbon shells as bifunctional electrocatalysts for rechargeable Zn–Air batteries. Journal of Materials Chemistry A, 2018, 6, 3730-3737.	5.2	98
676	Cobalt-vanadium bimetal-based nanoplates for efficient overall water splitting. Science China Materials, 2018, 61, 80-90.	3.5	52
677	CoHPi Nanoflakes for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 6288-6298.	4.0	67
678	Oxygen evolution reaction on Pt sphere and Ir-modified Pt sphere electrodes with porous structures. International Journal of Hydrogen Energy, 2018, 43, 2130-2138.	3.8	24

#	Article	IF	CITATIONS
679	Bimetallic PtPd alloyed core-shell nanodendrites supported on reduced graphene oxide: One-pot green synthesis and efficient electrocatalytic performances for glycerol oxidation and hydrogen evolution. Journal of Alloys and Compounds, 2018, 735, 2123-2132.	2.8	31
680	Scalable one-step electrochemical deposition of nanoporous amorphous S-doped NiFe ₂ O ₄ /Ni ₃ Fe composite films as highly efficient electrocatalysts for oxygen evolution with ultrahigh stability. Journal of Materials Chemistry A, 2018. 6. 1551-1560.	5.2	96
681	Carbon, nitrogen and phosphorus containing metal-free photocatalysts for hydrogen production: progress and challenges. Journal of Materials Chemistry A, 2018, 6, 1305-1322.	5.2	144
682	Bio-inspired design of hierarchical FeP nanostructure arrays for the hydrogen evolution reaction. Nano Research, 2018, 11, 3537-3547.	5.8	78
683	Controlled Synthesis of a Three-Segment Heterostructure for High-Performance Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 1771-1780.	4.0	22
684	Ni-Se nanostructrures dependent on different solvent as efficient electrocatalysts for hydrogen evolution reaction in alkaline media. Materials Chemistry and Physics, 2018, 207, 389-395.	2.0	16
685	Multifunctional electrocatalysts derived from conducting polymer and metal organic framework complexes. Nano Energy, 2018, 45, 127-135.	8.2	166
686	Cobalt Iron Hydroxide as a Precious Metalâ€Free Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Small, 2018, 14, 1702568.	5.2	190
687	Electrochemically Synthesized Nanoporous Molybdenum Carbide as a Durable Electrocatalyst for Hydrogen Evolution Reaction. Advanced Science, 2018, 5, 1700601.	5.6	47
688	MOFâ€Derived Bifunctional Cu ₃ P Nanoparticles Coated by a N,Pâ€Codoped Carbon Shell for Hydrogen Evolution and Oxygen Reduction. Advanced Materials, 2018, 30, 1703711.	11.1	477
689	N, P Coâ€doped Hierarchical Porous Graphene as a Metalâ€Free Bifunctional Air Cathode for Znâ^'Air Batteries. ChemElectroChem, 2018, 5, 1811-1816.	1.7	19
690	Tuning the Basal Plane Functionalization of Two-Dimensional Metal Carbides (MXenes) To Control Hydrogen Evolution Activity. ACS Applied Energy Materials, 2018, 1, 173-180.	2.5	304
691	Co ₉ S ₈ @MoS ₂ Core–Shell Heterostructures as Trifunctional Electrocatalysts for Overall Water Splitting and Zn–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 1678-1689.	4.0	242
692	Nickel metal–organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 1682-1691.	5.2	168
693	Crystallographic Facet Dependence of the Hydrogen Evolution Reaction on CoPS: Theory and Experiments. ACS Catalysis, 2018, 8, 1143-1152.	5.5	71
694	Alkaline–Acid Zn–H ₂ O Fuel Cell for the Simultaneous Generation of Hydrogen and Electricity. Angewandte Chemie - International Edition, 2018, 57, 3910-3915.	7.2	92
695	Balancing Catalytic Activity and Interface Energetics of Electrocatalyst-Coated Photoanodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 3624-3633.	4.0	56
696	Multivariate MOF-Templated Pomegranate-Like Ni/C as Efficient Bifunctional Electrocatalyst for Hydrogen Evolution and Urea Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 4750-4756.	4.0	123

#	Article	IF	CITATIONS
697	Controllable deuteration of halogenated compounds by photocatalytic D2O splitting. Nature Communications, 2018, 9, 80.	5.8	123
698	General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1, 63-72.	16.1	1,476
699	Graphene aerogels for efficient energy storage and conversion. Energy and Environmental Science, 2018, 11, 772-799.	15.6	435
700	The supporting of Co2(OH)PO4 onto N, P Co-Doped graphene via an in-situ hydrothermal assembly synthesis for efficient oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 1415-1423.	3.8	4
701	A Bifunctional Highly Efficient FeN <i>_x</i> /C Electrocatalyst. Small, 2018, 14, 1702827.	5.2	41
702	Size effect of oxygen reduction reaction on nitrogen-doped graphene quantum dots. RSC Advances, 2018, 8, 531-536.	1.7	37
703	CoFe -CoFe2O4/N-doped carbon nanocomposite derived from in situ pyrolysis of a single source precursor as a superior bifunctional electrocatalyst for water splitting. Electrochimica Acta, 2018, 262, 18-26.	2.6	28
704	Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. Journal of Catalysis, 2018, 358, 243-252.	3.1	192
705	Cu ₃ P/CuO Coreâ€5hell Nanorod Arrays as Highâ€Performance Electrocatalysts for Water Oxidation. ChemElectroChem, 2018, 5, 2064-2068.	1.7	20
706	Conductive MoS ₂ Quantum Dot/Polyaniline Aerogel for Enhanced Electrocatalytic Hydrogen Evolution and Photoresponse Properties. ACS Applied Nano Materials, 2018, 1, 2306-2316.	2.4	35
707	Anionâ€Regulated Hydroxysulfide Monoliths as OER/ORR/HER Electrocatalysts and their Applications in Selfâ€Powered Electrochemical Water Splitting. Small Methods, 2018, 2, 1800055.	4.6	91
708	Porous carbon incorporated Î ² -Mo2C hollow sphere: An efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 21655-21664.	3.8	26
709	Ultrafine CoPS nanoparticles encapsulated in N, P, and S tri-doped porous carbon as an efficient bifunctional water splitting electrocatalyst in both acid and alkaline solutions. Journal of Materials Chemistry A, 2018, 6, 10433-10440.	5.2	72
710	Dimensional construction and morphological tuning of heterogeneous MoS ₂ /NiS electrocatalysts for efficient overall water splitting. Journal of Materials Chemistry A, 2018, 6, 9833-9838.	5.2	114
711	Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion <i>via</i> urea electrolysis. Energy and Environmental Science, 2018, 11, 1890-1897.	15.6	599
712	3D Macroporous Mo <i>_x</i> C@Nâ€C with Incorporated Mo Vacancies as Anodes for Highâ€Performance Lithiumâ€Ion Batteries. Small Methods, 2018, 2, 1800040.	4.6	36
713	Metallic Transition-Metal Dichalcogenide Nanocatalysts for Energy Conversion. CheM, 2018, 4, 1510-1537.	5.8	141
714	B, N Codoped and Defectâ€Rich Nanocarbon Material as a Metalâ€Free Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Advanced Science, 2018, 5, 1800036.	5.6	202

#	Article	IF	CITATIONS
715	Efficient catalysts for oxygen evolution derived from cobalt-based alloy nanochains. Catalysis Science and Technology, 2018, 8, 2427-2433.	2.1	19
716	Hierarchical whisker-on-sheet NiCoP with adjustable surface structure for efficient hydrogen evolution reaction. Nanoscale, 2018, 10, 7619-7629.	2.8	72
717	Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. Chemical Communications, 2018, 54, 4274-4277.	2.2	166
718	Strongly coupling of Co9S8/Zn-Co-S heterostructures rooted in carbon nanocages towards efficient oxygen evolution reaction. Journal of Catalysis, 2018, 361, 322-330.	3.1	68
719	Study of cobalt boride-derived electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 6076-6087.	3.8	86
720	Identification of few-layer ReS2 as photo-electro integrated catalyst for hydrogen evolution. Nano Energy, 2018, 48, 337-344.	8.2	71
721	Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range. Journal of Materials Chemistry A, 2018, 6, 8855-8859.	5.2	54
722	Surface engineering of FeCo-based electrocatalysts supported on carbon paper by incorporating non-noble metals for water oxidation. New Journal of Chemistry, 2018, 42, 7254-7261.	1.4	21
723	Innovative Strategies for Electrocatalytic Water Splitting. Accounts of Chemical Research, 2018, 51, 1571-1580.	7.6	1,262
724	Atomically Dispersed Iron–Nitrogen Active Sites within Porphyrinic Triazine-Based Frameworks for Oxygen Reduction Reaction in Both Alkaline and Acidic Media. ACS Energy Letters, 2018, 3, 883-889.	8.8	273
725	Ternary hybrids as efficient bifunctional electrocatalysts derived from bimetallic metal–organic-frameworks for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 5789-5796.	5.2	102
726	Porous Cobalt Oxynitride Nanosheets for Efficient Electrocatalytic Water Oxidation. ChemSusChem, 2018, 11, 1479-1485.	3.6	29
727	Multifunctional (Fe0.5Ni0.5)S2 nanocrystal catalysts with high catalytic activities for reduction of I3â°' and electrochemical water splitting. Research on Chemical Intermediates, 2018, 44, 4307-4322.	1.3	6
728	Highly effective electrochemical water oxidation by copper oxide film generated in situ from Cu(II) tricine complex. Chinese Journal of Catalysis, 2018, 39, 479-486.	6.9	8
729	Layered double hydroxides with atomic-scale defects for superior electrocatalysis. Nano Research, 2018, 11, 4524-4534.	5.8	130
730	Microwave-assisted synthesis of graphene-like cobalt sulfide freestanding sheets as an efficient bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 7592-7607.	5.2	108
731	Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc–air batteries. Energy Storage Materials, 2018, 15, 124-130.	9.5	162
732	Facile synthesis of MoS2/N-doped macro-mesoporous carbon hybrid as efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 7326-7337.	3.8	23

#	Article	IF	CITATIONS
733	Cu/TiO2 nanoparticles modified nitrogen-doped graphene as a highly efficient catalyst for the selective electroreduction of CO2 to different alcohols. Journal of CO2 Utilization, 2018, 24, 334-340.	3.3	53
734	Electrocatalytic oxidation of benzyl alcohol for simultaneously promoting H ₂ evolution by a Co _{0.83} Ni _{0.17} /activated carbon electrocatalyst. New Journal of Chemistry, 2018, 42, 6381-6388.	1.4	27
735	Regulating the Charge and Spin Ordering of Two-Dimensional Ultrathin Solids for Electrocatalytic Water Splitting. CheM, 2018, 4, 1263-1283.	5.8	219
736	Stacked Porous Iron-Doped Nickel Cobalt Phosphide Nanoparticle: An Efficient and Stable Water Splitting Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 6146-6156.	3.2	113
737	Large-scale synthesis of nitrogen doped MoS2 quantum dots for efficient hydrogen evolution reaction. Electrochimica Acta, 2018, 270, 256-263.	2.6	42
738	Systematic Study of Oxygen Evolution Activity and Stability on La _{1–<i>x</i>} Sr _{<i>x</i>} FeO _{3â^î^} Perovskite Electrocatalysts in Alkaline Media. ACS Applied Materials & Interfaces, 2018, 10, 11715-11721.	4.0	173
739	Ni ₃ S ₂ nanowires grown on nickel foam as an efficient bifunctional electrocatalyst for water splitting with greatly practical prospects. Nanotechnology, 2018, 29, 245402.	1.3	35
740	Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chemical Reviews, 2018, 118, 6337-6408.	23.0	1,552
741	Heteromorphic NiCo ₂ S ₄ /Ni ₃ S ₂ /Ni Foam as a Self-Standing Electrode for Hydrogen Evolution Reaction in Alkaline Solution. ACS Applied Materials & Interfaces, 2018, 10, 10890-10897.	4.0	147
742	Identifying the Active Site of N-Doped Graphene for Oxygen Reduction by Selective Chemical Modification. ACS Energy Letters, 2018, 3, 986-991.	8.8	102
743	Photocatalytic Hydrogen Production Coupled with Selective Benzylamine Oxidation over MOF Composites. Angewandte Chemie, 2018, 130, 5477-5481.	1.6	103
744	Ab initio study of two-dimensional PdPS as an ideal light harvester and promising catalyst for hydrogen evolution reaction. Materials Today Energy, 2018, 7, 136-140.	2.5	24
745	Scalable synthesis of heterostructure molybdenum and nickel sulfides nanosheets for efficient hydrogen generation in alkaline electrolyte. Catalysis Today, 2018, 316, 171-176.	2.2	28
746	Bifunctional oxygen electrode based on a perovskite/carbon composite for electrochemical devices. Journal of Electroanalytical Chemistry, 2018, 808, 412-419.	1.9	37
747	Facile synthesis of Ni ₃ S ₂ /rGO nanosheets composite on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. Journal of Materials Research, 2018, 33, 519-527.	1.2	18
748	Electrosynthesis of Co3O4 and Co(OH)2 ultrathin nanosheet arrays for efficient electrocatalytic water splitting in alkaline and neutral media. Nano Research, 2018, 11, 323-333.	5.8	65
749	Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction. Applied Surface Science, 2018, 427, 253-259.	3.1	140
750	Co ion-intercalation amorphous and ultrathin microstructure for high-rate oxygen evolution. Energy Storage Materials, 2018, 10, 291-296.	9.5	14

#	Article	IF	CITATIONS
751	Solarâ€ŧoâ€Hydrogen Energy Conversion Based on Water Splitting. Advanced Energy Materials, 2018, 8, 1701620.	10.2	429
752	Nitrogen and sulfur co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery. Energy, 2018, 143, 43-55.	4.5	98
753	Porous Materials as Highly Efficient Electrocatalysts for the Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 1206-1220.	1.8	78
754	An effective graphene confined strategy to construct active edge sites-enriched nanosheets with enhanced oxygen evolution. Carbon, 2018, 126, 437-442.	5.4	37
755	Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts. Nano Research, 2018, 11, 1274-1284.	5.8	53
756	Dreidimensionale Architekturen aus Übergangsmetallâ€Dichalkogenidâ€Nanomaterialien zur elektrochemischen Energiespeicherung und â€umwandlung. Angewandte Chemie, 2018, 130, 634-655.	1.6	37
757	Threeâ€Dimensional Architectures Constructed from Transitionâ€Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angewandte Chemie - International Edition, 2018, 57, 626-646.	7.2	398
758	Covalent Organic Framework Electrocatalysts for Clean Energy Conversion. Advanced Materials, 2018, 30, 1703646.	11.1	309
759	Ni@Ru and NiCo@Ru Core–Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell. Small, 2018, 14, 1702353.	5.2	50
760	Self-Supported Hierarchical Nanostructured NiFe-LDH and Cu ₃ P Weaving Mesh Electrodes for Efficient Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 380-388.	3.2	82
761	Hierarchical Hollow Nanoprisms Based on Ultrathin Niâ€Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution. Angewandte Chemie - International Edition, 2018, 57, 172-176.	7.2	507
762	Promoting Active Sites in Core–Shell Nanowire Array as Mott–Schottky Electrocatalysts for Efficient and Stable Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1704447.	7.8	225
763	Peptide templated AuPt alloyed nanoparticles as highly efficient bi-functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction. Electrochimica Acta, 2018, 260, 168-176.	2.6	41
764	MoS ₂ –MoP heterostructured nanosheets on polymer-derived carbon as an electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 616-622.	5.2	104
765	The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. Angewandte Chemie - International Edition, 2018, 57, 7568-7579.	7.2	1,018
766	Polyoxometalateâ€graphene Electrocatalysts for the Hydrogen Evolution Reaction. ChemElectroChem, 2018, 5, 273-283.	1.7	59
767	Generalized Synthesis of Ultrathin Cobaltâ€Based Nanosheets from Metallophthalocyanineâ€Modulated Selfâ€Assemblies for Complementary Water Electrolysis. Small, 2018, 14, 1702896.	5.2	34
768	Novel strongly coupled tungsten-carbon-nitrogen complex for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 16-23.	3.8	41

#	Article	IF	CITATIONS
769	CoS ₂ –TiO ₂ hybrid nanostructures: efficient and durable bifunctional electrocatalysts for alkaline electrolyte membrane water electrolyzers. Journal of Materials Chemistry A, 2018, 6, 1075-1085.	5.2	39
770	N/S/B-doped graphitized carbon encased Fe species as a highly active and durable catalyst towards oxygen reduction reaction. Journal of Colloid and Interface Science, 2018, 514, 108-116.	5.0	30
771	Engineering the Surface Structure of Binary/Ternary Ferrite Nanoparticles as Highâ€Performance Electrocatalysts for the Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 1075-1083.	1.8	19
772	Synthesis of Co–B in porous carbon using a metal–organic framework (MOF) precursor: A highly efficient catalyst for the oxygen evolution reaction. Electrochemistry Communications, 2018, 86, 140-144.	2.3	86
773	Homologous Co ₃ O ₄ ‗CoP nanowires grown on carbon cloth as a high-performance electrode pair for triclosan degradation and hydrogen evolution. Materials Chemistry Frontiers, 2018, 2, 323-330.	3.2	37
774	Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogelâ€Supported Ni/MnO Particles. Advanced Materials, 2018, 30, 1704609.	11.1	547
775	Self-Supported Porous NiSe ₂ Nanowrinkles as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 2231-2239.	3.2	130
776	Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting. Nano Energy, 2018, 44, 353-363.	8.2	516
777	Hollow POM@MOF hybrid-derived porous Co ₃ O ₄ /CoMoO ₄ nanocages for enhanced electrocatalytic water oxidation. Journal of Materials Chemistry A, 2018, 6, 1639-1647.	5.2	156
778	Hierarchical Hollow Nanoprisms Based on Ultrathin Niâ€Fe Layered Double Hydroxide Nanosheets with Enhanced Electrocatalytic Activity towards Oxygen Evolution. Angewandte Chemie, 2018, 130, 178-182.	1.6	72
779	An enhanced electrochemical energy conversion behavior of thermally treated thin film of 1-dimensional CoTe synthesized from aqueous solution at room temperature. Electrochimica Acta, 2018, 260, 365-371.	2.6	29
780	Voltammetric and Scanning Electrochemical Microscopy Investigations of the Hydrogen Evolution Reaction in Acid at Nanostructured Ensembles of Ultramicroelectrode Dimensions: Theory and Experiment. Journal of Physical Chemistry C, 2018, 122, 71-82.	1.5	11
781	Electropolymerization of Aniline on Nickel-Based Electrocatalysts Substantially Enhances Their Performance for Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 3-8.	2.5	50
782	Defectâ€Rich Ni ₃ FeN Nanocrystals Anchored on Nâ€Doped Graphene for Enhanced Electrocatalytic Oxygen Evolution. Advanced Functional Materials, 2018, 28, 1706018.	7.8	169
783	Enhancement of oxygen reduction reaction performance: The characteristic role of Fe N coordinations. Electrochimica Acta, 2018, 260, 264-273.	2.6	27
784	Defect engineering of mesoporous nickel ferrite and its application for highly enhanced water oxidation catalysis. Journal of Catalysis, 2018, 358, 1-7.	3.1	68
785	When NiO@Ni Meets WS ₂ Nanosheet Array: A Highly Efficient and Ultrastable Electrocatalyst for Overall Water Splitting. ACS Central Science, 2018, 4, 112-119.	5.3	120
786	High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction. ACS Nano, 2018, 12, 158-167.	7.3	321

#	Article	IF	CITATIONS
787	Highly efficient oxygen evolution electrocatalysts prepared by using reduction-engraved ferrites on graphene oxide. Inorganic Chemistry Frontiers, 2018, 5, 310-318.	3.0	24
788	Hierarchical CoMoO4 nanoneedle electrodes for advanced supercapacitors and electrocatalytic oxygen evolution. Electrochimica Acta, 2018, 259, 552-558.	2.6	80
789	Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst. Materials Horizons, 2018, 5, 108-115.	6.4	184
790	Bimetal metal-organic frameworks derived Co0.4Fe0.28P and Co0.37Fe0.26S nanocubes for enhanced oxygen evolution reaction. Electrochimica Acta, 2018, 263, 576-584.	2.6	35
791	A Co-doped Ni–Fe mixed oxide mesoporous nanosheet array with low overpotential and high stability towards overall water splitting. Journal of Materials Chemistry A, 2018, 6, 167-178.	5.2	158
792	Ultralow Loading Ruthenium Nanoparticles on Nitrogenâ€Đoped Graphene Aerogel for Trifunctional Electrocatalysis. ChemCatChem, 2018, 10, 1113-1121.	1.8	26
793	Co-synthesis of atomic Fe and few-layer graphene towards superior ORR electrocatalyst. Energy Storage Materials, 2018, 12, 1-7.	9.5	50
794	Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Research, 2018, 11, 603-613.	5.8	152
795	Facile Synthesis of Fe-Doped Ni ₃ S ₂ Nanoparticles Supported on Ni Foam as Highly Active Electrocatalyst for Water Splitting. IOP Conference Series: Earth and Environmental Science, 0, 186, 012002.	0.2	1
796	Pt Nanocluster Co-Catalysts for Photocatalytic Water Splitting. Journal of Carbon Research, 2018, 4, 64.	1.4	4
797	Alkaline–Acid Zn–H ₂ O Fuel Cell for the Simultaneous Generation of Hydrogen and Electricity. Angewandte Chemie, 2018, 130, 3974-3979.	1.6	52
798	Electronic Tuning of Co, Niâ€Based Nanostructured (Hydr)oxides for Aqueous Electrocatalysis. Advanced Functional Materials, 2018, 28, 1804886.	7.8	87
799	Recent Progress on Layered Double Hydroxides and Their Derivatives for Electrocatalytic Water Splitting. Advanced Science, 2018, 5, 1800064.	5.6	515
800	Simultaneous edge and electronic control of MoS ₂ nanosheets through Fe doping for an efficient oxygen evolution reaction. Nanoscale, 2018, 10, 20113-20119.	2.8	63
801	Catalytic activity for the hydrogen evolution reaction of edges in Janus monolayer MoXY (X/Y = S, Se,) Tj ETQq0 (0 0 ₁ rgBT /0	Overlock 10 T
802	Enhancement of nitrogen self-doped nanocarbons electrocatalyst <i>via</i> tune-up solution plasma synthesis. RSC Advances, 2018, 8, 35503-35511.	1.7	7
803	Ni(<scp>ii</scp>)-based coordination polymers for efficient electrocatalytic oxygen evolution reaction. RSC Advances, 2018, 8, 38562-38565.	1.7	18
804	Construction of an Fe, N and S-codoped ultra-thin carbon nanosheet superstructure for the oxygen reduction reaction. Chemical Communications, 2018, 54, 12974-12977.	2.2	25

#	Article	IF	CITATIONS
805	N-Doped carbon shelled bimetallic phosphates for efficient electrochemical overall water splitting. Nanoscale, 2018, 10, 22787-22791.	2.8	29
806	3D nanoporous Ni/V ₂ O ₃ hybrid nanoplate assemblies for highly efficient electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 21452-21457.	5.2	38
807	Chainmail catalyst of ultrathin P-doped carbon shell-encapsulated nickel phosphides on graphene towards robust and efficient hydrogen generation. Journal of Materials Chemistry A, 2018, 6, 24107-24113.	5.2	44
808	(Keynote) One-Pot Synthesis of Manganese Oxides and Cobalt Phosphides Nanohybrids with Abundant Hetero-Interfaces in Amorphous Matrix for Efficient Hydrogen Evolution in Alkaline Solution. ECS Transactions, 2018, 88, 381-397.	0.3	0
809	Structure, stability, electronic, magnetic, and catalytic properties of monometallic Pd, Au, and bimetallic Pd–Au core-shell nanoparticles. Journal of Chemical Physics, 2018, 149, 244307.	1.2	3
810	Theoretical Basis of Electrocatalysis. , 0, , .		5
811	Ultrasmall PtNi Bimetallic Nanoclusters for Oxygen Reduction Reaction in Alkaline Media. International Journal of Electrochemical Science, 2018, 13, 4438-4454.	0.5	5
812	Two-Dimensional, Ordered, Double Transition Metal Carbides (MXenes): A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2018, 122, 28113-28122.	1.5	104
813	Electronic structure, defect properties, and hydrogen storage capacity of 2H-WS2: A first-principles study. International Journal of Hydrogen Energy, 2018, 43, 23126-23134.	3.8	12
814	Carbon-coated cobalt molybdenum oxide as a high-performance electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 23101-23108.	3.8	9
815	Insights into High Conductivity of the Two-Dimensional lodine-Oxidized sp ² -c-COF. ACS Applied Materials & Interfaces, 2018, 10, 43595-43602.	4.0	37
816	Modification of Carbon Nanotubes via Birch Reaction for Enhanced HER Catalyst by Constructing Pearl Necklaceâ€Like NiCo ₂ P ₂ –CNT Composite. Small, 2018, 14, e1804388.	5.2	15
817	Recent advances in energy chemistry of precious-metal-free catalysts for oxygen electrocatalysis. Chinese Chemical Letters, 2018, 29, 1757-1767.	4.8	63
818	Recent Advances of Cobalt-Based Electrocatalysts for Oxygen Electrode Reactions and Hydrogen Evolution Reaction. Catalysts, 2018, 8, 559.	1.6	107
819	One-pot wet-chemical synthesis of uniform AuPtPd nanodendrites as efficient electrocatalyst for boosting hydrogen evolution and oxygen reduction reactions. International Journal of Hydrogen Energy, 2018, 43, 22187-22194.	3.8	35
820	Remarkable Bifunctional Oxygen and Hydrogen Evolution Electrocatalytic Activities with Trace-Level Fe Doping in Ni- and Co-Layered Double Hydroxides for Overall Water-Splitting. ACS Applied Materials & Interfaces, 2018, 10, 42453-42468.	4.0	107
821	A New Class of Zn ₁ <i>_{â€x}</i> Fe <i>_x</i> –Oxyselenide and Zn _{1â€} <i>_x</i> Fe <i>_x</i> –LDH Nanostructured Material with Remarkable Bifunctional Oxygen and Hydrogen Evolution Electrocatalytic Activities for Overall Water Splitting, Small, 2018, 14, e1803638.	5.2	56
822	In Situ O2Generation for Biocatalytic Oxyfunctionalization Reactions. ChemCatChem, 2018, 10, 5366-5371.	1.8	19

#	ARTICLE	IF	CITATIONS
823	Exploration of nanowire- and nanotube-based electrocatalysts for oxygen reduction and oxygen evolution reaction. Materials Today Nano, 2018, 3, 54-68.	2.3	32
824	Recent developments of transition metal phosphides as catalysts in the energy conversionÂfield. Journal of Materials Chemistry A, 2018, 6, 23220-23243.	5.2	200
825	Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nature Communications, 2018, 9, 5422.	5.8	696
826	Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution. Nanoscale, 2018, 10, 21617-21624.	2.8	312
827	Single-Crystal Nitrogen-Rich Two-Dimensional Mo ₅ N ₆ Nanosheets for Efficient and Stable Seawater Splitting. ACS Nano, 2018, 12, 12761-12769.	7.3	317
828	Amorphous Iron and Cobalt Based Phosphate Nanosheets Supported on Nickel Foam as Superior Catalysts for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 6764-6768.	2.5	18
829	Iron phosphide encapsulated in P-doped graphitic carbon as efficient and stable electrocatalyst for hydrogen and oxygen evolution reactions. Nanoscale, 2018, 10, 21327-21334.	2.8	91
830	Facile Synthesis of Superstructured MoS ₂ and Graphitic Nanocarbon Hybrid for Efficient Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 14441-14449.	3.2	41
831	Synthesis of transition metal sulfide and reduced graphene oxide hybrids as efficient electrocatalysts for oxygen evolution reactions. Royal Society Open Science, 2018, 5, 180927.	1.1	14
832	Synthetic strategy and evaluation of hierarchical nanoporous NiO/NiCoP microspheres as efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2018, 292, 88-97.	2.6	27
833	Co ₃ O ₄ Nanoparticles Anchored on Selectively Oxidized Graphene Flakes as Bifunctional Electrocatalysts for Oxygen Reactions. ChemistrySelect, 2018, 3, 10064-10076.	0.7	14
834	One-pot synthesis of graphene- cobalt hydroxide composite nanosheets (Co/G NSs) for electrocatalytic water oxidation. Scientific Reports, 2018, 8, 13772.	1.6	9
835	Highly Efficient and Durable Electrocatalyst Based on Nanowires of Cobalt Sulfide for Overall Water Splitting. ChemNanoMat, 2018, 4, 1240-1246.	1.5	28
836	Graphene layers-wrapped FeNiP nanoparticles embedded in nitrogen-doped carbon nanofiber as an active and durable electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2018, 290, 649-656.	2.6	59
837	The Effect of Metal Components in the Quaternary Electrocatalysts on the Morphology and Catalytic Performance of Transition Metal Phosphides. Electroanalysis, 2018, 30, 2584-2588.	1.5	4
838	Multiscale Structural Engineering of Niâ€Đoped CoO Nanosheets for Zinc–Air Batteries with High Power Density. Advanced Materials, 2018, 30, e1804653.	11.1	131
839	Two-step oxygen reduction on spinel NiFe2O4 catalyst: Rechargeable, aqueous solution- and gel-based, Zn-air batteries. Electrochimica Acta, 2018, 292, 268-275.	2.6	74
840	The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting. Inorganic Chemistry Frontiers, 2018, 5, 2964-2970.	3.0	76

#	Article	IF	CITATIONS
841	A "MOFs plus MOFs―strategy toward Co–Mo ₂ N tubes for efficient electrocatalytic overall water splitting. Journal of Materials Chemistry A, 2018, 6, 20100-20109.	5.2	131
842	Transition metal modification and carbon vacancy promoted Cr ₂ CO ₂ (MXenes): a new opportunity for a highly active catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 20956-20965.	5.2	74
843	Hierarchically Porous Heteroatomsâ€doped Vesicaâ€like Carbons as Highly Efficient Bifunctional Electrocatalysts for Znâ€air Batteries. ChemCatChem, 2018, 10, 5297-5305.	1.8	34
844	Adsorption Energetics of Atoms and Diatomic Gases with Electrocatalysis Approach towards Hydrogen and Oxygen Evolution Reaction on Pt Surfaces. ChemistrySelect, 2018, 3, 10515-10525.	0.7	8
845	Ce-Directed Double-Layered Nanosheet Architecture of NiFe-Based Hydroxide as Highly Efficient Water Oxidation Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 15411-15418.	3.2	32
846	Covalent Phenanthroline Framework Derived FeS@Fe ₃ C Composite Nanoparticles Embedding in N‧ odoped Carbons as Highly Efficient Trifunctional Electrocatalysts. Advanced Functional Materials, 2018, 28, 1803973.	7.8	141
847	Recent Advances in the Electro-Oxidation of Urea for Direct Urea Fuel Cell and Urea Electrolysis. Topics in Current Chemistry, 2018, 376, 42.	3.0	140
848	Nickel foam-supported NiFe layered double hydroxides nanoflakes array as a greatly enhanced electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 21824-21834.	3.8	58
849	Promise and Challenge of Phosphorus in Science, Technology, and Application. Advanced Functional Materials, 2018, 28, 1803471.	7.8	65
850	Two-Dimensional Lamellar Mo ₂ C for Electrochemical Hydrogen Production: Insights into the Origin of Hydrogen Evolution Reaction Activity in Acidic and Alkaline Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 40500-40508.	4.0	38
851	Highly Efficient Acidic Oxygen Evolution Electrocatalysis Enabled by Porous Ir–Cu Nanocrystals with Three-Dimensional Electrocatalytic Surfaces. Chemistry of Materials, 2018, 30, 8571-8578.	3.2	75
852	Triggering basal plane active sites of monolayer MoS2 for the hydrogen evolution reaction by phosphorus doping. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	6
853	Constructing NiCo/Fe ₃ O ₄ Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society, 2018, 140, 15336-15341.	6.6	310
854	Insight into the catalytic activity of MXenes for hydrogen evolution reaction. Science Bulletin, 2018, 63, 1397-1403.	4.3	61
855	Defect Engineering of Cobalt-Based Materials for Electrocatalytic Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 15954-15969.	3.2	151
856	Hollow Bimetallic Zinc Cobalt Phosphosulfides for Efficient Overall Water Splitting. Chemistry - A European Journal, 2019, 25, 621-626.	1.7	29
857	Transition Metal Phosphide As Cocatalysts for Semiconductor-Based Photocatalytic Hydrogen Evolution Reaction. Lecture Notes in Quantum Chemistry II, 2018, , 375-402.	0.3	2
858	Boosting Overall Water Splitting via FeOOH Nanoflake-Decorated PrBa _{0.5} Sr _{0.5} Co ₂ O _{5+Î} Nanorods. ACS Applied Materials & Interfaces, 2018, 10, 38032-38041.	4.0	66

#	Article	IF	CITATIONS
859	Stabilizing and Activating Metastable Nickel Nanocrystals for Highly Efficient Hydrogen Evolution Electrocatalysis. ACS Nano, 2018, 12, 11625-11631.	7.3	55
860	Rational Design of Dodecahedral MnCo ₂ O _{4.5} Hollowedâ€Out Nanocages as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. Advanced Energy Materials, 2018, 8, 1802390.	10.2	63
861	CoSe2 nanoparticles grown on carbon nanofibers derived from bacterial cellulose as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 20704-20711.	3.8	27
862	Strong metal–support interactions impart activity in the oxygen reduction reaction: Au monolayer on Mo ₂ C (MXene). Journal of Physics Condensed Matter, 2018, 30, 475201.	0.7	20
863	Self-Templating Construction of Porous CoSe ₂ Nanosheet Arrays as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 15374-15382.	3.2	89
864	Facile and large-scale preparation of Co/Ni-MoO2 composite as high-performance electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 20721-20726.	3.8	23
865	Twoâ€Ðimensional Layered Hydroxide Nanoporous Nanohybrids Pillared with Zeroâ€Ðimensional Polyoxovanadate Nanoclusters for Enhanced Water Oxidation Catalysis. Small, 2018, 14, e1703481.	5.2	33
866	Structural Self-Reconstruction of Catalysts in Electrocatalysis. Accounts of Chemical Research, 2018, 51, 2968-2977.	7.6	252
867	Control Synthesis of Nickel Selenides and Their Multiwalled Carbon Nanotubes Composites as Electrocatalysts for Enhanced Water Oxidation. Journal of Physical Chemistry C, 2018, 122, 26096-26104.	1.5	38
868	Coupling Bimetallic Oxides/Alloys and N-Doped Carbon Nanotubes as Tri-Functional Catalysts for Overall Water Splitting and Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 39828-39838.	4.0	54
869	Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media. Advanced Materials, 2018, 30, e1803676.	11.1	173
870	Disordering the Atomic Structure of Co(II) Oxide via Bâ€Đoping: An Efficient Oxygen Vacancy Introduction Approach for High Oxygen Evolution Reaction Electrocatalysts. Small, 2018, 14, e1802760.	5.2	88
871	Ultrasmall Ru/Cuâ€doped RuO ₂ Complex Embedded in Amorphous Carbon Skeleton as Highly Active Bifunctional Electrocatalysts for Overall Water Splitting. Small, 2018, 14, e1803009.	5.2	151
872	Engineering porosity into trimetallic PtPdNi nanospheres for enhanced electrocatalytic oxygen reduction activity. Green Energy and Environment, 2018, 3, 352-359.	4.7	14
873	From an Fe ₂ P ₃ complex to FeP nanoparticles as efficient electrocatalysts for water-splitting. Chemical Science, 2018, 9, 8590-8597.	3.7	103
874	Ni nanoparticle-decorated-MnO ₂ nanodendrites as highly selective and efficient catalysts for CO ₂ electroreduction. Journal of Materials Chemistry A, 2018, 6, 19438-19444.	5.2	27
875	Pyrite FeS ₂ /C nanoparticles as an efficient bi-functional catalyst for overall water splitting. Dalton Transactions, 2018, 47, 14917-14923.	1.6	68
876	Diabatic model for electrochemical hydrogen evolution based on constrained DFT configuration interaction. Journal of Chemical Physics, 2018, 149, 104702.	1.2	10

#	Article	IF	CITATIONS
877	Electrocatalytic performance of different cobalt molybdate structures for water oxidation in alkaline media. CrystEngComm, 2018, 20, 5592-5601.	1.3	27
878	MOF-derived porous Ni ₂ P nanosheets as novel bifunctional electrocatalysts for the hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 18720-18727.	5.2	149
884	One-Pot Seedless Aqueous Design of Metal Nanostructures for Energy Electrocatalytic Applications. Electrochemical Energy Reviews, 2018, 1, 531-547.	13.1	9
885	Metal-organic frameworks and their derivatives as bifunctional electrocatalysts. Coordination Chemistry Reviews, 2018, 376, 430-448.	9.5	175
886	Phosphorus-doped nickel sulfides/nickel foam as electrode materials for electrocatalytic water splitting. International Journal of Hydrogen Energy, 2018, 43, 19002-19009.	3.8	43
887	An Operando-Raman study on oxygen evolution of manganese oxides: Roles of phase composition and amorphization. Journal of Catalysis, 2018, 367, 53-61.	3.1	33
888	Multifunctional catalysts with high catalytic activities: Flower-like Co9S8 microballs assembled with weak crystalline pea pod-shaped nanowires. International Journal of Hydrogen Energy, 2018, 43, 18832-18842.	3.8	18
889	An ultrathin cobalt-based zeolitic imidazolate framework nanosheet array with a strong synergistic effect towards the efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 18877-18883.	5.2	97
890	Exploring Indiumâ€Based Ternary Thiospinel as Conceivable Highâ€Potential Airâ€Cathode for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1802263.	10.2	248
891	Phase and Morphology Transformation of MnO ₂ Induced by Ionic Liquids toward Efficient Water Oxidation. ACS Catalysis, 2018, 8, 10137-10147.	5.5	102
892	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie, 2018, 130, 14335-14339.	1.6	58
893	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 14139-14143.	7.2	70
894	Neural Network Inspired Design of Highly Active and Durable N-Doped Carbon Interconnected Molybdenum Phosphide for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 0, , .	2.5	7
895	Polydopamine-inspired nanomaterials for energy conversion and storage. Journal of Materials Chemistry A, 2018, 6, 21827-21846.	5.2	103
896	Charge State Manipulation of Cobalt Selenide Catalyst for Overall Seawater Electrolysis. Advanced Energy Materials, 2018, 8, 1801926.	10.2	264
897	Mesoporous Pd@Ru Core–Shell Nanorods for Hydrogen Evolution Reaction in Alkaline Solution. ACS Applied Materials & Interfaces, 2018, 10, 34147-34152.	4.0	64
898	A Facile Strategy to Construct Amorphous Spinelâ€Based Electrocatalysts with Massive Oxygen Vacancies Using Ionic Liquid Dopant. Advanced Energy Materials, 2018, 8, 1800980.	10.2	156
899	Electric impulse spring-assisted contact separation mode triboelectric nanogenerator fabricated from polyaniline emeraldine salt and woven carbon fibers. Nano Energy, 2018, 53, 362-372.	8.2	47

#	Article	IF	CITATIONS
900	MoS2 nanostructure electrodeposited on Ni-P coating: an efficient and durable hybrid cathode catalyst in alkaline water electrolyses. IOP Conference Series: Materials Science and Engineering, 2018, 397, 012135.	0.3	1
901	Molecule-Assisted Synthesis of Highly Dispersed Ultrasmall RuO ₂ Nanoparticles on Nitrogen-Doped Carbon Matrix as Ultraefficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 11529-11535.	3.2	58
902	Grain Boundaries Trigger Basal Plane Catalytic Activity for the Hydrogen Evolution Reaction in Monolayer MoS2. Electrocatalysis, 2018, 9, 744-751.	1.5	22
903	Three-Dimensional Hierarchical Multimetal-LDH Nanoflakes and Their Derived Spinel Oxides for Efficient Oxygen Evolution. ACS Applied Energy Materials, 2018, 1, 4998-5007.	2.5	11
904	Iridium–Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts. ACS Central Science, 2018, 4, 1244-1252.	5.3	196
905	Modulation of Hydrogen Evolution Catalytic Activity of Basal Plane in Monolayer Platinum and Palladium Dichalcogenides. ACS Omega, 2018, 3, 10058-10065.	1.6	46
906	FeS ₂ /CoS ₂ Interface Nanosheets as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small, 2018, 14, e1801070.	5.2	273
907	<i>In situ</i> growth of well-ordered NiFe-MOF-74 on Ni foam by Fe ²⁺ induction as an efficient and stable electrocatalyst for water oxidation. Chemical Communications, 2018, 54, 7046-7049.	2.2	176
908	Efficient ORR electrocatalytic activity of peanut shell-based graphitic carbon microstructures. Journal of Materials Chemistry A, 2018, 6, 12018-12028.	5.2	81
909	Cobalt Covalent Doping in MoS ₂ to Induce Bifunctionality of Overall Water Splitting. Advanced Materials, 2018, 30, e1801450.	11.1	402
910	Ganoderma‣ike MoS ₂ /NiS ₂ with Single Platinum Atoms Doping as an Efficient and Stable Hydrogen Evolution Reaction Catalyst. Small, 2018, 14, e1800697.	5.2	60
911	Highly stable and efficient non-precious metal electrocatalysts of Mo-doped NiOOH nanosheets for oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 12140-12145.	3.8	26
912	Emerging Carbonâ€Nanofiber Aerogels: Chemosynthesis versus Biosynthesis. Angewandte Chemie - International Edition, 2018, 57, 15646-15662.	7.2	92
913	Nitrogenâ€Ðoped CoP Electrocatalysts for Coupled Hydrogen Evolution and Sulfur Generation with Low Energy Consumption. Advanced Materials, 2018, 30, e1800140.	11.1	336
914	Economizing Production of Diverse 2D Layered Metal Hydroxides for Efficient Overall Water Splitting. Small, 2018, 14, e1800759.	5.2	46
915	NiFe (Oxy) Hydroxides Derived from NiFe Disulfides as an Efficient Oxygen Evolution Catalyst for Rechargeable Zn–Air Batteries: The Effect of Surface S Residues. Advanced Materials, 2018, 30, e1800757.	11.1	219
916	Kohlenstoffnanofaserâ€Aerogele: Vergleich von Chemosynthese und Biosynthese. Angewandte Chemie, 2018, 130, 15872-15889.	1.6	8
917	Coupled molybdenum carbide and nitride on carbon nanosheets: An efficient and durable hydrogen evolution electrocatalyst in both acid and alkaline media. Electrochimica Acta, 2018, 280, 323-331.	2.6	52

#	Article	IF	CITATIONS
918	Crystallinity Dependence of Ruthenium Nanocatalyst toward Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 5714-5720.	5.5	162
919	Pyridinic-N-Doped Graphene Paper from Perforated Graphene Oxide for Efficient Oxygen Reduction. ACS Omega, 2018, 3, 5522-5530.	1.6	42
920	Mo-Triggered amorphous Ni ₃ S ₂ nanosheets as efficient and durable electrocatalysts for water splitting. Materials Chemistry Frontiers, 2018, 2, 1462-1466.	3.2	43
921	Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution. Applied Catalysis B: Environmental, 2018, 236, 569-575.	10.8	122
922	Co NP/NC hollow nanoparticles derived from yolk-shell structured ZIFs@polydopamine as bifunctional electrocatalysts for water oxidation and oxygen reduction reactions. Journal of Energy Chemistry, 2018, 27, 1261-1267.	7.1	43
923	Facile synthesis of Pd@Ru nanoplates with controlled thickness as efficient catalysts for hydrogen evolution reaction. CrystEngComm, 2018, 20, 4230-4236.	1.3	21
924	Hybrid shells of MnO2 nanosheets encapsulated by N-doped carbon towards nonprecious oxygen reduction reaction catalysts. Journal of Colloid and Interface Science, 2018, 527, 241-250.	5.0	35
925	Ultrathin Transition Metal Dichalcogenide/3d Metal Hydroxide Hybridized Nanosheets to Enhance Hydrogen Evolution Activity. Advanced Materials, 2018, 30, e1801171.	11.1	180
926	Selfâ€Limited onâ€Site Conversion of MoO ₃ Nanodots into Vertically Aligned Ultrasmall Monolayer MoS ₂ for Efficient Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1800734.	10.2	112
927	Building block nanoparticles engineering induces multi-element perovskite hollow nanofibers structure evolution to trigger enhanced oxygen evolution. Electrochimica Acta, 2018, 279, 301-310.	2.6	14
928	Modulating the oxygen reduction activity of heteroatom-doped carbon catalysts <i>via</i> the triple effect: charge, spin density and ligand effect. Chemical Science, 2018, 9, 5795-5804.	3.7	121
929	Insight into the biological effects of acupuncture points by X-ray absorption fine structure. Analytical and Bioanalytical Chemistry, 2018, 410, 4959-4965.	1.9	2
930	Plasmon-Mediated Electrocatalysis for Sustainable Energy: From Electrochemical Conversion of Different Feedstocks to Fuel Cell Reactions. ACS Energy Letters, 2018, 3, 1415-1433.	8.8	62
931	2D metal–organic-framework array-derived hierarchical network architecture of cobalt oxide flakes with tunable oxygen vacancies towards efficient oxygen evolution reaction. Journal of Catalysis, 2018, 364, 48-56.	3.1	56
932	Recent Advances on Black Phosphorus for Energy Storage, Catalysis, and Sensor Applications. Advanced Materials, 2018, 30, e1800295.	11.1	215
933	Hierarchical Ni3S2-NiOOH hetero-nanocomposite grown on nickel foam as a noble-metal-free electrocatalyst for hydrogen evolution reaction in alkaline electrolyte. Applied Surface Science, 2018, 456, 164-173.	3.1	43
934	One-step chemical transformation synthesis of CoS2 nanosheets on carbon cloth as a 3D flexible electrode for water oxidation. Journal of Power Sources, 2018, 397, 44-51.	4.0	34
935	Enhanced hydrogen generation performance of Pd-based micro/nano hierarchical porous structure. Materials Letters, 2018, 228, 443-446.	1.3	24

#	Article	IF	CITATIONS
936	Ultrafine Pt Nanoparticleâ€Decorated Pyriteâ€Type CoS ₂ Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1800935.	10.2	286
937	Boosting water oxidation on metal-free carbon nanotubes <i>via</i> directional interfacial charge-transfer induced by an adsorbed polyelectrolyte. Energy and Environmental Science, 2018, 11, 3334-3341.	15.6	92
938	Nanostructured CuO/C Hollow Shell@3D Copper Dendrites as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2018, 10, 23807-23812.	4.0	49
939	First-principles design of bifunctional oxygen reduction and evolution catalysts through bimetallic centers in metal–organic frameworks. Catalysis Science and Technology, 2018, 8, 3666-3674.	2.1	21
940	Highly active and dual-function self-supported multiphase NiS–NiS ₂ –Ni ₃ S ₂ /NF electrodes for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 14207-14214.	5.2	91
941	Singleâ€Atom Catalysts for the Hydrogen Evolution Reaction. ChemElectroChem, 2018, 5, 2963-2974.	1.7	89
942	Skutterudite-Type Ternary Co _{1–<i>x</i>} Ni _{<i>x</i>} P ₃ Nanoneedle Array Electrocatalysts for Enhanced Hydrogen and Oxygen Evolution. ACS Energy Letters, 2018, 3, 1744-1752.	8.8	160
943	Metal Surface and Interface Energy Electrocatalysis: Fundamentals, Performance Engineering, and Opportunities. CheM, 2018, 4, 2054-2083.	5.8	225
944	Controllable 1D and 2D Cobalt Oxide and Cobalt Selenide Nanostructures as Highly Efficient Electrocatalysts for the Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2018, 13, 2700-2707.	1.7	20
945	Encapsulated Laccases as Effective Electrocatalysts for Oxygen Reduction Reactions. ACS Sustainable Chemistry and Engineering, 2018, 6, 11058-11062.	3.2	18
946	Solvent-induced surface hydroxylation of a layered perovskite Sr ₃ FeCoO _{7â~î~/sub> for enhanced oxygen evolution catalysis. Journal of Materials Chemistry A, 2018, 6, 14240-14245.}	5.2	15
947	Novel Nanomaterials as Electrocatalysts for Fuel Cells. , 2018, , 169-204.		5
948	N-doped graphene combined with alloys (NiCo, CoFe) and their oxides as multifunctional electrocatalysts for oxygen and hydrogen electrode reactions. Carbon, 2018, 139, 35-44.	5.4	63
949	Partially oxidized Ni nanoparticles supported on Ni-N co-doped carbon nanofibers as bifunctional electrocatalysts for overall water splitting. Nano Energy, 2018, 51, 286-293.	8.2	136
950	Synergetic Transformation of Solid Inorganic–Organic Hybrids into Advanced Nanomaterials for Catalytic Water Splitting. Accounts of Chemical Research, 2018, 51, 1711-1721.	7.6	196
951	Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications. Chemical Reviews, 2018, 118, 6409-6455.	23.0	711
952	Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nature Communications, 2018, 9, 2452.	5.8	431
953	Optimizing edges and defects of supported MoS ₂ catalysts for hydrogen evolution <i>via</i> an external electric field. Physical Chemistry Chemical Physics, 2018, 20, 26083-26090.	1.3	25

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
954	Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for differen rate-determining steps in oxygen reduction reaction. Nano Research, 2018, 11, 6260-626		5.8	118
955	Mass production of Nickel@Carbon nanoparticles attached on single-walled carbon nanot networks as highly efficient water splitting electrocatalyst. International Journal of Hydrog Energy, 2018, 43, 15687-15692.		3.8	12
956	Nanovoid Incorporated Ir _{<i>x</i>} Cu Metallic Aerogels for Oxygen Evolution I Catalysis. ACS Energy Letters, 2018, 3, 2038-2044.	leaction	8.8	129
957	Nâ€doped Hierarchical Porous Carbon Nanomeshes as Oxygen Reduction in pHâ€Univers Oxygen Evolution Electrocatalysts. ChemElectroChem, 2018, 5, 3279-3286.	al Media and	1.7	14
958	Ultrathin PtPdâ€Based Nanorings with Abundant Step Atoms Enhance Oxygen Catalysis. ⁄ Materials, 2018, 30, e1802136.	Advanced	11.1	107
959	Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene cold-hot alternation. Nature Communications, 2018, 9, 2889.	under	5.8	125
960	Carbonâ€Rich Nanomaterials: Fascinating Hydrogen and Oxygen Electrocatalysts. Advanc 2018, 30, e1800528.	ed Materials,	11.1	135
961	Self-Interconnected Porous Networks of NiCo Disulfide as Efficient Bifunctional Electrocat for Overall Water Splitting. ACS Applied Materials & amp; Interfaces, 2018, 10, 27723-277		4.0	71
962	Transition metal–assisted carbonization of small organic molecules toward functional c materials. Science Advances, 2018, 4, eaat0788.	arbon	4.7	172
963	A Defect-Driven Metal-free Electrocatalyst for Oxygen Reduction in Acidic Electrolyte. Che 2345-2356.	M, 2018, 4,	5.8	292
964	Cobalt–metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an a anode reaction in lieu of oxygen evolution during water splitting. Beilstein Journal of Orga Chemistry, 2018, 14, 1436-1445.	Ilternative nic	1.3	58
965	The Design and Synthesis of Hollow Microâ€/Nanostructures: Present and Future Trends. Materials, 2018, 30, e1800939.	Advanced	11.1	301
966	Oxygen Doping to Optimize Atomic Hydrogen Binding Energy on NiCoP for Highly Efficier Evolution. Small, 2018, 14, e1800421.	t Hydrogen	5.2	122
967	Metallic MoS ₂ for High Performance Energy Storage and Energy Conversion. 14, e1800640.	Small, 2018,	5.2	218
968	Recent Progresses in Electrocatalysts for Water Electrolysis. Electrochemical Energy Revie 483-530.	ws, 2018, 1,	13.1	285
969	Design of Dual-Modified MoS ₂ with Nanoporous Ni and Graphene as Efficien for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 8107-8114.	t Catalysts	5.5	140
970	Pt-like catalytic behavior of MoNi decorated CoMoO ₃ cuboid arrays for the hy evolution reaction. Journal of Materials Chemistry A, 2018, 6, 15558-15563.	/drogen	5.2	39
971	Hierarchical micro/mesoporous nitrogen-doped carbons derived from hypercrosslinked po highly efficient oxygen reduction reaction. Carbon, 2018, 138, 348-356.	ymers for	5.4	27

#	Article	IF	CITATIONS
972	Tuning the Electrocatalytic Performance of Ionic Liquid Modified Pt Catalysts for the Oxygen Reduction Reaction via Cationic Chain Engineering. ACS Catalysis, 2018, 8, 8244-8254.	5.5	82
973	Metal-organic-framework template-derived hierarchical porous CoP arrays for energy-saving overall water splitting. Electrochimica Acta, 2018, 284, 504-512.	2.6	57
974	Phase Exploration and Identification of Multinary Transition-Metal Selenides as High-Efficiency Oxygen Evolution Electrocatalysts through Combinatorial Electrodeposition. ACS Catalysis, 2018, 8, 8273-8289.	5.5	76
975	Metal/covalent–organic frameworks-based electrocatalysts for water splitting. Journal of Materials Chemistry A, 2018, 6, 15905-15926.	5.2	258
976	Improving the catalytic activity for hydrogen evolution of monolayered SnSe _{2(1â~} <i>_x</i> esub>)S ₂ <i>_x</i> by mechanical strain. Beilstein Journal of Nanotechnology, 2018, 9, 1820-1827.	1.5	14
977	Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts. Nanotechnology, 2018, 29, 425703.	1.3	6
978	Oxygen Reduction Reaction Catalyzed by Noble Metal Clusters. Catalysts, 2018, 8, 65.	1.6	64
979	Engineering Two-Dimensional Mass-Transport Channels of the MoS ₂ Nanocatalyst toward Improved Hydrogen Evolution Performance. ACS Applied Materials & Interfaces, 2018, 10, 25409-25414.	4.0	23
981	Surface-Engineered PtNi-O Nanostructure with Record-High Performance for Electrocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 9046-9050.	6.6	379
982	Cobalt-Assisted Morphology and Assembly Control of Co-Doped ZnO Nanoparticles. Nanomaterials, 2018, 8, 249.	1.9	28
983	NiFe ₂ O ₄ Nanoparticles/NiFe Layered Double-Hydroxide Nanosheet Heterostructure Array for Efficient Overall Water Splitting at Large Current Densities. ACS Applied Materials & Interfaces, 2018, 10, 26283-26292.	4.0	219
984	FeP Nanocrystals Embedded in N-Doped Carbon Nanosheets for Efficient Electrocatalytic Hydrogen Generation over a Broad pH Range. ACS Sustainable Chemistry and Engineering, 2018, 6, 11587-11594.	3.2	56
985	Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chemical Society Reviews, 2018, 47, 8173-8202.	18.7	222
986	Cu-Doped CoP Nanorod Arrays: Efficient and Durable Hydrogen Evolution Reaction Electrocatalysts at All pH Values. ACS Applied Energy Materials, 2018, 1, 3835-3842.	2.5	58
987	Metallic and superhydrophilic nickel cobalt diselenide nanosheets electrodeposited on carbon cloth as a bifunctional electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 17353-17360.	5.2	100
988	Coupling confinement activating cobalt oxide ultra-small clusters for high-turnover oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 15684-15689.	5.2	25
989	Well-elaborated, mechanochemically synthesized Fe-TPPâŠ,ZIF precursors (Fe-TPP = tetraphenylporphine) Tj ETQq0 batteries. Nano Energy, 2018, 52, 29-37.) 0 0 rgBT 8.2	/Overlock 1 108
990	Strong Electronic Interaction in Dualâ€Cationâ€Incorporated NiSe ₂ Nanosheets with Lattice Distortion for Highly Efficient Overall Water Splitting. Advanced Materials, 2018, 30, e1802121.	11.1	361

#	Article	IF	Citations
991	Recent Development of Zeolitic Imidazolate Frameworks (ZIFs) Derived Porous Carbon Based Materials as Electrocatalysts. Advanced Energy Materials, 2018, 8, 1801257.	10.2	242
992	Nitrogen-rich 1T′-MoS ₂ layered nanostructures using alkyl amines for high catalytic performance toward hydrogen evolution. Nanoscale, 2018, 10, 14726-14735.	2.8	39
993	A new 2D Co 5 -cluster based MOF: Crystal structure, magnetic properties and electrocatalytic hydrogen evolution reaction. Inorganic Chemistry Communication, 2018, 95, 73-77.	1.8	24
994	Bifunctionality from Synergy: CoP Nanoparticles Embedded in Amorphous CoOx Nanoplates with Heterostructures for Highly Efficient Water Electrolysis. Advanced Science, 2018, 5, 1800514.	5.6	124
995	Monolithic nanoporous Ni Fe alloy by dealloying laser processed Ni Fe Al as electrocatalyst toward oxygen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 15234-15244.	3.8	40
996	Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 2018, 2, 1242-1264.	11.7	1,618
997	Metal–Organic Framework Based Catalysts for Hydrogen Evolution. Advanced Energy Materials, 2018, 8, 1801193.	10.2	345
998	Understanding Surface-Mediated Electrochemical Reactions: CO ₂ Reduction and Beyond. ACS Catalysis, 2018, 8, 8121-8129.	5.5	194
999	Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidation. Chemical Science, 2018, 9, 6961-6968.	3.7	56
1000	Hierarchical 3D macrosheets composed of interconnected <i>in situ</i> cobalt catalyzed nitrogen doped carbon nanotubes as superior bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 15523-15529.	5.2	68
1001	A facet-controlled Rh ₃ Pb ₂ S ₂ nanocage as an efficient and robust electrocatalyst toward the hydrogen evolution reaction. Nanoscale, 2018, 10, 9845-9850.	2.8	28
1002	A porphyrin covalent organic framework cathode for flexible Zn–air batteries. Energy and Environmental Science, 2018, 11, 1723-1729.	15.6	298
1003	Hierarchical NiSe2 sheet-like nano-architectures as an efficient and stable bifunctional electrocatalyst for overall water splitting: Phase and morphology engineering. Electrochimica Acta, 2018, 279, 195-203.	2.6	49
1004	Intermetallic <i>hcp</i> -PtBi/ <i>fcc</i> -Pt Core/Shell Nanoplates Enable Efficient Bifunctional Oxygen Reduction and Methanol Oxidation Electrocatalysis. ACS Catalysis, 2018, 8, 5581-5590.	5.5	153
1005	Material descriptors for photocatalyst/catalyst design. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1369.	6.2	34
1006	Crystal Structure-dependent Thermal Stability and Catalytic Performance of AuRu3 Solid-solution Alloy Nanoparticles. Chemistry Letters, 2018, 47, 559-561.	0.7	8
1007	Carbon Thin-Layer-Protected Active Sites for ZIF-8-Derived Nitrogen-Enriched Carbon Frameworks/Expanded Graphite as Metal-Free Catalysts for Oxygen Reduction in Acidic Media. Chemistry of Materials, 2018, 30, 6014-6025.	3.2	74
1008	Defect- and Phase-Induced Acceleration of Electrocatalytic Hydrogen Production by Ultrathin and Small MoS ₂ -Decorated rGO Sheets. ACS Applied Nano Materials, 2018, 1, 4622-4632.	2.4	33

#	Article	IF	CITATIONS
1009	Identifying the forefront of electrocatalytic oxygen evolution reaction: Electronic double layer. Applied Catalysis B: Environmental, 2018, 239, 425-432.	10.8	49
1010	Synthesis of polyoxometalates derived bifunctional catalyst towards efficient overall water splitting in neutral and alkaline medium. Journal of Colloid and Interface Science, 2018, 532, 774-781.	5.0	38
1011	Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode. Angewandte Chemie, 2018, 130, 13347-13350.	1.6	69
1012	Transition Metal Carbide Complex Architectures for Energyâ€Related Applications. Chemistry - A European Journal, 2018, 24, 16716-16736.	1.7	27
1013	Trimetallic Au@PtPd Mesoporous Nanorods as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Energy Materials, 2018, 1, 4891-4898.	2.5	24
1014	Nickel Molybdenum Nitride Nanorods Grown on Ni Foam as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 30400-30408.	4.0	97
1015	Cobalt–Cobalt Phosphide Nanoparticles@Nitrogenâ€Phosphorus Doped Carbon/Graphene Derived from Cobalt Ions Adsorbed <i>Saccharomycete</i> Yeasts as an Efficient, Stable, and Largeâ€Currentâ€Density Electrode for Hydrogen Evolution Reactions. Advanced Functional Materials, 2018, 28, 1801332.	7.8	102
1016	Hybrid cobalt-based electrocatalysts with adjustable compositions for electrochemical water splitting derived from Co2+-Loaded MIL-53(Fe) particles. Electrochimica Acta, 2018, 286, 397-405.	2.6	22
1017	Facile synthesis of ZnCo-ZIFs-derived ZnxCo3â^xxO4 hollow polyhedron for efficient oxygen evolution reduction. Journal of Colloid and Interface Science, 2018, 532, 650-656.	5.0	33
1018	Stabilizing the oxygen vacancies and promoting water-oxidation kinetics in cobalt oxides by lower valence-state doping. Nano Energy, 2018, 53, 144-151.	8.2	114
1019	Highly Dispersed Co–B/N Codoped Carbon Nanospheres on Graphene for Synergistic Effects as Bifunctional Oxygen Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 30460-30469.	4.0	32
1020	Highly Dispersed Platinum on Honeycomb-like NiO@Ni Film as a Synergistic Electrocatalyst for the Hydrogen Evolution Reaction. ACS Catalysis, 2018, 8, 8866-8872.	5.5	141
1021	Interfacial proton enrichment enhances proton-coupled electrocatalytic reactions. Journal of Materials Chemistry A, 2018, 6, 17771-17777.	5.2	29
1022	Hydrogen evolution reaction (HER) on Au@Ag ultrananoclusters as electro-catalysts. Nanoscale, 2018, 10, 17730-17737.	2.8	21
1023	Monodisperse and Tiny Co ₂ N _{0.67} Nanocrystals Uniformly Embedded over Two Curving Surfaces of Hollow Carbon Microfibers as Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Nano Materials, 2018, 1, 4461-4473.	2.4	23
1024	Shape-Dependent Electrocatalytic Activity of Iridium Oxide Decorated Erbium Pyrosilicate toward the Hydrogen Evolution Reaction over the Entire pH Range. ACS Catalysis, 2018, 8, 8830-8843.	5.5	37
1025	Metal–Organic-Framework-Derived Hollow CoS _{<i>x</i>} @MoS ₂ Microcubes as Superior Bifunctional Electrocatalysts for Hydrogen Evolution and Oxygen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2018, 6, 12961-12968.	3.2	89
1026	Carbonâ€Supported Single Atom Catalysts for Electrochemical Energy Conversion and Storage. Advanced Materials, 2018, 30, e1801995.	11.1	479

#	Article	IF	CITATIONS
1027	Activating Transition Metal Dichalcogenides by Substitutional Nitrogenâ€Doping for Potential ORR Electrocatalysts. ChemElectroChem, 2018, 5, 4029-4035.	1.7	27
1028	Heteroatom-doped carbon nanospheres derived from cuttlefish ink: A bifunctional electrocatalyst for oxygen reduction and evolution. International Journal of Hydrogen Energy, 2018, 43, 17708-17717.	3.8	27
1029	Ambient Electrochemical Synthesis of Ammonia from Nitrogen and Water Catalyzed by Flower‣ike Gold Microstructures. ChemSusChem, 2018, 11, 3480-3485.	3.6	176
1030	Scalable fabrication of ZnxCd1-xS double-shell hollow nanospheres for highly efficient hydrogen production. Applied Catalysis B: Environmental, 2018, 239, 309-316.	10.8	82
1031	Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Research, 2018, 11, 6111-6140.	5.8	54
1032	Hierarchical molybdenum carbide/N-doped carbon as efficient electrocatalyst for hydrogen evolution reaction in alkaline solution. International Journal of Hydrogen Energy, 2018, 43, 17244-17251.	3.8	19
1033	A Review of Preciousâ€Metalâ€Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Znâ^'Air Batteries. Advanced Functional Materials, 2018, 28, 1803329.	7.8	524
1034	Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode. Angewandte Chemie - International Edition, 2018, 57, 13163-13166.	7.2	312
1035	Nanostructured NiFe (oxy)hydroxide with easily oxidized Ni towards efficient oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 16810-16817.	5.2	61
1036	Using Multifunctional Polymeric Soft Template for Synthesizing Nitrogen and Phosphorus Co–Doped Mesoporous Carbon Frameworks Electrocatalysts for Oxygen Reduction Reaction. ChemistrySelect, 2018, 3, 9013-9020.	0.7	4
1037	Plasma-activated Co3(PO4)2 nanosheet arrays with Co3+-Rich surfaces for overall water splitting. Journal of Power Sources, 2018, 400, 190-197.	4.0	86
1038	N-doping goes sp-hybridized. Nature Chemistry, 2018, 10, 900-902.	6.6	17
1039	A Universal Strategy to Metal Wavy Nanowires for Efficient Electrochemical Water Splitting at pHâ€Universal Conditions. Advanced Functional Materials, 2018, 28, 1803722.	7.8	71
1040	Partial Surface Oxidation of Manganese Oxides as an Effective Treatment To Improve Their Activity in Electrochemical Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 21366-21374.	1.5	15
1041	Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view. Beilstein Journal of Nanotechnology, 2018, 9, 2015-2031.	1.5	10
1042	Double Perovskites as Model Bifunctional Catalysts toward Rational Design: The Correlation between Electrocatalytic Activity and Complex Spin Configuration. ACS Applied Materials & 2018, 10, 19746-19754.	4.0	41
1043	Identifying the Key Role of Pyridinicâ€N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER. Advanced Materials, 2018, 30, e1800005.	11.1	394
1044	Graphene Layer Encapsulation of Non-Noble Metal Nanoparticles as Acid-Stable Hydrogen Evolution Catalysts. ACS Energy Letters, 2018, 3, 1539-1544.	8.8	57

#	Article	IF	CITATIONS
1045	Enhanced Electrocatalytic Oxygen Evolution by Exfoliation of a Metal–Organic Framework Containing Cationic One-Dimensional [Co ₄ (OH) ₂] ⁶⁺ Chains. ACS Applied Energy Materials, 2018, 1, 2446-2451.	2.5	19
1046	Facile synthesis of silk-cocoon S-rich cobalt polysulfide as an efficient catalyst for the hydrogen evolution reaction. Energy and Environmental Science, 2018, 11, 2467-2475.	15.6	91
1047	An ultrafine platinum–cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution. Nanoscale, 2018, 10, 12302-12307.	2.8	199
1048	Amine group induced high activity of highly torn amine functionalized nitrogen-doped graphene as the metal-free catalyst for hydrogen evolution reaction. Carbon, 2018, 138, 169-178.	5.4	46
1049	Partially Oxidized Bimetallic Nanocrystals as Efficient Nonâ€Noble Metal Alcohol Electrooxidation Catalysts. ChemCatChem, 2018, 10, 3647-3652.	1.8	3
1050	Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy, 2018, 51, 26-36.	8.2	378
1051	NiPS ₃ Nanosheet–Graphene Composites as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Nano, 2018, 12, 5297-5305.	7.3	104
1052	Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 22062-22069.	5.2	156
1053	Preparation of 2D material dispersions and their applications. Chemical Society Reviews, 2018, 47, 6224-6266.	18.7	459
1054	In situ electrodeposition of mesoporous aligned α-Fe2O3 nanoflakes for highly sensitive nonenzymatic H2O2 sensor. Applied Surface Science, 2018, 456, 302-306.	3.1	31
1055	Rational design of MoSe2-NiSe@carbon heteronanostructures for efficient electrocatalytic hydrogen evolution in both acidic and alkaline media. Carbon, 2018, 139, 1-9.	5.4	70
1056	Construction of hierarchical FeP/Ni ₂ P hollow nanospindles for efficient oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 14103-14111.	5.2	109
1057	Sensitive nonenzymatic detection of hydrogen peroxide at nitrogen-doped graphene supported-CoFe nanoparticles. Talanta, 2018, 188, 339-348.	2.9	33
1058	Size and Electronic Modulation of Iridium Nanoparticles on Nitrogen-Functionalized Carbon toward Advanced Electrocatalysts for Alkaline Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 22340-22347.	4.0	43
1059	Single Tungsten Atoms Supported on MOFâ€Derived Nâ€Doped Carbon for Robust Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, e1800396.	11.1	427
1060	Decoration of Bi2Se3 nanosheets with a thin Bi2SeO2 layer for visible-light-driven overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 10950-10958.	3.8	17
1061	In-Situ Formed Hydroxide Accelerating Water Dissociation Kinetics on Co ₃ N for Hydrogen Production in Alkaline Solution. ACS Applied Materials & Interfaces, 2018, 10, 22102-22109.	4.0	54
1062	Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6626-6631.	3.3	500

#	Article	IF	CITATIONS
1063	Layered Metal–Organic Framework-Derived Metal Oxide/Carbon Nanosheet Arrays for Catalyzing the Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 1655-1661.	8.8	176
1064	A hierarchical nickel–carbon structure templated by metal–organic frameworks for efficient overall water splitting. Energy and Environmental Science, 2018, 11, 2363-2371.	15.6	240
1065	MOF-derived, CeO x -modified CoP/carbon composites for oxygen evolution and hydrogen evolution reactions. Journal of Materials Science, 2018, 53, 12123-12131.	1.7	20
1066	Structurally distorted wolframite-type CoxFe1-xWO4 solid solution for enhanced oxygen evolution reaction. Nano Energy, 2018, 50, 717-722.	8.2	41
1067	Breaking the scaling relations for oxygen reduction reaction on nitrogen-doped graphene by tensile strain. Carbon, 2018, 139, 129-136.	5.4	23
1068	Bamboo-Structured Nitrogen-Doped Carbon Nanotube Coencapsulating Cobalt and Molybdenum Carbide Nanoparticles: An Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 9912-9920.	3.2	147
1069	Rational synthesis of CaCo2O4 nanoplate as an earth-abundant electrocatalyst for oxygen evolution reaction. Journal of Energy Chemistry, 2019, 31, 125-131.	7.1	12
1070	Graphdiyne-Supported NiFe Layered Double Hydroxide Nanosheets as Functional Electrocatalysts for Oxygen Evolution. ACS Applied Materials & amp; Interfaces, 2019, 11, 2662-2669.	4.0	104
1071	DFT Study on the Hydrogen Evolution Reaction for Different Facets of Co ₂ P. ChemElectroChem, 2019, 6, 260-267.	1.7	42
1072	Designing hybrid materials with multifunctional interfaces for wound dressing, electrocatalysis, and chemical separation. Journal of Colloid and Interface Science, 2019, 533, 106-125.	5.0	16
1073	Recent Approaches to Design Electrocatalysts Based on Metal–Organic Frameworks and Their Derivatives. Chemistry - an Asian Journal, 2019, 14, 3474-3501.	1.7	34
1074	Ternary MnO/CoMn alloy@N-doped graphitic composites derived from a bi-metallic pigment as bi-functional electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 20649-20657.	5.2	33
1075	Confinement Catalysis with 2D Materials for Energy Conversion. Advanced Materials, 2019, 31, e1901996.	11.1	257
1076	Synthesis of low- and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis. Nanoscale, 2019, 11, 18995-19011.	2.8	110
1077	N-enriched porous carbon encapsulated bimetallic phosphides with hierarchical structure derived from controlled electrodepositing multilayer ZIFs for electrochemical overall water splitting. Applied Catalysis B: Environmental, 2019, 259, 118053.	10.8	72
1078	A bifunctional electrode engineered by sulfur vacancies for efficient electrocatalysis. Nanoscale, 2019, 11, 16658-16666.	2.8	22
1079	Effect of Ionic Liquid Modification on the ORR Performance and Degradation Mechanism of Trimetallic PtNiMo/C Catalysts. ACS Catalysis, 2019, 9, 8682-8692.	5.5	60
1080	Morphological and Electronic Tuning of Ni ₂ P through Iron Doping toward Highly Efficient Water Splitting. ACS Catalysis, 2019, 9, 8882-8892.	5.5	227

#	Article	IF	CITATIONS
1081	Fe, N co-doped carbonaceous hollow spheres with self-grown carbon nanotubes as a high performance binary electrocatalyst. Carbon, 2019, 154, 466-477.	5.4	42
1082	Covalent organic polymer assisted synthesis of bimetallic electrocatalysts with multicomponent active dopants for efficient oxygen evolution reaction. Electrochimica Acta, 2019, 321, 134679.	2.6	12
1083	Systematic Study of the Electronic, Carbon, and N-Doping Effects of CoMn-Oxide Composites as Bifunctional Oxygen Electrocatalysts. Journal of Physical Chemistry C, 2019, 123, 22130-22138.	1.5	3
1084	Electronic reconfiguration of Co ₂ P induced by Cu doping enhancing oxygen reduction reaction activity in zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 21232-21243.	5.2	46
1085	First-principles design of highly-efficient earth-abundant electrocatalysts for hydrogen evolution reaction: TiF3 and its analogs. Applied Surface Science, 2019, 495, 143623.	3.1	13
1086	Synthesis of NiCo Alloy Nanoparticle-Decorated B,N-Doped Carbon Nanosheet Networks via a Self-Template Strategy for Bifunctional Oxygen-Involving Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 14394-14399.	3.2	21
1087	Ultrafine Defective RuO ₂ Electrocatayst Integrated on Carbon Cloth for Robust Water Oxidation in Acidic Media. Advanced Energy Materials, 2019, 9, 1901313.	10.2	182
1088	A unique amorphous cobalt-phosphide-boride bifunctional electrocatalyst for enhanced alkaline water-splitting. Applied Catalysis B: Environmental, 2019, 259, 118051.	10.8	112
1089	Simple preparation of Ni2P/Ni(PO3)2 inlayed in nitrogen-sulfur self-doped ultrathin holey carbon nanosheets with excellent electrocatalytic activities for water splitting. Electrochimica Acta, 2019, 320, 134579.	2.6	34
1090	High-performance alkaline hydrogen evolution of NiMoP2 nanowire boosted by bimetallic synergic effect. International Journal of Hydrogen Energy, 2019, 44, 23066-23073.	3.8	21
1091	In Situ Transformation of Prussianâ€Blue Analogueâ€Derived Bimetallic Carbide Nanocubes by Water Oxidation: Applications for Energy Storage and Conversion. Chemistry - A European Journal, 2020, 26, 4052-4062.	1.7	23
1092	Importance of Water Structure and Catalyst–Electrolyte Interface on the Design of Water Splitting Catalysts. Chemistry of Materials, 2019, 31, 8248-8259.	3.2	54
1093	Ni ³⁺ -Induced Hole States Enhance the Oxygen Evolution Reaction Activity of Ni _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Electrocatalysts. Chemistry of Materials, 2019, 31, 7618-7625.	3.2	76
1094	Electrocatalytically inactive SnS2 promotes water adsorption/dissociation on molybdenum dichalcogenides for accelerated alkaline hydrogen evolution. Nano Energy, 2019, 64, 103918.	8.2	58
1095	Surface evolution and reconstruction of oxygen-abundant FePi/NiFeP synergy in NiFe phosphides for efficient water oxidation. Journal of Materials Chemistry A, 2019, 7, 18925-18931.	5.2	37
1096	Promoting water dissociation performance by borinic acid for the strong-acid/base-free hydrogen evolution reaction. Chemical Communications, 2019, 55, 9821-9824.	2.2	4
1097	Intermediate Modulation on Noble Metal Hybridized to 2D Metal-Organic Framework for Accelerated Water Electrocatalysis. CheM, 2019, 5, 2429-2441.	5.8	150
1098	Chemical Doped Ternary and Quaternary Transitionâ€Metalâ€Based Electrocatalysts for Hydrogen Evolution Reaction. ChemCatChem, 2019, 11, 4998-5012.	1.8	7

#	Article	IF	CITATIONS
1099	Structure-controlled synthesis of one-dimensional PdCu nanoscatalysts via a seed-mediated approach for oxygen reduction reaction. Applied Surface Science, 2019, 493, 139-145.	3.1	10
1100	sp ² /sp ³ Framework from Diamond Nanocrystals: A Key Bridge of Carbonaceous Structure to Carbocatalysis. ACS Catalysis, 2019, 9, 7494-7519.	5.5	86
1101	Nitrogenâ€doped Graphene Chainmail Wrapped IrCo Alloy Particles on Nitrogenâ€doped Graphene Nanosheet for Highly Active and Stable Full Water Splitting. ChemCatChem, 2019, 11, 5457-5465.	1.8	20
1102	Synthesis, Structure, and Magnetic Properties of Bâ€Doped Fe 3 N@C Magnetic Nanomaterial as Catalyst for the Hydrogen Evolution Reaction. Physica Status Solidi (B): Basic Research, 2019, 256, 1900111.	0.7	5
1103	In-situ synthesis of ternary metal phosphides NixCo1â^xP decorated Zn0.5Cd0.5S nanorods with significantly enhanced photocatalytic hydrogen production activity. Chemical Engineering Journal, 2019, 378, 122220.	6.6	55
1104	Defective layered double hydroxide formed by H2O2 treatment act as highly efficient electrocatalytic for oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 21858-21864.	3.8	18
1105	Cobalt-Coordinated Sulfur-Doped Graphitic Carbon Nitride on Reduced Graphene Oxide: An Efficient Metal–(N,S)–C-Class Bifunctional Electrocatalyst for Overall Water Splitting in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2019, 7, 15373-15384.	3.2	57
1106	Single Pt atoms stabilized on Mo2TiC2O2 for hydrogen evolution: A first-principles investigation. Journal of Chemical Physics, 2019, 151, 024702.	1.2	22
1107	Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy and Environmental Science, 2019, 12, 2890-2923.	15.6	317
1108	Importance of Entropic Contribution to Electrochemical Water Oxidation Catalysis. ACS Energy Letters, 2019, 4, 1918-1929.	8.8	31
1109	Bimetalâ^'Organic Framework Derived Highâ€Valenceâ€State Cuâ€Doped Co ₃ O ₄ Porous Nanosheet Arrays for Efficient Oxygen Evolution and Water Splitting. ChemCatChem, 2019, 11, 4420-4426.	1.8	37
1110	Unconventional molybdenum carbide phases with high electrocatalytic activity for hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 18030-18038.	5.2	64
1111	A surface-mounted MOF thin film with oriented nanosheet arrays for enhancing the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 18519-18528.	5.2	92
1112	Preparation of hierarchical trimetallic coordination polymer film as efficient electrocatalyst for oxygen evolution reaction. Chemical Communications, 2019, 55, 9343-9346.	2.2	19
1113	Interfacial effects in supported catalysts for electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 23432-23450.	5.2	94
1114	Ultrasonicâ€Assisted Synthesis of Amorphous Polyelemental Hollow Nanoparticles as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials Interfaces, 2019, 6, 1900586.	1.9	24
1115	Modulation of HCHO, H2O and H adsorption on AgPd cocatalyst by optimizing of selective exposed facet to enhancing the efficiency of conversion toxic formaldehyde into hydrogen driven by visible light. Journal of Catalysis, 2019, 375, 493-506.	3.1	12
1116	High loading accessible active sites <i>via</i> designable 3D-printed metal architecture towards promoting electrocatalytic performance. Journal of Materials Chemistry A, 2019, 7, 18338-18347.	5.2	35

#	Article	IF	CITATIONS
1117	Hydrothermal synthesis of spherical Ru with high efficiency hydrogen evolution activity. Journal of Electroanalytical Chemistry, 2019, 848, 113320.	1.9	6
1118	Defect-Rich MoS ₂ Ultrathin Nanosheets-Coated Nitrogen-Doped ZnO Nanorod Heterostructures: An Insight into in-Situ-Generated ZnS for Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 5622-5634.	2.5	109
1119	Systematic exploration of N, C configurational effects on the ORR performance of Fe–N doped graphene catalysts based on DFT calculations. RSC Advances, 2019, 9, 22656-22667.	1.7	40
1120	Channelâ€Rich RuCu Nanosheets for pHâ€Universal Overall Water Splitting Electrocatalysis. Angewandte Chemie - International Edition, 2019, 58, 13983-13988.	7.2	274
1121	Cobalt doped β-molybdenum carbide nanoparticles encapsulated within nitrogen-doped carbon for oxygen evolution. Chemical Communications, 2019, 55, 9995-9998.	2.2	21
1122	Nonmetal Doping as a Robust Route for Boosting the Hydrogen Evolution of Metalâ€Based Electrocatalysts. Chemistry - A European Journal, 2020, 26, 3930-3942.	1.7	15
1123	Synthesis of 3D flower-like nickel-molybdenum-sulfur microspheres as efficient and stable electrocatalyst for hydrogen and oxygen evolution reactions. Electrochimica Acta, 2019, 320, 134614.	2.6	25
1124	Channelâ€Rich RuCu Nanosheets for pHâ€Universal Overall Water Splitting Electrocatalysis. Angewandte Chemie, 2019, 131, 14121-14126.	1.6	58
1125	Electrodeposition of poly-NiFe-alizarin red S complex for efficient electrocatalytic oxygen evolution reactions. Journal of Solid State Electrochemistry, 2019, 23, 2595-2600.	1.2	4
1126	Boosting the high-capacity with multi-active centers: A first-principles investigation of NiPS3 monolayer as an anode material. Applied Surface Science, 2019, 495, 143534.	3.1	15
1127	Recent advancements in Pt-nanostructure-based electrocatalysts for the oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 4835-4863.	2.1	73
1128	Nitrogen-doped metal-free carbon catalysts for (electro)chemical CO ₂ conversion and valorisation. Dalton Transactions, 2019, 48, 13508-13528.	1.6	71
1129	Morphology, crystal structure and electronic state one-step co-tuning strategy towards developing superior perovskite electrocatalysts for water oxidation. Journal of Materials Chemistry A, 2019, 7, 19228-19233.	5.2	39
1130	Simple and cost effective fabrication of 3D porous core–shell Ni nanochains@NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 21722-21729.	5.2	129
1131	Formation of hierarchical Ni3S2 nanohorn arrays driven by in-situ generation of VS4 nanocrystals for boosting alkaline water splitting. Applied Catalysis B: Environmental, 2019, 257, 117911.	10.8	92
1132	Effective Electrocatalytic Hydrogen Evolution in Neutral Medium Based on 2D MoP/MoS ₂ Heterostructure Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 25986-25995.	4.0	86
1133	Amorphous Bimetallic Cobalt Nickel Sulfide Cocatalysts for Significantly Boosting Photocatalytic Hydrogen Evolution Performance of Graphitic Carbon Nitride: Efficient Interfacial Charge Transfer. ACS Applied Materials & Interfaces, 2019, 11, 26898-26908.	4.0	110
1134	In Situ Formed Pt ₃ Ti Nanoparticles on a Two-Dimensional Transition Metal Carbide (MXene) Used as Efficient Catalysts for Hydrogen Evolution Reactions. Nano Letters, 2019, 19, 5102-5108.	4.5	133

#	Article	IF	CITATIONS
1135	A review of transition metalâ€based bifunctional oxygen electrocatalysts. Journal of the Chinese Chemical Society, 2019, 66, 829-865.	0.8	82
1136	Zn Doped FeCo Layered Double Hydroxide Nanoneedle Arrays with Partial Amorphous Phase for Efficient Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 13105-13114.	3.2	85
1137	Highly Efficient and Self-Standing Nanoporous NiO/Al ₃ Ni ₂ Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 7913-7922.	2.5	38
1138	Ni–Fe Phosphate/Ni Foam Electrode: Facile Hydrothermal Synthesis and Ultralong Oxygen Evolution Reaction Durability. ACS Sustainable Chemistry and Engineering, 2019, 7, 18332-18340.	3.2	40
1139	Molybdenum, Cobalt Sulfide-Modified N-, S-Doped Graphene from Low-Temperature Molecular Pyrolysis: Mutual Activation Effect for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 19442-19452.	3.2	9
1140	Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nature Communications, 2019, 10, 4876.	5.8	220
1141	Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nature Communications, 2019, 10, 4849.	5.8	416
1142	Synthesis of ternary NiCoP nanowire alloy and its enhanced electrochemical catalytic activity. Materials Research Express, 2019, 6, 1150b3.	0.8	4
1143	Understanding the Phase-Induced Electrocatalytic Oxygen Evolution Reaction Activity on FeOOH Nanostructures. ACS Catalysis, 2019, 9, 10705-10711.	5.5	233
1144	Design of 2D Nanocrystalline Fe ₂ Ni ₂ N Coated onto Graphene Nanohybrid Sheets for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Energy Materials, 2019, 2, 8502-8510.	2.5	25
1145	Nanoengineering Carbon Spheres as Nanoreactors for Sustainable Energy Applications. Advanced Materials, 2019, 31, e1903886.	11.1	251
1146	Unveiling the Activity Origin of Electrocatalytic Oxygen Evolution over Isolated Ni Atoms Supported on a Nâ€Đoped Carbon Matrix. Advanced Materials, 2019, 31, e1904548.	11.1	256
1147	Rapid Activation of Platinum with Black Phosphorus for Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2019, 58, 19060-19066.	7.2	79
1148	Amorphous Oxide Nanostructures for Advanced Electrocatalysis. Chemistry - A European Journal, 2020, 26, 3943-3960.	1.7	74
1149	In Situ Transmission Electron Microscopy Study of Nanocrystal Formation for Electrocatalysis. ChemNanoMat, 2019, 5, 1439-1455.	1.5	14
1150	Metal–Organic Frameworkâ€Derived Fe/Coâ€based Bifunctional Electrode for H ₂ Production through Water and Urea Electrolysis. ChemSusChem, 2019, 12, 4810-4823.	3.6	64
1151	Highly efficient amorphous np-PdFePC catalyst for hydrogen evolution reaction. Electrochimica Acta, 2019, 328, 135082.	2.6	35
1152	Unraveling Polymorphic Pyrrhotite Electrochemical Oxidation by Underlying Electronic Structures. Journal of Physical Chemistry C, 2019, 123, 26442-26449.	1.5	9

#	Article	IF	CITATIONS
1153	The effects of fine and coarse particulate matter on lung function among the elderly. Scientific Reports, 2019, 9, 14790.	1.6	49
1154	Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation. , 2019, 1, 77-84.		50
1155	Silicon-based carbonaceous electrocatalysts for oxygen reduction and evolution properties in alkaline conditions. SN Applied Sciences, 2019, 1, 1.	1.5	4
1156	Hydrogen from photo-electrocatalytic water splitting. , 2019, , 419-486.		17
1157	Two-dimensional transition-metal dichalcogenides for electrochemical hydrogen evolution reaction. FlatChem, 2019, 18, 100140.	2.8	39
1158	Regulating Electrocatalysts via Surface and Interface Engineering for Acidic Water Electrooxidation. ACS Energy Letters, 2019, 4, 2719-2730.	8.8	218
1159	Bifunctional atomic iron-based catalyst for oxygen electrode reactions. Journal of Catalysis, 2019, 378, 353-362.	3.1	41
1160	Engineering of Nitrogen Coordinated Single Cobalt Atom Moieties for Oxygen Electroreduction. ACS Applied Materials & Interfaces, 2019, 11, 41258-41266.	4.0	50
1161	Partial Sulfurization of a 2D MOF Array for Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 41595-41601.	4.0	91
1162	Electrochemical activity of platinum, gold and glassy carbon electrodes in water-in-salt electrolyte. Journal of Electroanalytical Chemistry, 2019, 854, 113538.	1.9	15
1163	Engineering the Atomic Layer of RuO ₂ on PdO Nanosheets Boosts Oxygen Evolution Catalysis. ACS Applied Materials & Interfaces, 2019, 11, 42298-42304.	4.0	38
1165	Enhanced Hydrogenation Performance over Hollow Structured Coâ€CoO <i>x</i> @Nâ€C Capsules. Advanced Science, 2019, 6, 1900807.	5.6	79
1166	Ultrafine Co2P anchored on porous CoWO4 nanofiber matrix for hydrogen evolution: Anion-induced compositional/morphological transformation and interfacial electron transfer. Electrochimica Acta, 2019, 328, 135123.	2.6	14
1167	Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 764-774.	5.2	123
1168	Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1281-1286.	5.2	181
1169	Facile Synthesis of Graphene Aerogel Supported Nickel/Nickel Oxide Core–Shell Nanoparticles: Efficient Electrocatalysts for Oxygen Evolution Reactions. Journal of Physical Chemistry C, 2019, 123, 28131-28141.	1.5	22
1170	Rapid Activation of Platinum with Black Phosphorus for Efficient Hydrogen Evolution. Angewandte Chemie, 2019, 131, 19236-19242.	1.6	13
1171	Metal (MÂ= Ru, Pd and Co) embedded in C2N with enhanced lithium storage properties. Materials Today Energy, 2019, 14, 100359.	2.5	13

		CITATION REP	ORT	
#	Article		IF	CITATIONS
1172	Mixed-Metal-Cluster Strategy for Boosting Electrocatalytic Oxygen Evolution Reaction of Rob Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 45080-450	ust 186.	4.0	35
1173	Mn Nanoparticles Encapsulated within Mesoporous Helical Nâ€Doped Carbon Nanotubes as Active Air Cathode for Zinc–Air Batteries. Advanced Sustainable Systems, 2019, 3, 190008.	Highly 5.	2.7	19
1174	Heteroatom embedded graphene-like structure anchored on porous biochar as efficient meta catalyst for ORR. International Journal of Hydrogen Energy, 2019, 44, 30986-30998.	l-free	3.8	50
1175	Solid‣tate Conversion Synthesis of Advanced Electrocatalysts for Water Splitting. Chemist European Journal, 2020, 26, 3961-3972.	ry - A	1.7	8
1176	Rational Design of Rhodium–Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidi Evolution. ACS Nano, 2019, 13, 13225-13234.	c Oxygen	7.3	151
1177	Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts. Journal of Physical Chemistry C, 2019, 123, 28753-28762.		1.5	14
1178	Synthesis and Advanced Electrochemical Characterization of Multifunctional Electrocatalytic Composite for Unitized Regenerative Fuel Cell. ACS Catalysis, 2019, 9, 11468-11483.		5.5	21
1179	Glycineâ€Induced Electrodeposition of Nanostructured Cobalt Hydroxide: A Bifunctional Cata Overall Water Splitting. ChemSusChem, 2019, 12, 5300-5309.	lyst for	3.6	6
1180	Investigating the Integrity of Graphene towards the Electrochemical Oxygen Evolution Reacti ChemElectroChem, 2019, 6, 5446-5453.	on.	1.7	11
1181	Boron-Doped g-C ₆ N ₆ Layer as a Metal-Free Photoelectrocatalyst fo N ₂ Reduction Reaction. Journal of Physical Chemistry C, 2019, 123, 28739-2874		1.5	35
1182	Porosity-Induced High Selectivity for CO ₂ Electroreduction to CO on Fe-Doped ZIF-Derived Carbon Catalysts. ACS Catalysis, 2019, 9, 11579-11588.		5.5	99
1183	Rational synthesis of Mo _(1â^'x) W _x Y ₂ (Y = S, Se) nano and their electrochemical catalytic activities. Materials Research Express, 2019, 6, 125019.	wire alloys	0.8	4
1184	Boosting the activity of Prussian-blue analogue as efficient electrocatalyst for water and urea oxidation. Scientific Reports, 2019, 9, 15965.		1.6	51
1185	Boosting Hydrogen Transfer during Volmer Reaction at Oxides/Metal Nanocomposites for Eff Alkaline Hydrogen Evolution. ACS Energy Letters, 2019, 4, 3002-3010.	icient	8.8	142
1186	Fluorine-Anion-Modulated Electron Structure of Nickel Sulfide Nanosheet Arrays for Alkaline Hydrogen Evolution. ACS Energy Letters, 2019, 4, 2905-2912.		8.8	159
1187	Short O–O separation in layered oxide Na _{0.67} CoO ₂ enables ar oxygen evolution reaction. Proceedings of the National Academy of Sciences of the United St America, 2019, 116, 23473-23479.		3.3	52
1188	Nitrogen-Doped Carbon Nanosheets Decorated With Mn2O3 Nanoparticles for Excellent Oxy Reduction Reaction. Frontiers in Chemistry, 2019, 7, 741.	gen	1.8	8
1189	Ordered Mesoporous Cobalt–Nickel Nitride Prepared by Nanocasting for Oxygen Evolution Electrocatalysis. Advanced Materials Interfaces, 2019, 6, 1900960.	Reaction	1.9	57

#	Article	IF	CITATIONS
1190	One‣tep Controllable Synthesis of Catalytic Ni ₄ Mo/MoO <i>_x</i> /Cu Nanointerfaces for Highly Efficient Water Reduction. Advanced Energy Materials, 2019, 9, 1901454.	10.2	39
1191	Hierarchical Multiporous Nickel for Oxygen Evolution Reaction in Alkaline Media. ChemCatChem, 2019, 11, 5951-5960.	1.8	7
1192	Boosting Alkaline Hydrogen Evolution Electrocatalysis over Metallic Nickel Sites through Synergistic Coupling with Vanadium Sesquioxide. ChemSusChem, 2019, 12, 5063-5069.	3.6	16
1193	Graphene oxide guiding the constructing of nickel-iron layered double hydroxides arrays as a desirable bifunctional electrocatalyst for HER and OER. International Journal of Hydrogen Energy, 2019, 44, 29876-29888.	3.8	54
1194	3D hierarchical nanostructured Ni–Co alloy electrodes on porous nickel for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 29946-29955.	3.8	38
1195	Activity Origin and Multifunctionality of Pt-Based Intermetallic Nanostructures for Efficient Electrocatalysis. ACS Catalysis, 2019, 9, 11242-11254.	5.5	96
1196	Hollow Nanotube Ru/Cu ₂₊₁ O Supported on Copper Foam as a Bifunctional Catalyst for Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 4112-4119.	1.7	19
1197	Pristineâ€Grapheneâ€Supported Nitrogenâ€Doped Carbon Selfâ€Assembled from Glucaminiumâ€Based Ionic Liquids as Metalâ€Free Catalyst for Oxygen Evolution. ChemSusChem, 2019, 12, 5041-5050.	3.6	25
1198	Morphology enhancement of SiO2 aerogel films grown on Si substrate using dense SiO2 buffer layer. Rare Metals, 2019, , 1.	3.6	1
1199	Ultrathin Nanosheet of Graphdiyne-Supported Palladium Atom Catalyst for Efficient Hydrogen Production. IScience, 2019, 11, 31-41.	1.9	149
1200	Coupled cobalt-doped molybdenum carbide@N-doped carbon nanosheets/nanotubes supported on nickel foam as a binder-free electrode for overall water splitting. Chinese Journal of Catalysis, 2019, 40, 1352-1359.	6.9	40
1201	Fe/Co-based nanoparticles encapsulated in heteroatom-doped carbon electrocatalysts for oxygen reduction reaction. Science China Materials, 2019, 62, 1626-1641.	3.5	20
1202	Transition metal embedded C ₃ N monolayers as promising catalysts for the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2019, 21, 20432-20441.	1.3	32
1203	Tuning the morphological and electronic structure of amorphous nickel-based electrocatalysts by anion regulation for water oxidation in neutral media. Inorganic Chemistry Frontiers, 2019, 6, 3093-3096.	3.0	4
1204	Cobalt/titanium nitride@N-doped carbon hybrids for enhanced electrocatalytic hydrogen evolution and supercapacitance. New Journal of Chemistry, 2019, 43, 14518-14526.	1.4	17
1205	Recent progress in two-dimensional nanomaterials: Synthesis, engineering, and applications. FlatChem, 2019, 18, 100133.	2.8	52
1206	On-chip micro/nano devices for energy conversion and storage. Nano Today, 2019, 28, 100764.	6.2	33
1207	3D hollow Co–Fe–P nanoframes immobilized on N,P-doped CNT as an efficient electrocatalyst for overall water splitting. Nanoscale, 2019, 11, 17031-17040.	2.8	85

#	Article	lF	CITATIONS
1208	Tuning the electronic structure of PtRu bimetallic nanoparticles for promoting the hydrogen oxidation reaction in alkaline media. Inorganic Chemistry Frontiers, 2019, 6, 2900-2905.	3.0	46
1209	A density functional theory study of the oxygen reduction reaction on the (111) and (100) surfaces of cobalt(II) oxide. Progress in Reaction Kinetics and Mechanism, 2019, 44, 122-131.	1.1	6
1210	Synthesis and Electrochemical Energy Storage Applications of Micro/Nanostructured Spherical Materials. Nanomaterials, 2019, 9, 1207.	1.9	15
1211	Selectivity Control for Electrochemical CO ₂ Reduction by Charge Redistribution on the Surface of Copper Alloys. ACS Catalysis, 2019, 9, 9411-9417.	5.5	172
1212	Nickel nitride–black phosphorus heterostructure nanosheets for boosting the electrocatalytic activity towards the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 22063-22069.	5.2	54
1213	Well-designed cobalt-nickel sulfide microspheres with unique peapod-like structure for overall water splitting. Journal of Colloid and Interface Science, 2019, 556, 401-410.	5.0	45
1214	Elemental selenium enables enhanced water oxidation electrocatalysis of NiFe layered double hydroxides. Nanoscale, 2019, 11, 17376-17383.	2.8	46
1215	Interface engineering to enhance the oxygen evolution reaction under light irradiation. Applied Physics Letters, 2019, 115, 103901.	1.5	3
1216	Computational screening of transition-metal single atom doped C ₉ N ₄ monolayers as efficient electrocatalysts for water splitting. Nanoscale, 2019, 11, 18169-18175.	2.8	56
1217	Decamethylcucurbit[5]uril based supramolecular assemblies as efficient electrocatalysts for the oxygen reduction reaction. Chemical Communications, 2019, 55, 11687-11690.	2.2	4
1218	An enzyme-responsive membrane for antibiotic drug release and local periodontal treatment. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110454.	2.5	34
1219	Self-supported NiCoP/nanoporous copper as highly active electrodes for hydrogen evolution reaction. Scripta Materialia, 2019, 173, 51-55.	2.6	22
1220	A Co–Mo ₂ N composite on a nitrogen-doped carbon matrix with hydrogen evolution activity comparable to that of Pt/C in alkaline media. Journal of Materials Chemistry A, 2019, 7, 20579-20583.	5.2	52
1221	Mesoporous Nanocast Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. Inorganics, 2019, 7, 98.	1.2	17
1222	Copper–Carbon: An Efficient Catalyst for Oxygen Reduction. ACS Applied Energy Materials, 2019, 2, 6295-6301.	2.5	22
1223	Advanced electrospun nanomaterials for highly efficient electrocatalysis. Inorganic Chemistry Frontiers, 2019, 6, 3012-3040.	3.0	60
1224	Defective crystalline molybdenum phosphides as bifunctional catalysts for hydrogen evolution and hydrazine oxidation reactions during water splitting. Inorganic Chemistry Frontiers, 2019, 6, 2686-2695.	3.0	27
1225	2H and 2H/1T-Transition Metal Dichalcogenide Films Prepared via Powderless Gas Deposition for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16440-16449.	3.2	10

#	Article	IF	CITATIONS
1226	Template-Directed Bifunctional Dodecahedral CoP/CN@MoS ₂ Electrocatalyst for High Efficient Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 36649-36657.	4.0	70
1227	Single Site Cobalt Substitution in 2D Molybdenum Carbide (MXene) Enhances Catalytic Activity in the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2019, 141, 17809-17816.	6.6	259
1228	Well-dispersed Co–Co3O4 hybrid nanoparticles on N-doped carbon nanosheets as a bifunctional electrocatalyst for oxygen evolution and reduction reactions. International Journal of Hydrogen Energy, 2019, 44, 24184-24196.	3.8	30
1229	Photo-improved hydrogen evolution reaction activity of the Pt/CdS electrocatalyst. Progress in Natural Science: Materials International, 2019, 29, 379-383.	1.8	6
1230	Effects of iron doping on the hydrogen evolution reaction performance of self-supported nickel selenides. Results in Physics, 2019, 14, 102522.	2.0	5
1231	Electrochemical Growth of Metallic Nanoparticles onto Immobilized Polymer Brush Ionic Liquid as a Hybrid Electrocatalyst for the Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 38265-38275.	4.0	14
1232	Deep Reconstruction of Nickel-Based Precatalysts for Water Oxidation Catalysis. ACS Energy Letters, 2019, 4, 2585-2592.	8.8	137
1233	Surface treated nickel phosphide nanosheet with oxygen as highly efficient bifunctional electrocatalysts for overall water splitting. Applied Surface Science, 2019, 496, 143741.	3.1	7
1234	PdMo bimetallene for oxygen reduction catalysis. Nature, 2019, 574, 81-85.	13.7	935
1235	Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials. ACS Catalysis, 2019, 9, 10126-10141.	5.5	295
1236	Passivation effect for current collectors enables high-voltage aqueous sodium ion batteries. Materials Today Energy, 2019, 14, 100337.	2.5	32
1237	The Critical Role of Electrolyte Gating on the Hydrogen Evolution Performance of Monolayer MoS ₂ . Nano Letters, 2019, 19, 8118-8124.	4.5	33
1238	New insight to the role of edges and heteroatoms in nanocarbons for oxygen reduction reaction. Nano Energy, 2019, 66, 104096.	8.2	79
1239	Fe(CN) ₅ @PIL-derived N-doped porous carbon with FeC _x N _y active sites as a robust electrocatalyst for the oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 97-105.	2.1	10
1240	Anchoring a Co/2-methylimidazole complex on ion-exchange resin and its transformation to Co/N-doped carbon as an electrocatalyst for the ORR. Catalysis Science and Technology, 2019, 9, 578-582.	2.1	12
1241	Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy and Environmental Science, 2019, 12, 1000-1007.	15.6	392
1242	Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer. Biosensors and Bioelectronics, 2019, 130, 48-54.	5.3	181
1243	Facile synthesis of Mo2C nanoparticles on N-doped carbon nanotubes with enhanced electrocatalytic activity for hydrogen evolution and oxygen reduction reactions. Journal of Energy Chemistry, 2019, 38, 68-77	7.1	58

#	Article	IF	CITATIONS
1244	Metal–organic frameworks-based catalysts for electrochemical oxygen evolution. Materials Horizons, 2019, 6, 684-702.	6.4	149
1245	Electron polarons in the subsurface layer of Mo/W-doped BiVO ₄ surfaces. RSC Advances, 2019, 9, 819-823.	1.7	8
1246	Electrochemically activated cobalt nickel sulfide for an efficient oxygen evolution reaction: partial amorphization and phase control. Journal of Materials Chemistry A, 2019, 7, 3592-3602.	5.2	81
1247	One-step construction of core/shell nanoarrays with a holey shell and exposed interfaces for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 1196-1205.	5.2	42
1248	Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 5069-5089.	5.2	422
1249	Ni Strongly Coupled with Mo ₂ C Encapsulated in Nitrogenâ€Doped Carbon Nanofibers as Robust Bifunctional Catalyst for Overall Water Splitting. Advanced Energy Materials, 2019, 9, 1803185.	10.2	306
1250	Downshifted dâ€Band Center of Ru/MWCNTs by Turbostratic Carbon Nitride for Efficient and Robust Hydrogen Evolution in Alkali. ChemCatChem, 2019, 11, 1970-1976.	1.8	36
1251	pH-Universal Water Splitting Catalyst: Ru-Ni Nanosheet Assemblies. IScience, 2019, 11, 492-504.	1.9	97
1252	Bimetallic metal-organic framework nanosheets as efficient electrocatalysts for oxygen evolution reaction. Journal of Solid State Chemistry, 2019, 272, 32-37.	1.4	47
1253	A 2D metal–organic framework/Ni(OH) ₂ heterostructure for an enhanced oxygen evolution reaction. Nanoscale, 2019, 11, 3599-3605.	2.8	131
1254	N-doped carbon coated NiCo2S4 hollow nanotube as bifunctional electrocatalyst for overall water splitting. Carbon, 2019, 145, 521-528.	5.4	83
1255	An efficient carbon-based ORR catalyst from low-temperature etching of ZIF-67 with ultra-small cobalt nanoparticles and high yield. Journal of Materials Chemistry A, 2019, 7, 3544-3551.	5.2	112
1256	Superhydrophilic Graphdiyne Accelerates Interfacial Mass/Electron Transportation to Boost Electrocatalytic and Photoelectrocatalytic Water Oxidation Activity. Advanced Functional Materials, 2019, 29, 1808079.	7.8	95
1257	Defect Engineering and Surface Functionalization of Nanocarbons for Metalâ€Free Catalysis. Advanced Materials, 2019, 31, e1805717.	11.1	139
1258	Fe2O3 nanoparticles immobilized on N and S codoped C as an efficient multifunctional catalyst for oxygen reduction reaction and overall water electrolysis. International Journal of Hydrogen Energy, 2019, 44, 4707-4715.	3.8	22
1259	Nanoscale hetero-interfaces between metals and metal compounds for electrocatalytic applications. Journal of Materials Chemistry A, 2019, 7, 5090-5110.	5.2	128
1260	α-Ni(OH)2·0.75H2O nanofilms on Ni foam from simple NiCl2 solution: Fast electrodeposition, formation mechanism and application as an efficient bifunctional electrocatalyst for overall water splitting in alkaline solution. Electrochimica Acta, 2019, 301, 87-96.	2.6	76
1261	Bimetallic metal-organic framework derived electrocatalyst for efficient overall water splitting. International Journal of Hydrogen Energy, 2019, 44, 5983-5989.	3.8	26

#	Article	IF	CITATIONS
1262	Photo-induced charge boosting of liquid–solid electrokinetic generators for efficient wave energy harvesting. Journal of Materials Chemistry A, 2019, 7, 5373-5380.	5.2	11
1263	N ⁺ -ion irradiation engineering towards the efficient oxygen evolution reaction on NiO nanosheet arrays. Journal of Materials Chemistry A, 2019, 7, 4729-4733.	5.2	48
1264	CoP nanoparticles encapsulated in three-dimensional N-doped porous carbon for efficient hydrogen evolution reaction in a broad pH range. Applied Surface Science, 2019, 476, 749-756.	3.1	47
1265	Metal organic framework derived nickel phosphide/graphitic carbon hybrid for electrochemical hydrogen generation reaction. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 634-638.	2.7	27
1266	Bifunctional Oxygen Electrocatalysts for Lithiumâ^'Oxygen Batteries. Batteries and Supercaps, 2019, 2, 311-325.	2.4	22
1267	Single Transition Metal Atom-Doped Graphene Supported on a Nickel Substrate: Enhanced Oxygen Reduction Reactions Modulated by Electron Coupling. Journal of Physical Chemistry C, 2019, 123, 3703-3710.	1.5	27
1268	Graphene dot armored PtMo nanosponge as a highly efficient and stable electrocatalyst for hydrogen evolution reactions in both acidic and alkaline media. Carbon, 2019, 146, 116-124.	5.4	33
1269	Hierarchical core-shell structured CoNi2S4/Ni3S2@Ni(OH)2 nanosheet arrays as electrode for electrochemical energy storage. Journal of Alloys and Compounds, 2019, 785, 684-691.	2.8	30
1270	Heterogeneous NiSe ₂ /Ni Ultrafine Nanoparticles Embedded into an N,S-Codoped Carbon Framework for pH-Universal Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 4119-4127.	3.2	29
1271	Hollow core–shell NiCo ₂ S ₄ @MoS ₂ dodecahedrons with enhanced performance for supercapacitors and hydrogen evolution reaction. New Journal of Chemistry, 2019, 43, 3601-3608.	1.4	70
1272	Advances in constructing polymeric carbon-nitride-based nanocomposites and their applications in energy chemistry. Sustainable Energy and Fuels, 2019, 3, 611-655.	2.5	47
1273	Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. Journal of Materials Science, 2019, 54, 5412-5423.	1.7	47
1274	Vanadium self-intercalated C/V1.11S2 nanosheets with abundant active sites for enhanced electro-catalytic hydrogen evolution. Electrochimica Acta, 2019, 300, 208-216.	2.6	19
1275	Electrospun MOF-Based FeCo Nanoparticles Embedded in Nitrogen-Doped Mesoporous Carbon Nanofibers as an Efficient Bifunctional Catalyst for Oxygen Reduction and Oxygen Evolution Reactions in Zinc-Air Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 5462-5475.	3.2	146
1276	Metal/graphene heterobilayers as hydrogen evolution reaction cathodes: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 4594-4599.	1.3	6
1277	Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER. Carbon, 2019, 146, 671-679.	5.4	117
1278	Metal support effects in electrocatalysis at hexagonal boron nitride. Chemical Communications, 2019, 55, 628-631.	2.2	34
1279	Layered and two dimensional metal oxides for electrochemical energy conversion. Energy and Environmental Science, 2019, 12, 41-58.	15.6	310

#	Article	IF	CITATIONS
1280	Combining Co ₃ S ₄ and Ni:Co ₃ S ₄ nanowires as efficient catalysts for overall water splitting: an experimental and theoretical study. Nanoscale, 2019, 11, 2202-2210.	2.8	79
1281	Using lithium chloride as a medium to prepare N,P-codoped carbon nanosheets for oxygen reduction and evolution reactions. Inorganic Chemistry Frontiers, 2019, 6, 417-422.	3.0	5
1282	Artesunate enhances adriamycin cytotoxicity by inhibiting glycolysis in adriamycin-resistant chronic myeloid leukemia K562/ADR cells. RSC Advances, 2019, 9, 1004-1014.	1.7	3
1283	<i>>In situ</i> > nitridated porous nanosheet networked Co ₃ O ₄ –Co ₄ N heteronanostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolution. Journal of Materials Chemistry A. 2019. 7, 775-782.	5.2	63
1284	Asymmetric electrodes with a transition metal disulfide heterostructure and amorphous bimetallic hydroxide for effective alkaline water electrolysis. Journal of Materials Chemistry A, 2019, 7, 2895-2900.	5.2	31
1285	Intercalated complexes of 1T′-MoS ₂ nanosheets with alkylated phenylenediamines as excellent catalysts for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 2334-2343.	5.2	41
1286	Boosting electrochemical water splitting <i>via</i> ternary NiMoCo hybrid nanowire arrays. Journal of Materials Chemistry A, 2019, 7, 2156-2164.	5.2	163
1287	Active Pore-Edge Engineering of Single-Layer Niobium Diselenide Porous Nanosheets Electrode for Hydrogen Evolution. Nanomaterials, 2019, 9, 751.	1.9	11
1288	Engineering multiphase for activating electroactive sites for highly efficient hydrogen evolution: Experimental and theoretical investigation. International Journal of Hydrogen Energy, 2019, 44, 13323-13333.	3.8	2
1289	Ni3S2-MoSx nanorods grown on Ni foam as high-efficient electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2019, 44, 17900-17908.	3.8	24
1290	Utilizing the Spaceâ€Charge Region of the FeNiâ€LDH/CoP pâ€n Junction to Promote Performance in Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2019, 58, 11903-11909.	7.2	329
1291	Rich active-edge-site MoS2 anchored on reduction sites in metal sulfide heterostructure: Toward robust visible light photocatalytic hydrogen sulphide splitting. Applied Catalysis B: Environmental, 2019, 256, 117870.	10.8	63
1292	Interfacial N–Cu–S coordination mode of CuSCN/C ₃ N ₄ with enhanced electrocatalytic activity for hydrogen evolution. Nanoscale, 2019, 11, 12938-12945.	2.8	13
1293	Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48, 4178-4280.	18.7	810
1294	MoS2ÂCoexisting in 1T and 2H Phases Synthesized by Common Hydrothermal Method for Hydrogen Evolution Reaction. Nanomaterials, 2019, 9, 844.	1.9	117
1295	Utilizing the Spaceâ€Charge Region of the FeNiâ€LDH/CoP pâ€n Junction to Promote Performance in Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2019, 131, 12029-12035.	1.6	17
1296	Hollow petal-like Co3O4 nanoflakes as bifunctional electrocatalysts through template-free protocol and structural controlled kinetics in gas evolution. Electrochimica Acta, 2019, 318, 949-956.	2.6	18
1297	Carbon-based hydrogels: synthesis and their recent energy applications. Journal of Materials Chemistry A, 2019, 7, 15491-15518.	5.2	124

#	Article	IF	CITATIONS
1298	The application of CeO ₂ -based materials in electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 17675-17702.	5.2	128
1299	Rational construction of cross-linked porous nickel arrays for efficient oxygen evolution reaction. Chinese Journal of Catalysis, 2019, 40, 1063-1069.	6.9	9
1300	Contemporaneous oxidation state manipulation to accelerate intermediate desorption for overall water electrolysis. Chemical Communications, 2019, 55, 8313-8316.	2.2	7
1301	Fe ₄₀ Co ₄₀ Se ₂₀ ÂGlassy Films Supported on Carbon Fiber Paper as Electrocatalysts in the Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2019, 166, F620-F626.	1.3	12
1302	Copper coordination polymer electrocatalyst for strong hydrogen evolution reaction activity in neutral medium: influence of coordination environment and network structure. Catalysis Science and Technology, 2019, 9, 4347-4354.	2.1	21
1303	Nitrogen-Doped Ordered Mesoporous Carbons Supported Co3O4 Composite as a Bifunctional Oxygen Electrode Catalyst. Surfaces, 2019, 2, 229-240.	1.0	10
1304	Tailoring of Metal Boride Morphology via Anion for Efficient Water Oxidation. Advanced Energy Materials, 2019, 9, 1901503.	10.2	79
1305	Direct growth of vertically aligned ReSe2 nanosheets on conductive electrode for electro-catalytic hydrogen production. Journal of Colloid and Interface Science, 2019, 553, 699-704.	5.0	20
1306	Room-temperature photocatalytic methanol fuel cell based on one-dimension semiconductor photoanode: Intrinsic mechanism of photogenerated charge separation. Electrochimica Acta, 2019, 318, 413-421.	2.6	17
1307	High-level nitrogen-doped, micro/mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction: optimizing the reaction surface area by a solvent-free mechanochemical method. New Journal of Chemistry, 2019, 43, 10878-10886.	1.4	26
1308	Bio-derived nanoporous activated carbon sheets as electrocatalyst for enhanced electrochemical water splitting. International Journal of Hydrogen Energy, 2019, 44, 19995-20006.	3.8	38
1309	Nonâ€metal Singleâ€lodineâ€Atom Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 12380-12385.	1.6	23
1310	Nonâ€metal Singleâ€lodineâ€Atom Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 12252-12257.	7.2	175
1311	N-doped Mo2C nanoblock for efficient hydrogen evolution reaction. Journal of Solid State Electrochemistry, 2019, 23, 2043-2050.	1.2	9
1312	Amorphous (Fe)Ni-MOF-derived hollow (bi)metal/oxide@N-graphene polyhedron as effectively bifunctional catalysts in overall alkaline water splitting. Electrochimica Acta, 2019, 318, 430-439.	2.6	55
1313	Unraveling the Role of Lithium in Enhancing the Hydrogen Evolution Activity of MoS ₂ : Intercalation versus Adsorption. ACS Energy Letters, 2019, 4, 1733-1740.	8.8	45
1314	A Cobaltâ€Based Amorphous Bifunctional Electrocatalysts for Waterâ€Splitting Evolved from a Singleâ€Source Lazulite Cobalt Phosphate. Advanced Functional Materials, 2019, 29, 1808632.	7.8	157
1315	Tuning the Catalytic Property of Phosphorene for Oxygen Evolution and Reduction Reactions by Changing Oxidation Degree. Journal of Physical Chemistry Letters, 2019, 10, 3440-3446.	2.1	43

# 1316	ARTICLE Flexible Pt/Graphene Foil Containing only 6.6 wt % of Pt has a Comparable Hydrogen Evolution Reaction Performance to Platinum Metal. ACS Sustainable Chemistry and Engineering, 2019, 7,	IF 3.2	CITATIONS 8
1317	11721-11727. An efficient ultrathin PtFeNi Nanowire/Ionic liquid conjugate electrocatalyst. Applied Catalysis B: Environmental, 2019, 256, 117828.	10.8	40
1318	3D hierarchical V–Ni-based nitride heterostructure as a highly efficient pH-universal electrocatalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15823-15830.	5.2	100
1319	Theoretical discovery of high capacity hydrogen storage metal tetrahydrides. International Journal of Hydrogen Energy, 2019, 44, 18153-18158.	3.8	80
1320	Calixarene-Based {Co26} Burr Puzzle: An Efficient Oxygen Reduction Catalyst. ACS Applied Nano Materials, 2019, 2, 4232-4237.	2.4	14
1321	Enhancing the electrocatalytic activity of NiMoO4 through a post-phosphorization process for oxygen evolution reaction. Catalysis Communications, 2019, 129, 105725.	1.6	14
1322	Hard-templated preparation of mesoporous cobalt phosphide as an oxygen evolution electrocatalyst. Electrochemistry Communications, 2019, 104, 106476.	2.3	17
1323	Novel nickel–cobalt phosphite with face-sharing octahedra derived electrocatalyst for efficient water splitting. Inorganic Chemistry Frontiers, 2019, 6, 2014-2023.	3.0	14
1324	Nanosheets assembled into nickel sulfide nanospheres with enriched Ni ³⁺ active sites for efficient water-splitting and zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 23787-23793.	5.2	76
1325	Heterostructured Bismuth Vanadate/Cobalt Phosphate Photoelectrodes Promote TEMPOâ€Mediated Oxidation of 5â€Hydroxymethylfurfural. ChemElectroChem, 2019, 6, 3387-3392.	1.7	39
1326	Free-Standing Porous Cu-Based Nanowires as Robust Electrocatalyst for Alkaline Oxygen Evolution Reaction. Catalysis Letters, 2019, 149, 2376-2382.	1.4	0
1327	NiS–MoS ₂ hetero-nanosheet array electrocatalysts for efficient overall water splitting. Sustainable Energy and Fuels, 2019, 3, 2056-2066.	2.5	61
1328	Deep insights into the exfoliation properties of MAX to MXenes and the hydrogen evolution performances of 2D MXenes. Journal of Materials Chemistry A, 2019, 7, 15862-15870.	5.2	58
1329	Enhanced Electrocatalytic Oxygen Evolution Activity by Tuning Both the Oxygen Vacancy and Orbital Occupancy of B‣ite Metal Cation in NdNiO ₃ . Advanced Functional Materials, 2019, 29, 1902449.	7.8	72
1330	Mo-Doped NiCu as an efficient and stable electrocatalyst for the hydrogen evolution reaction. New Journal of Chemistry, 2019, 43, 9652-9657.	1.4	22
1331	MOF-derived porous carbon supported iron-based catalysts with optimized active sites towards oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2019, 847, 113191.	1.9	7
1332	High-efficiency bifunctional electrocatalyst based on 3D freestanding Cu foam in situ armored CoNi alloy nanosheet arrays for overall water splitting. Journal of Power Sources, 2019, 427, 184-193.	4.0	47
1333	Structure-Related Electrocatalytic Performance of N/C-Supported Fe _{1–<i>x</i>} Ni _{<i>x</i>} Nanoparticles toward Oxygen Reduction. Journal of Physical Chemistry C, 2019, 123, 16250-16256.	1.5	5

.

ARTICLE IF CITATIONS Recent progress in Co₉S₈-based materials for hydrogen and oxygen 1334 5.2 95 electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 16068-16088. Co Doping and 1T Phase Jointly Enhanced HER Activity for Co-1T/2H MoS2. IOP Conference Series: Earth 0.2 and Environmental Science, 2019, 267, 022044. In-situ surface selective removal: An efficient way to prepare water oxidation catalyst. International 1336 3.8 13 Journal of Hydrogen Energy, 2019, 44, 14955-14967. Magnetic field enhancing electrocatalysis of Co3O4/NF for oxygen evolution reaction. Journal of 4.0 Power Sources, 2019, 433, 226704. Multifunctional Dicyandiamide Blowing-Induced Formation of Electrocatalysts for the Hydrogen 1338 7 1.6 Evolution Reaction. ACS Omega, 2019, 4, 10347-10353. Advanced Nonâ€metallic Catalysts for Electrochemical Nitrogen Reduction under Ambient Conditions. Chemistry - A European Journal, 2019, 25, 12464-12485. 1339 Constructing a desirable electrocatalyst for ORR employing site isolation strategy. International 1340 3.8 8 Journal of Hydrogen Energy, 2019, 44, 16557-16565. Zn_{<i>x</i>}Co_{1â€"<i>x</i>}MoS₃ Microboxes from Metalâ€"Organic Frameworks as Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Sustainable 1341 3.2 Chemistry and Engineering, 2019, 7, 9800-9807 Poly(ferrocenedimethano)cyclotriphosphazene to Homogenously Fe, N, P, O Doped Carbon Nanotubes: 1342 An Efficient and Tremendous Electrocatalyst for Oxygen Reduction Reaction. Journal of the 1.3 18 Electrochemical Society, 2019, 166, H297-H303. MnIII-enriched α-MnO2 nanowires as efficient bifunctional oxygen catalysts for rechargeable Zn-air 1343 batteries. Energy Storage Materials, 2019, 23, 252-260. Prospects and Challenges for Solar Fertilizers. Joule, 2019, 3, 1578-1605. 1344 11.7 153 Rosette-like MoS₂ nanoflowers as highly active and stable electrodes for hydrogen 1345 1.7 34 evolution reactions and supercapacitors. RSC Advances, 2019, 9, 13820-13828. Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of 1346 5.2 24 multiple intermediates. Journal of Materials Chemistry A, 2019, 7, 13635-13640. Electrochemistry of Layered Semiconducting A^{III}B^{VI} Chalcogenides: Indium Monochalcogenides (InS, InSe, InTe). ChemCatChem, 2019, 11, 2634-2642. 1347 1.8 Engineering Ternary Copper-Cobalt Sulfide Nanosheets as High-performance Electrocatalysts toward 1348 1.6 21 Oxygen Evolution Reaction. Catalysts, 2019, 9, 459. Switching Co/N/C Catalysts for Heterogeneous Catalysis and Electrocatalysis by Controllable 1349 Pyrolysis of Cobalt Porphyrin. IScience, 2019, 15, 282-290. General synthesis of NiCo alloy nanochain arrays with thin oxide coating: a highly efficient 1350 bifunctional electrocatalyst for overall water splitting. Journal of Alloys and Compounds, 2019, 797, 2.8 56 1216-1223. Transition metal doping activated basal-plane catalytic activity of two-dimensional 1351 1T'-ReS₂ for hydrogen evolution reaction: a first-principles calculation study. Nanoscale, 2.8 56 2019, 11, 10402-10409.

#	Article	IF	CITATIONS
1352	Efficient electrocatalytic oxygen evolution by Fe3C nanosheets perpendicularly grown on 3D Ni foams. International Journal of Hydrogen Energy, 2019, 44, 16507-16515.	3.8	23
1353	Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Materials Horizons, 2019, 6, 1812-1827.	6.4	79
1354	Guided Assembly of Microporous/Mesoporous Manganese Phosphates by Bifunctional Organophosphonic Acid Etching and Templating. Advanced Materials, 2019, 31, e1901124.	11.1	15
1355	Modification of pyridinic N and O-rich defects in a bifunctional electrocatalyst with enhanced electrocatalytic performance. Journal of Alloys and Compounds, 2019, 789, 874-880.	2.8	8
1356	Rational design of two-dimensional hybrid Co/N-doped carbon nanosheet arrays for efficient bi-functional electrocatalysis. Sustainable Energy and Fuels, 2019, 3, 1757-1763.	2.5	11
1357	Thermal oxygen activation followed by in situ work function measurements over carbon-supported noble metal-based catalysts. International Journal of Hydrogen Energy, 2019, 44, 16648-16656.	3.8	17
1358	Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis. Journal of Materials Chemistry A, 2019, 7, 14271-14279.	5.2	67
1359	Hierarchical Co-N microballs with heterostructure exhibiting superior electrochemical properties for water splitting and reduction of I3â^. Journal of Alloys and Compounds, 2019, 797, 341-347.	2.8	6
1360	CoNi based alloy/oxides@N-doped carbon core-shell dendrites as complementary water splitting electrocatalysts with significantly enhanced catalytic efficiency. Applied Catalysis B: Environmental, 2019, 254, 634-646.	10.8	109
1361	Confined distribution of platinum clusters on MoO2 hexagonal nanosheets with oxygen vacancies as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy, 2019, 62, 127-135.	8.2	143
1362	The Holy Grail in Platinumâ€Free Electrocatalytic Hydrogen Evolution: Molybdenumâ€Based Catalysts and Recent Advances. ChemElectroChem, 2019, 6, 3570-3589.	1.7	72
1363	Recent Studies on Bifunctional Perovskite Electrocatalysts in Oxygen Evolution, Oxygen Reduction, and Hydrogen Evolution Reactions under Alkaline Electrolyte. Israel Journal of Chemistry, 2019, 59, 708-719.	1.0	12
1364	Photo-enhanced Zn–air batteries with simultaneous highly efficient <i>in situ</i> H ₂ O ₂ generation for wastewater treatment. Journal of Materials Chemistry A, 2019, 7, 14129-14135.	5.2	36
1365	Metal-organic frameworks and their derivatives for metal-air batteries. Energy Storage Materials, 2019, 23, 757-771.	9.5	100
1366	Novel Supramolecular Photocatalyst Based on Conjugation of Cucurbit[7]uril to Nonâ€Metallated Porphyrin for Electrophotocatalytic Hydrogen Generation from Water Splitting. ChemCatChem, 2019, 11, 2994-2999.	1.8	11
1367	High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy, 2019, 61, 245-250.	8.2	205
1368	Density functional theory calculations: A powerful tool to simulate and design high-performance energy storage and conversion materials. Progress in Natural Science: Materials International, 2019, 29, 247-255.	1.8	70
1369	Solid-solution alloy nanoparticles of a combination of immiscible Au and Ru with a large gap of reduction potential and their enhanced oxygen evolution reaction performance. Chemical Science, 2019, 10, 5133-5137.	3.7	48

#	Article	IF	CITATIONS
1370	Sr, Fe Co-doped Perovskite Oxides With High Performance for Oxygen Evolution Reaction. Frontiers in Chemistry, 2019, 7, 224.	1.8	53
1371	Interfacial Defect Engineering for Improved Portable Zinc–Air Batteries with a Broad Working Temperature. Angewandte Chemie - International Edition, 2019, 58, 9459-9463.	7.2	139
1372	Coupling a Low Loading of IrP ₂ , PtP ₂ , or Pd ₃ P with Heteroatom-Doped Nanocarbon for Overall Water-Splitting Cells and Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 16461-16473.	4.0	38
1373	Computational Screening of Defective Group IVA Monochalcogenides as Efficient Catalysts for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2019, 123, 11791-11797.	1.5	24
1374	Transition Metal-Modified Exfoliated Zirconium Phosphate as an Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3561-3567.	2.5	21
1375	Interfacial Defect Engineering for Improved Portable Zinc–Air Batteries with a Broad Working Temperature. Angewandte Chemie, 2019, 131, 9559-9563.	1.6	23
1376	Optimization of active surface area of flower like MoS2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium. Applied Catalysis B: Environmental, 2019, 254, 432-442.	10.8	185
1377	Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution Catalysis. Journal of the American Chemical Society, 2019, 141, 8136-8145.	6.6	220
1378	MOF-templated cobalt nanoparticles embedded in nitrogen-doped porous carbon: a bifunctional electrocatalyst for overall water splitting. Nanoscale Advances, 2019, 1, 2293-2302.	2.2	26
1379	Metalâ€Organicâ€Frameworkâ€Derived Nitrogenâ€Doped Hybrid Nickelâ€Ironâ€Sulfide Architectures on Carbon Cloth as Efficient Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 2741-2747.	1.7	20
1380	Novel photocatalyst incorporating Ni-Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution. Applied Catalysis B: Environmental, 2019, 254, 145-155.	10.8	209
1381	A facile sequential ion exchange strategy to synthesize CoSe ₂ /FeSe ₂ double-shelled hollow nanocuboids for the highly active and stable oxygen evolution reaction. Nanoscale, 2019, 11, 10738-10745.	2.8	80
1382	Ultrathin MoS ₂ Nanosheets Decorated Hollow CoP Heterostructures for Enhanced Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 10105-10111.	3.2	50
1383	<i>In situ</i> TEM observation of Au–Cu ₂ O core–shell growth in liquids. Nanoscale, 2019, 11, 10486-10492.	2.8	17
1384	Recent Progress in Bifunctional Electrocatalysts for Overall Water Splitting under Acidic Conditions. ChemElectroChem, 2019, 6, 3244-3253.	1.7	79
1385	Phase controllable synthesis of Ni2+ post-modified CoP nanowire for enhanced oxygen evolution. Nano Energy, 2019, 62, 136-143.	8.2	66
1386	Atomically Dispersed Cobalt- and Nitrogen-Codoped Graphene toward Bifunctional Catalysis of Oxygen Reduction and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 9249-9256.	3.2	57
1387	Single Atoms and Clusters Based Nanomaterials for Hydrogen Evolution, Oxygen Evolution Reactions, and Full Water Splitting. Advanced Energy Materials, 2019, 9, 1900624.	10.2	538

#	Article	IF	CITATIONS
1388	Facile synthesis of bismuth vanadate/bismuth oxide heterojunction for enhancing visible light-responsive photoelectrochemical performance. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100, 178-185.	2.7	19
1389	Understanding the Roadmap for Electrochemical Reduction of CO ₂ to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. Journal of the American Chemical Society, 2019, 141, 7646-7659.	6.6	711
1390	Anionâ€Modulated HER and OER Activities of 3D Ni–Vâ€Based Interstitial Compound Heterojunctions for Highâ€Efficiency and Stable Overall Water Splitting. Advanced Materials, 2019, 31, e1901174.	11.1	479
1391	Doubleâ€Site Ni–W Nanosheet for Best Alkaline HER Performance at High Current Density >500 mA cm ^{â^²2} . Advanced Materials Interfaces, 2019, 6, 1900308.	1.9	24
1392	Ultrasmall MoP encapsulated in nitrogen-doped carbon hybrid frameworks for highly efficient hydrogen evolution reaction in both acid and alkaline solutions. Inorganic Chemistry Frontiers, 2019, 6, 1482-1489.	3.0	26
1393	Liquid–Solid Interfacial Assemblies of Soft Materials for Functional Freestanding Layered Membrane–Based Devices toward Electrochemical Energy Systems. Advanced Energy Materials, 2019, 9, 1804005.	10.2	18
1394	Greatly improved HER electrocatalytic activity by the composite of CoSe2 and N, S-dual doped graphitic carbon. International Journal of Hydrogen Energy, 2019, 44, 13424-13431.	3.8	15
1395	Hierarchically Coupled Ni:FeOOH Nanosheets on 3D N-Doped Graphite Foam as Self-Supported Electrocatalysts for Efficient and Durable Water Oxidation. ACS Catalysis, 2019, 9, 5025-5034.	5.5	89
1396	Regulating the allocation of N and P in codoped graphene <i>via</i> supramolecular control to remarkably boost hydrogen evolution. Energy and Environmental Science, 2019, 12, 2697-2705.	15.6	77
1397	Transition metal-embedded two-dimensional C ₃ N as a highly active electrocatalyst for oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2019, 7, 12050-12059.	5.2	123
1398	<i>In situ</i> growth of a POMOF-derived nitride based composite on Cu foam to produce hydrogen with enhanced water dissociation kinetics. Journal of Materials Chemistry A, 2019, 7, 13559-13566.	5.2	39
1399	A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 13242-13248.	5.2	143
1400	MoS ₂ nanosheet/MoS ₂ flake homostructures for efficient electrocatalytic hydrogen evolution. Materials Research Express, 2019, 6, 085005.	0.8	8
1401	Trimetallic Metal–Organic Framework Derived Carbonâ€Based Nanoflower Electrocatalysts for Efficient Overall Water Splitting. Advanced Materials Interfaces, 2019, 6, 1900290.	1.9	72
1402	Coupling Co2P and CoP nanoparticles with copper ions incorporated Co9S8 nanowire arrays for synergistically boosting hydrogen evolution reaction electrocatalysis. Journal of Colloid and Interface Science, 2019, 550, 10-16.	5.0	47
1403	Molybdenum carbide nanoparticles supported on nitrogen-doped carbon as efficient electrocatalysts for hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2019, 842, 89-97.	1.9	12
1404	Electrochemical Reduction of Carbon Dioxide to Formate on Palladium-Copper Alloy Nanoparticulate Electrode. Electrochemistry, 2019, 87, 134-138.	0.6	15
1405	Boundary activated hydrogen evolution reaction on monolayer MoS2. Nature Communications, 2019, 10, 1348.	5.8	263

#	Article	IF	CITATIONS
1406	Synthesis of ultrasmall and monodisperse sulfur nanoparticle intercalated CoAl layered double hydroxide and its electro-catalytic water oxidation reaction at neutral pH. Nanoscale, 2019, 11, 7560-7566.	2.8	16
1407	Searching General Sufficientâ€andâ€Necessary Conditions for Ultrafast Hydrogenâ€Evolving Electrocatalysis. Advanced Functional Materials, 2019, 29, 1900704.	7.8	94
1408	Frameworkâ€Porphyrinâ€Derived Singleâ€Atom Bifunctional Oxygen Electrocatalysts and their Applications in Zn–Air Batteries. Advanced Materials, 2019, 31, e1900592.	11.1	256
1409	In situ doped CoCO3/ZIF-67 derived Co-N-C/CoOx catalysts for oxygen reduction reaction. Applied Surface Science, 2019, 481, 313-318.	3.1	25
1410	Molybdenum Disulfide Modified by Laser Irradiation for Catalyzing Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 6999-7003.	3.2	53
1411	Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Chemical Engineering Journal, 2019, 370, 37-59.	6.6	96
1412	Nitrogen and phosphorous co-doped graphitic carbon encapsulated ultrafine OsP ₂ nanoparticles: a pH universal highly durable catalyst for hydrogen evolution reaction. Chemical Communications, 2019, 55, 4399-4402.	2.2	22
1413	Ionicâ€ S tate Cobalt and Iron Coâ€doped Carbon Dots with Superior Electrocatalytic Activity for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 2088-2094.	1.7	26
1414	Moâ€Doped Cobalt Phosphide Nanosheets for Efficient Hydrogen Generation in an Alkaline Media. Energy Technology, 2019, 7, 1900021.	1.8	21
1415	WxCoyS core-shell grown on hollow-porous carbon fiber (HCF) as synergetic electrocatalysts for efficient water splitting. Electrochimica Acta, 2019, 306, 437-445.	2.6	19
1416	Molecular-level design of Fe-N-C catalysts derived from Fe-dual pyridine coordination complexes for highly efficient oxygen reduction. Journal of Catalysis, 2019, 372, 245-257.	3.1	56
1417	Rational design of three-phase interfaces for electrocatalysis. Nano Research, 2019, 12, 2055-2066.	5.8	135
1418	Support and Interface Effects in Waterâ€Splitting Electrocatalysts. Advanced Materials, 2019, 31, e1808167.	11.1	531
1419	NiRh nanosponges with highly efficient electrocatalytic performance for hydrogen evolution reaction. Journal of Alloys and Compounds, 2019, 789, 163-173.	2.8	28
1420	Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Progress in Materials Science, 2019, 103, 596-677.	16.0	166
1421	Graphene nanoplatelets-carbon black hybrids as an efficient catalyst support for Pt nanoparticles for polymer electrolyte membrane fuel cells. Renewable Energy, 2019, 139, 1099-1110.	4.3	37
1422	Ni/Ni ₃ C core–shell nanoparticles encapsulated in N-doped bamboo-like carbon nanotubes towards efficient overall water splitting. Inorganic Chemistry Frontiers, 2019, 6, 1073-1080.	3.0	42
1423	Self-generated N-doped anodized stainless steel mesh for an efficient and stable overall water splitting electrocatalyst. Applied Surface Science, 2019, 480, 655-664.	3.1	55

		15	0
#	Article	IF	CITATIONS
1424	Oxygen Evolution Reaction on Nanoporous Gold Modified with Ir and Pt: Synergistic Electrocatalysis between Structure and Composition. Electroanalysis, 2019, 31, 1026-1033.	1.5	10
1425	Core@shell β-FeOOH@polypyrolle derived N, S-codoped Fe3O4@N-doped porous carbon nanococoons for high performance supercapacitors. Applied Surface Science, 2019, 480, 582-592.	3.1	30
1426	Facile and Largeâ€5cale Fabrication of Subâ€3â€nm PtNi Nanoparticles Supported on Porous Carbon Sheet: A Bifunctional Material for the Hydrogen Evolution Reaction and Hydrogenation. Chemistry - A European Journal, 2019, 25, 7191-7200.	1.7	18
1427	3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion. Electrochemical Energy Reviews, 2019, 2, 332-371.	13.1	82
1428	Ultrafine iron-cobalt nanoparticles embedded in nitrogen-doped porous carbon matrix for oxygen reduction reaction and zinc-air batteries. Journal of Colloid and Interface Science, 2019, 546, 113-121.	5.0	40
1429	Mesoporous cobalt selenide/nitrogen-doped carbon hybrid as bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reactions. Journal of Power Sources, 2019, 423, 1-8.	4.0	38
1430	Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nature Energy, 2019, 4, 329-338.	19.8	977
1431	Surface reorganization engineering of the N-doped MoS ₂ heterostructures MoO _x @N-doped MoS _{2â[°]x} by <i>in situ</i> electrochemical oxidation activation for efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 10572-10580.	5.2	44
1432	Bimetallic Metalâ€Organic Frameworkâ€Derived Nanosheetâ€Assembled Nanoflower Electrocatalysts for Efficient Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2019, 14, 1590-1594.	1.7	27
1433	In-situ growth of nitrogen-doped mesoporous carbon nanostructure supported nickel metal nanoparticles for oxygen evolution reaction in an alkaline electrolyte. Electrochimica Acta, 2019, 306, 617-626.	2.6	7
1434	Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries. Nano Energy, 2019, 60, 536-544.	8.2	247
1435	Metal-organic framework based nanomaterials for electrocatalytic oxygen redox reaction. Science China Chemistry, 2019, 62, 417-429.	4.2	51
1436	Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Research, 2019, 12, 925-930.	5.8	39
1437	Plasma-treated sponge-like NiAu nanoalloy for enhancing electrocatalytic performance in hydrogen evolution reaction. Catalysis Today, 2019, 337, 90-96.	2.2	16
1438	Chitin-derived porous carbon loaded with Co, N and S with enhanced performance towards electrocatalytic oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Electrochimica Acta, 2019, 304, 350-359.	2.6	22
1439	Mechanistic Understanding of Sizeâ€Dependent Oxygen Reduction Activity and Selectivity over Pt/CNT Nanocatalysts. European Journal of Inorganic Chemistry, 2019, 2019, 3210-3217.	1.0	18
1440	Theoretical investigation on the high HER catalytic activity of 2D layered GeP3 nanomaterials and its further enhancement by applying the surface strain or coupling with graphene. Applied Surface Science, 2019, 481, 272-280.	3.1	22
1441	Plasma engraved Bi0.1(Ba0.5Sr0.5)0.9Co0.8Fe0.2O3â^î^´ perovskite for highly active and durable oxygen evolution. Scientific Reports, 2019, 9, 4210.	1.6	20

#	Article	IF	Citations
1442	Variation of nitrogen species in zeolite-templated carbon by low-temperature carbonization of pyrrole and the effect on oxygen reduction activity. Journal of Materials Chemistry A, 2019, 7, 8353-8360.	5.2	34
1443	Cobaltâ€Vanadium Hydroxide Nanoneedles with a Freeâ€Standing Structure as Highâ€Performance Oxygen Evolution Reaction Electrocatalysts. ChemElectroChem, 2019, 6, 2050-2055.	1.7	24
1444	The Role of Defect Sites in Nanomaterials for Electrocatalytic Energy Conversion. CheM, 2019, 5, 1371-1397.	5.8	273
1445	Co3O4/ NiO bifunctional electrocatalyst for water splitting. Electrochimica Acta, 2019, 306, 9-17.	2.6	77
1446	Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. Journal of Materials Chemistry A, 2019, 7, 8117-8121.	5.2	150
1447	Electroactive Edgeâ€Siteâ€Enriched αâ€Co 0.9 Fe 0.1 (OH) x Nanoplates for Efficient Overall Water Splitting. ChemElectroChem, 2019, 6, 2415-2422.	1.7	4
1448	Realizing Ultrafast Oxygen Evolution by Introducing Proton Acceptor into Perovskites. Advanced Energy Materials, 2019, 9, 1900429.	10.2	76
1449	Photodeposition of gold nanoparticles on ZnS nanobelts for enhanced dye decomposition. Materials Research Bulletin, 2019, 116, 32-39.	2.7	9
1450	Transition Metal (Fe, Co and Ni)â^'Carbideâ^'Nitride (Mâ^'Câ^'N) Nanocatalysts: Structure and Electrocatalytic Applications. ChemCatChem, 2019, 11, 2780-2792.	1.8	46
1451	Oneâ€Pot Synthesis of Framework Porphyrin Materials and Their Applications in Bifunctional Oxygen Electrocatalysis. Advanced Functional Materials, 2019, 29, 1901301.	7.8	63
1452	In-situ local phase-transitioned MoSe2 in La0.5Sr0.5CoO3-δ heterostructure and stable overall water electrolysis over 1000 hours. Nature Communications, 2019, 10, 1723.	5.8	143
1453	Ni3ZnC0.7 nanodots decorating nitrogen-doped carbon nanotube arrays as a self-standing bifunctional electrocatalyst for water splitting. Carbon, 2019, 148, 496-503.	5.4	65
1454	Preparation and thermal performances of microencapsulated phase change materials with a nano-Al2O3-doped shell. Journal of Thermal Analysis and Calorimetry, 2019, 138, 233-241.	2.0	16
1455	Strongly coupled ultrasmall-Fe ₇ C ₃ /N-doped porous carbon hybrids for highly efficient Zn–air batteries. Chemical Communications, 2019, 55, 5651-5654.	2.2	35
1456	Ambient Fast Synthesis and Active Sites Deciphering of Hierarchical Foamâ€Like Trimetal–Organic Framework Nanostructures as a Platform for Highly Efficient Oxygen Evolution Electrocatalysis. Advanced Materials, 2019, 31, e1901139.	11.1	374
1457	Engineering hierarchical CoSe/NiFe layered-double-hydroxide nanoarrays as high efficient bifunctional electrocatalyst for overall water splitting. Journal of Power Sources, 2019, 425, 138-146.	4.0	110
1458	Electrocatalytic activity of new Mn3O4@oxidized graphene flakes nanocomposites toward oxygen reduction reaction. Journal of Materials Science, 2019, 54, 8919-8940.	1.7	26
1459	Low-temperature plasma technology for electrocatalysis. Chinese Chemical Letters, 2019, 30, 826-838.	4.8	57

#	Article	IF	CITATIONS
1460	Controlled synthesis of bifunctional particle-like Mo/Mn-Ni _x S _y /NF electrocatalyst for highly efficient overall water splitting. Dalton Transactions, 2019, 48, 6718-6729.	1.6	46
1461	Iridium-doped ZIFs-derived porous carbon-coated IrCo alloy as competent bifunctional catalyst for overall water splitting in acid medium. Electrochimica Acta, 2019, 307, 206-213.	2.6	42
1462	Oxygenâ€Deficient Ti _{0.9} Nb _{0.1} O _{2â€x} as an Efficient Anodic Catalyst Support for PEM Water Electrolyzer. ChemCatChem, 2019, 11, 2511-2519.	1.8	19
1463	In-situ growth of iron/nickel phosphides hybrid on nickel foam as bifunctional electrocatalyst for overall water splitting. Journal of Power Sources, 2019, 424, 42-51.	4.0	56
1464	Facile synthesis of polyacrylonitrile-based N/S-codoped porous carbon as an efficient oxygen reduction electrocatalyst for zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 11223-11233.	5.2	39
1465	Inlay of ultrafine Ru nanoparticles into a self-supported Ni(OH) ₂ nanoarray for hydrogen evolution with low overpotential and enhanced kinetics. Journal of Materials Chemistry A, 2019, 7, 11062-11068.	5.2	70
1466	Ternary metal sulfides for electrocatalytic energy conversion. Journal of Materials Chemistry A, 2019, 7, 9386-9405.	5.2	225
1467	Edge/Defect Sites in α o 1â^' m Fe m (OH) x Nanoplates Responsible for Water Oxidation Activity. ChemSusChem, 2019, 12, 2755-2762.	3.6	5
1468	Amorphous CoFe Double Hydroxides Decorated with Nâ€Doped CNTs for Efficient Electrochemical Oxygen Evolution. ChemSusChem, 2019, 12, 2679-2688.	3.6	26
1469	Nanostructured Rhenium–Carbon Composites as Hydrogen-Evolving Catalysts Effective over the Entire pH Range. ACS Applied Nano Materials, 2019, 2, 2725-2733.	2.4	24
1470	A novel strategy to boost the oxygen evolution reaction activity of NiFe-LDHs with <i>in situ</i> synthesized 3D porous reduced graphene oxide matrix as both the substrate and electronic carrier. New Journal of Chemistry, 2019, 43, 6555-6562.	1.4	27
1471	Synergy of Nb Doping and Surface Alloy Enhanced on Water–Alkali Electrocatalytic Hydrogen Generation Performance in Tiâ€Based MXene. Advanced Science, 2019, 6, 1900116.	5.6	97
1472	Boosting Stability and Activity of Oxygen Evolution Catalyst in Acidic Medium: Bimetallic Irâ^'Fe Oxides on Reduced Graphene Oxide Prepared through Ultrasonic Spray Pyrolysis. ChemCatChem, 2019, 11, 2615-2623.	1.8	15
1473	Electrochemically Driven Coordination Tuning of FeOOH Integrated on Carbon Fiber Paper for Enhanced Oxygen Evolution. Small, 2019, 15, e1901015.	5.2	46
1474	Self-reconstruction in 2D nickel thiophosphate nanosheets to boost oxygen evolution reaction. Applied Surface Science, 2019, 484, 54-61.	3.1	23
1475	Analysis of the effect of surface wettability on hydrogen evolution reaction in water electrolysis using micro-patterned electrodes. Electrochemistry Communications, 2019, 101, 43-46.	2.3	35
1476	Rational Design of Nanoarray Architectures for Electrocatalytic Water Splitting. Advanced Functional Materials, 2019, 29, 1808367.	7.8	298
1477	Superwettabilityâ€Based Interfacial Chemical Reactions. Advanced Materials, 2019, 31, e1800718.	11.1	128

#	Article	IF	CITATIONS
1478	Morphologyâ€Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting. Advanced Materials, 2019, 31, e1806682.	11.1	500
1479	Enhancing Electrocatalytic Water Splitting by Strain Engineering. Advanced Materials, 2019, 31, e1807001.	11.1	470
1480	Unified Catalyst for Efficient and Stable Hydrogen Production by Both the Electrolysis of Water and the Hydrolysis of Ammonia Borane. Advanced Sustainable Systems, 2019, 3, 1800161.	2.7	45
1481	Application of the Electrochemical Oxygen Reduction Reaction (ORR) in Organic Synthesis. Advanced Synthesis and Catalysis, 2019, 361, 2804-2824.	2.1	45
1482	Spherical Murray-Type Assembly of Co–N–C Nanoparticles as a High-Performance Trifunctional Electrocatalyst. ACS Applied Materials & Interfaces, 2019, 11, 9925-9933.	4.0	49
1483	Facile in-situ growth of Ni2P/Fe2P nanohybrids on Ni foam for highly efficient urea electrolysis. Journal of Colloid and Interface Science, 2019, 541, 279-286.	5.0	113
1484	Ni(<scp>ii</scp>)-doped anionic metal–organic framework nanowire arrays for enhancing the oxygen evolution reaction. Chemical Communications, 2019, 55, 4023-4026.	2.2	24
1485	<i>In situ</i> structural evolution of a nickel boride catalyst: synergistic geometric and electronic optimization for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 5288-5294.	5.2	69
1486	Co–Cu–WS _x ball-in-ball nanospheres as high-performance Pt-free bifunctional catalysts in efficient dye-sensitized solar cells and alkaline hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 6337-6347.	5.2	52
1487	Recent Advances in the Development of Water Oxidation Electrocatalysts at Mild pH. Small, 2019, 15, e1805103.	5.2	206
1488	Surface chemical-functionalization of ultrathin two-dimensional nanomaterials for electrocatalysis. Materials Today Energy, 2019, 12, 250-268.	2.5	48
1489	Ice/Saltâ€Assisted Synthesis of Ultrathin Twoâ€Dimensional Micro/Mesoporous Iron and Nitrogen Coâ€Doped Carbon as an Efficient Electrocatalyst for Oxygen Reduction. Chemistry - A European Journal, 2019, 25, 5768-5776.	1.7	11
1490	Co–Fe Alloy/Nâ€Doped Carbon Hollow Spheres Derived from Dual Metal–Organic Frameworks for Enhanced Electrocatalytic Oxygen Reduction. Small, 2019, 15, e1805324.	5.2	172
1491	Nanomaterials With Different Dimensions for Electrocatalysis. , 2019, , 435-464.		10
1492	Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. Journal of Cleaner Production, 2019, 220, 593-609.	4.6	392
1493	Hemi-core@frame AuCu@IrNi nanocrystals as active and durable bifunctional catalysts for the water splitting reaction in acidic media. Nanoscale Horizons, 2019, 4, 727-734.	4.1	43
1494	Well-Defined Boron/Nitrogen-Doped Polycyclic Aromatic Hydrocarbons Are Active Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2019, 31, 1891-1898.	3.2	42
1495	Heteroatom-Doped Transition Metal Electrocatalysts for Hydrogen Evolution Reaction. ACS Energy Letters, 2019, 4, 805-810.	8.8	323

#	Article	IF	CITATIONS
1496	Constituent-tunable ternary CoM _{2x} Se _{2(1â~'x)} (M = Te, S) sandwich-like graphitized carbon-based composites as highly efficient electrocatalysts for water splitting. Nanoscale, 2019, 11, 6108-6119.	2.8	10
1497	Mo-doped Ni ₂ P hollow nanostructures: highly efficient and durable bifunctional electrocatalysts for alkaline water splitting. Journal of Materials Chemistry A, 2019, 7, 7636-7643.	5.2	110
1498	<i>In situ</i> synthesis of edge-enriched MoS ₂ hierarchical nanorods with 1T/2H hybrid phases for highly efficient electrocatalytic hydrogen evolution. CrystEngComm, 2019, 21, 1984-1991.	1.3	29
1499	Transitionâ€Metalâ€Doped RuIr Bifunctional Nanocrystals for Overall Water Splitting in Acidic Environments. Advanced Materials, 2019, 31, e1900510.	11.1	449
1500	Fabrication of Superior Singleâ€Atom Catalysts toward Diverse Electrochemical Reactions. Small Methods, 2019, 3, 1800497.	4.6	99
1501	Fluorine anion-enriched nickel hydroxyl oxide as an efficient oxygen evolution reaction electrocatalyst. Chemical Communications, 2019, 55, 3406-3409.	2.2	50
1502	Quasi-layer Co ₂ P-polarized Cu ₃ P nanocomposites with enhanced intrinsic interfacial charge transfer for efficient overall water splitting. Nanoscale, 2019, 11, 6394-6400.	2.8	23
1503	Self upportive NiFe hydroxide with High Electrocatalytic Activity for Oxygen and Hydrogen Evolution Reaction. ChemistrySelect, 2019, 4, 2153-2159.	0.7	4
1504	Synergistic Effects of Mo 2 Câ€NC@Co x Fe y Core–Shell Nanoparticles in Electrocatalytic Overall Water Splitting Reaction. Energy Technology, 2019, 7, 1801121.	1.8	7
1505	Cobalt oxyhydroxide with highly porous structures as active and stable phase for efficient water oxidation. Electrochimica Acta, 2019, 303, 231-238.	2.6	19
1506	Boosting the Oxygen Evolution Reaction Activity of NiFe ₂ O ₄ Nanosheets by Phosphate Ion Functionalization. ACS Omega, 2019, 4, 3493-3499.	1.6	66
1507	Vertically aligned NiP2 nanosheets with interlaced mesh network for highly efficient water splitting under alkaline and acid solutions. International Journal of Hydrogen Energy, 2019, 44, 6535-6543.	3.8	35
1508	Syntheses, structures, magnetism and electrocatalytic oxygen evolution for four cobalt, manganese and copper complexes with dinuclear, 1D and 3D structures. Dalton Transactions, 2019, 48, 3467-3475.	1.6	8
1509	Cobalt-nickel phosphides@carbon spheres as highly efficient and stable electrocatalyst for hydrogen evolution reaction. Catalysis Communications, 2019, 124, 1-5.	1.6	20
1510	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
1511	Promoting Electrocatalytic Oxygen Evolution over Transition-Metal Phosphide-Based Nanocomposites via Architectural and Electronic Engineering. ACS Applied Materials & amp; Interfaces, 2019, 11, 46825-46838.	4.0	34
1512	Electrochemical CO ₂ Fixation to α-Methylbenzyl Bromide in Divided Cells with Nonsacrificial Anodes and Aqueous Anolytes. ACS Sustainable Chemistry and Engineering, 2019, 7, 19631-19639.	3.2	33
1513	Design and Excellent HER Performance of a Novel 3D Mo–Doped Ni ₃ S ₂ /Ni Foam Composite. ChemistrySelect, 2019, 4, 12328-12332.	0.7	7

#	Article	IF	CITATIONS
1514	Crystalline Multi-Metal Nanosheets Array with Enriched Oxygen Vacancies as Efficient and Stable Bifunctional Electrocatalysts for Water Splitting. ACS Applied Energy Materials, 2019, 2, 8919-8929.	2.5	20
1515	The Co2+/Ni2+ ion-mediated formation of a topochemically converted copper coordination polymer: structure-dependent electrocatalytic activity. CrystEngComm, 2019, 21, 6552-6557.	1.3	9
1516	<i>In situ</i> anchoring of a Co ₃ O ₄ nanowire on nickel foam: an outstanding bifunctional catalyst for energy-saving simultaneous reactions. Green Chemistry, 2019, 21, 6699-6706.	4.6	89
1517	Engineering the coupling interface of rhombic dodecahedral NiCoP/C@FeOOH nanocages toward enhanced water oxidation. Nanoscale, 2019, 11, 19959-19968.	2.8	48
1518	Amorphous FeNi-bimetallic infinite coordination polymers as advanced electrocatalysts for the oxygen evolution reaction. Chemical Communications, 2019, 55, 12567-12570.	2.2	24
1519	Pd-coated Ru nanocrystals supported on N-doped graphene as HER and ORR electrocatalysts. Chemical Communications, 2019, 55, 13928-13931.	2.2	51
1520	Fe ions modulated formation of hollow NiFe oxyphosphide spheres with enhanced oxygen evolution performance. Chemical Communications, 2019, 55, 14371-14374.	2.2	9
1521	Graphene-covered transition metal halide molecules as efficient and durable electrocatalysts for oxygen reduction and evolution reactions. Physical Chemistry Chemical Physics, 2019, 21, 23094-23101.	1.3	8
1522	Ultrathin carbon coated CoO nanosheet arrays as efficient electrocatalysts for the hydrogen evolution reaction. Catalysis Science and Technology, 2019, 9, 6957-6964.	2.1	24
1523	A substrate-free Mo ₂ C-based electrocatalyst by facile glucose-blowing for efficient hydrogen production. New Journal of Chemistry, 2019, 43, 18970-18974.	1.4	8
1524	Reactive nanotemplates for synthesis of highly efficient electrocatalysts: beyond simple morphology transfer. Nanoscale, 2019, 11, 20392-20410.	2.8	11
1525	Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale, 2019, 11, 21622-21678.	2.8	201
1526	Design of high-performance MoS ₂ edge supported single-metal atom bifunctional catalysts for overall water splitting <i>via</i> a simple equation. Nanoscale, 2019, 11, 20228-20237.	2.8	57
1527	Simple synthesis of a vacancy-rich NiO 2D/3D dendritic self-supported electrode for efficient overall water splitting. Nanoscale, 2019, 11, 22734-22742.	2.8	20
1528	S,N co-doped reduced graphene oxide sheets with cobalt hydroxide nanocrystals for highly active and stable bifunctional oxygen catalysts. Inorganic Chemistry Frontiers, 2019, 6, 3501-3509.	3.0	8
1529	Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach. Journal of Materials Chemistry A, 2019, 7, 24239-24250.	5.2	87
1530	Cu single atoms on Ti ₂ CO ₂ as a highly efficient oxygen reduction catalyst in a proton exchange membrane fuel cell. Journal of Materials Chemistry A, 2019, 7, 26062-26070.	5.2	95
1531	Selective surface functionalization generating site-isolated Ir on a MnO _x /N-doped carbon composite for robust electrocatalytic water oxidation. Journal of Materials Chemistry A, 2019, 7, 23098-23104.	5.2	19

#	Article	IF	CITATIONS
1532	Engineering FeNi alloy nanoparticles <i>via</i> synergistic ultralow Pt doping and nanocarbon capsulation for efficient hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 24347-24355.	5.2	39
1533	MXene supported Co _x A _y (A = OH, P, Se) electrocatalysts for overall water splitting: unveiling the role of anions in intrinsic activity and stability. Journal of Materials Chemistry A, 2019, 7, 27383-27393.	5.2	96
1534	Hierarchical nanoporous intermetallic compounds with self-grown transition-metal hydroxides as bifunctional catalysts for the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 25925-25931.	5.2	15
1535	Cobalt Amide Imidate Imidazolate Frameworks as Highly Active Oxygen Evolution Model Materials. ACS Applied Energy Materials, 2019, 2, 8930-8938.	2.5	12
1536	Hierarchical Multiporous Nickel for Oxygen Evolution Reaction in Alkaline Media. ChemCatChem, 2019, 11, 5834-5834.	1.8	2
1537	Strategies to Break the Scaling Relation toward Enhanced Oxygen Electrocatalysis. Matter, 2019, 1, 1494-1518.	5.0	316
1538	Charge-Transfer Effects in Fe–Co and Fe–Co–Y Oxides for Electrocatalytic Water Oxidation Reaction. ACS Applied Energy Materials, 2019, 2, 8903-8911.	2.5	21
1539	Cobalt Metal–Organic Framework Based on Two Dinuclear Secondary Building Units for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2019, 11, 46658-46665.	4.0	40
1540	Activity Origin and Design Principles for Oxygen Reduction on Dual-Metal-Site Catalysts: A Combined Density Functional Theory and Machine Learning Study. Journal of Physical Chemistry Letters, 2019, 10, 7760-7766.	2.1	149
1541	Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions. Journal of the American Chemical Society, 2019, 141, 20118-20126.	6.6	683
1542	Amorphization activated ruthenium-tellurium nanorods for efficient waterÂsplitting. Nature Communications, 2019, 10, 5692.	5.8	312
1543	Noble metal-free two dimensional carbon-based electrocatalysts for water splitting. BMC Materials, 2019, 1, .	6.8	21
1544	A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nature Catalysis, 2019, 2, 1107-1114.	16.1	245
1545	On the active site for electrocatalytic water splitting on late transition metals embedded in graphene. Catalysis Science and Technology, 2019, 9, 6793-6799.	2.1	9
1546	Carbon nanofibers@NiSe core/sheath nanostructures as efficient electrocatalysts for integrating highly selective methanol conversion and less-energy intensive hydrogen production. Journal of Materials Chemistry A, 2019, 7, 25878-25886.	5.2	57
1547	Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews, 2019, 48, 5658-5716.	18.7	541
1548	A sulfonated cobalt phthalocyanine/carbon nanotube hybrid as a bifunctional oxygen electrocatalyst. Dalton Transactions, 2019, 48, 17258-17265.	1.6	31
1549	Oxygen reduction reaction mechanism on P, N co-doped graphene: a density functional theory study. New Journal of Chemistry, 2019, 43, 19308-19317.	1.4	34

#	Article	IF	CITATIONS
1550	Palladium/cobalt nanowires with improved hydrogen sensing stability at ultra-low temperatures. Nanoscale, 2019, 11, 21074-21080.	2.8	24
1551	Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. RSC Advances, 2019, 9, 31563-31571.	1.7	151
1552	Boosting the hydrogen evolution activity of a Co–N–C electrocatalyst by codoping with Al. RSC Advances, 2019, 9, 33997-34003.	1.7	4
1553	Nanostructured carbons containing FeNi/NiFe ₂ O ₄ supported over N-doped carbon nanofibers for oxygen reduction and evolution reactions. RSC Advances, 2019, 9, 36586-36599.	1.7	9
1554	Efficient Electrolytic Water Splitting with FeCoPt Trimetallic Cubic Nanocatalysts. IOP Conference Series: Materials Science and Engineering, 2019, 592, 012043.	0.3	4
1555	Unique NiFe NiCoO2 hollow polyhedron as bifunctional electrocatalysts for water splitting. Journal of Energy Chemistry, 2019, 33, 74-80.	7.1	61
1556	Reconstructing bimetallic carbide Mo ₆ Ni ₆ C for carbon interconnected MoNi alloys to boost oxygen evolution electrocatalysis. Materials Horizons, 2019, 6, 115-121.	6.4	62
1557	Cu-Ni-CoSex quaternary porous nanocubes as enhanced Pt-free electrocatalysts for highly efficient dye-sensitized solar cells and hydrogen evolution in alkaline medium. Chemical Engineering Journal, 2019, 357, 11-20.	6.6	47
1558	Carbonâ€Based Photocathode Materials for Solar Hydrogen Production. Advanced Materials, 2019, 31, e1801446.	11.1	83
1559	Copper-promoted nitrogen-doped carbon derived from zeolitic imidazole frameworks for oxygen reduction reaction. Applied Surface Science, 2019, 464, 344-350.	3.1	38
1560	An Overview of Mixed Polyanionic Cathode Materials for Sodiumâ€Ion Batteries. Small Methods, 2019, 3, 1800253.	4.6	87
1561	Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: Non–Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Applied Surface Science, 2019, 464, 78-87.	3.1	121
1562	SILAR deposited iron phosphate as a bifunctional electrocatalyst for efficient water splitting. Journal of Colloid and Interface Science, 2019, 534, 350-356.	5.0	46
1563	Selective Partial Substitution of B‣ite with Phosphorus in Perovskite Electrocatalysts for Highly Efficient Oxygen Evolution Reaction. ChemNanoMat, 2019, 5, 352-357.	1.5	8
1564	Doped porous carbon nanostructures with N Co O catalytic active sites for efficient electrocatalytic oxygen reduction reaction. Applied Surface Science, 2019, 463, 386-394.	3.1	16
1565	Defective graphene for electrocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2019, 534, 332-337.	5.0	66
1566	Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. Nano Energy, 2019, 57, 746-752.	8.2	316
1567	Nanowireâ€Templated Synthesis of FeN x â€Decorated Carbon Nanotubes as Highly Efficient, Universalâ€pH, Oxygen Reduction Reaction Catalysts. Chemistry - A European Journal, 2019, 25, 2637-2644.	1.7	16

ARTICLE IF CITATIONS Network‣ike Ni_{1â^'x}Mo_x Nanosheets: Multiâ€Functional Electrodes for Overall 1.7 16 1568 Water Splitting and Supercapacitor. ChemElectroChem, 2019, 6, 1338-1343. Metallic FePSe3 nanoparticles anchored on N-doped carbon framework for All-pH hydrogen evolution 8.2 reaction. Nano Energy, 2019, 57, 222-229. Developed magnetic multiporous 3D N-Co@C/HCF as efficient sorbent for the extraction of five trace 1570 2.6 26 phthalate esters. Analytica Chimica Acta, 2019, 1054, 176-183. Alveolate porous carbon aerogels supported Co9S8 derived from a novel hybrid hydrogel for 1571 bifunctional oxygen electrocatalysis. Carbon, 2019, 144, 557-566. Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in 1572 5.8 354 Acidic Media. CheM, 2019, 5, 445-459. Fe and S co-doped N-enriched hierarchical porous carbon polyhedron as efficient non-noble-metal electrocatalyst toward oxygen reduction reaction in both alkaline and acidic medium. Electrochimica 2.6 Acta, 2019, 298, 570-579 Emerging opportunities for black phosphorus in energy applications. Materials Today Energy, 2019, 12, 1574 2.588 1-25. Virus-templated Pt–Ni(OH)2 nanonetworks for enhanced electrocatalytic reduction of water. Nano 8.2 46 Energy, 2019, 58, 167-174. Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for 1576 8.2 181 overall water splitting. Nano Energy, 2019, 58, 1-10. Tuning the Electronic Structure of NiO via Li Doping for the Fast Oxygen Evolution Reaction. 3.2 Chemistry of Materials, 2019, 31, 419-428. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic 1578 16.1629 hydrogen evolution. Nature Catalysis, 2019, 2, 134-141. Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 1579 18.7 1,354 48, 72-133. Regulating Fast Anionic Redox for Highâ€Voltage Aqueous Hydrogenâ€Ionâ€based Energy Storage. 1580 1.6 30 Angewandte Chemie, 2019, 131, 211-216. Regulating Fast Anionic Redox for Highâ€Voltage Aqueous Hydrogenâ€Ionâ€based Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 205-210. 7.2 Component-controllable cobalt telluride nanoparticles encapsulated in nitrogen-doped carbon frameworks for efficient hydrogen evolution in alkaline conditions. Applied Catalysis B: 1582 10.8 60 Environmental, 2019, 244, 568-575. NiCo-DH nanodots anchored on amorphous NiCo-Sulfide sheets as efficient electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2019, 295, 1085-1092. Self-templated Prussian blue analogue for efficient and robust electrochemical water oxidation. 1584 3.130 Journal of Catalysis, 2019, 369, 168-174. Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis. Advanced Functional Materials, 2019, 29, 1806419.

#	Article	IF	CITATIONS
1586	N-Doped porous carbon nanosheets decorated with graphitized carbon layer encapsulated Co ₉ S ₈ nanoparticles: an efficient bifunctional electrocatalyst for the OER and ORR. Nanoscale, 2019, 11, 901-907.	2.8	90
1587	Strongly Coupled Nickel–Cobalt Nitrides/Carbon Hybrid Nanocages with Ptâ€Like Activity for Hydrogen Evolution Catalysis. Advanced Materials, 2019, 31, e1805541.	11.1	276
1588	High intrinsic catalytic activity of boron nanotubes for hydrogen evolution reaction: an <i>ab initio</i> study. Materials Research Express, 2019, 6, 025036.	0.8	3
1589	Recent advances in one-dimensional nanostructures for energy electrocatalysis. Chinese Journal of Catalysis, 2019, 40, 4-22.	6.9	48
1590	Facet-evolution growth of Mn3O4@CoxMn3-xO4 electrocatalysts on Ni foam towards efficient oxygen evolution reaction. Journal of Catalysis, 2019, 369, 105-110.	3.1	40
1591	Enabling highly efficient, flexible and rechargeable quasi-solid-state zn-air batteries via catalyst engineering and electrolyte functionalization. Energy Storage Materials, 2019, 20, 234-242.	9.5	115
1592	Recent Progress in the Design and Synthesis of Nitrides for Mesoscopic and Perovskite Solar Cells. ChemSusChem, 2019, 12, 772-786.	3.6	4
1593	Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy, 2019, 56, 411-419.	8.2	421
1594	Recent advances in transition metal–based catalysts with heterointerfaces for energy conversion and storage. Materials Today Chemistry, 2019, 11, 16-28.	1.7	72
1595	Mesoporous CoS/Nâ€doped Carbon as HER and ORR Bifunctional Electrocatalyst for Water Electrolyzers and Zincâ€Air Batteries. ChemCatChem, 2019, 11, 1026-1032.	1.8	43
1596	Coordination-assisted synthesis of iron-incorporated cobalt oxide nanoplates for enhanced oxygen evolution. Materials Today Chemistry, 2019, 11, 112-118.	1.7	30
1597	Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst. Angewandte Chemie - International Edition, 2019, 58, 1019-1024.	7.2	224
1598	Interface-strengthened CoP nanosheet array with Co2P nanoparticles as efficient electrocatalysts for overall water splitting. Journal of Energy Chemistry, 2019, 37, 1-6.	7.1	81
1599	Facile electrosynthesis of Fe (Ni/Co) hydroxyphosphate as a bifunctional electrocatalyst for efficient water splitting. Journal of Industrial and Engineering Chemistry, 2019, 70, 116-123.	2.9	21
1600	Dendritic core-shell Ni@Ni(Fe)OOH metal/metal oxyhydroxide electrode for efficient oxygen evolution reaction. Applied Surface Science, 2019, 469, 731-738.	3.1	34
1601	In Situ Growth of Ag Nanodots Decorated Cu ₂ O Porous Nanobelts Networks on Copper Foam for Efficient HER Electrocatalysis. Small, 2019, 15, e1804268.	5.2	82
1602	Nanoporous Carbon: Liquid-Free Synthesis and Geometry-Dependent Catalytic Performance. ACS Nano, 2019, 13, 2463-2472.	7.3	15
1603	MnO ₂ Nanostructures Deposited on Graphene-Like Porous Carbon Nanosheets for High-Rate Performance and High-Energy Density Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 3101-3110.	3.2	66

#	Article	IF	CITATIONS
1604	Highly Active Cobalt/Tungsten Carbide@Nâ€Doped Porous Carbon Nanomaterials Derived from Metalâ€Organic Frameworks as Bifunctional Catalysts for Overall Water Splitting. Energy Technology, 2019, 7, 1800969.	1.8	40
1605	From pentagonal geometries to two-dimensional materials. Computational Materials Science, 2019, 159, 448-453.	1.4	24
1606	Recent Progress in Decoupled H ₂ and O ₂ Production from Electrolytic Water Splitting. ChemElectroChem, 2019, 6, 2157-2166.	1.7	49
1608	Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy, 2019, 58, 244-276.	8.2	298
1609	Functional Electrocatalysts Derived from Prussian Blue and its Analogues for Metalâ€Air Batteries: Progress and Prospects. Batteries and Supercaps, 2019, 2, 290-310.	2.4	36
1610	Supercritical CO2-Assisted synthesis of NiFe2O4/vertically-aligned carbon nanotube arrays hybrid as a bifunctional electrocatalyst for efficient overall water splitting. Carbon, 2019, 145, 201-208.	5.4	70
1611	Rare-earth metal oxide hybridized PtFe nanocrystals synthesized via microfluidic process for enhanced electrochemical catalytic performance. Electrochimica Acta, 2019, 299, 80-88.	2.6	27
1612	Metal-organic frameworks derived bundled N-doped carbon nanowires confined cobalt phosphide nanocrystals as a robust electrocatalyst for hydrogen production. Electrochimica Acta, 2019, 299, 423-429.	2.6	42
1613	Heterostructured MoC-MoP/N-doped carbon nanofibers as efficient electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2019, 299, 708-716.	2.6	48
1614	Multi-active sites derived from a single/double perovskite hybrid for highly efficient water oxidation. Electrochimica Acta, 2019, 299, 926-932.	2.6	37
1615	Fully Tensile Strained Pd ₃ Pb/Pd Tetragonal Nanosheets Enhance Oxygen Reduction Catalysis. Nano Letters, 2019, 19, 1336-1342.	4.5	109
1616	Theoretical Expectation and Experimental Implementation of In Situ Al-Doped CoS ₂ Nanowires on Dealloying-Derived Nanoporous Intermetallic Substrate as an Efficient Electrocatalyst for Boosting Hydrogen Production. ACS Catalysis, 2019, 9, 1489-1502.	5.5	112
1617	Nanosheet-like Co ₃ (OH) ₂ (HPO ₄) ₂ as a Highly Efficient and Stable Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 3083-3091.	3.2	39
1618	Promotion of Overall Water Splitting Activity Over a Wide pH Range by Interfacial Electrical Effects of Metallic NiCoâ€nitrides Nanoparticle/NiCo ₂ O ₄ Nanoflake/graphite Fibers. Advanced Science, 2019, 6, 1801829.	5.6	122
1619	N-Doped 3D Porous Ni/C Bifunctional Electrocatalysts for Alkaline Water Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 3974-3981.	3.2	59
1620	Helical cobalt borophosphates to master durable overall water-splitting. Energy and Environmental Science, 2019, 12, 988-999.	15.6	179
1621	Vulcan XC-72 treated by nitric acid and its electrocatalytic activity for oxygen reduction reaction. Functional Materials Letters, 2019, 12, 1950017.	0.7	3
1622	Recent Advances in Metalâ€Organic Framework Derivatives as Oxygen Catalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 272-289.	2.4	121

#	Article	IF	CITATIONS
1623	RuO2 nanocluster as a 4-in-1 electrocatalyst for hydrogen and oxygen electrochemistry. Nano Energy, 2019, 55, 49-58.	8.2	66
1624	Towards highly efficient and low-cost oxygen evolution reaction electrocatalysts: An effective method of electronic waste management by utilizing waste Cu cable wires. Journal of Colloid and Interface Science, 2019, 537, 43-49.	5.0	41
1625	On an Easy Way to Prepare Fe, S, N Tri-Doped Mesoporous Carbon Materials as Efficient Electrocatalysts for Oxygen Reduction Reaction. Electrocatalysis, 2019, 10, 72-81.	1.5	15
1626	(003)-Facet-exposed Ni3S2 nanoporous thin films on nickel foil for efficient water splitting. Applied Catalysis B: Environmental, 2019, 243, 693-702.	10.8	129
1627	CoxNiyP embedded in nitrogen-doped porous carbon on Ni foam for efficient hydrogen evolution. Applied Surface Science, 2019, 469, 61-67.	3.1	14
1628	Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Research, 2019, 12, 471-487.	5.8	358
1629	Application of Sm0.8Sr0.2Fe1-xCoxO3-Î′ (x = 0.2, 0.5, 0.8) Perovskite for the Oxygen Evolution Reaction Alkaline Media. Electrocatalysis, 2019, 10, 305-313.	in 1.5	10
1630	Efficient hydrogen generation on graphdiyne-based heterostructure. Nano Energy, 2019, 55, 135-142.	8.2	59
1631	Design of Noble Metal Electrocatalysts on an Atomic Level. ChemElectroChem, 2019, 6, 289-303.	1.7	46
1632	Nonâ€3d Metal Modulation of a Cobalt Imidazolate Framework for Excellent Electrocatalytic Oxygen Evolution in Neutral Media. Angewandte Chemie - International Edition, 2019, 58, 139-143.	7.2	113
1633	One-step hydrothermal synthesis of three-dimensional nitrogen-doped reduced graphene oxide hydrogels anchored PtPd alloyed nanoparticles for ethylene glycol oxidation and hydrogen evolution reactions. Electrochimica Acta, 2019, 293, 504-513.	2.6	146
1634	Nonâ€3d Metal Modulation of a Cobalt Imidazolate Framework for Excellent Electrocatalytic Oxygen Evolution in Neutral Media. Angewandte Chemie, 2019, 131, 145-149.	1.6	18
1635	Engineering ordered dendrite-like nickel selenide as electrocatalyst. Electrochimica Acta, 2019, 295, 92-98.	2.6	40
1636	Dualâ€phase membrane reactor for hydrogen separation with high tolerance to CO ₂ and H ₂ S impurities. AICHE Journal, 2019, 65, 1088-1096.	1.8	31
1637	Climbing the 3D Volcano for the Oxygen Reduction Reaction Using Porphyrin Motifs. ACS Sustainable Chemistry and Engineering, 2019, 7, 611-617.	3.2	31
1638	Construction of FeP Hollow Nanoparticles Densely Encapsulated in Carbon Nanosheet Frameworks for Efficient and Durable Electrocatalytic Hydrogen Production. Advanced Science, 2019, 6, 1801490.	5.6	68
1639	MnO/Nâ€Ðoped Mesoporous Carbon as Advanced Oxygen Reduction Reaction Electrocatalyst for Zinc–Air Batteries. Chemistry - A European Journal, 2019, 25, 2868-2876.	1.7	29
1640	Adsorption properties of O2 on the unequal amounts of binary co-doped graphene by B/N and P/N: A density functional theory study. Applied Surface Science, 2019, 471, 445-454.	3.1	18

#	Article	IF	CITATIONS
1641	Facile Synthesis of Amorphous Ternary Metal Borides–Reduced Graphene Oxide Hybrid with Superior Oxygen Evolution Activity. ACS Applied Materials & Interfaces, 2019, 11, 846-855.	4.0	67
1642	A practical-oriented NiFe-based water-oxidation catalyst enabled by ambient redox and hydrolysis co-precipitation strategy. Applied Catalysis B: Environmental, 2019, 244, 844-852.	10.8	125
1643	Hierarchical design and development of nanostructured trifunctional catalysts for electrochemical oxygen and hydrogen reactions. Nano Energy, 2019, 56, 724-732.	8.2	51
1644	Advanced Electrocatalytic Performance of Ni-Based Materials for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 341-349.	3.2	43
1645	Surface reconstruction of cobalt phosphide nanosheets by electrochemical activation for enhanced hydrogen evolution in alkaline solution. Chemical Science, 2019, 10, 2019-2024.	3.7	163
1646	Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy, 2019, 57, 1-13.	8.2	211
1647	Ultrasmall Ni/NiO Nanoclusters on Thiol-Functionalized and -Exfoliated Graphene Oxide Nanosheets for Durable Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 363-371.	2.5	74
1648	Computational Screening of Efficient Singleâ€Atom Catalysts Based on Graphitic Carbon Nitride (g ₃ N ₄) for Nitrogen Electroreduction. Small Methods, 2019, 3, 1800368.	4.6	347
1649	A Biomassâ€Derived Carbonâ€Based Electrocatalyst for Efficient N ₂ Fixation to NH ₃ under Ambient Conditions. Chemistry - A European Journal, 2019, 25, 1914-1917.	1.7	68
1650	Tracing the Origin of Visible Light Enhanced Oxygen Evolution Reaction. Advanced Materials Interfaces, 2019, 6, 1801543.	1.9	5
1651	Bridging the Surface Charge and Catalytic Activity of a Defective Carbon Electrocatalyst. Angewandte Chemie, 2019, 131, 1031-1036.	1.6	41
1652	Multimetal Borides Nanochains as Efficient Electrocatalysts for Overall Water Splitting. Small, 2019, 15, e1804212.	5.2	135
1653	Fabricating hierarchically porous and Fe3C-embeded nitrogen-rich carbon nanofibers as exceptional electocatalysts for oxygen reduction. Carbon, 2019, 142, 115-122.	5.4	57
1654	Quantum chemistry of the oxygen reduction reaction (ORR) on Fe-G iron doped graphene for fuel cells. International Journal of Hydrogen Energy, 2019, 44, 12439-12445.	3.8	17
1655	Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Applied Catalysis B: Environmental, 2019, 242, 60-66.	10.8	332
1656	Atomic Modulation and Structure Design of Carbons for Bifunctional Electrocatalysis in Metal–Air Batteries. Advanced Materials, 2019, 31, e1803800.	11.1	208
1657	Understanding the Roles of NiO _{<i>x</i>} in Enhancing the Photoelectrochemical Performance of BiVO ₄ Photoanodes for Solar Water Splitting. ChemSusChem, 2019, 12, 2022-2028.	3.6	31
1658	Cobalt and nitrogen codoped porous carbon as superior bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reaction in alkaline medium. Chinese Chemical Letters, 2019, 30, 681-685.	4.8	40

#	Article	IF	CITATIONS
1659	Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications. Progress in Materials Science, 2019, 100, 99-169.	16.0	235
1660	In-situ growth of graphene decorated Ni3S2 pyramids on Ni foam for high-performance overall water splitting. Applied Surface Science, 2019, 465, 772-779.	3.1	39
1661	Electronic and Structural Engineering of Carbonâ€Based Metalâ€Free Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1803625.	11.1	229
1662	Modulierung der elektronischen Strukturen anorganischer Nanomaterialien für eine effiziente elektrokatalytische Wasserspaltung. Angewandte Chemie, 2019, 131, 4532-4551.	1.6	34
1663	Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 4484-4502.	7.2	340
1664	Synthesis of CoAl-LDH nanosheets and N-doped graphene nanocomposite via Successive Ionic Layer Deposition method and study of their electrocatalytic properties for hydrogen evolution in alkaline media. Journal of Solid State Chemistry, 2019, 270, 156-161.	1.4	23
1665	Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arabian Journal of Chemistry, 2020, 13, 3498-3520.	2.3	282
1666	Identifying the single active site in MoS2-based hydrogen evolution electrocatalyst by XAFS technique. Radiation Physics and Chemistry, 2020, 175, 108151.	1.4	8
1667	Carbon cloth/transition metals-based hybrids with controllable architectures for electrocatalytic hydrogen evolution - A review. International Journal of Hydrogen Energy, 2020, 45, 7716-7740.	3.8	101
1668	Overwhelming electrochemical oxygen reduction reaction of zinc-nitrogen-carbon from biomass resource chitosan via a facile carbon bath method. Chinese Chemical Letters, 2020, 31, 1207-1212.	4.8	13
1669	In situ growth of NiO·85Se on graphene as a robust electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 10486-10493.	3.8	41
1670	Multiscale design for high-performance glycolic acid electro-synthesis cell: Preparation of nanoscale-IrO2-applied Ti anode and optimization of cell assembling. Catalysis Today, 2020, 351, 12-20.	2.2	13
1671	Cu and Pd nanoparticles supported on a graphitic carbon material as bifunctional HER/ORR electrocatalysts. Catalysis Today, 2020, 357, 279-290.	2.2	31
1672	Three dimensional (3D) nanostructured assembly of MoS2-WS2/Graphene as high performance electrocatalysts. International Journal of Hydrogen Energy, 2020, 45, 10475-10485.	3.8	26
1673	Serpentine CoxNi3-xGe2O5(OH)4 nanosheets with tuned electronic energy bands for highly efficient oxygen evolution reaction in alkaline and neutral electrolytes. Applied Catalysis B: Environmental, 2020, 260, 118184.	10.8	28
1674	Low boiling point solvent mediated strategy to synthesize functionalized monolayer carbon nitride for superior photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 260, 118181.	10.8	142
1675	Development of RuO2/CeO2 heterostructure as an efficient OER electrocatalyst for alkaline water splitting. International Journal of Hydrogen Energy, 2020, 45, 18635-18644.	3.8	93
1676	Hierarchical bimetal embedded in carbon nanoflower electrocatalysts derived from metal-organic frameworks for efficient oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 813, 152192.	2.8	27

#	Article	IF	CITATIONS
1677	Engineering Ni2P-NiSe2 heterostructure interface for highly efficient alkaline hydrogen evolution. Applied Catalysis B: Environmental, 2020, 262, 118245.	10.8	199
1678	Synergistically enhanced oxygen reduction electrocatalysis by atomically dispersed and nanoscaled Co species in three-dimensional mesoporous Co, N-codoped carbon nanosheets network. Applied Catalysis B: Environmental, 2020, 260, 118207.	10.8	74
1679	MOF-derived Co9S8/MoS2 embedded in tri-doped carbon hybrids for efficient electrocatalytic hydrogen evolution. Journal of Energy Chemistry, 2020, 44, 90-96.	7.1	32
1680	In-situ transformation to accordion-like core-shell structured metal@metallic hydroxide nanosheet from nanorod morphology for overall water-splitting in alkaline media. Journal of Colloid and Interface Science, 2020, 559, 105-114.	5.0	13
1681	A Novel Spherical Boron Phosphide as a High-Efficiency Overall Water Splitting Catalyst: A Density Functional Theory Study. Catalysis Letters, 2020, 150, 544-554.	1.4	7
1682	Borate crosslinking synthesis of structure tailored carbon-based bifunctional electrocatalysts directly from guar gum hydrogels for efficient overall water splitting. Carbon, 2020, 157, 153-163.	5.4	30
1683	Hollow Micro- and Nanomaterials: Synthesis and Applications. , 2020, , 1-38.		14
1684	Nanocarbon-Based Hybrids as Electrocatalysts for Hydrogen and Oxygen Evolution From Water Splitting. , 2020, , 379-418.		2
1685	Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition. Journal of Energy Chemistry, 2020, 45, 59-66.	7.1	54
1686	Multifunctional Transition Metalâ€Based Phosphides in Energyâ€Related Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902104.	10.2	322
1687	Nickel–manganese bimetallic phosphides porous nanosheet arrays as highly active bifunctional hydrogen and oxygen evolution electrocatalysts for overall water splitting. Electrochimica Acta, 2020, 329, 135121.	2.6	43
1688	Role of local coordination in bimetallic sites for oxygen reduction: A theoretical analysis. Journal of Energy Chemistry, 2020, 44, 131-137.	7.1	36
1689	Znâ€Doped Porous CoNiP Nanosheet Arrays as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. Energy Technology, 2020, 8, 1901079.	1.8	20
1690	An Engineered Superhydrophilic/Superaerophobic Electrocatalyst Composed of the Supported CoMoS _{<i>x</i>} Chalcogel for Overall Water Splitting. Angewandte Chemie, 2020, 132, 1676-1682.	1.6	12
1691	Unpaired 3d Electrons on Atomically Dispersed Cobalt Centres in Coordination Polymers Regulate both Oxygen Reduction Reaction (ORR) Activity and Selectivity for Use in Zinc–Air Batteries. Angewandte Chemie - International Edition, 2020, 59, 286-294.	7.2	200
1692	Relative Efficacy of Coâ^X ₄ Embedded Graphene (X=N, S, B, and P) Electrocatalysts towards Hydrogen Evolution Reaction: Is Nitrogen Really the Best Choice?. ChemCatChem, 2020, 12, 536-543.	1.8	32
1693	Porous transition metal phosphides derived from Fe-based Prussian blue analogue for oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 814, 152332.	2.8	36
1694	B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 261, 118240.	10.8	191

#	Article	IF	CITATIONS
1695	Binder free, robust and scalable CuO@GCE modified electrodes for efficient electrochemical water oxidation. Materials Chemistry and Physics, 2020, 239, 122321.	2.0	14
1696	Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews, 2020, 120, 919-985.	23.0	1,605
1697	FexNiyOOH/etched stainless steel mesh with different morphology for water electrolysis. Ionics, 2020, 26, 301-309.	1.2	7
1698	Self-supported Ni2P nanosheets on low-cost three-dimensional Fe foam as a novel electrocatalyst for efficient water oxidation. Journal of Energy Chemistry, 2020, 42, 71-76.	7.1	44
1699	Charge Transfer Modulated Activity of Carbonâ€Based Electrocatalysts. Advanced Energy Materials, 2020, 10, 1901227.	10.2	156
1700	Boosting visible-light hydrogen evolution of covalent-organic frameworks by introducing Ni-based noble metal-free co-catalyst. Chemical Engineering Journal, 2020, 379, 122342.	6.6	117
1701	Tuning catalytic performance by controlling reconstruction process in operando condition. Applied Catalysis B: Environmental, 2020, 260, 118103.	10.8	68
1702	Nitrogen-doped carbon nanotube–graphene hybrid stabilizes MxN (M =â€Fe, Co) nanoparticles for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2020, 268, 118415.	10.8	46
1703	"Structural instability―induced high-performance NiFe layered double hydroxides as oxygen evolution reaction catalysts for pH-near-neutral borate electrolyte: The role of intercalates. Applied Catalysis B: Environmental, 2020, 263, 118343.	10.8	39
1704	Large scale synthesis of Mo2C nanoparticle incorporated carbon nanosheet (Mo2C–C) for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 18623-18634.	3.8	30
1705	Metal Borideâ€Based Catalysts for Electrochemical Waterâ€5plitting: A Review. Advanced Functional Materials, 2020, 30, 1906481.	7.8	268
1706	Recent advances in the utilization of copper sulfide compounds for electrochemical CO2 reduction. Nano Materials Science, 2020, 2, 235-247.	3.9	45
1707	FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Applied Catalysis B: Environmental, 2020, 263, 118344.	10.8	217
1708	Fabrication of a Hierarchical Ni(OH) 2 @Ni 3 S 2 /Ni Foam Electrode from a Prussian Blue Analogueâ€Based Composite with Enhanced Electrochemical Capacitive and Electrocatalytic Properties. Chemistry - A European Journal, 2020, 26, 1111-1116.	1.7	6
1709	Porous organic polymer derived metal-free carbon composite as an electrocatalyst for CO2 reduction and water splitting. Journal of the Taiwan Institute of Chemical Engineers, 2020, 106, 183-190.	2.7	17
1710	In situ construction of hierarchical graphitic carbon nitride homojunction as robust bifunctional photoelectrocatalyst for overall water splitting. Journal of Chemical Technology and Biotechnology, 2020, 95, 758-769.	1.6	6
1711	Self-supported iron-doping NiSe2 nanowrinkles as bifunctional electrocatalysts for electrochemical water splitting. Journal of Alloys and Compounds, 2020, 818, 152833.	2.8	25
1712	Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 263, 118352.	10.8	124

#	Article	IF	CITATIONS
1713	A highly active and durable electrocatalyst for large current density hydrogen evolution reaction. Science Bulletin, 2020, 65, 123-130.	4.3	58
1714	Trimetallic Mnâ€Feâ€Ni Oxide Nanoparticles Supported on Multiâ€Walled Carbon Nanotubes as Highâ€Performance Bifunctional ORR/OER Electrocatalyst in Alkaline Media. Advanced Functional Materials, 2020, 30, 1905992.	7.8	209
1715	Effect of Controlled Oxygen Vacancy on H ₂ â€Production through the Piezocatalysis and Piezophototronics of Ferroelectric R3C ZnSnO ₃ Nanowires. Advanced Functional Materials, 2020, 30, 1907619.	7.8	142
1716	Bimetallic Cuâ^'Zn Coâ€Doped Porous N/C as Efficient Catalysts for Oxygen Reduction Reaction and Oxidation of 1,2â€Propanediol. ChemCatChem, 2020, 12, 584-592.	1.8	10
1717	Unpaired 3d Electrons on Atomically Dispersed Cobalt Centres in Coordination Polymers Regulate both Oxygen Reduction Reaction (ORR) Activity and Selectivity for Use in Zinc–Air Batteries. Angewandte Chemie, 2020, 132, 292-300.	1.6	21
1718	An Engineered Superhydrophilic/Superaerophobic Electrocatalyst Composed of the Supported CoMoS _{<i>x</i>} Chalcogel for Overall Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 1659-1665.	7.2	268
1719	Hierarchical porous bimetal-sulfide bi-functional nanocatalysts for hydrogen production by overall water electrolysis. Journal of Colloid and Interface Science, 2020, 560, 426-435.	5.0	38
1720	Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 2020, 120, 851-918.	23.0	1,767
1721	High catalytic performance of tungsten disulphide rodes in oxygen evolution reactions in alkaline solutions. Applied Catalysis B: Environmental, 2020, 266, 118575.	10.8	40
1722	Recent Advances in Two-dimensional Materials for Electrochemical Energy Storage and Conversion. Chemical Research in Chinese Universities, 2020, 36, 10-23.	1.3	41
1723	Engineered porous Co–Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment. Journal of Alloys and Compounds, 2020, 823, 153784.	2.8	34
1724	Designing Atomic Active Centers for Hydrogen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2020, 59, 20794-20812.	7.2	257
1725	Recent Advances on Black Phosphorus Based Electrocatalysts for Water‧plitting. ChemCatChem, 2020, 12, 1913-1921.	1.8	17
1726	Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting. Coordination Chemistry Reviews, 2020, 407, 213156.	9.5	167
1727	Enhanced charge transport in ReSe ₂ -based 2D/3D electrodes for efficient hydrogen evolution reaction. Chemical Communications, 2020, 56, 305-308.	2.2	11
1728	Computational screening of transition metal-doped phthalocyanine monolayers for oxygen evolution and reduction. Nanoscale Advances, 2020, 2, 710-716.	2.2	30
1729	Platinum nanoparticles on defect-rich nitrogen-doped hollow carbon as an efficient electrocatalyst for hydrogen evolution reactions. RSC Advances, 2020, 10, 930-937.	1.7	9
1730	An advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting. Sustainable Energy and Fuels, 2020, 4, 312-323.	2.5	125

#	Article	IF	CITATIONS
1731	Single-atom catalysts for electrochemical clean energy conversion: recent progress and perspectives. Sustainable Energy and Fuels, 2020, 4, 996-1011.	2.5	36
1732	Detecting structural transformation of cobalt phosphonate to active bifunctional catalysts for electrochemical water-splitting. Journal of Materials Chemistry A, 2020, 8, 2637-2643.	5.2	80
1733	Nanoconfined Synthesis of Nitrogen-Rich Metal-Free Mesoporous Carbon Nitride Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 1439-1447.	2.5	29
1734	Anion-cation dual doping: An effective electronic modulation strategy of Ni2P for high-performance oxygen evolution. Journal of Energy Chemistry, 2020, 48, 116-121.	7.1	23
1735	Single Nanometer-Sized NiFe-Layered Double Hydroxides as Anode Catalyst in Anion Exchange Membrane Water Electrolysis Cell with Energy Conversion Efficiency of 74.7% at 1.0 A cm ^{–2} . ACS Catalysis, 2020, 10, 1886-1893.	5.5	91
1736	Au-Decorated CoOOH Nanoplate Hierarchical Hollow Structure for Plasmon-Enhanced Electrocatalytic Water Oxidation. ACS Applied Energy Materials, 2020, 3, 943-950.	2.5	16
1737	Hierarchically Constructed Silver Nanowire@Nickel–Iron Layered Double Hydroxide Nanostructures for Electrocatalytic Water Splitting. ACS Applied Nano Materials, 2020, 3, 887-895.	2.4	29
1738	Earth Abundant Electrocatalyst. , 2020, , 1-28.		0
1739	Fabrication and study of the synergistic effect of Janus Ni ₂ P/Ni ₅ P ₄ embedded in N-doped carbon as efficient electrocatalysts for hydrogen evolution reaction. Catalysis Science and Technology, 2020, 10, 1023-1029.	2.1	13
1740	Sulfur vacancy-tailored NiCo ₂ S ₄ nanosheet arrays for the hydrogen evolution reaction at all pH values. Catalysis Science and Technology, 2020, 10, 1056-1065.	2.1	42
1741	Morphology control of metal-modified zirconium phosphate support structures for the oxygen evolution reaction. Dalton Transactions, 2020, 49, 3892-3900.	1.6	20
1742	Accelerative oxygen evolution by Cu-doping into Fe-Co oxides. Sustainable Energy and Fuels, 2020, 4, 143-148.	2.5	7
1743	Hierarchically Organized NiCo ₂ O ₄ Microflowers Anchored on Multiwalled Carbon Nanotubes: Efficient Bifunctional Electrocatalysts for Oxygen and Hydrogen Evolution Reactions. ChemPlusChem, 2020, 85, 183-194.	1.3	33
1744	Dopamine-assisted synthesis of rGO@NiPd@NC sandwich structure for highly efficient hydrogen evolution reaction. Journal of Solid State Electrochemistry, 2020, 24, 137-144.	1.2	5
1745	CuS@defect-rich MoS2 core-shell structure for enhanced hydrogen evolution. Journal of Colloid and Interface Science, 2020, 564, 77-87.	5.0	44
1746	Three-Dimensional N-Doped Carbon Nanotube Frameworks on Ni Foam Derived from a Metal–Organic Framework as a Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 3592-3602.	4.0	88
1747	Design von komplexen Mischkristallâ€Elektrokatalysatoren auf Basis der Korrelation von Konfiguration, Verteilungsmustern der Adsorptionsenergie und Aktivitäskurven. Angewandte Chemie, 2020, 132, 5893-5900.	1.6	15
1748	Boronâ€Induced Electronicâ€Structure Reformation of CoP Nanoparticles Drives Enhanced pHâ€Universal Hydrogen Evolution. Angewandte Chemie, 2020, 132, 4183-4189.	1.6	23

#	Article	IF	CITATIONS
1749	Design of Complex Solidâ€Solution Electrocatalysts by Correlating Configuration, Adsorption Energy Distribution Patterns, and Activity Curves. Angewandte Chemie - International Edition, 2020, 59, 5844-5850.	7.2	81
1750	Boronâ€Induced Electronicâ€Structure Reformation of CoP Nanoparticles Drives Enhanced pHâ€Universal Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 4154-4160.	7.2	221
1751	Computational and Experimental Study of Fluorine Doped (Mn _{1–<i>x</i>} Nb _{<i>x</i>})O ₂ Nanorod Electrocatalysts for Acid-Mediated Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 541-557.	2.5	30
1752	Defect enhanced CoP/Reduced graphene oxide electrocatalytic hydrogen production with pt-like activity. Applied Catalysis B: Environmental, 2020, 265, 118576.	10.8	34
1753	Porosityâ€Engineering of MXene as a Support Material for a Highly Efficient Electrocatalyst toward Overall Water Splitting. ChemSusChem, 2020, 13, 945-955.	3.6	55
1754	Two-dimensional cobalt prussian blue nanosheets: Template-directed synthesis and electrocatalytic oxygen evolution property. Electrochimica Acta, 2020, 333, 135544.	2.6	12
1755	A Ni2P nanocrystal cocatalyst enhanced TiO2 photoanode towards highly efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2020, 385, 123878.	6.6	71
1756	Effect of Graphene Encapsulation of NiMo Alloys on Oxygen Evolution Reaction. ACS Catalysis, 2020, 10, 792-799.	5.5	60
1757	Porous β-Mo2C nanoparticle clusters supported on walnut shell powders derived carbon matrix for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2020, 563, 104-111.	5.0	28
1758	RuNi Nanoparticles Embedded in Nâ€Doped Carbon Nanofibers as a Robust Bifunctional Catalyst for Efficient Overall Water Splitting. Advanced Science, 2020, 7, 1901833.	5.6	152
1759	Regulating the Spin State of Fe ^{III} by Atomically Anchoring on Ultrathin Titanium Dioxide for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 2313-2317.	7.2	214
1760	A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. Journal of Power Sources, 2020, 448, 227375.	4.0	217
1761	Encapsulating metal organic framework into hollow mesoporous carbon sphere as efficient oxygen bifunctional electrocatalyst. National Science Review, 2020, 7, 609-619.	4.6	95
1762	Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N–doped graphene by accelerating water dissociation. Nano Energy, 2020, 68, 104301.	8.2	138
1763	Investigation of anion doping effect to boost overall water splitting. Journal of Catalysis, 2020, 381, 84-95.	3.1	25
1764	Nitrogen-doped graphene nanosheets supported assembled Pd nanoflowers for efficient ethanol electrooxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 587, 124257.	2.3	9
1765	A multiphase nickel iron sulfide hybrid electrode for highly active oxygen evolution. Science China Materials, 2020, 63, 356-363.	3.5	23
1766	3D Nitrogenâ€Doped Graphene Encapsulated Metallic Nickel–Iron Alloy Nanoparticles for Efficient Bifunctional Oxygen Electrocatalysis. Chemistry - A European Journal, 2020, 26, 4044-4051.	1.7	25

#	Article	IF	CITATIONS
1767	Methods for Electrocatalysis. , 2020, , .		2
1768	Vertical Nickel–Iron layered double hydroxide nanosheets grown on hills-like nickel framework for efficient water oxidation and splitting. International Journal of Hydrogen Energy, 2020, 45, 3986-3994.	3.8	13
1769	Temperature and doping-tuned coordination environments around electroactive centers in Fe-doped α(β)-Ni(OH)2 for excellent water splitting. Sustainable Energy and Fuels, 2020, 4, 1522-1531.	2.5	24
1770	Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy and Environmental Science, 2020, 13, 229-237.	15.6	78
1771	Direct synthesis of bifunctional nanorods from a Co–adenine–MoO ₃ hybrid for overall water splitting. Materials Chemistry Frontiers, 2020, 4, 546-554.	3.2	17
1772	Co ₉ S ₈ integrated into nitrogen/sulfur dual-doped carbon nanofibers as an efficient oxygen bifunctional electrocatalyst for Zn–air batteries. Sustainable Energy and Fuels, 2020, 4, 1093-1098.	2.5	15
1773	Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 2020, 8, 2934-2961.	5.2	170
1774	One-step construction of multi-doped nanoporous carbon-based nanoarchitecture as an advanced bifunctional oxygen electrode for Zn-Air batteries. Applied Catalysis B: Environmental, 2020, 265, 118594.	10.8	45
1775	Recent progress of MXenes as the support of catalysts for the CO oxidation and oxygen reduction reaction. Chinese Chemical Letters, 2020, 31, 931-936.	4.8	32
1776	Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review. Journal of Alloys and Compounds, 2020, 819, 153346.	2.8	253
1777	Amorphous Intermediate Derivative from ZIFâ€67 and Its Outstanding Electrocatalytic Activity. Small, 2020, 16, e1904252.	5.2	120
1778	Three-Dimensional Heterostructured NiCoP@NiMn-Layered Double Hydroxide Arrays Supported on Ni Foam as a Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 4385-4395.	4.0	117
1779	Supercapacitor and oxygen evolution reaction performances based on morphology-dependent Co-MOFs. Journal of Solid State Chemistry, 2020, 283, 121128.	1.4	27
1780	Promotion of Nitrogen Reserve and Electronic Regulation in Bamboo-like Carbon Tubules by Cobalt Nanoparticles for Highly Efficient ORR. ACS Applied Energy Materials, 2020, 3, 2323-2330.	2.5	39
1781	Double Metal Diphosphide Pair Nanocages Coupled with P-Doped Carbon for Accelerated Oxygen and Hydrogen Evolution Kinetics. ACS Applied Materials & Interfaces, 2020, 12, 727-733.	4.0	93
1782	Mn-Doped RuO ₂ Nanocrystals as Highly Active Electrocatalysts for Enhanced Oxygen Evolution in Acidic Media. ACS Catalysis, 2020, 10, 1152-1160.	5.5	302
1783	Amorphous MoS2 coated Ni3S2 nanosheets as bifunctional electrocatalysts for high-efficiency overall water splitting. Electrochimica Acta, 2020, 332, 135454.	2.6	65
1784	Advanced catalysts for hydrogen evolution reaction based on MoS2/NiCo2S4 heterostructures in Alkaline Media. International Journal of Hydrogen Energy, 2020, 45, 1759-1768.	3.8	20

#	Article	IF	CITATIONS
1785	A Triphasic Bifunctional Oxygen Electrocatalyst with Tunable and Synergetic Interfacial Structure for Rechargeable Znâ€Air Batteries. Advanced Energy Materials, 2020, 10, 1903003.	10.2	74
1786	Atomically Dispersed Mo Supported on Metallic Co ₉ S ₈ Nanoflakes as an Advanced Nobleâ€Metalâ€Free Bifunctional Water Splitting Catalyst Working in Universal pH Conditions. Advanced Energy Materials, 2020, 10, 1903137.	10.2	162
1787	Efficient hydrogen production via urea electrolysis with cobalt doped nickel hydroxide-riched hybrid films: Cobalt doping effect and mechanism aspect. Journal of Catalysis, 2020, 381, 454-461.	3.1	62
1788	Self-Supported Iridium Oxide Nanostructures for Electrocatalytic Water Oxidation in Acidic Media. Journal of Physical Chemistry C, 2020, 124, 2-8.	1.5	24
1789	Si-Based Water Oxidation Photoanodes Conjugated with Earth-Abundant Transition Metal-Based Catalysts. , 2020, 2, 107-126.		35
1790	Tailoring the thickness of MoSe2 layer of the hierarchical double-shelled N-doped carbon@MoSe2 hollow nanoboxes for efficient and stable hydrogen evolution reaction. Journal of Catalysis, 2020, 381, 363-373.	3.1	49
1791	Nitrogen-coordinated metallic cobalt disulfide self-encapsulated in graphitic carbon for electrochemical water oxidation. Applied Catalysis B: Environmental, 2020, 268, 118449.	10.8	44
1792	Investigating affordable cobalt based metallosurfactant as an efficient electrocatalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2020, 562, 598-607.	5.0	23
1793	Surface Activation and Reconstruction of Non-Oxide-Based Catalysts Through in Situ Electrochemical Tuning for Oxygen Evolution Reactions in Alkaline Media. ACS Catalysis, 2020, 10, 463-493.	5.5	196
1794	Iron oxide@graphitic carbon core-shell nanoparticles embedded in ordered mesoporous N-doped carbon matrix as an efficient cathode catalyst for PEMFC. Applied Catalysis B: Environmental, 2020, 264, 118468.	10.8	59
1795	Rapid growth of amorphous cobalt-iron oxyhydroxide nanosheet arrays onto iron foam: Highly efficient and low-cost catalysts for oxygen evolution. Journal of Electroanalytical Chemistry, 2020, 856, 113621.	1.9	13
1796	Guarding active sites and electron transfer engineering of core-shell nanosheet as robust bifunctional applications for overall water splitting and capacitors. Electrochimica Acta, 2020, 331, 135372.	2.6	3
1797	Facile preparation of N, P co-doped molybdenum carbide / porous carbon rough microspheres for efficient electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 595-604.	3.8	22
1798	Graphitic‧hell Encapsulation of Metal Electrocatalysts for Oxygen Evolution, Oxygen Reduction, and Hydrogen Evolution in Alkaline Solution. Advanced Energy Materials, 2020, 10, 1903215.	10.2	138
1799	Regulating the Spin State of Fe ^{III} by Atomically Anchoring on Ultrathin Titanium Dioxide for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2020, 132, 2333-2337.	1.6	24
1800	Monomeric MoS ₄ ^{2–} -Derived Polymeric Chains with Active Molecular Units for Efficient Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 652-662.	5.5	37
1801	Vertically aligned NiS2/CoS2/MoS2 nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media. Science Bulletin, 2020, 65, 359-366.	4.3	45
1802	3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902494.	10.2	97

ARTICLE IF CITATIONS Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy. 1803 2.2 272 International Journal of Energy Research, 2020, 44, 4110-4131. Iron encased organic networks with enhanced lithium storage properties. Energy Storage, 2020, 2, 1804 2.3 e114. Cobalt-gluconate-derived high-density cobalt sulfides nanocrystals encapsulated within nitrogen and sulfur dual-doped micro/mesoporous carbon spheres for efficient electrocatalysis of oxygen 1805 5.031 reduction. Journal of Colloid and Interface Science, 2020, 561, 829-837. Hollow carbon spheres codoped with nitrogen and iron as effective electrocatalysts for oxygen 4.0 reduction reaction. Journal of Power Sources, 2020, 450, 227659. Phosphomolybdic Acid as a Catalyst for Oxidative Valorization of Biomass and Its Application as an 1807 5.5 33 Alternative Electron Source. ACS Catalysis, 2020, 10, 2060-2068. An Fe–V@NiO heterostructure electrocatalyst towards the oxygen evolution reaction. Nanoscale, 1808 2.8 2020, 12, 3803-3811. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal 1809 4.7 211 phosphides. Science Advances, 2020, 6, eaaw8113. Silicon Photoanode Modified with Workâ€functionâ€tuned Ni@Fe_{<i>y</i>}Ni_{1â⁻<i>y</i>}(OH)₂ Coreâ€Shell Particles for Water 1810 3.6 Oxidation. ChemSusChem, 2020, 13, 6037-6044. Boosting the electrochemical performance of mesoporous NiCo2O4 oxygen evolution catalysts by 1811 1.1 5 facile surface modifying. Applied Physics A: Materials Science and Processing, 2020, 126, 1. Application of organic-inorganic hybrids in lithium batteries. Materials Today Physics, 2020, 15, 100289. Designed Single Atom Bifunctional Electrocatalysts for Overall Water Splitting: 3<i>d</i> 1813 17 1.0 Metal Atoms Doped Borophene Nanosheets. ChemPhysChem, 2020, 21, 2651-2659. Local structure engineering for active sites in fuel cell electrocatalysts. Science China Chemistry, 1814 4.2 2020, 63, 1543-1556. Modifying microscopic structures of MoS2 by high pressure and high temperature used in hydrogen 1815 2.6 11 evolution reaction. Electrochimica Acta, 2020, 357, 136868. Hierarchical heterostructured nickle foam–supported Co3S4 nanorod arrays embellished with edge-exposed MoS2 nanoflakes for enhanced alkaline hydrogen evolution reaction. Materials Today 2.5 34 Energy, 2020, 18, 100513. Effective Descriptor for Designing High-Performance Catalysts for the Hydrogen Evolution Reaction. 1817 20 1.5 Journal of Physical Chemistry C, 2020, 124, 23134-23142. Ultrasmall Ru Nanoparticles Highly Dispersed on Sulfur-Doped Graphene for HER with High Electrocatalytic Performance. ACS Applied Materials & amp; Interfaces, 2020, 12, 48591-48597. Synthesis and growth mechanism of bamboo like N-doped CNT/Graphene nanostructure incorporated 1819 5.459 with hybrid metal nanoparticles for overall water splitting. Carbon, 2020, 170, 452-463. Controllable Heteroatom Doping Effects of Cr<i>_x</i>Co_{2–<i>x</i>}P Nanoparticles: a Robust Electrocatalyst for Overall Water Splitting in Alkaline Solutions. ACS Applied Materials & amp; Interfaces, 2020, 12, 47397-47407.

#	Article	IF	CITATIONS
1821	Electrodeposition of iron phosphide film for hydrogen evolution reaction. Electrochimica Acta, 2020, 363, 137167.	2.6	25
1822	Boosting oxygen evolution reactivity by modulating electronic structure and honeycomb-like architecture in Ni2P/N,P-codoped carbon hybrids. Green Energy and Environment, 2021, 6, 866-874.	4.7	12
1823	One stable electrocatalyst for two evolution reactions by one-pot combustion synthesis. International Journal of Hydrogen Energy, 2020, 45, 22691-22699.	3.8	8
1824	A highly efficient photocatalytic methanol fuel cell based on non-noble metal photoelectrodes: Study on its energy band engineering via experimental and density functional theory method. Journal of Power Sources, 2020, 478, 228756.	4.0	19
1825	Precise Synthesis of Fe-N ₂ Sites with High Activity and Stability for Long-Life Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 16105-16113.	7.3	120
1826	Carbon supported noble metal nanoparticles as efficient catalysts for electrochemical water splitting. Nanoscale, 2020, 12, 20165-20170.	2.8	34
1827	Current progress and performance improvement of Pt/C catalysts for fuel cells. Journal of Materials Chemistry A, 2020, 8, 24284-24306.	5.2	137
1828	Doubly-Charged Negative Ions as Novel Tunable Catalysts: Graphene and Fullerene Molecules Versus Atomic Metals. International Journal of Molecular Sciences, 2020, 21, 6714.	1.8	3
1829	Enhanced bioelectrochemical performance caused by porous metal-organic framework MIL-53(Fe) as the catalyst in microbial fuel cells. Process Biochemistry, 2020, 99, 147-153.	1.8	18
1830	Engineering Lower Coordination Atoms onto NiO/Co ₃ O ₄ Heterointerfaces for Boosting Oxygen Evolution Reactions. ACS Catalysis, 2020, 10, 12376-12384.	5.5	223
1831	Visibleâ€Lightâ€Driven Electrocatalytic Oxygen Evolution Reaction: NiFe ₂ O ₄ /NiFe–Layered Double Hydroxide Zâ€Scheme Heteronanosheet as a Model. Energy Technology, 2020, 8, 2000607.	1.8	6
1832	Porous cobalt/tungsten nitride polyhedra as efficient bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 22938-22946.	5.2	56
1833	Dynamic evolution of isolated Ru–FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 22607-22612.	5.2	36
1834	A Novel Heterostructure Based on RuMo Nanoalloys and Nâ€doped Carbon as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e2005433.	11.1	151
1835	Recent Progress in Engineering the Atomic and Electronic Structure of Electrocatalysts via Cation Exchange Reactions. Advanced Materials, 2020, 32, e2001866.	11.1	101
1836	Amorphous/Crystalline Heterostructured Cobaltâ€Vanadiumâ€Iron (Oxy)hydroxides for Highly Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2020, 10, 2002215.	10.2	198
1837	Octahedral Coordinated Trivalent Cobalt Enriched Multimetal Oxygenâ€Evolution Catalysts. Advanced Energy Materials, 2020, 10, 2002593.	10.2	47
1838	Sol-gel Synthesis of Ce0.8Sr0.2Co1-(x+y)NixFeyO3-δ (x = 0.1, 0.2, and y = 0.2, 0.5, 0.7)—a N Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Media. Electrocatalysis, 2020, 11, 628-641.	anocompo 1.5	osite-Type 0

#	Article	IF	Citations
# 1839	In Situ Growth of Tetrametallic FeCoMnNi-MOF-74 on Nickel Foam as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Oxygen and Hydrogen. Inorganic Chemistry, 2020, 59,	1.9	41
1840	15467-15477. All Boron Atoms in a ScB ₁₂ Monolayer Contribute to the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 23221-23229.	1.5	14
1841	Ultrathin Nanosheet-Assembled Co–Fe Hydroxide Nanotubes: Sacrificial Template Synthesis, Topotactic Transformation, and Their Application as Electrocatalysts for Efficient Oxygen Evolution	4.0	12
1842	Reaction. ACS Applied Materials & amp; Interfaces, 2020, 12, 46578-46587. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chemical Communications, 2020, 56, 14553-14569.	2.2	235
1843	Delineating the role of crystallinity in the electrocatalytic activity of colloidally synthesized MoP nanocrystals. New Journal of Chemistry, 2020, 44, 14041-14049.	1.4	8
1844	Recent Progress in the Development of Screening Methods to Identify Electrode Materials for the Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 2005060.	7.8	49
1845	Unusual doping induced phase transitions in NiS <i>via</i> solventless synthesis enabling superior bifunctional electrocatalytic activity. Sustainable Energy and Fuels, 2020, 4, 5132-5143.	2.5	18
1846	General Synthesis of Singleâ€Atom Catalysts for Hydrogen Evolution Reactions and Roomâ€Temperature Naâ€5 Batteries. Angewandte Chemie - International Edition, 2020, 59, 22171-22178.	7.2	80
1847	Interface Engineering of Binderâ€Free Earthâ€Abundant Electrocatalysts for Efficient Advanced Energy Conversion. ChemSusChem, 2020, 13, 4795-4811.	3.6	28
1848	Co/Mo2C composites for efficient hydrogen and oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 21221-21231.	3.8	43
1849	Identifying the Active Sites of a Single Atom Catalyst with pH-Universal Oxygen Reduction Reaction Activity. Cell Reports Physical Science, 2020, 1, 100115.	2.8	26
1850	IrCo nanocacti on Co _x S _y nanocages as a highly efficient and robust electrocatalyst for the oxygen evolution reaction in acidic media. Nanoscale, 2020, 12, 17074-17082.	2.8	11
1851	Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers. Energy and Environmental Science, 2020, 13, 2849-2855.	15.6	101
1852	Assembly and Redox-Rich Hydride Chemistry of an Asymmetric Mo2S2 Platform. Molecules, 2020, 25, 3090.	1.7	0
1853	Interface catalysis by Pt nanocluster@Ni ₃ N for bifunctional hydrogen evolution and oxygen evolution. Materials Chemistry Frontiers, 2020, 4, 2665-2672.	3.2	33
1854	Fabrication of CuO _x nanowires@NiMnO _x nanosheets core@shell-type electrocatalysts: crucial roles of defect modification and valence states for overall water	5.2	40
1855	electrolysis. Journal of Materials Chemistry A, 2020, 8, 16463-16476. Stoichiometry-Dependent Oxygen Evolution Electrocatalysis on Open-Tubular Nitrogen-Doped Carbon Column Supported Transition Metal Oxides. ACS Applied Energy Materials, 2020, 3, 2010-2019.	2.5	6
1856	Regulation of oxygen reduction reaction by the magnetic effect of L10-PtFe alloy. Applied Catalysis B: Environmental, 2020, 278, 119332.	10.8	34

#	Article	IF	CITATIONS
1857	Electronic structure engineering on two-dimensional (2D) electrocatalytic materials for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Nano Energy, 2020, 77, 105080.	8.2	157
1858	Trimetallic MOFâ€74 Films Grown on Ni Foam as Bifunctional Electrocatalysts for Overall Water Splitting. ChemSusChem, 2020, 13, 5647-5653.	3.6	56
1859	Single-Crystalline Mo-Nanowire-Mediated Directional Growth of High-Index-Faceted MoNi Electrocatalyst for Ultralong-Term Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 36259-36267.	4.0	18
1860	Enhancement of calcium copper titanium oxide photoelectrochemical performance using boron nitride nanosheets. Chemical Engineering Journal, 2020, 389, 124326.	6.6	48
1861	Solvent-controlled NiCoP with diversified morphology generated from a solvent vapour thermal reaction for electrocatalytic hydrogen evolution. Materials Today Energy, 2020, 17, 100477.	2.5	8
1862	Highly dispersed ultrafine Ni particles embedded into MOF-74 arrays by partial carbonization for highly efficient hydrogen evolution. Materials Advances, 2020, 1, 1212-1219.	2.6	15
1863	Perovskiteâ€Type Solid Solution Nanoâ€Electrocatalysts Enable Simultaneously Enhanced Activity and Stability for Oxygen Evolution. Advanced Materials, 2020, 32, e2001430.	11.1	107
1864	Trends in Alkaline Hydrogen Evolution Activity on Cobalt Phosphide Electrocatalysts Doped with Transition Metals. Cell Reports Physical Science, 2020, 1, 100136.	2.8	46
1865	Two-dimensional Noble Metal Nanomaterials for Electrocatalysis. Chemical Research in Chinese Universities, 2020, 36, 597-610.	1.3	11
1866	Construction of High-Performance Amperometric Acetaminophen Sensors Using Zn/ZnO-Decorated Reduced Graphene Oxide Surfaces. ECS Journal of Solid State Science and Technology, 2020, 9, 093003.	0.9	5
1867	Interfacing metals and compounds for enhanced hydrogen evolution from water splitting. MRS Bulletin, 2020, 45, 548-554.	1.7	1
1868	Oxygen Vacancyâ€rich Ni/NiO@NC Nanosheets with Schottky Heterointerface for Efficient Urea Oxidation Reaction. ChemSusChem, 2020, 13, 5004-5014.	3.6	95
1869	Nanoalloys for Energy Applications. , 2020, , 347-380.		3
1870	Rational design of spinel oxides as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Chemical Physics Reviews, 2020, 1, .	2.6	28
1871	Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting. Journal of Materials Chemistry A, 2020, 8, 25465-25498.	5.2	112
1872	Cobalt/nitrogen codoped carbon nanosheets derived from catkins as a high performance non-noble metal electrocatalyst for oxygen reduction reaction and hydrogen evolution reaction. RSC Advances, 2020, 10, 43248-43255.	1.7	10
1873	RuN ₂ Monolayer: A Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 54517-54523.	4.0	22
1874	On the Origin of the Effect of pH in Oxygen Reduction Reaction for Nondoped and Edge-Type Quaternary N-Doped Metal-Free Carbon-Based Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 54815-54823.	4.0	21

#	Article	IF	CITATIONS
1875	The individual role of active sites in bimetallic oxygen evolution reaction catalysts. Dalton Transactions, 2020, 49, 17505-17510.	1.6	13
1876	Recent Advances in Electrode Materials for Electrochemical CO2Reduction. ACS Symposium Series, 2020, , 49-91.	0.5	1
1877	Efficient Water Splitting Actualized through an Electrochemistryâ€Induced Heteroâ€Structured Antiperovskite/(Oxy)Hydroxide Hybrid. Small, 2020, 16, e2006800.	5.2	36
1878	Metal–Organic Framework-Derived Fe-Doped Ni ₃ Fe/NiFe ₂ O ₄ Heteronanoparticle-Decorated Carbon Nanotube Network as a Highly Efficient and Durable Bifunctional Electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 55782-55794.	4.0	52
1879	Engineering of carbon nanotube-grafted carbon nanosheets encapsulating cobalt nanoparticles for efficient electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2020, 8, 25268-25274.	5.2	20
1880	Defect Engineering of Molybdenum-Based Materials for Electrocatalysis. Catalysts, 2020, 10, 1301.	1.6	21
1881	Application of Single-Site Catalysts in the Hydrogen Economy. Trends in Chemistry, 2020, 2, 1114-1125.	4.4	10
1882	Rational Design of Niâ€Based Electrocatalysts by Modulation of Iron Ions and Carbon Nanotubes for Enhanced Oxygen Evolution Reaction. Advanced Sustainable Systems, 2020, 4, 2000227.	2.7	4
1883	Adaptive Bifunctional Electrocatalyst of Amorphous CoFe Oxide @ 2D Black Phosphorus for Overall Water Splitting. Angewandte Chemie, 2020, 132, 21292-21299.	1.6	26
1884	Adaptive Bifunctional Electrocatalyst of Amorphous CoFe Oxide @ 2D Black Phosphorus for Overall Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 21106-21113.	7.2	182
1885	Amorphous NiFe phosphides supported on nanoarray-structured nitrogen-doped carbon paper for high-performance overall water splitting. Electrochimica Acta, 2020, 357, 136873.	2.6	23
1886	Serendipity for Topological Insulator as Multifunctional Electrocatalyst. ACS Applied Energy Materials, 2020, 3, 8929-8936.	2.5	5
1887	Urea-assisted enhanced electrocatalytic activity of MoS ₂ –Ni ₃ S ₂ for overall water splitting. Inorganic Chemistry Frontiers, 2020, 7, 3588-3597.	3.0	32
1888	Electron density modulation of a metallic GeSb monolayer by pnictogen doping for excellent hydrogen evolution. Physical Chemistry Chemical Physics, 2020, 22, 19823-19836.	1.3	9
1889	Emerging Strategies for Developing High-Performance Perovskite-Based Materials for Electrochemical Water Splitting. Energy & Fuels, 2020, 34, 10547-10567.	2.5	52
1890	On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles. Chemical Science, 2020, 11, 12731-12736.	3.7	142
1891	Mesoporous Materials for Electrochemical Energy Storage and Conversion. Advanced Energy Materials, 2020, 10, 2002152.	10.2	162
1892	Electrochemical Denitrification and Oxidative Dehydrogenation of Ethylbenzene over N-doped Mesoporous Carbon: Atomic Level Understanding of Catalytic Activity by ¹⁵ N NMR Spectroscopy. Chemistry of Materials, 2020, 32, 7263-7273.	3.2	28

#	Article	IF	CITATIONS
1893	Heterogeneous CoSe2–CoO nanoparticles immobilized into N-doped carbon fibers for efficient overall water splitting. Electrochimica Acta, 2020, 356, 136822.	2.6	19
1894	Highly efficient Co3O4/Co@NCs bifunctional oxygen electrocatalysts for long life rechargeable Zn-air batteries. Nano Energy, 2020, 77, 105200.	8.2	71
1895	Interface Engineering with Ultralow Ruthenium Loading for Efficient Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 36177-36185.	4.0	35
1896	Electrocatalysts optimized with nitrogen coordination for high-performance oxygen evolution reaction. Coordination Chemistry Reviews, 2020, 422, 213468.	9.5	38
1897	Three-dimensional self-supported iron-doped nickel sulfides for sustainable overall water splitting. Vacuum, 2020, 181, 109661.	1.6	5
1898	Atomically deviated Pd-Te nanoplates boost methanol-tolerant fuel cells. Science Advances, 2020, 6, eaba9731.	4.7	78
1899	Cobalt- and iron-coordinated graphitic carbon nitride on reduced graphene oxide: A nonprecious bimetallic M–N –C analogue electrocatalyst for efficient oxygen reduction reaction in acidic media. Applied Surface Science, 2020, 531, 147367.	3.1	32
1900	Efficient Renewable-to-Hydrogen Conversion via Decoupled Electrochemical Water Splitting. Cell Reports Physical Science, 2020, 1, 100138.	2.8	43
1901	Gas Accessible Membrane Electrode (GAME): A Versatile Platform for Elucidating Electrocatalytic Processes Using Real-Time and in Situ Hyphenated Electrochemical Techniques. ACS Catalysis, 2020, 10, 9684-9693.	5.5	14
1902	Niâ€Activated Transition Metal Carbides for Efficient Hydrogen Evolution in Acidic and Alkaline Solutions. Advanced Energy Materials, 2020, 10, 2002260.	10.2	144
1903	Platinum Single Atoms Supported on Nanoarray-Structured Nitrogen-Doped Graphite Foil with Enhanced Catalytic Performance for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 38106-38112.	4.0	24
1904	Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance. Nature Communications, 2020, 11, 3884.	5.8	152
1905	Using van der Waals heterostructures based on two-dimensional InSe–XS ₂ (X = Mo, W) as promising photocatalysts for hydrogen production. Journal of Materials Chemistry C, 2020, 8, 12509-12515.	2.7	27
1906	Ruâ€Doping Enhanced Electrocatalysis of Metal–Organic Framework Nanosheets toward Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 17091-17096.	1.7	51
1907	Fast Method for Calculating Spatially Resolved Heterogeneous Electron-Transfer Kinetics and Its Application to Graphene with Defects. Journal of Physical Chemistry C, 2020, 124, 18147-18155.	1.5	10
1908	Active Sites of Single-Atom Iron Catalyst for Electrochemical Hydrogen Evolution. Journal of Physical Chemistry Letters, 2020, 11, 6691-6696.	2.1	37
1909	Highly Efficient Synthesis of Carbon-Based Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution. Nanoscale Research Letters, 2020, 15, 6.	3.1	12
1910	Dioxygen Binding to all 3d, 4d, and 5d Transition Metals from Coupledâ€Cluster Theory. ChemPhysChem, 2020, 21, 2173-2186.	1.0	2

			2
#	ARTICLE Interfacial electronic interaction of atomically dispersed IrClx on ultrathin Co(OH)2/CNTs for	IF	CITATIONS
1911	efficient electrocatalytic water oxidation. Applied Catalysis B: Environmental, 2020, 279, 119398.	10.8	21
1912	Facile and novel strategy to fabricate 2D alpha-Co(OH)2 nanosheets for efficient oxygen evolution reaction application. Materials Letters, 2020, 278, 128414.	1.3	7
1913	General Synthesis of Singleâ€Atom Catalysts for Hydrogen Evolution Reactions and Roomâ€Temperature Naâ€6 Batteries. Angewandte Chemie, 2020, 132, 22355-22362.	1.6	62
1914	Rational design of NiFe LDH@Ni ₃ N nano/microsheet arrays as a bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 17202-17211.	5.2	89
1915	Suppressed Jahn–Teller Distortion in MnCo ₂ O ₄ @Ni ₂ P Heterostructures to Promote the Overall Water Splitting. Small, 2020, 16, e2001856.	5.2	59
1916	High-throughput chainmail catalyst FeCo@C nanoparticle for oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 26574-26582.	3.8	18
1917	DFT Study on the Hydrogen Evolution Reaction on CoP(110) Surface. IOP Conference Series: Materials Science and Engineering, 2020, 729, 012065.	0.3	0
1918	Ionothermal Route to Phase-Pure RuB ₂ Catalysts for Efficient Oxygen Evolution and Water Splitting in Acidic Media. ACS Energy Letters, 2020, 5, 2909-2915.	8.8	116
1919	Carbon Anode in Carbon History. Molecules, 2020, 25, 4996.	1.7	4
1920	Non-precious-metal catalysts for alkaline water electrolysis: <i>operando</i> characterizations, theoretical calculations, and recent advances. Chemical Society Reviews, 2020, 49, 9154-9196.	18.7	448
1921	Heterostructural Co/CeO2/Co2P/CoP@NC dodecahedrons derived from CeO2-inserted zeolitic imidazolate framework-67 as efficient bifunctional electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2020, 45, 30559-30570.	3.8	28
1922	Ce 0.8 Sr 0.2 Co x Fe 1â€x O 3â€Î´ (x=0.2, 0.5, 0.8) – A Perovskiteâ€type Nanocomposite for Application in the Oxygen Evolution Reaction in Alkaline Media. Electroanalysis, 2020, 32, 3131-3144.	1.5	3
1923	Selenium vacancy triggered atomic disordering of Co _{0.85} Se nanoparticles towards a highly-active electrocatalyst for water oxidation. Chemical Communications, 2020, 56, 14451-14454.	2.2	14
1924	Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nature Communications, 2020, 11, 5462.	5.8	383
1925	Cobalt Metal–Organic Framework Based on Layered Double Nanosheets for Enhanced Electrocatalytic Water Oxidation in Neutral Media. Journal of the American Chemical Society, 2020, 142, 19198-19208.	6.6	64
1926	Design of Ni/NiO–TiO2/rGO nanocomposites on carbon cloth conductors via PECVD for electrocatalytic water splitting. International Journal of Hydrogen Energy, 2020, 45, 32000-32011.	3.8	36
1927	Recent progress on nanostructured bimetallic electrocatalysts for water splitting and electroreduction of carbon dioxide. Journal of Semiconductors, 2020, 41, 091705.	2.0	13
1928	A highly stable and efficient electrodeposited flowered like structure Ni–Co alloy on steel substrate for electrocatalytic hydrogen evolution reaction in HCl solution. Journal of Materials Research and Technology, 2020, 9, 13706-13717.	2.6	6

#	Article	IF	CITATIONS
1929	Porous Plate-like MoP Assembly as an Efficient pH-Universal Hydrogen Evolution Electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 49596-49606.	4.0	46
1930	Effect of Ag2S Nanocrystals/Reduced Graphene Oxide Interface on Hydrogen Evolution Reaction. Catalysts, 2020, 10, 948.	1.6	15
1931	Theoretical insights into single-atom catalysts. Chemical Society Reviews, 2020, 49, 8156-8178.	18.7	231
1932	Fe/Ni Bimetallic Organic Framework Deposited on TiO2 Nanotube Array for Enhancing Higher and Stable Photoelectrochemical Activity of Oxygen Evaluation Reaction. Nanomaterials, 2020, 10, 1688.	1.9	18
1933	Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond. Chemical Communications, 2020, 56, 12109-12121.	2.2	82
1934	Bifunctional water-electrolysis-catalysts meeting band-diagram analysis: case study of "FeP― electrodes. Journal of Materials Chemistry A, 2020, 8, 20021-20029.	5.2	25
1935	Structural Design of Amorphous CoMoP <i>_x</i> with Abundant Active Sites and Synergistic Catalysis Effect for Effective Water Splitting. Advanced Functional Materials, 2020, 30, 2003889.	7.8	128
1936	Two-Dimensional Nanomesh Arrays as Bifunctional Catalysts for N ₂ Electrolysis. ACS Catalysis, 2020, 10, 11371-11379.	5.5	55
1937	Enhanced oxygen and hydrogen evolution performance by carbon-coated CoS ₂ –FeS ₂ nanosheets. Dalton Transactions, 2020, 49, 13352-13358.	1.6	30
1938	Mesoporous Nanoarchitectures for Electrochemical Energy Conversion and Storage. Advanced Materials, 2020, 32, e2004654.	11.1	109
1939	lridium Single Atoms Coupling with Oxygen Vacancies Boosts Oxygen Evolution Reaction in Acid Media. Journal of the American Chemical Society, 2020, 142, 18378-18386.	6.6	334
1940	Theoretical Study of Transitionâ€Metalâ€Modified Mo ₂ CO ₂ MXene as a Catalyst for the Hydrogen Evolution Reaction. ChemSusChem, 2020, 13, 6005-6015.	3.6	41
1941	Modulation of Disordered Coordination Degree Based on Surface Defective Metal–Organic Framework Derivatives toward Boosting Oxygen Evolution Electrocatalysis. Small, 2020, 16, e2003630.	5.2	44
1942	Distorted quantum dots enhance the efficiency of alkaline oxygen electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 21173-21180.	5.2	5
1943	Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting. Journal of Materials Chemistry A, 2020, 8, 19196-19245.	5.2	194
1944	Design of Thiazolo[5,4- <i>d</i>]thiazole-Bridged Ionic Covalent Organic Polymer for Highly Selective Oxygen Reduction to H ₂ O ₂ . Chemistry of Materials, 2020, 32, 8553-8560.	3.2	23
1945	Nitrogen-Doped Oxygenated Molybdenum Phosphide as an Efficient Electrocatalyst for Hydrogen Evolution in Alkaline Media. Frontiers in Chemistry, 2020, 8, 733.	1.8	16
1946	Investigation of oxygen evolution reaction performance of silver doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite structure. Journal of Applied Electrochemistry, 2020, 50, 1037-1043.	1.5	4

#	Article	IF	CITATIONS
1947	MOF-Derived Hierarchical CoSe ₂ with Sheetlike Nanoarchitectures as an Efficient Bifunctional Electrocatalyst. Inorganic Chemistry, 2020, 59, 12778-12787.	1.9	27
1948	Recent advances and strategies in the stabilization of singleâ€atom catalysts for electrochemical applications. , 2020, 2, 488-520.		37
1949	Adatom Doping of Transition Metals in ReSe ₂ Nanosheets for Enhanced Electrocatalytic Hydrogen Evolution Reaction. ACS Nano, 2020, 14, 12184-12194.	7.3	67
1950	Recent Advances in Earth-Abundant Core/Noble-Metal Shell Nanoparticles for Electrocatalysis. ACS Catalysis, 2020, 10, 10886-10904.	5.5	38
1951	MOF-assisted synthesis of octahedral carbon-supported PtCu nanoalloy catalysts for an efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 19348-19356.	5.2	58
1952	Nano Highâ€Entropy Materials: Synthesis Strategies and Catalytic Applications. Small Structures, 2020, 1, 2000033.	6.9	80
1953	Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. Nano-Micro Letters, 2020, 12, 167.	14.4	57
1954	Intermetallic PtCu Nanoframes as Efficient Oxygen Reduction Electrocatalysts. Nano Letters, 2020, 20, 7413-7421.	4.5	109
1955	Exploring the oxygen electrode bi-functional activity of Ni–N–C-doped graphene systems with N, C co-ordination and OH ligand effects. Journal of Materials Chemistry A, 2020, 8, 20453-20462.	5.2	49
1956	Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy and Environmental Science, 2020, 13, 3361-3392.	15.6	370
1957	Nickel-doped pyrrhotite iron sulfide nanosheets as a highly efficient electrocatalyst for water splitting. Journal of Materials Chemistry A, 2020, 8, 20323-20330.	5.2	55
1958	Selective Surface Reconstruction of a Defective Iridiumâ€Based Catalyst for Highâ€Efficiency Water Splitting. Advanced Functional Materials, 2020, 30, 2004375.	7.8	85
1959	Transitionâ€Metal Phosphides: Activity Origin, Energyâ€Related Electrocatalysis Applications, and Synthetic Strategies. Advanced Functional Materials, 2020, 30, 2004009.	7.8	309
1960	Ultralow Pt ⁰ loading on MIL-88A(Fe) derived polyoxometalate-Fe ₃ O ₄ @C micro-rods with highly-efficient electrocatalytic hydrogen evolution. Journal of Coordination Chemistry, 2020, 73, 2422-2436.	0.8	2
1961	Density Functional Theory Study on the Hydrogen Evolution Reaction in the S-rich SnS2 Nanosheets. Electrocatalysis, 2020, 11, 604-611.	1.5	17
1962	Hollow waxberry-like cobalt–nickel oxide/S,N-codoped carbon nanospheres as a trifunctional electrocatalyst for OER, ORR, and HER. RSC Advances, 2020, 10, 27788-27793.	1.7	17
1963	Recent Advances in Bipolar Membrane Design and Applications. Chemistry of Materials, 2020, 32, 8060-8090.	3.2	96
1964	Charge reactions on crystalline/amorphous lanthanum nickel oxide cocatalyst modified hematite photoanode. Journal of Chemical Physics, 2020, 153, 024701.	1.2	3

#	Article	IF	CITATIONS
1965	Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO ₃ /Ni–NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e2003414.	11.1	206
1966	"Revitalizing―degraded solid oxide fuel cells in sour fuels for bifunctional oxygen catalysis in zinc–air batteries. Green Chemistry, 2020, 22, 6075-6083.	4.6	9
1967	N-Doped carbon nanospheres with nanocavities to encapsulate manganese oxides as ORR electrocatalysts. New Journal of Chemistry, 2020, 44, 14915-14921.	1.4	7
1968	Recent Electrochemical Applications of Metal–Organic Framework-Based Materials. Crystal Growth and Design, 2020, 20, 7034-7064.	1.4	112
1969	Basal plane activation in monolayer MoTe ₂ for the hydrogen evolution reaction <i>via</i> phase boundaries. Journal of Materials Chemistry A, 2020, 8, 19522-19532.	5.2	19
1970	Disperse Multimetal Atom-Doped Carbon as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions: Design Strategies. Journal of Physical Chemistry C, 2020, 124, 27387-27395.	1.5	16
1971	A supramolecular-confinement pyrolysis route to ultrasmall rhodium phosphide nanoparticles as a robust electrocatalyst for hydrogen evolution in the entire pH range and seawater electrolysis. Journal of Materials Chemistry A, 2020, 8, 25768-25779.	5.2	22
1972	Metal–Carbon Composite Catalysts by One-Step Conversion of MOF Crystals in a Sealed-Tube Reactor. ACS Applied Energy Materials, 2020, 3, 11529-11533.	2.5	3
1973	Ru/RuO ₂ Nanoparticle Composites with N-Doped Reduced Graphene Oxide as Electrocatalysts for Hydrogen and Oxygen Evolution. ACS Applied Nano Materials, 2020, 3, 12269-12277.	2.4	68
1974	Complex Catalytic Materials Based on the Perovskite-Type Structure for Energy and Environmental Applications. Materials, 2020, 13, 5555.	1.3	10
1975	Ultrafast formation of an FeOOH electrocatalyst on Ni for efficient alkaline water and urea oxidation. Chemical Communications, 2020, 56, 14713-14716.	2.2	65
1976	Efficient Machine-Learning-Aided Screening of Hydrogen Adsorption on Bimetallic Nanoclusters. ACS Combinatorial Science, 2020, 22, 768-781.	3.8	15
1977	Cu–Fe–NH ₂ based metal–organic framework nanosheets <i>via</i> drop-casting for highly efficient oxygen evolution catalysts durable at ultrahigh currents. Journal of Materials Chemistry A, 2020, 8, 24408-24418.	5.2	95
1978	Numerical Deconvolution of Surface Interrogation Scanning Electrochemical Microscopy Experiments on Platinum During Hydrogen Evolution. ChemElectroChem, 2020, 7, 4863-4872.	1.7	5
1979	Hierarchical Microspheres Composed of Mn-Doped CoP Nanosheets for Enhanced Oxygen Evolution. ACS Applied Nano Materials, 2020, 3, 10702-10707.	2.4	16
1980	An Electrocatalytically Active Nanoflake-Like Co ₉ S ₈ -CoSe ₂ Heterostructure for Overall Water Splitting. ACS Applied Nano Materials, 2020, 3, 11326-11334.	2.4	60
1981	Complete Reconstruction of Hydrate Pre-Catalysts for Ultrastable Water Electrolysis in Industrial-Concentration Alkali Media. Cell Reports Physical Science, 2020, 1, 100241.	2.8	117
1982	A Superaerophobic Bimetallic Selenides Heterostructure for Efficient Industrial-Level Oxygen Evolution at Ultra-High Current Densities. Nano-Micro Letters, 2020, 12, 104.	14.4	99

#	Article	IF	CITATIONS
1983	Construction of 2D BiVO ₄ â^CdSâ^Ti ₃ C ₂ T _x Heterostructures for Enhanced Photoâ€redox Activities. ChemCatChem, 2020, 12, 3496-3503.	1.8	25
1984	Hierarchical Nanoflower Arrays of Co ₉ S ₈ â€Ni ₃ S ₂ on Nickel Foam: A Highly Efficient Binderâ€Free Electrocatalyst for Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 7900-7911.	1.7	22
1985	Incorporation of CuO/TiO2 Nanocomposite into MOF-5 for Enhanced Oxygen Evolution Reaction (OER) and Photodegradation of Organic Dyes. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4043-4052.	1.9	13
1986	Antibuoyancy and Unidirectional Gas Evolution by Janus Electrodes with Asymmetric Wettability. ACS Applied Materials & Interfaces, 2020, 12, 23627-23634.	4.0	29
1987	Sulfur vacancies promoting Fe-doped Ni ₃ S ₂ nanopyramid arrays as efficient bifunctional electrocatalysts for overall water splitting. Sustainable Energy and Fuels, 2020, 4, 3326-3333.	2.5	44
1988	Current Trends in MXene-Based Nanomaterials for Energy Storage and Conversion System: A Mini Review. Catalysts, 2020, 10, 495.	1.6	89
1989	Molybdenum Carbideâ€Embedded Multichannel Hollow Carbon Nanofibers as Bifunctional Catalysts for Water Splitting. Chemistry - an Asian Journal, 2020, 15, 1957-1962.	1.7	7
1990	Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chemical Society Reviews, 2020, 49, 3565-3604.	18.7	617
1991	Robust Interface Ru Centers for Highâ€Performance Acidic Oxygen Evolution. Advanced Materials, 2020, 32, e1908126.	11.1	145
1992	Stable Rhodium (IV) Oxide for Alkaline Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e1908521.	11.1	115
1993	Iron-doped NiSe2 in-situ grown on graphene as an efficient electrocatalyst for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2020, 866, 114134.	1.9	19
1994	Nitrogen-Doped Porous Carbon Material Derived from Biomass of Beancurd as an Efficient Electrocatalyst for Oxygen Reduction and Zn-air Fuel Cell. Journal of the Electrochemical Society, 2020, 167, 084516.	1.3	22
1995	Recent Progress in Low Pt Content Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2020, 7, 2000396.	1.9	84
1996	A Physical Model for Understanding the Activation of MoS ₂ Basalâ€Plane Sulfur Atoms for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 14835-14841.	7.2	36
1997	Removing the barrier to water dissociation on single-atom Pt sites decorated with a CoP mesoporous nanosheet array to achieve improved hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 11246-11254.	5.2	62
1998	Robust InNCo _{3–<i>x</i>} Mn <i>_{<i>x</i>}</i> Nitride-Supported Pt Nanoparticles as High-Performance Bifunctional Electrocatalysts for Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 5293-5300.	2.5	13
1999	Synthesis of Co-based Prussian Blue Analogues/Dual-Doped Hollow Carbon Microsphere Hybrids as High-Performance Bifunctional Electrocatalysts for Oxygen Evolution and Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 8318-8326.	3.2	45
2000	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695.	2.5	100

#	Article	IF	CITATIONS
2001	Recent advances in structural engineering of MXene electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 10604-10624.	5.2	201
2002	Elucidation of Active Sites on S, N Codoped Carbon Cubes Embedding Co–Fe Carbides toward Reversible Oxygen Conversion in Highâ€Performance Zinc–Air Batteries. Small, 2020, 16, e1907368.	5.2	66
2003	Implanting Isolated Ru Atoms into Edgeâ€Rich Carbon Matrix for Efficient Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2020, 10, 2000882.	10.2	144
2004	Appropriate Use of Electrochemical Impedance Spectroscopy in Water Splitting Electrocatalysis. ChemElectroChem, 2020, 7, 2297-2308.	1.7	154
2005	Implanting Ni-O-VOx sites into Cu-doped Ni for low-overpotential alkaline hydrogen evolution. Nature Communications, 2020, 11, 2720.	5.8	113
2006	Catalytic activity atlas of ternary Co–Fe–V metal oxides for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 15951-15961.	5.2	43
2007	Ultralow-temperature assisted synthesis of single platinum atoms anchored on carbon nanotubes for efficiently electrocatalytic acidic hydrogen evolution. Journal of Energy Chemistry, 2020, 51, 280-284.	7.1	84
2008	High-performance Ni-V-Fe metal-organic framework electrocatalyst composed of integrated nanowires and nanosheets for oxygen evolution reaction. Materials Today Energy, 2020, 16, 100419.	2.5	14
2009	Canonicâ€Like HER Activity of Cr _{1–} <i>_x</i> Mo <i>_x</i> B ₂ Solid Solution: Overpowering Pt/C at High Current Density. Advanced Materials, 2020, 32, e2000855.	11.1	61
2010	Boosting oxygen evolution reaction performance by nickel substituted cobalt-iron oxide nanoparticles embedded over reduced graphene oxide. Materials Chemistry and Physics, 2020, 252, 123238.	2.0	10
2011	3D freestanding flower-like nickel-cobalt layered double hydroxides enriched with oxygen vacancies as efficient electrocatalysts for water oxidation. Sustainable Materials and Technologies, 2020, 25, e00170.	1.7	8
2012	Enhanced Oxygen Evolution Reaction Activity of a Co ₂ P@NC–Fe ₂ P Composite Boosted by Interfaces Between a N-Doped Carbon Matrix and Fe ₂ P Microspheres. ACS Applied Materials & Interfaces, 2020, 12, 25884-25894.	4.0	61
2013	Beneficial restacking of 2D nanomaterials for electrocatalysis: a case of MoS ₂ membranes. Chemical Communications, 2020, 56, 7005-7008.	2.2	20
2014	Inductive effect between atomically dispersed iridium and transition-metal hydroxide nanosheets enables highly efficient oxygen evolution reaction. Chemical Engineering Journal, 2020, 395, 125149.	6.6	53
2015	Proton exchange membrane with plasmon-active surface for enhancement of fuel cell effectivity. Nanoscale, 2020, 12, 12068-12075.	2.8	4
2016	Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale, 2020, 12, 12249-12262.	2.8	202
2017	Robust ruthenium diphosphide nanoparticles for pH-universal hydrogen evolution reaction with platinum-like activity. Applied Catalysis B: Environmental, 2020, 274, 119092.	10.8	69
2018	Integrating H2 generation with sewage disposal by an efficient anti-poisoning bifunctional electrocatalyst. Applied Catalysis B: Environmental, 2020, 277, 119175.	10.8	18

#	Article	IF	CITATIONS
2019	Multicomponent N doped graphene coating Co@Zn heterostructures electrocatalysts as high efficiency HER electrocatalyst in alkaline electrolyte. International Journal of Hydrogen Energy, 2020, 45, 16326-16336.	3.8	27
2020	Strained heterointerfaces in sandwich–like NiFe layered double hydroxides/Co1-xS for highly efficient and superior long–term durable oxygen evolution reaction. Journal of Catalysis, 2020, 389, 132-139.	3.1	32
2021	Tuning Single-Atom Catalysts of Nitrogen-Coordinated Transition Metals for Optimizing Oxygen Evolution and Reduction Reactions. Journal of Physical Chemistry C, 2020, 124, 13168-13176.	1.5	43
2022	Fluorine-Induced Dual Defects in Cobalt Phosphide Nanosheets Enhance Hydrogen Evolution Reaction Activity. , 2020, 2, 736-743.		81
2023	Performance enhancement of oxygen evolution reaction through incorporating bimetallic electrocatalysts in two-dimensional metal–organic frameworks. Catalysis Science and Technology, 2020, 10, 3897-3903.	2.1	34
2024	Ir Cluster-Decorated Carbon Composite as Bifunctional Electrocatalysts for Acidic Stable Overall Water Splitting. Journal of the Electrochemical Society, 2020, 167, 104511.	1.3	18
2025	Sustainable Catalytic Processes Driven by Graphene-Based Materials. Processes, 2020, 8, 672.	1.3	8
2026	CoOx(OH)2(1-x) doped with Sn urchin-like spheres for enhanced oxygen evolution reaction. Materials Science in Semiconductor Processing, 2020, 110, 104935.	1.9	4
2027	Two-dimensional electrocatalysts for alcohol oxidation: A critical review. Chemical Engineering Journal, 2020, 400, 125744.	6.6	67
2028	CoNiSe ₂ Nanostructures for Clean Energy Production. ACS Omega, 2020, 5, 14702-14710.	1.6	27
2029	Transition metal-doped α-borophene as potential oxygen and hydrogen evolution electrocatalyst: A density functional theory study. Catalysis Communications, 2020, 144, 106090.	1.6	20
2030	Mesoporous anion-cation-codoped Co ₉ S ₈ nanorings for enhanced electrocatalytic oxygen evolution reactions. Nanotechnology, 2020, 31, 334001.	1.3	6
2031	Enabling Ironâ€Based Highly Effective Electrochemical Waterâ€Splitting and Selective Oxygenation of Organic Substrates through In Situ Surface Modification of Intermetallic Iron Stannide Precatalyst. Advanced Energy Materials, 2020, 10, 2001377.	10.2	96
2032	Cobalt-stabilized oxygen vacancy of V2O5 nanosheet arrays with delocalized valence electron for alkaline water splitting. Chemical Engineering Science, 2020, 227, 115915.	1.9	26
2033	Solvothermal synthesis of oxygen-incorporated MoS2-x nanosheets with abundant undercoordinated Mo for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 19133-19143.	3.8	24
2034	First-Principles Study on Chromium-Substituted α-Cobalt Oxyhydroxides for Efficient Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 6486-6491.	2.5	9
2035	Defect-engineered CoMoO4 ultrathin nanosheet array and promoted urea oxidation reaction. Applied Catalysis A: General, 2020, 602, 117670.	2.2	32

#	Article	IF	CITATIONS
2037	A cobalt–phosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and durable hydrogen evolution at alkaline pH. Sustainable Energy and Fuels, 2020, 4, 3884-3887.	2.5	127
2038	Boosting the Oxygen Evolution Electrocatalysis Performance of Iron Phosphide via Architectural Design and Electronic Modulation. ACS Sustainable Chemistry and Engineering, 2020, 8, 9206-9216.	3.2	15
2039	First-principle calculations on the structure, electronic property and catalytic activity for hydrogen evolution reaction of 2D transition-metal borides. Materials Chemistry and Physics, 2020, 253, 123334.	2.0	21
2040	Transition-metal-based electrocatalysts for hydrazine-assisted hydrogen production. Materials Today Advances, 2020, 7, 100083.	2.5	29
2041	Core–Shell Dendritic Superstructural Catalysts by Design for Highly Efficient and Stable Electrochemical Oxygen Evolution Reaction. Advanced Materials Interfaces, 2020, 7, 2000777.	1.9	8
2042	CO2 electrochemical reduction using single-atom catalysts.ÂPreparation, characterization and anchoring strategies: a review. Environmental Chemistry Letters, 2020, 18, 1593-1623.	8.3	19
2043	Synthesis, properties and novel electrocatalytic applications of the 2D-borophene Xenes. Progress in Solid State Chemistry, 2020, 59, 100283.	3.9	65
2044	Ethylene Selectivity in Electrocatalytic CO ₂ Reduction on Cu Nanomaterials: A Crystal Phase-Dependent Study. Journal of the American Chemical Society, 2020, 142, 12760-12766.	6.6	183
2045	Highly enhanced bifunctional electrocatalytic activity of mixed copper–copper oxides on nickel foam <i>via</i> composition control. New Journal of Chemistry, 2020, 44, 11993-12001.	1.4	14
2046	Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. Journal of Power Sources, 2020, 471, 228446.	4.0	74
2047	Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting. Journal of Materials Chemistry A, 2020, 8, 13415-13436.	5.2	124
2048	Functional Role of Fe, Cu-Doping in Ni-Based Perovskite Electrocatalysts for Oxygen Evolution Reaction. Nano, 2020, 15, 2050077.	0.5	5
2049	A Physical Model for Understanding the Activation of MoS ₂ Basalâ€Plane Sulfur Atoms for the Hydrogen Evolution Reaction. Angewandte Chemie, 2020, 132, 14945-14951.	1.6	9
2050	Singleâ€Atom Catalysts for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 2000768.	7.8	390
2051	A zeolite-type CoFe selenite via in-situ transformation of layered double hydroxide boosting the water oxidation performance in alkaline electrolyte. Chemical Engineering Journal, 2020, 399, 125799.	6.6	14
2052	Porous Carbon Membraneâ€Supported Atomically Dispersed Pyrroleâ€Type FeN ₄ as Active Sites for Electrochemical Hydrazine Oxidation Reaction. Small, 2020, 16, e2002203.	5.2	34
2053	Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting. Nature Communications, 2020, 11, 2940.	5.8	146
2054	Dynamically controlled growth of Cu–Mo–O nanosheets for efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry C, 2020, 8, 9337-9344.	2.7	3

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
2055	A facile approach to high-performance trifunctional electrocatalysts by substrate-enhanced electroless deposition of Pt/NiO/Ni on carbon nanotubes. Nanoscale, 2020, 12, 14615-14625.	2.8	32
2056	Ni―and Co‧ubstituted Metallic MoS ₂ for the Alkaline Hydrogen Evolution Reaction. ChemElectroChem, 2020, 7, 3606-3615.	1.7	24
2057	Nanostructured materials for photocatalytic energy conversion. , 2020, , 325-343.		2
2058	Atomic Layer Depositionâ€Assisted Fabrication of Coâ€Nanoparticle/Nâ€Doped Carbon Nanotube Hybrids a Efficient Electrocatalysts for the Oxygen Evolution Reaction. Small, 2020, 16, e2002427.	IS 5.2	51
2059	Confining Iron Carbide Growth in Porous Carbon to Improve the Electrocatalytic Performance for Oxygen Reduction Reaction. Electrocatalysis, 2020, 11, 354-363.	1.5	2
2060	Trace tungsten and iron-doped nickel hydroxide nanosheets for an efficient oxygen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 2792-2799.	2.5	8
2061	High throughput screening of M ₃ C ₂ MXenes for efficient CO ₂ reduction conversion into hydrocarbon fuels. Nanoscale, 2020, 12, 7660-7673.	2.8	64
2062	Heterostructured CoP/MoO ₂ on Mo foil as high-efficiency electrocatalysts for the hydrogen evolution reaction in both acidic and alkaline media. Journal of Materials Chemistry A, 2020, 8, 6732-6739.	5.2	58
2063	Self-Supported Composite of (Ni,Co) ₃ C Mesoporous Nanosheets/N-Doped Carbon as a Flexible Electrocatalyst for pH-Universal Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2020, 8, 5287-5295.	3.2	36
2064	Fabrication of Silica/Sulfur@Polyaniline Spheres with Radial Mesochannels as Enhanced Cathode Materials for Highâ€Performance Lithiumâ^'Sulfur Batteries. ChemNanoMat, 2020, 6, 827-836.	1.5	2
2065	Flower-like carbon doped MoS2/Activated carbon composite electrode for superior performance of supercapacitors and hydrogen evolution reactions. Journal of Alloys and Compounds, 2020, 831, 154745.	2.8	25
2066	Two-dimensional metal–organic framework nanosheets: synthetic methodologies and electrocatalytic applications. Journal of Materials Chemistry A, 2020, 8, 15271-15301.	5.2	79
2067	Engineering Lithium Ions Embedded in NiFe Layered Double Hydroxide Lattices To Activate Laminated Ni ²⁺ Sites as Highâ€Efficiency Oxygen Evolution Reaction Catalysts. Chemistry - A European Journal, 2020, 26, 7244-7249.	1.7	25
2068	The role of oxygen vacancies of ABO ₃ perovskite oxides in the oxygen reduction reaction. Energy and Environmental Science, 2020, 13, 1408-1428.	15.6	477
2069	Surface Modification for Promoting Durable, Efficient, and Selective Electrocatalysts. ChemElectroChem, 2020, 7, 2345-2363.	1.7	26
2070	Two-dimensional metal oxide nanomaterials for sustainable energy applications. , 2020, , 39-72.		3
2071	Electrospinning synthesis of transition metal alloy nanoparticles encapsulated in nitrogen-doped carbon layers as an advanced bifunctional oxygen electrode. Journal of Materials Chemistry A, 2020, 8, 7245-7252.	5.2	66
2072	A simple strategy for tridoped porous carbon nanosheet as superior electrocatalyst for bifunctional oxygen reduction and hydrogen evolution reactions. Carbon, 2020, 162, 586-594.	5.4	55

#	Article	IF	CITATIONS
2073	Theoretical Study on a Nitrogen-Doped Graphene Nanoribbon with Edge Defects as the Electrocatalyst for Oxygen Reduction Reaction. ACS Omega, 2020, 5, 5142-5149.	1.6	27
2074	Recent Modification Strategies of MoS2 for Enhanced Electrocatalytic Hydrogen Evolution. Molecules, 2020, 25, 1136.	1.7	44
2075	Ruthenium Nanoparticles on Cobaltâ€Doped 1T′ Phase MoS ₂ Nanosheets for Overall Water Splitting. Small, 2020, 16, e2000081.	5.2	82
2076	Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nature Communications, 2020, 11, 1278.	5.8	340
2077	Rational Design of a N,S Coâ€Đoped Supermicroporous CoFe–Organic Framework Platform for Water Oxidation. ChemSusChem, 2020, 13, 2564-2570.	3.6	29
2078	Transition Metal Phosphideâ€Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review. ChemSusChem, 2020, 13, 3357-3375.	3.6	218
2079	Crystalline Copper Selenide as a Reliable Nonâ€Noble Electro(pre)catalyst for Overall Water Splitting. ChemSusChem, 2020, 13, 3222-3229.	3.6	85
2080	Ultrathin rGO-wrapped free-standing bimetallic CoNi ₂ S ₄ -carbon nanofibers: an efficient and robust bifunctional electrocatalyst for water splitting. Nanotechnology, 2020, 31, 275402.	1.3	9
2081	Gold-Incorporated Cobalt Phosphide Nanoparticles on Nitrogen-Doped Carbon for Enhanced Hydrogen Evolution Electrocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 16548-16556.	4.0	55
2082	<i>In situ</i> monitoring of the electrochemically induced phase transition of thermodynamically metastable 1T-MoS ₂ at nanoscale. Nanoscale, 2020, 12, 9246-9254.	2.8	33
2083	Core–Shell Structured NiFeSn@NiFe (Oxy)Hydroxide Nanospheres from an Electrochemical Strategy for Electrocatalytic Oxygen Evolution Reaction. Advanced Science, 2020, 7, 1903777.	5.6	69
2084	Surface Co3+-rich engineering of Co(S Se1–)2 nanocrystals coated with ultrathin carbon layer for efficient OER/HER. Applied Surface Science, 2020, 517, 146183.	3.1	21
2085	Copper facilitated nickel oxy-hydroxide films as efficient synergistic oxygen evolution electrocatalyst. Journal of Catalysis, 2020, 384, 189-198.	3.1	5
2086	In situ synthesis of highly dispersed Co–N–C catalysts with carbon-coated sandwich structures based on defect anchoring. New Journal of Chemistry, 2020, 44, 5404-5409.	1.4	14
2087	Distance Synergy of MoS ₂ â€Confined Rhodium Atoms for Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 10502-10507.	7.2	122
2088	Nanoscale Assembly of 2D Materials for Energy and Environmental Applications. Advanced Materials, 2020, 32, e1907006.	11.1	106
2089	Distance Synergy of MoS ₂ â€Confined Rhodium Atoms for Highly Efficient Hydrogen Evolution. Angewandte Chemie, 2020, 132, 10588-10593.	1.6	37
2090	Nature-inspired electrocatalysts and devices for energy conversion. Chemical Society Reviews, 2020, 49, 3107-3141.	18.7	84

#	Article	IF	CITATIONS
2091	Engineering pristine 2D metal–organic framework nanosheets for electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 8143-8170.	5.2	180
2092	Water Oxidation on TiO ₂ : A Comparative DFT Study of 1e [–] , 2e [–] , and 4e [–] Processes on Rutile, Anatase, and Brookite. Journal of Physical Chemistry C, 2020, 124, 8094-8100.	1.5	30
2093	A Ti ₃ C ₂ O ₂ supported single atom, trifunctional catalyst for electrochemical reactions. Journal of Materials Chemistry A, 2020, 8, 7801-7807.	5.2	69
2094	Interfacial Engineering of MoO ₂ â€FeP Heterojunction for Highly Efficient Hydrogen Evolution Coupled with Biomass Electrooxidation. Advanced Materials, 2020, 32, e2000455.	11.1	401
2095	Controlled engineering of nickel carbide induced N-enriched carbon nanotubes for hydrogen and oxygen evolution reactions in wide pH range. Electrochimica Acta, 2020, 341, 136032.	2.6	45
2096	Energy-efficient hydrogen production over a high-performance bifunctional NiMo-based nanorods electrode. Journal of Colloid and Interface Science, 2020, 571, 48-54.	5.0	37
2097	Encapsulating hollow (Co,Fe)P nanoframes into N,P-codoped graphene aerogel for highly efficient water splitting. Journal of Power Sources, 2020, 456, 228015.	4.0	40
2098	Defect Engineering for Fuel ell Electrocatalysts. Advanced Materials, 2020, 32, e1907879.	11.1	338
2099	Doubleâ€Solvent Induced Ultrafine Ruthenium Nanoparticles on Porous Carbon for Highly Efficient Hydrogen Evolution Reaction. ChemCatChem, 2020, 12, 2880-2885.	1.8	7
2100	Peptide Based Noble Metal Nanomaterials for Oxygen Reduction Reaction: A Review. International Journal of Electrochemical Science, 2020, 15, 2634-2647.	0.5	3
2101	Neutral and alkaline chemical environment dependent synthesis of Mn3O4 for oxygen evolution reaction (OER). Materials Chemistry and Physics, 2020, 247, 122864.	2.0	16
2102	Design Strategies for Development of TMD-Based Heterostructures in Electrochemical Energy Systems. Matter, 2020, 2, 526-553.	5.0	312
2103	Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chemical Society Reviews, 2020, 49, 2215-2264.	18.7	582
2104	Designed Formation of Doubleâ€Shelled Ni–Fe Layeredâ€Doubleâ€Hydroxide Nanocages for Efficient Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e1906432.	11.1	305
2105	Construction and Application of Interfacial Inorganic Nanostructures. Chinese Journal of Chemistry, 2020, 38, 772-786.	2.6	13
2106	Nickel-iron borate coated nickel-iron boride hybrid for highly stable and active oxygen evolution electrocatalysis. Chinese Chemical Letters, 2020, 31, 2469-2472.	4.8	30
2107	MOF-derived ZnCo ₂ O ₄ porous micro-rice with enhanced electro-catalytic activity for the oxygen evolution reaction and glucose oxidation. RSC Advances, 2020, 10, 9063-9069.	1.7	34
2108	Strain-Induced Corrosion Kinetics at Nanoscale Are Revealed in Liquid: Enabling Control of Corrosion Dynamics of Electrocatalysis. CheM, 2020, 6, 2257-2271.	5.8	48

#	Article	IF	CITATIONS
2109	Enhancing the oxygen evolution reaction performance of NiFeOOH electrocatalyst for Zn-air battery by N-doping. Journal of Catalysis, 2020, 389, 375-381.	3.1	33
2110	Pt-alloy decorated graphene as an efficient electrocatalyst for PEM fuel cell reactions. Journal of Supercritical Fluids, 2020, 165, 104962.	1.6	29
2111	Hydrogen Production from Urea Sewage on NiFe-Based Porous Electrocatalysts. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	15
2112	Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting. Advanced Functional Materials, 2020, 30, 2003261.	7.8	352
2113	Ni–Fe nanocubes embedded with Pt nanoparticles for hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2020, 45, 20832-20842.	3.8	40
2114	An efficient and stable Ni–Fe selenides/nitrogen-doped carbon nanotubes in situ-derived electrocatalyst for oxygen evolution reaction. Journal of Materials Science, 2020, 55, 13927-13937.	1.7	27
2115	Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today, 2020, 34, 100917.	6.2	91
2116	In situ grown Cu-Based metal-organic framework on copper foam as high-performance electrocatalysts for oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 21540-21546.	3.8	24
2117	MOF-Derived Sulfide-Based Electrocatalyst and Scaffold for Boosted Hydrogen Production. ACS Applied Materials & amp; Interfaces, 2020, 12, 33595-33602.	4.0	123
2118	Universal Approach to Fabricating Graphene-Supported Single-Atom Catalysts from Doped ZnO Solid Solutions. ACS Central Science, 2020, 6, 1431-1440.	5.3	69
2119	Synthesis of an iron-doped 3D-ordered mesoporous cobalt phosphide material toward efficient electrocatalytic overall water splitting. Inorganic Chemistry Frontiers, 2020, 7, 3002-3010.	3.0	22
2120	Graphene-MoS ₂ vertically anchored on an MXene-derived accordion-like TiO ₂ /C skeleton: an ultrastable HER catalyst. Journal of Materials Chemistry A, 2020, 8, 14223-14233.	5.2	28
2121	Ru single atoms and nanoparticles on carbon nanotubes as multifunctional catalysts. Dalton Transactions, 2020, 49, 10250-10260.	1.6	13
2122	Atomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers. Beilstein Journal of Nanotechnology, 2020, 11, 952-959.	1.5	6
2123	Advanced Characterization Techniques for Identifying the Key Active Sites of Gasâ€Involved Electrocatalysts. Advanced Functional Materials, 2020, 30, 2001704.	7.8	19
2124	Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angewandte Chemie, 2020, 132, 17865-17871.	1.6	24
2125	Co 9 S 8 Nanoparticleâ€Supported Nitrogenâ€doped Carbon as a Robust Catalyst for Oxygen Reduction Reaction in Both Acidic and Alkaline Conditions. ChemElectroChem, 2020, 7, 3123-3134.	1.7	3
2126	Addressing the OER/HER imbalance by a redox transition-induced two-way electron injection in a bifunctional n–p–n electrode for excellent water splitting. Journal of Materials Chemistry A, 2020, 8, 13218-13230.	5.2	17

#	Article	IF	CITATIONS
2127	Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires. Journal of Materials Chemistry A, 2020, 8, 13638-13645.	5.2	61
2128	Exploring the hydrogen evolution capabilities of earth-abundant ternary metal borides for neutral and alkaline water-splitting. Electrochimica Acta, 2020, 354, 136738.	2.6	30
2129	Engineering Platinum–Oxygen Dual Catalytic Sites via Charge Transfer towards Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 17712-17718.	7.2	53
2130	Optimizing the electronic structure of cobalt via synergized oxygen vacancy and Co-N-C to boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 278, 119300.	10.8	111
2131	Tailoring hollow structure within NiCoP nanowire arrays via nanoscale Kirkendall diffusion to enhance hydrogen evolution reaction. Nanotechnology, 2020, 31, 425404.	1.3	11
2132	Core–shell nanostructured electrocatalysts for water splitting. Nanoscale, 2020, 12, 15944-15969.	2.8	83
2133	Trends of epitaxial perovskite oxide films catalyzing the oxygen evolution reaction in alkaline media. JPhys Energy, 2020, 2, 032003.	2.3	37
2134	Catalytic Nanoframes and Beyond. Advanced Materials, 2020, 32, e2001345.	11.1	57
2135	Cadmium Hydroxide: A Missing Non-Noble Metal Hydroxide Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 1305-1310.	2.5	20
2136	Effect of Atomic Ordering Transformation of PtNi Nanoparticles on Alkaline Hydrogen Evolution: Unexpected Superior Activity of the Disordered Phase. Journal of Physical Chemistry C, 2020, 124, 5036-5045.	1.5	32
2137	FeNi Alloy Nanoparticles Encapsulated in Carbon Shells Supported on Nâ€Doped Graphene‣ike Carbon as Efficient and Stable Bifunctional Oxygen Electrocatalysts. Chemistry - A European Journal, 2020, 26, 2890-2896.	1.7	27
2138	Intrinsic Effect of Carbon Supports on the Activity and Stability of Precious Metal Based Catalysts for Electrocatalytic Alcohol Oxidation in Fuel Cells: A Review. ChemSusChem, 2020, 13, 2484-2502.	3.6	52
2139	Strong electronic couple engineering of transition metal phosphides-oxides heterostructures as multifunctional electrocatalyst for hydrogen production. Applied Catalysis B: Environmental, 2020, 269, 118803.	10.8	94
2140	Peat-derived carbon-based non-platinum group metal type catalyst for oxygen reduction and evolution reactions. Electrochemistry Communications, 2020, 113, 106700.	2.3	12
2141	Rational modulating electronegativity of substituents in amorphous metal-organic frameworks for water oxidation catalysis. International Journal of Hydrogen Energy, 2020, 45, 9723-9732.	3.8	18
2142	Direct solvent free synthesis of bare α-NiS, β-NiS and α-β-NiS composite as excellent electrocatalysts: Effect of self-capping on supercapacitance and overall water splitting activity. Scientific Reports, 2020, 10, 3260.	1.6	73
2143	High Electrochemical Performance of 2.5 V Aqueous Symmetric Supercapacitor Based on Nitrogenâ€Doped Reduced Graphene Oxide. Energy Technology, 2020, 8, 1901339.	1.8	19
2144	Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chemical Engineering Journal, 2020, 390, 124556.	6.6	84

#	Article	IF	CITATIONS
2145	Hierarchical iron-doped CoP heterostructures self-assembled on copper foam as a bifunctional electrocatalyst for efficient overall water splitting. Journal of Colloid and Interface Science, 2020, 569, 140-149.	5.0	56
2146	Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting. Journal of Energy Chemistry, 2020, 47, 333-345.	7.1	104
2147	Ni-Based Nanoparticle-Embedded N-Doped Carbon Nanohorns Derived from Double Core–Shell CNH@PDA@NiMOFs for Oxygen Electrocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 12743-12754.	4.0	30
2148	High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis. Journal of the American Chemical Society, 2020, 142, 4550-4554.	6.6	208
2149	Metal-free photocatalysts for hydrogen evolution. Chemical Society Reviews, 2020, 49, 1887-1931.	18.7	374
2150	Facile fabrication of ultrafine nickel-iridium alloy nanoparticles/graphene hybrid with enhanced mass activity and stability for overall water splitting. Journal of Energy Chemistry, 2020, 49, 166-173.	7.1	50
2151	NiAg _{0.4} 3D porous nanoclusters with epitaxial interfaces exhibiting Pt like activity towards hydrogen evolution in alkaline medium. Nanoscale, 2020, 12, 8432-8442.	2.8	14
2152	Turning Cotton to Self-Supported Electrocatalytic Carbon Electrode for Highly Efficient Oxygen Reduction. Electrocatalysis, 2020, 11, 317-328.	1.5	3
2153	Interface engineering of copper-cobalt based heterostructure as bifunctional electrocatalysts for overall water splitting. Ceramics International, 2020, 46, 13125-13132.	2.3	20
2154	Potential of core-shell NiFe layered double hydroxide@Co3O4 nanostructures as cathode catalysts for oxygen reduction reaction in microbial fuel cells. Journal of Power Sources, 2020, 453, 227877.	4.0	62
2155	Copper Cobalt Selenide as a High-Efficiency Bifunctional Electrocatalyst for Overall Water Splitting: Combined Experimental and Theoretical Study. ACS Applied Energy Materials, 2020, 3, 3092-3103.	2.5	60
2156	Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nature Communications, 2020, 11, 938.	5.8	238
2157	2020 Roadmap on Carbon Materials for Energy Storage and Conversion. Chemistry - an Asian Journal, 2020, 15, 995-1013.	1.7	154
2158	A Lowâ€Temperature Molecular Precursor Approach to Copperâ€Based Nanoâ€Sized <i>Digenite</i> Mineral for Efficient Electrocatalytic Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2020, 15, 852-859.	1.7	32
2159	Nitrogen and sulfur dual-doped hollow mesoporous carbon spheres as efficient metal-free catalyst for oxygen reduction reaction. Inorganic Chemistry Communication, 2020, 114, 107848.	1.8	21
2160	Efficient and stable hybrid electrocatalyst of mixed MnP-MoP nanoparticles‒N,P-codoped graphene for hydrogen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 593, 124609.	2.3	15
2161	Cr doped-Co9S8 nanoarrays as high-efficiency electrocatalysts for water splitting. Journal of Alloys and Compounds, 2020, 824, 153965.	2.8	18
2162	Three-dimensional (3D) hierarchical coral-like Mn-doped Ni2P–Ni5P4/NF catalyst for efficient oxygen evolution. Journal of Alloys and Compounds, 2020, 826, 154210.	2.8	44

#	Article	IF	CITATIONS
2163	Rich heteroatom doping magnetic carbon electrode for flow-capacitive deionization with enhanced salt removal ability. Desalination, 2020, 482, 114374.	4.0	18
2164	VS ₂ Microflowers with In Situ Embedded Few-Layer MoS ₂ Nanobelts for Enhanced Hydrogen Evolution Reaction at High Current Density. Journal of the Electrochemical Society, 2020, 167, 026508.	1.3	8
2165	Synthesis and characterization of biogenic iron oxides of different nanomorphologies from pomegranate peels for efficient solar hydrogen production. Journal of Materials Research and Technology, 2020, 9, 4255-4271.	2.6	74
2166	MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49, 1414-1448.	18.7	1,128
2167	H, OH and COOH functionalized magnesium phthalocyanine as a catalyst for oxygen reduction reaction (ORR) – A DFT study. International Journal of Hydrogen Energy, 2020, 45, 8540-8548.	3.8	34
2168	Synthesis of PtCoNiRu/C nanoparticles by spray drying combined with reduction sintering for methanol electro-oxidation. RSC Advances, 2020, 10, 3579-3587.	1.7	2
2169	Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chemical Engineering Journal, 2020, 389, 124408.	6.6	123
2170	CoO/NF nanowires promote hydrogen and oxygen production for overall water splitting in alkaline media. International Journal of Hydrogen Energy, 2020, 45, 8031-8040.	3.8	27
2171	Nonâ€Nobleâ€Metalâ€Based Electrocatalysts toward the Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1910274.	7.8	760
2172	Stable zigzag edges of transition-metal dichalcogenides with high catalytic activity for oxygen reduction. Electrochimica Acta, 2020, 338, 135865.	2.6	14
2173	Co-doped Ni3S2 hierarchical nanoarrays derived from zeolitic imidazolate frameworks as bifunctional electrocatalysts for highly enhanced overall-water-splitting activity. Journal of Alloys and Compounds, 2020, 827, 154299.	2.8	29
2174	The ultrafine monolayer 1 T/2H-MoS2: Preparation, characterization and amazing photocatalytic characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124431.	2.3	26
2175	Zincâ€Mediated Template Synthesis of Feâ€Nâ€C Electrocatalysts with Densely Accessible Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Advanced Materials, 2020, 32, e1907399.	11.1	319
2176	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Materials Today, 2020, 36, 125-138.	8.3	308
2177	Co/Cu-modified NiO film grown on nickel foam as a highly active and stable electrocatalyst for overall water splitting. Dalton Transactions, 2020, 49, 1776-1784.	1.6	20
2178	Electrochemically Exfoliated β-Co(OH) ₂ Nanostructures for Enhanced Oxygen Evolution Electrocatalysis. ACS Applied Energy Materials, 2020, 3, 1461-1467.	2.5	46
2179	Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nature Communications, 2020, 11, 497.	5.8	280
2180	A highly effective bifunctional catalyst of cobalt selenide nanoparticles embedded nitrogen-doped bamboo-like carbon nanotubes toward hydrogen and oxygen evolution reactions based on metal-organic framework. Journal of Colloid and Interface Science, 2020, 566, 296-303.	5.0	52

#	Article	IF	CITATIONS
2181	Nâ€Đoped Carbon Nanotubes Encapsulating Ni/MoN Heterostructures Grown on Carbon Cloth for Overall Water Splitting. ChemElectroChem, 2020, 7, 745-752.	1.7	30
2182	Multifunctional electrocatalytic activity of coronene-based two-dimensional metal-organic frameworks: TM-PTC. Applied Surface Science, 2020, 511, 145393.	3.1	18
2183	Activated carbon with heteroatoms from organic salt for hydrogen evolution reaction. Microporous and Mesoporous Materials, 2020, 297, 110033.	2.2	14
2184	Ultrathin Amorphous Nickel Doped Cobalt Phosphates with Highly Ordered Mesoporous Structures as Efficient Electrocatalyst for Oxygen Evolution Reaction. Small, 2020, 16, e1906766.	5.2	50
2185	In Situ Growth of Ru Nanoparticles on (Fe,Ni)(OH) ₂ to Boost Hydrogen Evolution Activity at High Current Density in Alkaline Media. Small Methods, 2020, 4, 1900796.	4.6	82
2186	Two-dimensional materials for energy conversion and storage. Progress in Materials Science, 2020, 111, 100637.	16.0	134
2187	Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy, 2020, 70, 104525.	8.2	143
2188	Rational Design of Spinel Cobalt Vanadate Oxide Co ₂ VO ₄ for Superior Electrocatalysis. Advanced Materials, 2020, 32, e1907168.	11.1	134
2189	Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chinese Journal of Catalysis, 2020, 41, 783-798.	6.9	174
2190	Self-assembly of homointerface engineered IrCo0.14 bracelet-like nanorings as efficient and stable bifunctional catalysts for electrochemical water splitting in acidic media. Electrochimica Acta, 2020, 337, 135738.	2.6	16
2191	Accelerated alkaline hydrogen evolution on M(OH) _x /M-MoPO _x (M = Ni, Co, Fe,) Tj ETQq Science, 2020, 11, 2487-2493.	0 0 0 rgB ⁻ 3.7	[/Overlock] 54
2192	Ultrathin Ni(0)â€Embedded Ni(OH) ₂ Heterostructured Nanosheets with Enhanced Electrochemical Overall Water Splitting. Advanced Materials, 2020, 32, e1906915.	11.1	259
2193	Uniform Virusâ€Like Co–N–Cs Electrocatalyst Derived from Prussian Blue Analog for Stretchable Fiberâ€Shaped Zn–Air Batteries. Advanced Functional Materials, 2020, 30, 1908945.	7.8	81
2194	Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Physics Reports, 2020, 848, 1-58.	10.3	594
2195	Metal-organic frameworks derived carbon-incorporated cobalt/dicobalt phosphide microspheres as Mott–Schottky electrocatalyst for efficient and stable hydrogen evolution reaction in wide-pH environment. Journal of Colloid and Interface Science, 2020, 565, 513-522.	5.0	25
2196	Design aktiver atomarer Zentren für HERâ€Elektrokatalysatoren. Angewandte Chemie, 2020, 132, 20978-20998.	1.6	18
2197	Cobalt sulfide nanoparticles: Synthesis, water splitting and supercapacitance studies. Materials Science in Semiconductor Processing, 2020, 109, 104925.	1.9	29
2198	Regulating the electronic configuration of ruthenium nanoparticles via coupling cobalt phosphide for hydrogen evolution in alkaline media. Materials Today Physics, 2020, 12, 100182.	2.9	27

#	Article	IF	CITATIONS
2199	Amorphous Ni–Fe–Mo Suboxides Coupled with Ni Network as Porous Nanoplate Array on Nickel Foam: A Highly Efficient and Durable Bifunctional Electrode for Overall Water Splitting. Advanced Science, 2020, 7, 1902034.	5.6	94
2200	Recent Advances on Waterâ€Splitting Electrocatalysis Mediated by Nobleâ€Metalâ€Based Nanostructured Materials. Advanced Energy Materials, 2020, 10, 1903120.	10.2	560
2201	Gold Nanoclusters as Electrocatalysts for Energy Conversion. Nanomaterials, 2020, 10, 238.	1.9	34
2202	Enhanced electro-catalytic activity of palladium nanocoral structures with platinum incorporation. Electrochimica Acta, 2020, 340, 135840.	2.6	5
2203	Achieving Rich and Active Alkaline Hydrogen Evolution Heterostructures via Interface Engineering on 2D 1Tâ€MoS ₂ Quantum Sheets. Advanced Functional Materials, 2020, 30, 2000551.	7.8	83
2204	Heterostructured Ni–Mo–N nanoparticles decorated on reduced graphene oxide as efficient and robust electrocatalyst for hydrogen evolution reaction. Carbon, 2020, 165, 122-128.	5.4	37
2205	Recent Advances in Nobleâ€Metalâ€Free Catalysts for Electrocatalytic Synthesis of Ammonia under Ambient Conditions. Chemistry - an Asian Journal, 2020, 15, 1791-1807.	1.7	8
2206	Synthesis of Co(II)-Fe(III) Hydroxide Nanocones with Mixed Octahedral/Tetrahedral Coordination toward Efficient Electrocatalysis. Chemistry of Materials, 2020, 32, 4232-4240.	3.2	26
2207	LaF ₃ Nanosheet-induced Epitaxial Growth: Hollow (Co, Ni) ₂ P/LaF ₃ Nanotube Arrays Built by Porous Heterojunction Walls Grown on Ni Foam as Active Electrocatalyst for Hydrogen Evolution Reaction. Inorganic Chemistry, 2020, 59, 7000-7011.	1.9	16
2208	Gradient phosphorus-doping engineering and superficial amorphous reconstruction in NiFe ₂ O ₄ nanoarrays to enhance the oxygen evolution electrocatalysis. Nanoscale, 2020, 12, 10977-10986.	2.8	24
2209	Se-Rich MoSe ₂ Nanosheets and Their Superior Electrocatalytic Performance for Hydrogen Evolution Reaction. ACS Nano, 2020, 14, 6295-6304.	7.3	125
2210	Preparation of Zirconium Phosphate Nanomaterials and Their Applications as Inorganic Supports for the Oxygen Evolution Reaction. Nanomaterials, 2020, 10, 822.	1.9	18
2211	Identifying Key Structural Subunits and Their Synergism in Low-Iridium Triple Perovskites for Oxygen Evolution in Acidic Media. Chemistry of Materials, 2020, 32, 3904-3910.	3.2	29
2212	Structure Design Reveals the Role of Au for ORR Catalytic Performance Optimization in PtCoâ€Based Catalysts. Advanced Functional Materials, 2020, 30, 2001575.	7.8	50
2213	Co nanoparticles coupling induced high catalytic activity of nitrogen doped carbon towards hydrogen evolution reaction in acidic/alkaline solutions. Electrochimica Acta, 2020, 342, 136076.	2.6	14
2214	Hollow La0.5Sr0.5MnO3 nanospheres as an electrocatalyst for the oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy, 2020, 45, 12514-12524.	3.8	7
2215	Multi-shelled CoS2–MoS2 hollow spheres as efficient bifunctional electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2020, 45, 13290-13299.	3.8	54
2216	MoSe ₂ -Amorphous CNT Hierarchical Hybrid Core–Shell Structure for Efficient Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 5067-5076.	2.5	24

#	Article	IF	CITATIONS
2217	Surface Composition Dependent Ligand Effect in Tuning the Activity of Nickel–Copper Bimetallic Electrocatalysts toward Hydrogen Evolution in Alkaline. Journal of the American Chemical Society, 2020, 142, 7765-7775.	6.6	234
2218	From metal–organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy and Environmental Science, 2020, 13, 1658-1693.	15.6	323
2219	Fe-doped Co ₃ O ₄ polycrystalline nanosheets as a binder-free bifunctional cathode for robust and efficient zinc–air batteries. Chemical Communications, 2020, 56, 5374-5377.	2.2	36
2220	Coupling amorphous cobalt hydroxide nanoflakes on Sr ₂ Fe _{1.5} Mo _{0.5} O _{5+Î′} perovskite nanofibers to induce bifunctionality for water splitting. Nanoscale, 2020, 12, 9048-9057.	2.8	33
2221	Facile synthesis of nanoparticle-stacked tungsten-doped nickel iron layered double hydroxide nanosheets for boosting oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 8096-8103.	5.2	73
2222	Recent advances in nanostructured intermetallic electrocatalysts for renewable energy conversion reactions. Journal of Materials Chemistry A, 2020, 8, 8195-8217.	5.2	64
2223	Fast cation exchange of layered sodium transition metal oxides for boosting oxygen evolution activity and enhancing durability. Journal of Materials Chemistry A, 2020, 8, 8075-8083.	5.2	9
2224	Three-dimensional self-supporting NiFe-X (X = OH, O, P) nanosheet arrays for high-efficiency overall water splitting. 2D Materials, 2020, 7, 035016.	2.0	14
2225	Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting. National Science Review, 2020, 7, 1340-1348.	4.6	56
2226	NiCoO2-carbon composite as an efficient bifunctional catalyst for electrochemical water splitting. Ionics, 2020, 26, 3959-3967.	1.2	3
2227	Revisiting the Limiting Factors for Overall Waterâ€ S plitting on Organic Photocatalysts. Angewandte Chemie, 2020, 132, 16418-16433.	1.6	9
2228	Revisiting the Limiting Factors for Overall Waterâ€Splitting on Organic Photocatalysts. Angewandte Chemie - International Edition, 2020, 59, 16278-16293.	7.2	72
2229	Preparation of cobalt-based nanomaterials carried by nitrogen-doped carbon nanotubes as high performance electrocatalysts for hydrogen evolution reaction. New Carbon Materials, 2020, 35, 87-96.	2.9	7
2230	Biopolymer-Inspired N-Doped Nanocarbon Using Carbonized Polydopamine: A High-Performance Electrocatalyst for Hydrogen-Evolution Reaction. Polymers, 2020, 12, 912.	2.0	19
2231	Recent advances of nonprecious and bifunctional electrocatalysts for overall water splitting. Sustainable Energy and Fuels, 2020, 4, 3211-3228.	2.5	63
2232	Recent Advances in Nonâ€Noble Bifunctional Oxygen Electrocatalysts toward Largeâ€Scale Production. Advanced Functional Materials, 2020, 30, 2000503.	7.8	226
2233	Recent advances on metal alkoxide-based electrocatalysts for water splitting. Journal of Materials Chemistry A, 2020, 8, 10130-10149.	5.2	43
2234	Porous Monolithic Electrode of Ni ₃ FeN on 3D Graphene for Efficient Oxygen Evolution. Journal of Nanoscience and Nanotechnology, 2020, 20, 5175-5181.	0.9	8

			_
#		IF	CITATIONS
2235	Highly efficient CoMoS heterostructure derived from vertically anchored Co5Mo10 polyoxometalate for electrocatalytic overall water splitting. Chemical Engineering Journal, 2020, 394, 124849.	6.6	67
2236	In-situ synthesis of free-standing FeNi-oxyhydroxide nanosheets as a highly efficient electrocatalyst for water oxidation. Chemical Engineering Journal, 2020, 395, 125180.	6.6	100
2237	Core-shell CoS2@MoS2 nanoparticles as an efficient electrocatalyst for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 835, 155264.	2.8	21
2238	Halides-assisted electrochemical synthesis of Cu/Cu2O/CuO core-shell electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2020, 457, 228058.	4.0	34
2239	Novel 2D Transitionâ€Metal Carbides: Ultrahigh Performance Electrocatalysts for Overall Water Splitting and Oxygen Reduction. Advanced Functional Materials, 2020, 30, 2000570.	7.8	186
2240	Positive and Negative Effects of Dopants toward Electrocatalytic Activity of MoS ₂ and WS ₂ : Experiments and Theory. ACS Applied Materials & Interfaces, 2020, 12, 20383-20392.	4.0	38
2241	<scp>l</scp> -Lysine-Functionalized Reduced Graphene Oxide as a Highly Efficient Electrocatalyst for Enhanced Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 5524-5533.	3.2	39
2242	Recent progress in self-supported two-dimensional transition metal oxides and (oxy)hydroxides as oxygen evolution reaction catalysts. Sustainable Energy and Fuels, 2020, 4, 2625-2637.	2.5	28
2243	Fabrication and Applications of 3D Nanoarchitectures for Advanced Electrocatalysts and Sensors. Advanced Materials, 2020, 32, e1907500.	11.1	17
2244	Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolicâ€Nitrogenâ€Carbon. Advanced Energy Materials, 2020, 10, 2000789.	10.2	247
2245	Plum Puddingâ€Like Electrocatalyst of Nâ€Doped SnO x @Sn Loaded on Carbon Matrix to Construct Photovoltaic CO 2 Reduction System with Solarâ€toâ€Fuel Efficiency of 11.3%. Solar Rrl, 2020, 4, 2000116.	3.1	5
2246	Synergistic coupling of NiTe nanoarrays with RuO2 and NiFe-LDH layers for high-efficiency electrochemical-/photovoltage-driven overall water splitting. Applied Catalysis B: Environmental, 2020, 272, 118988.	10.8	101
2247	Preparation of nano-Co3O4-coated Albizia procera-derived carbon by direct thermal decomposition method for electrochemical water oxidation. Arabian Journal of Chemistry, 2020, 13, 4785-4796.	2.3	30
2248	Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media. Journal of Energy Chemistry, 2020, 51, 113-133.	7.1	66
2249	Metal–organic frameworks and their catalytic applications. Journal of Saudi Chemical Society, 2020, 24, 461-473.	2.4	75
2250	Atomically dispersed Fe-N-S-C anchored on pomegranate-shaped carbon spheres for oxygen reduction reaction and all-solid-state zinc-air battery. Materials Today Sustainability, 2020, 9, 100039.	1.9	23
2251	Nanostructured Ni ₂ SeS on Porous-Carbon Skeletons as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Medium. Inorganic Chemistry, 2020, 59, 6018-6025.	1.9	13
2252	Computational Screening of 2D Ordered Double Transition-Metal Carbides (MXenes) as Electrocatalysts for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 10584-10592.	1.5	62

#	Article	IF	CITATIONS
2253	In Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal–Organic Frameworks to Design Atomic Co ₁ –P ₁ N ₃ Interfacial Structure for Promoting Catalytic Performance. Journal of the American Chemical Society, 2020, 142, 8431-8439.	6.6	259
2254	Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nature Communications, 2020, 11, 1853.	5.8	229
2255	Metallic nanostructures with low dimensionality for electrochemical water splitting. Chemical Society Reviews, 2020, 49, 3072-3106.	18.7	609
2256	Chitosan cross-linked poly(aminoanthraquinone)/Prussian blue ternary nitrogen precursor-derived Fe–N–C oxygen reduction catalysts for microbial fuel cells and zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 9256-9267.	5.2	39
2257	Bonding–antibonding state transition induces multiple electron modulations toward oxygen reduction reaction electrocatalysis. New Journal of Chemistry, 2020, 44, 8191-8197.	1.4	6
2258	Bi-functional S-Doped Ni Catalysts on Copper Foams with Enhanced Electrocatalytic Performance and Excellent Stability for Electrocatalytic Water Splitting. International Journal of Electrochemical Science, 2020, 15, 2806-2821.	0.5	5
2259	Study on the Electrocatalytic Performance of Porous Conductive Materials Based on an In Situ Growth of Bimetal Phosphides with Plasma. International Journal of Electrochemical Science, 2020, , 3242-3254.	0.5	0
2260	The coupling of experiments with density functional theory in the studies of the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 8783-8812.	5.2	33
2261	MOF-derived Fe,Co@N–C bifunctional oxygen electrocatalysts for Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 9355-9363.	5.2	151
2262	On-chip electrocatalytic microdevice: an emerging platform for expanding the insight into electrochemical processes. Chemical Society Reviews, 2020, 49, 2916-2936.	18.7	68
2263	Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions. Journal of Energy Chemistry, 2021, 54, 89-104.	7.1	65
2264	Bonding interface boosts the intrinsic activity and durability of NiSe@Fe2O3 heterogeneous electrocatalyst for water oxidation. Science Bulletin, 2021, 66, 52-61.	4.3	44
2265	2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Advanced Materials, 2021, 33, e1907818.	11.1	284
2266	Surpassing electrocatalytic limit of earth-abundant Fe4+ embedded in N-doped graphene for (photo)electrocatalytic water oxidation. Journal of Energy Chemistry, 2021, 54, 274-281.	7.1	5
2267	2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural: Catalysts, processes and reaction mechanism. Journal of Energy Chemistry, 2021, 54, 528-554.	7.1	137
2268	Grain Boundaries Boost Oxygen Evolution Reaction in NiFe Electrocatalysts. Small Methods, 2021, 5, 2000755.	4.6	22
2269	An account of the strategies to enhance the water splitting efficiency of noble-metal-free electrocatalysts. Journal of Energy Chemistry, 2021, 59, 160-190.	7.1	48
2270	The Heterostructure of Ru ₂ P/WO ₃ /NPC Synergistically Promotes H ₂ O Dissociation for Improved Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 4110-4116.	7.2	141

#	Article	IF	CITATIONS
2271	Metal-organic frameworks as template for synthesis of Mn3+/Mn4+ mixed valence manganese cobaltites electrocatalysts for oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 582, 124-136.	5.0	39
2272	Ti3+-self-doped TiO2 with multiple crystal-phases anchored on acid-pickled ZIF-67-derived Co3O4@N-doped graphitized-carbon as a durable catalyst for oxygen reduction in alkaline and acid media. Chemical Engineering Journal, 2021, 403, 126441.	6.6	24
2273	Developed magnetic Fe3O4–MoO3-AC nanocomposite for effective removal of ciprofloxacin from water. Materials Chemistry and Physics, 2021, 257, 123454.	2.0	44
2274	Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction (OER) to achieve efficient alkaline water splitting – A review. Journal of Energy Chemistry, 2021, 56, 299-342.	7.1	148
2275	Fullerenes as Key Components for Lowâ€Dimensional (Photo)electrocatalytic Nanohybrid Materials. Angewandte Chemie - International Edition, 2021, 60, 122-141.	7.2	64
2276	Fabrication and Characterization of Controlled-Morphology Self-Supported Fe/Co Layered Double Hydroxides as Catalysts for the Oxygen Evolution Reaction. Catalysis Letters, 2021, 151, 507-516.	1.4	12
2277	Recent Progress on NiFeâ€Based Electrocatalysts for Alkaline Oxygen Evolution. Advanced Sustainable Systems, 2021, 5, .	2.7	50
2278	Electrocatalytic reduction of Cr(VI) over heterophase MoS2 film electrode. Chemical Engineering Journal, 2021, 404, 126556.	6.6	25
2279	Co9S8/CoS@S, N co-doped porous carbon derived from MOFs as an efficient catalyst for the oxygen evolution reaction. Journal of Physics and Chemistry of Solids, 2021, 148, 109696.	1.9	17
2280	Decoupling hydrogen production from water oxidation by integrating a triphase interfacial bioelectrochemical cascade reaction. Science Bulletin, 2021, 66, 164-169.	4.3	10
2281	Two flowers per seed: Derivatives of CoG@F127/GO with enhanced catalytic performance of overall water splitting. Journal of Energy Chemistry, 2021, 54, 761-769.	7.1	17
2282	Facilitating active species by decorating CeO2 on Ni3S2 nanosheets for efficient water oxidation electrocatalysis. Chinese Journal of Catalysis, 2021, 42, 482-489.	6.9	61
2283	N-doped graphitic carbon shell-encapsulated FeCo alloy derived from metal–polyphenol network and melamine sponge for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media. Journal of Colloid and Interface Science, 2021, 581, 362-373.	5.0	61
2284	Nitrogen-doped carbon-decorated yolk-shell CoP@FeCoP micro-polyhedra derived from MOF for efficient overall water splitting. Chemical Engineering Journal, 2021, 403, 126312.	6.6	236
2285	Water Adsorption and Dissociation Promoted by Co*-/N-C*-Biactive Sites of Metallic Co/N-Doped Carbon Hybrids for Efficient Hydrogen Evolution. Applied Catalysis B: Environmental, 2021, 282, 119463.	10.8	77
2286	Interface engineering of NiS@MoS2 core-shell microspheres as an efficient catalyst for hydrogen evolution reaction in both acidic and alkaline medium. Journal of Alloys and Compounds, 2021, 853, 157352.	2.8	41
2287	Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction. Frontiers of Physics, 2021, 16, 1.	2.4	6
2288	Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coordination Chemistry Reviews, 2021, 427, 213552.	9.5	66

#	Article	IF	Citations
2289	Abundant heterointerfaces in MOF-derived hollow CoS2–MoS2 nanosheet array electrocatalysts for overall water splitting. Journal of Energy Chemistry, 2021, 57, 99-108.	7.1	84
2290	Design of grain boundary enriched bimetallic borides for enhanced hydrogen evolution reaction. Chemical Engineering Journal, 2021, 405, 126977.	6.6	56
2291	Hollow cobalt-nickel phosphide nanocages for efficient electrochemical overall water splitting. Science China Materials, 2021, 64, 861-869.	3.5	33
2292	Design Strategies of Transitionâ€Metal Phosphate and Phosphonate Electrocatalysts for Energyâ€Related Reactions. ChemSusChem, 2021, 14, 130-149.	3.6	48
2293	Synergistic Interaction of Double/Simple Perovskite Heterostructure for Efficient Hydrogen Evolution Reaction at High Current Density. Small Methods, 2021, 5, e2000701.	4.6	31
2294	Structures and Functional Properties of Amorphous Alloys. Small Structures, 2021, 2, 2000057.	6.9	28
2295	Confinement in two-dimensional materials: Major advances and challenges in the emerging renewable energy conversion and other applications. Progress in Solid State Chemistry, 2021, 61, 100294.	3.9	24
2296	Rational design of bimetallic metal–organic framework composites and their derived sulfides with superior electrochemical performance to remarkably boost oxygen evolution and supercapacitors. Chemical Engineering Journal, 2021, 404, 127111.	6.6	70
2297	NiFe hydroxide nanosheet synthesized by in-situ chelation for highly efficient oxygen evolution reaction. Materials Chemistry and Physics, 2021, 258, 123918.	2.0	10
2298	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70
2299	In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Applied Catalysis B: Environmental, 2021, 281, 119510.	10.8	154
2300	Sprout-shaped Mo-doped CoP with maximized hydrophilicity and gas bubble release for high-performance water splitting catalyst. Chemical Engineering Journal, 2021, 408, 127331.	6.6	47
2301	Metalâ€organic frameworksâ€derived novel nanostructured electrocatalysts for oxygen evolution reaction. , 2021, 3, 66-100.		93
2302	Electronic modulation and interface engineering of electrospun nanomaterialsâ€based electrocatalysts toward water splitting. , 2021, 3, 101-128.		134
2303	"More is Different:―Synergistic Effect and Structural Engineering in Doubleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2007423.	7.8	179
2304	The Heterostructure of Ru ₂ P/WO ₃ /NPC Synergistically Promotes H ₂ O Dissociation for Improved Hydrogen Evolution. Angewandte Chemie, 2021, 133, 4156-4162.	1.6	33
2305	Computational and experimental investigation of Co and S-doped Ni ₂ P as an efficient electrocatalyst for acid mediated proton exchange membrane hydrogen evolution reaction. Catalysis Science and Technology, 2021, 11, 861-873.	2.1	16
2306	W-N3 center supported on blue phosphorus as a promising efficient electrocatalyst with ultra-low limiting potential for nitrogen fixation. Applied Surface Science, 2021, 536, 147706.	3.1	13

	CITATION R	EPORT	
# 2307	ARTICLE Local probe investigation of electrocatalytic activity. Chemical Science, 2021, 12, 71-98.	IF 3.7	CITATIONS
2308	Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Applied Catalysis B: Environmental, 2021, 284, 119740.	10.8	302
2309	Self-activated cathode substrates in rechargeable zinc–air batteries. Energy Storage Materials, 2021, 35, 530-537.	9.5	11
2310	Influence of deposition time on the electrocatalytic activities of core-shell Co(OH)2/NiS/NF electrode. Materials Today Communications, 2021, 26, 101890.	0.9	2
2311	A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures: a review. Journal of Materials Chemistry A, 2021, 9, 1314-1352.	5.2	206
2312	2D MOF-derived porous NiCoSe nanosheet arrays on Ni foam for overall water splitting. CrystEngComm, 2021, 23, 69-81.	1.3	37
2313	Recent Advances in Electrocatalysis of Oxygen Evolution Reaction using Nobleâ€Metal, Transitionâ€Metal, and Carbonâ€Based Materials. ChemElectroChem, 2021, 8, 447-483.	1.7	68
2314	Multilayer hollow MnCo2O4 microsphere with oxygen vacancies as efficient electrocatalyst for oxygen evolution reaction. Chemical Engineering Journal, 2021, 421, 127831.	6.6	84
2315	Vacuum annealed MnO2 ultra-thin nanosheets with oxygen defects for high performance supercapacitors. Journal of Physics and Chemistry of Solids, 2021, 150, 109856.	1.9	16
2316	Anomalous Câ^'C Coupling on Underâ€Coordinated Cu (111): A Case Study of Cu Nanopyramids for CO ₂ Reduction Reaction by Molecular Modelling. ChemSusChem, 2021, 14, 671-678.	3.6	16
2317	Synthesis of raspberry-like antimony-platinum (SbPt) nanoparticles as highly active electrocatalysts for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2021, 584, 729-737.	5.0	8
2318	Solar-boosted electrocatalytic oxygen evolution via catalytic site remodelling of CoCr layered double hydroxide. Applied Catalysis B: Environmental, 2021, 284, 119707.	10.8	26
2319	Recent advances of metal-organic frameworks and their composites towardÂoxygen evolution electrocatalysis. Materials Today Energy, 2021, 19, 100597.	2.5	34
2320	Interface engineering of transitional metal sulfide–MoS ₂ heterostructure composites as effective electrocatalysts for water-splitting. Journal of Materials Chemistry A, 2021, 9, 2070-2092.	5.2	136
2321	Manganese Oxide as an Inorganic Catalyst for the Oxygen Evolution Reaction Studied by Xâ€Ray Photoelectron and Operando Raman Spectroscopy. ChemCatChem, 2021, 13, 1175-1185.	1.8	34
2322	ZIF-8@ZIF-67–derived ZnCo2O4@nitrogen–doped carbon/carbon nanotubes wrapped by a carbon layer: a stable oxygen reduction catalyst with a competitive strength in acid media. Materials Today Energy, 2021, 19, 100574.	2.5	16
2323	Integrating NiMoO wafer as a heterogeneous â€~turbo' for engineering robust Ru-based electrocatalyst for overall water splitting. Chemical Engineering Journal, 2021, 420, 127686.	6.6	24
2324	Integrating hydrogen production with anodic selective oxidation of sulfides over a CoFe layered double hydroxide electrode. Chemical Science, 2021, 12, 938-945.	3.7	41

# 2325	ARTICLE Synergistic two- and three-dimensional morphology engineering of pyrite-type CoPS to boost hydrogen evolution over wide pH range. Journal of Power Sources, 2021, 484, 229144.	IF 4.0	CITATIONS
2326	Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting. Journal of Materials Science and Technology, 2021, 82, 96-104.	5.6	40
2327	Amorphous FeOOH Decorated CoSe ₂ Nanorod Heterostructured Arrays for Efficient Water Oxidation. Advanced Materials Interfaces, 2021, 8, .	1.9	20
2328	Artificial Heterointerfaces Achieve Delicate Reaction Kinetics towards Hydrogen Evolution and Hydrazine Oxidation Catalysis. Angewandte Chemie - International Edition, 2021, 60, 5984-5993.	7.2	234
2329	In-situ generation of Ru-catechol coordinative polymer precursor for high-performance hydrogen evolution reaction doped carbon catalyst. Applied Catalysis B: Environmental, 2021, 285, 119795.	10.8	32
2330	Well-dispersed ultrafine CoFe nanoalloy decorated N-doped hollow carbon microspheres for rechargeable/flexible Zn-air batteries. Chemical Engineering Journal, 2021, 407, 127961.	6.6	75
2331	Spontaneous ruthenium doping in hierarchical flower-like Ni2P/NiO heterostructure nanosheets for superb alkaline hydrogen evolution. Chemical Engineering Journal, 2021, 417, 128069.	6.6	41
2332	Electronic modulation of oxygen evolution on metal doped NiFe layered double hydroxides. Journal of Colloid and Interface Science, 2021, 587, 385-392.	5.0	35
2333	Nanocatalyst Design for Longâ€īerm Operation of Proton/Anion Exchange Membrane Water Electrolysis. Advanced Energy Materials, 2021, 11, 2003188.	10.2	89
2334	Artificial Heterointerfaces Achieve Delicate Reaction Kinetics towards Hydrogen Evolution and Hydrazine Oxidation Catalysis. Angewandte Chemie, 2021, 133, 6049-6058.	1.6	42
2335	Co2(OH)3Cl and MOF mediated synthesis of porous Co3O4/NC nanosheets for efficient OER catalysis. Applied Surface Science, 2021, 542, 148739.	3.1	40
2336	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 13177-13196.	7.2	143
2337	Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting. Journal of Materials Chemistry A, 2021, 9, 3786-3827.	5.2	140
2338	Co–Mo–P carbon nanospheres derived from metal–organic frameworks as a high-performance electrocatalyst towards efficient water splitting. Journal of Materials Chemistry A, 2021, 9, 1143-1149.	5.2	36
2339	Nanoporous Surface Highâ€Entropy Alloys as Highly Efficient Multisite Electrocatalysts for Nonacidic Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2009613.	7.8	145
2340	B36 nanoflake supported nickel as an efficient single-atom catalyst for oxygen reduction reaction: A first-principles study. Molecular Catalysis, 2021, 499, 111302.	1.0	1
2341	Highly efficient and robust catalysts for the hydrogen evolution reaction by surface nano engineering of metallic glass. Journal of Materials Chemistry A, 2021, 9, 5415-5424.	5.2	32
2342	Recent Advances in the Controlled Synthesis and Catalytic Applications of Two-Dimensional Rhodium Nanomaterials. , 2021, 3, 121-133.		28

#	Article	IF	CITATIONS
2343	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie, 2021, 133, 13285-13304.	1.6	20
2344	A new synthetic approach to cobalt oxides: Designed phase transformation for electrochemical water splitting. Chemical Engineering Journal, 2021, 415, 127958.	6.6	17
2345	Structurally Disordered Phosphorus-Doped Pt as a Highly Active Electrocatalyst for an Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 355-363.	5.5	79
2346	Self-synergistic cobalt catalysts with symbiotic metal single-atoms and nanoparticles for efficient oxygen reduction. Journal of Materials Chemistry A, 2021, 9, 1127-1133.	5.2	21
2347	<i>In situ</i> identification of the electrocatalytic water oxidation behavior of a nickel-based metal–organic framework nanoarray. Materials Horizons, 2021, 8, 556-564.	6.4	75
2348	When MOFs meet MXenes: superior ORR performance in both alkaline and acidic solutions. Journal of Materials Chemistry A, 2021, 9, 3952-3960.	5.2	68
2349	Efficient and durable FeCoNi-(Oxy)hydroxide anode: Stoichiometric ration regulated morphology-, defect- and valence-dependent water oxidation performance. Chemical Engineering Journal, 2021, 417, 127934.	6.6	4
2350	Tailoring Binding Abilities by Incorporating Oxophilic Transition Metals on 3D Nanostructured Ni Arrays for Accelerated Alkaline Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2021, 143, 1399-1408.	6.6	161
2351	An open-structured carbon fiber brush electrode for efficient hydrogen evolution by inducing oriented bubble transport. Chemical Engineering Journal, 2021, 407, 127159.	6.6	5
2352	Facile synthesis of Ni-, Co-, Cu-metal organic frameworks electrocatalyst boosting for hydrogen evolution reaction. Journal of Materials Science and Technology, 2021, 72, 172-179.	5.6	43
2353	Nanomaterials as electrocatalyst for hydrogen and oxygen evolution reaction: Exploitation of challenges and current progressions. Polyhedron, 2021, 193, 114871.	1.0	23
2354	Reconstructed Water Oxidation Electrocatalysts: The Impact of Surface Dynamics on Intrinsic Activities. Advanced Functional Materials, 2021, 31, 2008190.	7.8	161
2355	Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy, 2021, 80, 105545.	8.2	187
2356	Understanding the oxygen evolution activity trend in Co 2 Fe LDHâ€N doped graphene hybrids. Electrochemical Science Advances, 2021, 1, e2000009.	1.2	1
2357	Tailoring the activity of NiFe layered double hydroxide with CeCO3OH as highly efficient water oxidation electrocatalyst. International Journal of Hydrogen Energy, 2021, 46, 2018-2025.	3.8	10
2358	Electronic structure modulation of isolated Co-N4 electrocatalyst by sulfur for improved pH-universal hydrogen evolution reaction. Nano Energy, 2021, 80, 105544.	8.2	37
2359	Strategies to Develop Earthâ€Abundant Heterogeneous Oxygen Evolution Reaction Catalysts for pHâ€Neutral or pHâ€Nearâ€Neutral Electrolytes. Small Methods, 2021, 5, e2000719.	4.6	31
2360	Dilute molybdenum atoms embedded in hierarchical nanoporous copper accelerate the hydrogen evolution reaction. Scripta Materialia, 2021, 191, 56-61.	2.6	14

#	Article	IF	Citations
2361	Composition controllable fabrication of ultrathin 2D CoMn layered double hydroxides for highly efficient electrocatalytic oxygen evolution. Applied Surface Science, 2021, 539, 148305.	3.1	19
2362	Bimetallic Ag–Cu nanosheets assembled flower-like structure for oxygen reduction reaction. Journal of Alloys and Compounds, 2021, 856, 157379.	2.8	11
2363	Fullerenes as Key Components for Lowâ€Dimensional (Photo)electrocatalytic Nanohybrid Materials. Angewandte Chemie, 2021, 133, 124-143.	1.6	11
2364	Designing fluorographene with FeN4 and CoN4 moieties for oxygen electrode reaction: A density functional theory study. Applied Surface Science, 2021, 537, 147846.	3.1	23
2365	In-situ tracking of phase conversion reaction induced metal/metal oxides for efficient oxygen evolution. Science China Materials, 2021, 64, 362-373.	3.5	19
2366	Electronic Structure Tuning of 2D Metal (Hydr)oxides Nanosheets for Electrocatalysis. Small, 2021, 17, e2002240.	5.2	90
2367	Surface and Interface Engineering: Molybdenum Carbide–Based Nanomaterials for Electrochemical Energy Conversion. Small, 2021, 17, e1903380.	5.2	87
2368	Metalâ€Based Electrocatalysts for Methanol Electroâ€Oxidation: Progress, Opportunities, and Challenges. Small, 2021, 17, e1904126.	5.2	119
2369	Fibrous‣tructured Freestanding Electrodes for Oxygen Electrocatalysis. Small, 2021, 17, e1903760.	5.2	28
2370	Cocatalyst-integrated photocatalysts for solar-driven hydrogen and oxygen production. , 2021, , 217-247.		0
2371	Anion Constructor for Atomicâ€Scale Engineering of Antiperovskite Crystals for Electrochemical Reactions. Advanced Functional Materials, 2021, 31, 2009241.	7.8	4
2373	RuP ₂ -based hybrids derived from MOFs: highly efficient pH-universal electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 12276-12282.	5.2	39
2374	Modification of Ni ₃ N with a Cobalt-Doped Carbon Shell for High-Performance Hydrogen Evolution in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2021, 9, 1994-2002.	3.2	19
2375	Distinctive MoS ₂ -MoP nanosheet structures anchored on N-doped porous carbon support as a catalyst to enhance the electrochemical hydrogen production. New Journal of Chemistry, 2021, 45, 14042-14049.	1.4	4
2376	Multimetallic nanostructures for electrocatalytic oxygen evolution reaction in acidic media. Materials Chemistry Frontiers, 2021, 5, 4445-4473.	3.2	14
2377	Controllable design of 3D hierarchical Co/Ni-POM nanoflower compounds supported on Ni foam for the hydrogen evolution reaction. New Journal of Chemistry, 0, , .	1.4	7
2378	Cobalt-Based Metal Organic Frameworks as Solids Catalysts for Oxidation Reactions. Catalysts, 2021, 11, 95.	1.6	12
2379	Hierarchical MnCo ₂ O ₄ nanowire@NiFe layered double hydroxide nanosheet heterostructures on Ni foam for overall water splitting. CrystEngComm, 2021, 23, 7141-7150.	1.3	8

ARTICLE IF CITATIONS Boosting the water splitting activity of cobalt nitride through morphological design: a comparison 2380 of the influence of structure on the hydrogen and oxygen evolution reactions. Sustainable Energy 2.5 12 and Fuels, 2021, 5, 3632-3639. Ir-based bifunctional electrocatalysts for overall water splitting. Catalysis Science and Technology, 2.1 2021, 11, 4673-4689. <i>In situ</i> growth of porous carbon with adjustable morphology on black phosphorus nanosheets 2382 for boosting electrocatalytic H₂ and O₂ evolution. New Journal of 1.4 4 Chemistry, 2021, 45, 12203-12212. Unravelling the origin of bifunctional OER/ORR activity for single-atom catalysts supported on 93 C₂N by DFT and machine learning. Journal of Materials Chemistry A, 2021, 9, 16860-16867. Promoting urea oxidation and water oxidation through interface construction on a 2384 CeO₂@CoFe₂O₄ heterostructure. Dalton Transactions, 2021, 50, 108 1.6 12301-12307. A Review and Perspective on Electrocatalysts Containing Cr for Alkaline Water Electrolysis: Hydrogen Evolution Reaction. Electrocatalysis, 2021, 12, 104-116. 1.5 Density Functional Theory Studies of Doping and Curvature Effects on the Electrocatalytic Hydrogen 2386 2.4 14 Evolution Activity of Carbon Nanotubes. ACS Applied Nano Materials, 2021, 4, 600-611. 3D porous Ni/NiO_x as a bifunctional oxygen electrocatalyst derived from freeze-dried Ni(OH)₂. Nanoscale, 2021, 13, 5530-5535. 2387 2.8 21 Nanoporous multimetallic Ir alloys as efficient and stable electrocatalysts for acidic oxygen 2388 3.1 17 evolution reactions. Journal of Catalysis, 2021, 393, 303-312. Iron-based single-atom electrocatalysts: synthetic strategies and applications. RSC Advances, 2021, 11, 1.7 3079-3095. Recent advances in single-atom electrocatalysts supported on two-dimensional materials for the 2390 5.2 50 oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 9979-9999. Composite clusters: Co_{5.7}Ni_{2.3}W₁₂O₄₂(OH)₄@fluoro-graphdiyne 3.2 as a stable electrode for sustained electrochemical oxygen evolution under high current conditions. Materials Chemistry Frontiers, 2021, 5, 7666-7674. 1T Phase Transition Metal Dichalcogenides for Hydrogen Evolution Reaction. Electrochemical Energy 2392 13.1 65 Reviews, 2021, 4, 194-218. Comparing the Activity of Complex Solid Solution Electrocatalysts Using Inflection Points of 2393 5.5 39 Voltammetric Activity Curves as Activity Descriptors. ACS Catalysis, 2021, 11, 1014-1023. Transition-metal single atoms embedded into defective BC₃as efficient electrocatalysts 2394 2.8 27 for oxygen evolution and reduction reactions. Nanoscale, 2021, 13, 1331-1339. Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and 2395 140 materials science. Chemical Society Reviews, 2021, 50, 10116-10211. Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. 2396 4.6 96 Green Chemistry, 2021, 23, 2834-2867. Recent advances in the "on–off―approaches for on-demand liquid-phase hydrogen evolution. Journal 5.2 of Materials Chemistry A, 2021, 9, 18164-18174.

#	Article	IF	CITATIONS
2398	Ru-tweaking of non-precious materials: the tale of a strategy that ensures both cost and energy efficiency in electrocatalytic water splitting. Journal of Materials Chemistry A, 2021, 9, 6710-6731.	5.2	46
2399	Applications of MXene (Ti ₃ C ₂ T _x) in photocatalysis: a review. Materials Advances, 2021, 2, 1570-1594.	2.6	101
2400	Structure and properties of 2D materials in general and their importance to energy storage. , 2021, , 11-75.		0
2401	Sulfur doped ruthenium nanoparticles as a highly efficient electrocatalyst for the hydrogen evolution reaction in alkaline media. Catalysis Science and Technology, 2021, 11, 3865-3872.	2.1	6
2402	Research Progress of in Situ Modification of Transition Metal Substrates for Direct Elec-trocatalytic Water Splitting. Hans Journal of Nanotechnology, 2021, 11, 59-69.	0.1	0
2403	<i>Operando</i> X-ray Absorption Spectroscopic Study on the Effect of Ionic Liquid Coverage upon the Oxygen Reduction Reaction Activity of Pd-core Pt-shell Catalysts. Electrochemistry, 2021, 89, 31-35.	0.6	4
2404	Ultrathin 2D flower-like CoP@C with the active (211) facet for efficient electrocatalytic water splitting. CrystEngComm, 2021, 23, 1777-1784.	1.3	9
2405	Versatile materials for energy devices and systems. , 2021, , 265-291.		0
2406	Emerging Energy Harvesting Technology for Electro/Photo-Catalytic Water Splitting Application. Catalysts, 2021, 11, 142.	1.6	24
2407	Computational design of a switchable heterostructure electrocatalyst based on a two-dimensional ferroelectric In ₂ Se ₃ material for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 11553-11562.	5.2	15
2408	Ti ₃ C ₂ supported transition metal oxides and silver as catalysts toward efficient electricity generation in microbial fuel cells. Catalysis Science and Technology, 2021, 11, 4823-4830.	2.1	7
2409	ZIF-67-based catalysts for oxygen evolution reaction. Nanoscale, 2021, 13, 12058-12087.	2.8	47
2410	Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chemical Society Reviews, 2021, 50, 10983-11031.	18.7	170
2411	Facile synthesis of bimetallic-based CoMoO ₄ /MoO ₂ /CoP oxidized/phosphide nanorod arrays electroplated with FeOOH for efficient overall seawater splitting. CrystEngComm, 2021, 23, 6778-6791.	1.3	4
2412	Controlled synthesis of ultrasmall RuP2 particles on N,P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution. Rare Metals, 2021, 40, 1040-1047.	3.6	59
2413	Applications of MAX phases and MXenes as catalysts. Journal of Materials Chemistry A, 2021, 9, 19589-19612.	5.2	59
2414	Pt modified Ni–Mo-based hydrates as bifunctional electrocatalysts for overall water splitting. New Journal of Chemistry, 2021, 45, 16313-16318.	1.4	4
2415	Waterâ€Induced Formation of Ni ₂ P–Ni ₁₂ P ₅ Interfaces with Superior Electrocatalytic Activity toward Hydrogen Evolution Reaction. Small, 2021, 17, e2006770.	5.2	83

#	Article	IF	CITATIONS
2416	Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews, 2021, 50, 8428-8469.	18.7	452
2417	Hierarchical tube brush-like Co ₃ S ₄ @NiCo-LDH on Ni foam as a bifunctional electrocatalyst for overall water splitting. New Journal of Chemistry, 2021, 45, 15429-15436.	1.4	12
2418	Nanoporous RuO2 characterized by RuO(OH)2 surface phase as an efficient bifunctional catalyst for overall water splitting in alkaline solution. Journal of Electroanalytical Chemistry, 2021, 881, 114955.	1.9	14
2419	Porous nickel powder supported Ni–P/CNTs: an efficient catalyst for hydrogen production via water splitting. Journal of Porous Materials, 2021, 28, 543-554.	1.3	2
2420	Organically Capped Iridium Nanoparticles as High-Performance Bifunctional Electrocatalysts for Full Water Splitting in Both Acidic and Alkaline Media: Impacts of Metal–Ligand Interfacial Interactions. ACS Catalysis, 2021, 11, 1179-1188.	5.5	65
2421	Lanthanum-incorporated β-Ni(OH) ₂ nanoarrays for robust urea electro-oxidation. Chemical Communications, 2021, 57, 2029-2032.	2.2	21
2422	Fluorination activates the basal plane HER activity of ReS ₂ : a combined experimental and theoretical study. Journal of Materials Chemistry A, 2021, 9, 14451-14458.	5.2	21
2423	Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chemical Society Reviews, 2021, 50, 8790-8817.	18.7	331
2424	PMO ₁₂ @ZIF-8/ZnO-derived hierarchical porous molybdenum carbide as efficient electrocatalysts for hydrogen evolution. New Journal of Chemistry, 2021, 45, 9456-9461.	1.4	13
2425	Carbon supported Pt–Ni octahedral electrocatalysts as a model to monitor nickel corrosion and particle detachment. Catalysis Science and Technology, 2021, 11, 4793-4802.	2.1	1
2426	Highly Efficient Electrocatalytic Water Splitting. , 2021, , 1335-1367.		1
2427	Electrocatalysis in confined spaces: interplay between well-defined materials and the microenvironment. Nanoscale, 2021, 13, 1515-1528.	2.8	18
2428	Self-Supported Nickel Phosphide Electrode for Efficient Alkaline Water-to-Hydrogen Conversion via Urea Electrolysis. Industrial & Engineering Chemistry Research, 2021, 60, 1185-1193.	1.8	36
2429	Single-atom catalysts based on TiN for the electrocatalytic hydrogen evolution reaction: a theoretical study. Physical Chemistry Chemical Physics, 2021, 23, 15685-15692.	1.3	6
2430	Defective two-dimensional layered heterometallic phosphonates as highly efficient oxygen evolution electrocatalysts. Inorganic Chemistry Frontiers, 2021, 8, 4448-4457.	3.0	6
2431	Surface plasmon-polariton triggering of Ti ₃ C ₂ T _{<i>x</i>} MXene catalytic activity for hydrogen evolution reaction enhancement. Journal of Materials Chemistry A, 2021, 9, 17770-17779.	5.2	20
2432	Recent progress on the synthesis and oxygen reduction applications of Fe-based single-atom and double-atom catalysts. Journal of Materials Chemistry A, 2021, 9, 19489-19507.	5.2	104
2433	Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction. Nano Research, 2021, 14, 2819-2825.	5.8	16

#	Article	IF	CITATIONS
2434	Low-crystallinity mesoporous NiGaFe hydroxide nanosheets on macroporous Ni foam for high-efficiency oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 6223-6231.	5.2	24
2435	A review of the synergistic effect of multi-coordination crystal fields on electrocatalysts. Materials Chemistry Frontiers, 2021, 5, 6718-6734.	3.2	3
2436	Probing the activity of transition metal M and heteroatom N ₄ co-doped in vacancy fullerene (M–N ₄ –C ₆₄ , M = Fe, Co, and Ni) towards the oxygen reduction reaction by density functional theory. RSC Advances, 2021, 11, 3174-3182.	1.7	11
2437	Recognition of Surface Oxygen Intermediates on NiFe Oxyhydroxide Oxygen-Evolving Catalysts by Homogeneous Oxidation Reactivity. Journal of the American Chemical Society, 2021, 143, 1493-1502.	6.6	111
2438	Spatial-confinement induced electroreduction of CO and CO ₂ to diols on densely-arrayed Cu nanopyramids. Chemical Science, 2021, 12, 8079-8087.	3.7	22
2439	Tuning the electronic structure of NiCoVO _{<i>x</i>} nanosheets through S doping for enhanced oxygen evolution. Nanoscale, 2021, 13, 17022-17027.	2.8	9
2440	From nanoparticle to single-atom catalyst; electrocatalytic reduction of carbon dioxide. , 2021, , 111-153.		1
2441	Highly efficient H ₂ production and size-selective AgCl synthesis <i>via</i> electrolytic cell design. Journal of Materials Chemistry A, 2021, 9, 22871-22877.	5.2	2
2442	Three-dimensional MOF-derived Co and N co-doped porous carbon bifunctional catalyst for the Zn–air battery. CrystEngComm, 2021, 23, 4930-4937.	1.3	7
2443	Natural DNA-assisted RuP ₂ on highly graphitic N,P-codoped carbon for pH-wide hydrogen evolution. Chemical Communications, 2021, 57, 7284-7287.	2.2	15
2444	Shape-selective rhodium nano-huddles on DNA for high efficiency hydrogen evolution reaction in acidic medium. Journal of Materials Chemistry C, 2021, 9, 1709-1720.	2.7	15
2445	Two-dimensional stable and ultrathin cluster-based metal–organic layers for efficient electrocatalytic water oxidation. CrystEngComm, 2021, 23, 4700-4707.	1.3	4
2446	Commentary toward the 20th Anniversary of the Society ofComputer Chemistry, Japan. Journal of Computer Chemistry Japan, 2021, 20, A26-A40.	0.0	0
2447	Exposed (002) facets and controllable thickness of CdS nanobelts drive desirable hydrogen-adsorption free energy (Δ <i>G</i> _H) for boosting visible-light photocatalytic performance. Catalysis Science and Technology, 2021, 11, 7486-7492.	2.1	8
2448	Interfacial La Diffusion in the CeO ₂ /LaFeO ₃ Hybrid for Enhanced Oxygen Evolution Activity. ACS Applied Materials & Interfaces, 2021, 13, 2799-2806.	4.0	38
2449	Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chemical Society Reviews, 2021, 50, 11293-11380.	18.7	79
2450	Bimetallic Metal–Organic Framework-Derived Graphitic Carbon-Coated Small Co/VN Nanoparticles as Advanced Trifunctional Electrocatalysts. ACS Applied Materials & Interfaces, 2021, 13, 2462-2471.	4.0	27
2451	Controllable growth of graphdiyne layered nanosheets for high-performance water oxidation. Materials Chemistry Frontiers, 2021, 5, 4153-4159.	3.2	19

#	Article	IF	CITATIONS
2452	Hierarchical sheet-on-sheet heterojunction array of a β-Ni(OH)2/Fe(OH)3 self-supporting anode for effective overall alkaline water splitting. Dalton Transactions, 2021, 50, 12547-12554.	1.6	11
2453	Construction of self-supporting, hierarchically structured caterpillar-like NiCo ₂ S ₄ arrays as an efficient trifunctional electrocatalyst for water and urea electrolysis. Nanoscale, 2021, 13, 1680-1688.	2.8	63
2454	Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chemical Society Reviews, 2021, 50, 11785-11843.	18.7	174
2455	Highly dispersed secondary building unit-stabilized binary metal center on a hierarchical porous carbon matrix for enhanced oxygen evolution reaction. Nanoscale, 2021, 13, 1213-1219.	2.8	22
2456	Facile synthesis of an antimony-doped Cu/Cu ₂ O catalyst with robust CO production in a broad range of potentials for CO ₂ electrochemical reduction. Journal of Materials Chemistry A, 2021, 9, 23234-23242.	5.2	12
2457	A novel and efficient method of MOF-derived electrocatalyst for HER performance through doping organic ligands. Materials Chemistry Frontiers, 2021, 5, 7833-7842.	3.2	8
2458	2D porous molybdenum nitride/cobalt nitride heterojunction nanosheets with interfacial electron redistribution for effective electrocatalytic overall water splitting. Journal of Materials Chemistry A, 2021, 9, 8620-8629.	5.2	72
2459	<i>In situ</i> manipulation of the d-band center in metals for catalytic activity in CO oxidation. Chemical Communications, 2021, 57, 3403-3406.	2.2	12
2460	P- or S-Doped graphdiyne as a superior metal-free electrocatalyst for the hydrogen evolution reaction: a computational study. New Journal of Chemistry, 2021, 45, 8101-8108.	1.4	14
2461	The electrocatalysts with pH of the electrolyte for the complete pathways of the oxidation reactions. , 2021, , 95-107.		0
2462	Self-supported hierarchical nanoporous Cu/Mo@MoOx hybrid electrodes as robust nonprecious electrocatalysts for high-efficiency hydrogen evolution. Current Nanoscience, 2021, 16, .	0.7	0
2463	Rational construction of 3D MoNi/NiMoOx@NiFe LDH with rapid electron transfer for efficient overall water splitting. Electrochimica Acta, 2021, 369, 137680.	2.6	18
2464	Activating ORR and OER in Ruddlesden-Popper based catalysts by enhancing interstitial oxygen and lattice oxygen redox reactions. Electrochimica Acta, 2021, 370, 137747.	2.6	10
2465	Transition-Metal (Fe, Co, and Ni)-Based Nanofiber Electrocatalysts for Water Splitting. Advanced Fiber Materials, 2021, 3, 210-228.	7.9	74
2466	Distinguishing Among High Activity Electrocatalysts: Regression vs Classification. Journal of Physical Chemistry C, 2021, 125, 4468-4476.	1.5	3
2467	Selective-etching of MOF toward hierarchical porous Mo-doped CoP/N-doped carbon nanosheet arrays for efficient hydrogen evolution at all pH values. Chemical Engineering Journal, 2021, 405, 126981.	6.6	55
2468	Progress of Exsolved Metal Nanoparticles on Oxides as High Performance (Electro)Catalysts for the Conversion of Small Molecules. Small, 2021, 17, e2005383.	5.2	53
2469	Nanocomposites Prepared from Carbon Nanotubes and the Transition Metal Dichalcogenides WS2 and MoS2 via Surfactant-Assisted Dispersions as Electrocatalysts for Oxygen Reactions. Materials, 2021, 14, 896.	1.3	14

#	Article	IF	CITATIONS
2470	Anodic Oxidation Enabled Cation Leaching for Promoting Surface Reconstruction in Water Oxidation. Angewandte Chemie, 2021, 133, 7494-7501.	1.6	8
2471	Singleâ€Atom‣ayer Catalysis in a MoS ₂ Monolayer Activated by Longâ€Range Ferromagnetism for the Hydrogen Evolution Reaction: Beyond Singleâ€Atom Catalysis. Angewandte Chemie - International Edition, 2021, 60, 7251-7258.	7.2	84
2473	Molybdenum-Containing Metalloenzymes and Synthetic Catalysts for Conversion of Small Molecules. Catalysts, 2021, 11, 217.	1.6	3
2474	Enhanced oxygen and hydrogen evolution reaction by zinc doping in cobalt–nickel sulfide heteronanorods. Electrochemical Science Advances, 0, , e202000038.	1.2	2
2475	Synthesis of Co 3 O 4 /Carbon Heteroaerogels with Ultrahigh Capacitance via Polyethyleneimine Intercalation of Co 2 BIM 4 Nanosheets. Chemistry - A European Journal, 2021, 27, 4876-4882.	1.7	3
2476	An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries. Materials Reports Energy, 2021, 1, 100002.	1.7	12
2477	Carbon Cloth Supported Nitrogen Doped Porous Carbon Wrapped Co Nanoparticles for Effective Overall Water Splitting. ChemCatChem, 2021, 13, 2158-2166.	1.8	9
2478	Controlled Synthesis and Structure Engineering of Transition Metalâ€based Nanomaterials for Oxygen and Hydrogen Electrocatalysis in Zincâ€Air Battery and Waterâ€6plitting Devices. ChemSusChem, 2021, 14, 1659-1673.	3.6	12
2479	Templateâ€Free Synthesis of Zinc Cobalt Oxides/Phosphides (Co 2 P/CoO/ZnCo 2 O 4) Hollow Subâ€Micron Boxes as Hydrogen Evolution Reaction Catalysts. ChemistrySelect, 2021, 6, 1685-1691.	0.7	3
2480	Ultrastable FeCo Bifunctional Electrocatalyst on Se-Doped CNTs for Liquid and Flexible All-Solid-State Rechargeable Zn–Air Batteries. Nano Letters, 2021, 21, 2255-2264.	4.5	120
2481	A Complementary Coâ^'Ni Phosphide/Bimetallic Alloyâ€interspersed Nâ€Doped Graphene Electrocatalyst for Overall Alkaline Water Splitting. ChemSusChem, 2021, 14, 1921-1935.	3.6	42
2482	Progress in the Regulation of Electrode/Electrolyte Interfacial Reactions toward Highâ€voltage Aqueous Hybrid Capacitors. Batteries and Supercaps, 2021, 4, 717-732.	2.4	2
2483	Singleâ€Atomâ€Layer Catalysis in a MoS ₂ Monolayer Activated by Longâ€Range Ferromagnetism for the Hydrogen Evolution Reaction: Beyond Singleâ€Atom Catalysis. Angewandte Chemie, 2021, 133, 7327-7334.	1.6	16
2484	Nanostructural Co–MoS2/NiCoS supported on reduced Graphene oxide as a high activity electrocatalyst for hydrogen evolution in alkaline media. International Journal of Hydrogen Energy, 2021, 46, 8567-8577.	3.8	11
2485	Accelerating water dissociation kinetic in Co9S8 electrocatalyst by mn/N Co-doping toward efficient alkaline hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 7989-8001.	3.8	23
2486	Anodic Oxidation Enabled Cation Leaching for Promoting Surface Reconstruction in Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 7418-7425.	7.2	130
2487	Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide*. Chinese Physics B, 2021, 30, 027101.	0.7	2
2488	Recent progress in in situ/operando analysis tools for oxygen electrocatalysis. Journal Physics D: Applied Physics, 2021, 54, 173001.	1.3	11

#	Article	IF	CITATIONS
2489	Design Strategies of Nonâ€Noble Metalâ€Based Electrocatalysts for Twoâ€Electron Oxygen Reduction to Hydrogen Peroxide. ChemSusChem, 2021, 14, 1616-1633.	3.6	46
2490	Intrinsic Electrocatalytic Activity of Single MoS ₂ Quantum Dot Collision on Ag Ultramicroelectrodes. Journal of Physical Chemistry C, 2021, 125, 3337-3345.	1.5	16
2491	Structure engineering of Ni2P by Mo doping for robust electrocatalytic water and methanol oxidation reactions. Electrochimica Acta, 2021, 369, 137692.	2.6	20
2492	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	5.2	135
2493	Engineering heterostructure and crystallinity of Ru/RuS2 nanoparticle composited with N-doped graphene as electrocatalysts for alkaline hydrogen evolution. Chinese Chemical Letters, 2021, 32, 3591-3595.	4.8	16
2494	A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution. Applied Physics Reviews, 2021, 8, .	5.5	20
2495	The study of oxygen reduction reaction on Geâ€doped <scp> MoS ₂ </scp> monolayer based on first principle. International Journal of Energy Research, 2021, 45, 13748-13759.	2.2	7
2496	High-throughput screening of transition metal single-atom catalyst anchored on Janus MoSSe basal plane for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 10337-10345.	3.8	30
2497	Electrochemical Routes for the Valorization of Biomass-Derived Feedstocks: From Chemistry to Application. ACS Energy Letters, 0, , 1205-1270.	8.8	130
2498	Unveiling the Excellent Electrocatalytic Activity of Grain-Boundary Enriched Anisotropic Pure Gold Nanostructures toward Hydrogen Evolution Reaction: A Combined Approach of Experiment and Theory. ACS Applied Energy Materials, 2021, 4, 3017-3032.	2.5	9
2500	Interfacial engineering of heterogeneous catalysts for electrocatalysis. Materials Today, 2021, 48, 115-134.	8.3	96
2501	Recent Progress on Copperâ€Based Electrode Materials for Overall Waterâ€Splitting. ChemElectroChem, 2021, 8, 1698-1722.	1.7	32
2502	Integrating Co3O4 nanoparticles with MnO2 nanosheets as bifunctional electrocatalysts for water splitting. International Journal of Hydrogen Energy, 2021, 46, 10356-10365.	3.8	26
2503	Synthesis of Iron Phosphide Nanoclusters by an Electroless Plating Method for Enhanced Oxygen Evolution Reaction. Journal of Electronic Materials, 2021, 50, 3071-3077.	1.0	4
2504	Superwetting behaviors at the interface between electrode and electrolyte. Cell Reports Physical Science, 2021, 2, 100374.	2.8	22
2505	Cobalt-Phosphorus Decorated Graphene as Electrocatalyst for Oxygen Reduction Reactions: A Density Functional Theory Study. International Journal of Electrochemical Science, 0, , 210332.	0.5	2
2506	Pt-IrOx catalysts immobilized on defective carbon for efficient reversal tolerant anode in proton exchange membrane fuel cells. Journal of Catalysis, 2021, 395, 404-411.	3.1	11
2507	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie, 2021, 133, 19724-19742.	1.6	30

#	Article	IF	CITATIONS
2508	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie - International Edition, 2021, 60, 19572-19590.	7.2	341
2509	Exclusive Strain Effect Boosts Overall Water Splitting in PdCu/Ir Core/Shell Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 8243-8250.	7.2	163
2510	Heterogeneous Synergetic Effect of Metal–Oxide Interfaces for Efficient Hydrogen Evolution in Alkaline Solutions. ACS Applied Materials & Interfaces, 2021, 13, 13838-13847.	4.0	26
2511	3d Transitionâ€Metalâ€Mediated Columbite Nanocatalysts for Decentralized Electrosynthesis of Hydrogen Peroxide. Small, 2021, 17, e2007249.	5.2	35
2512	Hydrogen Evolution and Oxygen Reduction Reactions in Acidic Media Catalyzed by Pd ₄ S Decorated N/S Doped Carbon Derived from Pd Coordination Polymer. Small, 2021, 17, e2007511.	5.2	22
2513	Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Research, 2021, 14, 4528-4533.	5.8	42
2514	Metal organic frameworks as electrocatalysts: Hydrogen evolution reactions and overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 10216-10238.	3.8	116
2515	Template-Free Hydrothermal Growth of Nickel Sulfide Nanorods as High-Performance Electroactive Materials for Oxygen Evolution Reaction and Supercapacitors. Energy & Fuels, 2021, 35, 6868-6879.	2.5	20
2516	An Ingenious Strategy to Integrate Multiple Electrocatalytically Active Components within a Well-Aligned Nitrogen-Doped Carbon Nanotube Array Electrode for Electrocatalysis. ACS Catalysis, 2021, 11, 3958-3974.	5.5	32
2517	Cu ₃ BiS ₃ /MXenes with Excellent Solar–Thermal Conversion for Continuous and Efficient Seawater Desalination. ACS Applied Materials & Interfaces, 2021, 13, 16246-16258.	4.0	60
2518	IrCuNi Deeply Concave Nanocubes as Highly Active Oxygen Evolution Reaction Electrocatalyst in Acid Electrolyte. Nano Letters, 2021, 21, 2809-2816.	4.5	49
2519	Tuning the Spin Density of Cobalt Single-Atom Catalysts for Efficient Oxygen Evolution. ACS Nano, 2021, 15, 7105-7113.	7.3	90
2520	Noble metal-free electrocatalytic materials for water splitting in alkaline electrolyte. EnergyChem, 2021, 3, 100053.	10.1	68
2521	Structural tuning of heterogeneous molecular catalysts for electrochemical energy conversion. Science Advances, 2021, 7, .	4.7	48
2522	Exclusive Strain Effect Boosts Overall Water Splitting in PdCu/Ir Core/Shell Nanocrystals. Angewandte Chemie, 2021, 133, 8324-8331.	1.6	18
2523	Short-Range Ordered Iridium Single Atoms Integrated into Cobalt Oxide Spinel Structure for Highly Efficient Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 5201-5211.	6.6	287
2524	Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction. Advanced Materials, 2021, 33, e2004243.	11.1	284
2525	Hollow Spherical Superstructure of Carbon Nanosheets for Bifunctional Oxygen Reduction and Evolution Electrocatalysis. Nano Letters, 2021, 21, 3640-3648.	4.5	48

#	Article	IF	CITATIONS
2526	An Efficient Oxygen Reduction Catalyst for Znâ€Air Battery: Cobalt Nanoparticles Encapsulated in 3D Nitrogenâ€Doped Porous Carbon Networks Derived from Fish Scales. ChemCatChem, 2021, 13, 2474-2482.	1.8	9
2527	<scp>Ptâ€based</scp> Intermetallic Nanocatalysts for Promoting the Oxygen Reduction Reaction. Bulletin of the Korean Chemical Society, 2021, 42, 724-736.	1.0	17
2528	Electrochemically induced in-situ surface self-reconstruction on Ni, Fe, Zn ternary-metal hydroxides towards the oxygen-evolution performance. Chemical Engineering Journal, 2021, 410, 128331.	6.6	22
2529	Cu(OH) ₂ Nanorods/Ni(OH) ₂ Nanosheets as Highly Efficient Catalyst for Hydrogen Evolution Reaction. ChemistrySelect, 2021, 6, 4129-4134.	0.7	3
2530	NiSe2/Ni5P4 nanosheets on nitrogen-doped carbon nano-fibred skeleton for efficient overall water splitting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126189.	2.3	13
2531	Activating electrocatalytic hydrogen evolution performance of two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:msub> <mml:m mathvariant="normal">N <mml:mn> 4</mml:mn> </mml:m </mml:msub> <mml:mrow> <mml:mo> <(</mml:mo> <n< td=""><td>i>Siimologi>M<</td><td>:mi><mml:m /raoil:mi> «m</mml:m </td></n<></mml:mrow></mml:mrow></mml:math 	i>Siimologi>M<	:mi> <mml:m /raoil:mi> «m</mml:m
2532	theoretical pred. Physical Review Materials, 2021, 5, . NiCo-LDH nanosheets strongly coupled with GO-CNTs as a hybrid electrocatalyst for oxygen evolution reaction. Nano Research, 2021, 14, 4783-4788.	5.8	52
2533	NiFeP-MoO2 hybrid nanorods on nickel foam as high-activity and high-stability electrode for overall water splitting. Chemical Engineering Journal, 2021, 409, 128161.	6.6	86
2534	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	1.8	57
2535	In Situ Surface-Enhanced Raman Spectroscopy Characterization of Electrocatalysis with Different Nanostructures. Annual Review of Physical Chemistry, 2021, 72, 331-351.	4.8	26
2536	Three-dimensional flower-like WP2 nanowire arrays grown on Ni foam for full water splitting. Applied Surface Science, 2021, 546, 148926.	3.1	18
2537	CeO2 nanoparticles@ NiFe-LDH nanosheet heterostructure as electrocatalysts for oxygen evolution reaction. Journal of Solid State Chemistry, 2021, 296, 121967.	1.4	25
2538	Reversible catalysis. Nature Reviews Chemistry, 2021, 5, 348-360.	13.8	38
2539	Mo″Coâ€Nâ€C Hybrid Nanosheets Oriented on Hierarchical Nanoporous Cu as Versatile Electrocatalysts for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2102285.	7.8	41
2540	Electrodeposited nanostructured flakes of cobalt, manganese and nickel-based sulfide (CoMnNiS) for electrocatalytic alkaline oxygen evolution reaction (OER). Journal of Materials Science: Materials in Electronics, 2021, 32, 12292-12307.	1.1	16
2541	Hybrid MXene/reduced graphene oxide aerogel microspheres for hydrogen evolution reaction. Ionics, 2021, 27, 3099-3108.	1.2	13
2542	High mass-specific reactivity of a defect-enriched Ru electrocatalyst for hydrogen evolution in harsh alkaline and acidic media. Science China Materials, 2021, 64, 2467-2476.	3.5	16
2543	A Facile and Efficient Ni-N-C Electrocatalyst Derived from Superabsorbent Resin for Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2021, 168, 046519.	1.3	2

#	Article	IF	Citations
2544	Multiâ€Functional Cerium Modification to Accelerate the Oxygen Reduction Reaction of Spinel Co ₃ O ₄ . ChemistrySelect, 2021, 6, 3512-3518.	0.7	9
2545	Activating PtSe2 monolayer for hydrogen evolution reaction by defect engineering and Pd doping. Applied Surface Science, 2021, 545, 149013.	3.1	23
2546	Surface evolution of electrocatalysts in energy conversion reactions. Nano Energy, 2021, 82, 105745.	8.2	36
2547	Metallic selenium as novel bifunctional electrocatalysts for highly efficient overall water electrolysis. Applied Surface Science, 2021, 544, 148845.	3.1	1
2548	NiFe2O4–Ni3S2 nanorod array/Ni foam composite catalyst indirectly controlled by Fe3+ immersion for an efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 14407-14417.	3.8	9
2549	Design Strategies for Electrocatalysts from an Electrochemist's Perspective. ACS Catalysis, 2021, 11, 5318-5346.	5.5	73
2550	Bifunctional Covalent Organic Frameworkâ€Derived Electrocatalysts with Modulated <i>p</i> â€Band Centers for Rechargeable Zn–Air Batteries. Advanced Functional Materials, 2021, 31, 2101727.	7.8	76
2551	N-, P-, and O-doped porous carbon: A trifunctional metal-free electrocatalyst. Applied Surface Science, 2021, 544, 148912.	3.1	44
2552	Interfacial Electron Engineering of Palladium and Molybdenum Carbide for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 6933-6941.	6.6	62
2553	Anticatalytic Strategies to Suppress Water Electrolysis in Aqueous Batteries. Chemical Reviews, 2021, 121, 6654-6695.	23.0	175
2554	Activation Strategies of Perovskiteâ€Type Structure for Applications in Oxygenâ€Related Electrocatalysts. Small Methods, 2021, 5, e2100012.	4.6	29
2555	Single atom catalyst for electrocatalysis. Chinese Chemical Letters, 2021, 32, 2947-2962.	4.8	43
2556	MXenes as Superexcellent Support for Confining Single Atom: Properties, Synthesis, and Electrocatalytic Applications. Small, 2021, 17, e2007113.	5.2	52
2557	Facile room-temperature synthesis of cobalt sulphide for efficient oxygen evolution reaction. Multifunctional Materials, 2021, 4, 025001.	2.4	5
2558	Moderately Transparent Chitosan-PVA Blended Membrane for Strong Mechanical Stiffness and as a Robust Bio-Material Energy Harvester Through Contact-Separation Mode TENG. Frontiers in Nanotechnology, 2021, 3, .	2.4	9
2559	An Inclusive Review on Recent Advancements of Cadmium Sulfide Nanostructures and its Hybrids for Photocatalytic and Electrocatalytic Applications. Molecular Catalysis, 2021, 508, 111575.	1.0	24
2560	Recent progress in doping-induced structural and electronic modification in Cu–SnCo interconnected network enhanced efficient performance evidence for the hydrogen evolution reaction: current state and prospects. Journal of Porous Materials, 2021, 28, 1335-1344.	1.3	2
2561	Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn–air batteries. Nano Energy, 2021, 83, 105813.	8.2	103

#	Article	IF	CITATIONS
2562	Engineering Oxygen Vacancies in Mesocrystalline CuO Nanosheets for Water Oxidation. ACS Applied Nano Materials, 2021, 4, 6135-6144.	2.4	22
2563	A setaria-shaped Pd/Ni-NC electrocatalyst for high efficient hydrogen evolution reaction. Chemical Engineering Journal Advances, 2021, 6, 100101.	2.4	9
2564	Electronic structure modulation of CoSe2 nanowire arrays by tin doping toward efficient hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 17133-17142.	3.8	22
2565	High-performance Fe–N–C electrocatalysts with a "chain mail―protective shield. Nano Materials Science, 2021, 3, 420-428.	3.9	9
2566	Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres. Journal of the American Chemical Society, 2021, 143, 7819-7827.	6.6	463
2567	Strengthening absorption ability of Co–N–C as efficient bifunctional oxygen catalyst by modulating the d band center using MoC. Green Energy and Environment, 2023, 8, 459-469.	4.7	22
2568	Charge-Modulated VS ₂ Monolayer for Effective Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2021, 125, 12004-12011.	1.5	13
2569	Vacancies-Engineered M ₂ CO ₂ MXene as an Efficient Hydrogen Evolution Reaction Electrocatalyst. Journal of Physical Chemistry Letters, 2021, 12, 4805-4813.	2.1	31
2570	Interfacial Engineering of Nickel Hydroxide on Cobalt Phosphide for Alkaline Water Electrocatalysis. Advanced Functional Materials, 2021, 31, 2101578.	7.8	101
2571	Unveiling the role of surface P–O group in P-doped Co3O4 for electrocatalytic oxygen evolution by On-chip micro-device. Nano Energy, 2021, 83, 105748.	8.2	46
2572	Improving oxygen vacancies by cobalt doping in MoO ₂ nanorods for efficient electrocatalytic hydrogen evolution reaction. Nano Select, 2021, 2, 2148-2158.	1.9	9
2573	Mechanochemical Synthesis of Pt/Nb2CTx MXene Composites for Enhanced Electrocatalytic Hydrogen Evolution. Materials, 2021, 14, 2426.	1.3	15
2574	Metalâ€Organic Frameworks Derived Multidimensional CoP/N, Pâ€Doped Carbon Architecture as an Efficient Electrocatalyst for Overall Water Splitting. ChemCatChem, 2021, 13, 3037-3045.	1.8	8
2575	Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem, 2021, 3, 100056.	10.1	51
2576	Crystal Splintering of β-MnO ₂ Induced by Interstitial Ru Doping Toward Reversible Oxygen Conversion. Chemistry of Materials, 2021, 33, 4135-4145.	3.2	34
2577	Atomic Sulfur Filling Oxygen Vacancies Optimizes H Absorption and Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie, 2021, 133, 14236-14242.	1.6	27
2578	Theoretical screening of VSe2 as support for enhanced electrocatalytic performance of transition-metal single atoms. Journal of Colloid and Interface Science, 2021, 590, 210-218.	5.0	28
2579	Interface engineering and heterometal doping Mo-NiS/Ni(OH)2 for overall water splitting. Nano Research, 2021, 14, 3466-3473.	5.8	87

#	Article	IF	CITATIONS
2580	Regulating Intrinsic Electronic Structures of Transition-Metal-Based Catalysts and the Potential Applications for Electrocatalytic Water Splitting. , 2021, 3, 752-780.		62
2581	Spin Effect on Oxygen Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2100034.	2.8	32
2582	Nickel single atom-decorated carbon nanosheets as multifunctional electrocatalyst supports toward efficient alkaline hydrogen evolution. Nano Energy, 2021, 83, 105850.	8.2	66
2583	Syntheses, characterizationsna and water-electrolysis properties of 2D α- and β-PdSeO3 bulk and nanosheet semiconductors. Journal of Solid State Chemistry, 2021, 297, 122018.	1.4	1
2584	Thickness-Dependent Photoelectrochemical Water Splitting Properties of Self-Assembled Nanostructured LaFeO3 Perovskite Thin Films. Nanomaterials, 2021, 11, 1371.	1.9	12
2585	CoP-anchored high N-doped carbon@graphene sheet as bifunctional electrocatalyst for efficient overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 18224-18232.	3.8	18
2586	Phaseâ€Modulation of Iron/Nickel Phosphides Nanocrystals "Armored―with Porous Pâ€Doped Carbon and Anchored on Pâ€Doped Graphene Nanohybrids for Enhanced Overall Water Splitting. Advanced Functional Materials, 2021, 31, 2010912.	7.8	54
2587	Axial Ligand Coordination Tuning of the Electrocatalytic Activity of Iron Porphyrin Electrografted onto Carbon Nanotubes for the Oxygen Reduction Reaction. Chemistry - A European Journal, 2021, 27, 9898-9904.	1.7	24
2588	Formation of hierarchical Co-decorated Mo2C hollow spheres for enhanced hydrogen evolution. Rare Metals, 2021, 40, 2785-2792.	3.6	47
2589	Controlled Synthesis of Porous Hollow Fe–N/C Nanoshells as Highâ€Performance Oxygen Reduction Reaction Electrocatalysts for Zn–Air Battery. Energy Technology, 2021, 9, 2100142.	1.8	4
2590	An Overall Reaction Integrated with Highly Selective Oxidation of 5â€Hydroxymethylfurfural and Efficient Hydrogen Evolution. Advanced Functional Materials, 2021, 31, 2102886.	7.8	71
2591	Revealing the catalytic micro-mechanism of MoN, WN and WC on hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 23615-23628.	3.8	14
2592	Trace Metal Loading of Bâ€Nâ€Coâ€doped Graphitic Carbon for Active and Stable Bifunctional Oxygen Reduction and Oxygen Evolution Electrocatalysts. ChemElectroChem, 2021, 8, 1685-1693.	1.7	4
2593	Hierarchically Assembling CoFe Prussian Blue Analogue Nanocubes on CoP Nanosheets as Highly Efficient Electrocatalysts for Overall Water Splitting. Small Methods, 2021, 5, e2100125.	4.6	46
2594	Laserâ€Induced Annealing of Metal–Organic Frameworks on Conductive Substrates for Electrochemical Water Splitting. Advanced Functional Materials, 2021, 31, 2102648.	7.8	47
2595	Atomic Sulfur Filling Oxygen Vacancies Optimizes H Absorption and Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie - International Edition, 2021, 60, 14117-14123.	7.2	129
2596	Electronic Modulation of Nonâ€van der Waals 2D Electrocatalysts for Efficient Energy Conversion. Advanced Materials, 2021, 33, e2008422.	11.1	190
2597	Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO2 heterostructures. Frontiers of Chemical Science and Engineering, 2022, 16, 376-383.	2.3	6

#	Article	IF	CITATIONS
2598	Direct correlation of oxygen adsorption on platinum-electrolyte interfaces with the activity in the oxygen reduction reaction. Science Advances, 2021, 7, .	4.7	44
2599	Macroporous Array Induced Multiscale Modulation at the Surface/Interface of Co(OH) ₂ /NiMo Selfâ€Supporting Electrode for Effective Overall Water Splitting. Advanced Functional Materials, 2021, 31, 2102117.	7.8	97
2600	Electrostatic adsorbing graphene quantum dot into nickel–based layered double hydroxides: Electron absorption/donor effects enhanced oxygen electrocatalytic activity. Nano Energy, 2021, 84, 105932.	8.2	63
2601	2D Graphitic Carbon Nitride for Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2102540.	7.8	190
2602	A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nature Communications, 2021, 12, 3502.	5.8	183
2603	NH ₄ F-Induced Morphology Control of CoP Nanostructures to Enhance the Hydrogen Evolution Reaction. Inorganic Chemistry, 2021, 60, 10781-10790.	1.9	20
2604	Photoelectrodeposition of Pt nanoparticles on Sb2Se3 photocathodes for enhanced water splitting. Electrochimica Acta, 2021, 382, 138290.	2.6	11
2605	2D Vanadium diselenide supported on reduced graphene oxide for water electrolysis: a comprehensive study in alkaline media. Emergent Materials, 2021, 4, 1047-1053.	3.2	10
2606	3D‣tretched Film Ni ₃ S ₂ Nanosheet/Macromolecule Anthraquinone Derivative Polymers for Electrocatalytic Overall Water Splitting. Small, 2021, 17, e2101003.	5.2	13
2607	Single atomically anchored iron on graphene quantum dots for a highly efficient oxygen evolution reaction. Materials Today Energy, 2021, 20, 100693.	2.5	18
2608	Facile synthesis of SnO2 nanostructures for enhanced electrochemical hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 865, 158597.	2.8	15
2609	Metastable Two-Dimensional Materials for Electrocatalytic Energy Conversions. Accounts of Materials Research, 2021, 2, 559-573.	5.9	97
2610	ZIF-12/Fe-Cu LDH Composite as a High Performance Electrocatalyst for Water Oxidation. Frontiers in Chemistry, 2021, 9, 686968.	1.8	12
2611	Dualâ€Sites Coordination Engineering of Single Atom Catalysts for Flexible Metal–Air Batteries. Advanced Energy Materials, 2021, 11, 2101242.	10.2	247
2612	A chemical etching strategy to improve and stabilize RuO2-based nanoassemblies for acidic oxygen evolution. Nano Energy, 2021, 84, 105909.	8.2	58
2613	A Polarization Boosted Strategy for the Modification of Transition Metal Dichalcogenides as Electrocatalysts for Waterâ€Splitting. Small, 2021, 17, e2100510.	5.2	9
2614	Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nature Communications, 2021, 12, 3992.	5.8	151
2615	Self-supporting MoSe2/CoSe2@CFP electrocatalyst electrode for high-efficiency HER under alkaline solution. Journal of Solid State Chemistry, 2021, 298, 122108.	1.4	16

#	Article	IF	CITATIONS
2616	Layerâ€by‣ayer Assemblyâ€Based Electrocatalytic Fibril Electrodes Enabling Extremely Low Overpotentials and Stable Operation at 1ÃAÂcm ^{â^'2} in Waterâ€6plitting Reaction. Advanced Functional Materials, 2021, 31, 2102530.	7.8	15
2617	Boron-doped amorphous iridium oxide with ultrahigh mass activity for acidic oxygen evolution reaction. Science China Materials, 2021, 64, 2958-2966.	3.5	25
2618	Highly Efficient Fluorine Doped Ni ₂ P Electrocatalysts for Alkaline Mediated Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2021, 168, 064512.	1.3	10
2619	Nitrogen-doped Sr2Fe1.5Mo0.5O6-δ perovskite as an efficient and stable catalystÂfor hydrogen evolution reaction. Materials Today Energy, 2021, 20, 100695.	2.5	16
2620	Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Advanced Materials, 2021, 33, e2007100.	11.1	781
2621	Design Engineering, Synthesis Protocols, and Energy Applications of MOF-Derived Electrocatalysts. Nano-Micro Letters, 2021, 13, 132.	14.4	134
2622	Control of Marine Bacteria and Diatom Biofouling by Constant and Alternating Potentials. Langmuir, 2021, 37, 7464-7472.	1.6	2
2623	Research Progress and Application Prospects of Electrochemical Glucose Sensors. International Journal of Electrochemical Science, 2021, 16, 210633.	0.5	10
2624	Elemental Engineering of High-Charge-Density Boron in Nickel as Multifunctional Electrocatalysts for Hydrogen Oxidation and Water Splitting. ACS Applied Energy Materials, 2021, 4, 5434-5442.	2.5	23
2625	Unveiling Trifunctional Active Sites of a Heteronanosheet Electrocatalyst for Integrated Cascade Battery/Electrolyzer Systems. ACS Energy Letters, 2021, 6, 2460-2468.	8.8	42
2626	Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nature Communications, 2021, 12, 3783.	5.8	355
2627	Interface engineered NiFe2O4â^x/NiMoO4 nanowire arrays for electrochemical oxygen evolution. Applied Catalysis B: Environmental, 2021, 286, 119857.	10.8	138
2628	Alkaline Water Splitting Enhancement by MOFâ€Derived Fe–Co–Oxide/Co@NCâ€mNS Heterostructure: Boosting OER and HER through Defect Engineering and In Situ Oxidation. Small, 2021, 17, e2101312.	5.2	166
2629	Nitrogen and Phosphate Coâ€doped Graphene as Efficient Bifunctional Electrocatalysts by Precursor Modulation Strategy for Oxygen Reduction and Evolution Reactions. ChemElectroChem, 2021, 8, 3262-3272.	1.7	9
2630	Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances. Applied Physics Reviews, 2021, 8, .	5.5	29
2631	Transition metal nitride electrodes as future energy storage devices: A review. Materials Today Communications, 2021, 27, 102363.	0.9	25
2632	Ceâ€Modified Ni(OH) ₂ Nanoflowers Supported on NiSe ₂ Octahedra Nanoparticles as Highâ€Efficient Oxygen Evolution Electrocatalyst. Advanced Energy Materials, 2021, 11, 2101266.	10.2	83
2633	Surface Electronic Modulation with Hetero-Single Atoms to Enhance Oxygen Evolution Catalysis. ACS Nano, 2021, 15, 11891-11897.	7.3	27

#	Article	IF	CITATIONS
2634	Fabrication of 2D/3D hierarchical PBA and derivative electrocatalysts for overall water splitting. Applied Surface Science, 2021, 551, 149360.	3.1	20
2635	Activating Basal Surface of Palladium by Electronic Modulation via Atomically Dispersed Nitrogen Doping for High-Efficiency Hydrogen Evolution Reaction. Journal of Physical Chemistry Letters, 2021, 12, 7373-7378.	2.1	3
2636	Metal oxides as electrocatalysts for water splitting: On plasmonâ€driven enhanced activity. Electrochemical Science Advances, 2022, 2, e2100079.	1.2	7
2637	Accurate and Compatible Force Fields for Molecular Oxygen, Nitrogen, and Hydrogen to Simulate Gases, Electrolytes, and Heterogeneous Interfaces. Journal of Chemical Theory and Computation, 2021, 17, 5198-5213.	2.3	36
2638	Sodiumâ€Decorated Amorphous/Crystalline RuO ₂ with Rich Oxygen Vacancies: A Robust pHâ€Universal Oxygen Evolution Electrocatalyst. Angewandte Chemie, 2021, 133, 18969-18977.	1.6	30
2639	Self-Supported Ceramic Electrode of 1T-2H MoS ₂ Grown on the TiC Membrane for Hydrogen Production. Chemistry of Materials, 2021, 33, 6217-6226.	3.2	26
2640	Selfâ€6upporting Electrodes for Gasâ€Involved Key Energy Reactions. Advanced Functional Materials, 2021, 31, 2104620.	7.8	39
2641	Accelerate the alkaline hydrogen evolution reaction of the heterostructural Ni2P@Ni(OH)2/NF by dispersing a trifle of Ru on the surface. International Journal of Hydrogen Energy, 2021, 46, 26329-26339.	3.8	12
2642	NiCoP–CoP heterostructural nanowires grown on hierarchical Ni foam as a novel electrocatalyst for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 23205-23213.	3.8	25
2643	Coordination Polymer-Derived Fe ₃ N Nanoparticles for Efficient Electrocatalytic Oxygen Evolution. Inorganic Chemistry, 2021, 60, 12136-12150.	1.9	21
2644	Advances in Understanding the Electrocatalytic Reconstruction Chemistry of Coordination Compounds. Small, 2021, 17, e2100629.	5.2	10
2645	Photocatalysis over MXene-based hybrids: Synthesis, surface chemistry, and interfacial charge kinetics. APL Materials, 2021, 9, .	2.2	20
2646	Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Letters, 2021, 13, 156.	14.4	71
2647	A Feasible Strategy for Identifying Singleâ€Atom Catalysts Toward Electrochemical NOâ€ŧoâ€NH ₃ Conversion. Small, 2021, 17, e2102396.	5.2	89
2648	Anion Modulation of Ptâ€Group Metals and Electrocatalysis Applications. Chemistry - A European Journal, 2021, 27, 12257-12271.	1.7	30
2649	Green synthesis of nitrogen and fluorine co-doped porous carbons from sustainable coconut shells as an advanced synergistic electrocatalyst for oxygen reduction. Journal of Materials Research and Technology, 2021, 13, 962-970.	2.6	14
2650	Electronic interaction boosted electrocatalysis of iridium nanoparticles on nitrogen-doped graphene for efficient overall water splitting in acidic and alkaline media. Chemical Engineering Journal, 2021, 415, 129034.	6.6	42
2651	Nickel Foam Supported NiO@Ru Heterostructure Towards Highâ€Efficiency Overall Water Splitting. ChemPhysChem, 2021, 22, 1785-1791.	1.0	14

# 2652	ARTICLE Surfaceâ€Enhanced Raman Spectroscopic Evidence of Key Intermediate Species and Role of NiFe Dualâ€Catalytic Center in Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 19774-19778.	IF 7.2	CITATIONS
2653	Molten-salt thermosynthesis of amorphous RuCoFe nanosheets as bifunctional catalysts for electrochemical water splitting. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
2655	Metalâ€Organic Framework Derived Nanostructured Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem, 2021, 8, 3782-3803.	1.7	14
2656	Complex Impedance Analysis on Charge Accumulation Step of Mn ₃ O ₄ Nanoparticles during Water Oxidation. ACS Omega, 2021, 6, 18404-18413.	1.6	5
2657	Hexagonal Nickel as a Highly Durable and Active Catalyst for Hydrogen Evolution. ACS Catalysis, 2021, 11, 8798-8806.	5.5	12
2658	Ru-Doped CuO/MoS ₂ Nanostructures as Bifunctional Water-Splitting Electrocatalysts in Alkaline Media. ACS Applied Nano Materials, 2021, 4, 7675-7685.	2.4	29
2659	Bridging NiCo layered double hydroxides and Ni3S2 for bifunctional electrocatalysts: The role of vertical graphene. Chemical Engineering Journal, 2021, 415, 129048.	6.6	39
2660	Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nature Communications, 2021, 12, 4606.	5.8	119
2661	A Large-Scalable, Surfactant-Free, and Ultrastable Ru-Doped Pt ₃ Co Oxygen Reduction Catalyst. Nano Letters, 2021, 21, 6625-6632.	4.5	43
2662	Inâ€situ Surfaceâ€selective Removal of Al Element from NiFeAl Ternary Nanowires for Largeâ€current Oxygen Evolution Reaction. ChemNanoMat, 2021, 7, 1138.	1.5	0
2663	Stable multifunctional single-atom catalysts adsorbed on pyrazine-modified graphyne. Applied Surface Science, 2021, 553, 149464.	3.1	32
2664	Engineering of aerogelâ€based electrocatalysts for oxygen evolution reaction. Electrochemical Science Advances, 2022, 2, e2100113.	1.2	1
2665	Hierarchical FeC/MnO2 composite with in-situ grown CNTs as an advanced trifunctional catalyst for water splitting and Metalâ ^{~,} Air batteries. Ceramics International, 2021, 47, 18424-18432.	2.3	27
2666	Emerging Dualâ€Atomicâ€Site Catalysts for Efficient Energy Catalysis. Advanced Materials, 2021, 33, e2102576.	11.1	226
2667	Quasiâ€Paired Pt Atomic Sites on Mo ₂ C Promoting Selective Fourâ€Electron Oxygen Reduction. Advanced Science, 2021, 8, e2101344.	5.6	29
2668	Heterojunction catalyst in electrocatalytic water splitting. Coordination Chemistry Reviews, 2021, 439, 213953.	9.5	195
2669	Ni/Cu Regulating Nitrogenâ€Đoped Porous Carbon as Electrocatalyst for Oxygen Reduction Reaction. ChemistrySelect, 2021, 6, 6949-6956.	0.7	3
2670	Comprehensive Understanding of the Thriving Ambient Electrochemical Nitrogen Reduction Reaction. Advanced Materials, 2021, 33, e2007650.	11.1	229

щ		IF	CITATIONS
#	ARTICLE Vacancies and phosphorus atoms assembled in amorphous urchin-like Co3O4 for highly efficient	IF	CITATIONS
2671	overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 24117-24127.	3.8	13
2672	Surfaceâ€Enhanced Raman Spectroscopic Evidence of Key Intermediate Species and Role of NiFe Dualâ€Catalytic Center in Water Oxidation. Angewandte Chemie, 2021, 133, 19927-19931.	1.6	22
2673	Sodiumâ€Decorated Amorphous/Crystalline RuO ₂ with Rich Oxygen Vacancies: A Robust pHâ€Universal Oxygen Evolution Electrocatalyst. Angewandte Chemie - International Edition, 2021, 60, 18821-18829.	7.2	346
2674	Pseudoâ€Periodically Coupling NiO Lattice with CeO Lattice in Ultrathin Heteronanowire Arrays for Efficient Water Oxidation. Small, 2021, 17, e2101727.	5.2	39
2675	Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule, 2021, 5, 1704-1731.	11.7	416
2676	Tuning the Intrinsic Activity and Electrochemical Surface Area of MoS ₂ via Tiny Zn Doping: Toward an Efficient Hydrogen Evolution Reaction (HER) Catalyst. Chemistry - A European Journal, 2021, 27, 15992-15999.	1.7	19
2677	Defect and Doping Engineered Penta-graphene for Catalysis of Hydrogen Evolution Reaction. Nanoscale Research Letters, 2021, 16, 130.	3.1	19
2678	Nickel sulphide flakes improved cone-shaped graphite electrode for high-performance OER activity. Bulletin of Materials Science, 2021, 44, 1.	0.8	4
2679	Was macht Hochentropie‣egierungen zu außergewöhnlichen Elektrokatalysateuren?. Angewandte Chemie, 2021, 133, 27098-27108.	1.6	8
2680	A comparative study of different carbon materials as metal-free catalysts for oxygen reduction and hydrogen evolution reactions in alkaline media. Diamond and Related Materials, 2021, 117, 108464.	1.8	12
2681	Mini Review on Active Sites in Ce-Based Electrocatalysts for Alkaline Water Splitting. Energy & Fuels, 2021, 35, 19000-19011.	2.5	34
2682	Progress and Perspectives on Covalentâ€Organic Frameworks (COFs) and Composites for Various Energy Applications. Chemistry - A European Journal, 2021, 27, 13669-13698.	1.7	16
2683	What Makes Highâ€Entropy Alloys Exceptional Electrocatalysts?. Angewandte Chemie - International Edition, 2021, 60, 26894-26903.	7.2	145
2684	Co nanoparticles and ZnS decorated N, S co-doped carbon nanotubes as an efficient oxygen reduction catalyst in zinc-air batteries. International Journal of Hydrogen Energy, 2021, 46, 30090-30100.	3.8	12
2685	Density Functional Theory for Electrocatalysis. Energy and Environmental Materials, 2022, 5, 157-185.	7.3	95
2686	Edgeâ€Rich Reduced Graphene Oxide Embedded in Silicaâ€Based Laminated Ceramic Composites for Efficient and Robust Electrocatalytic Hydrogen Evolution. Small Methods, 2021, 5, e2100621.	4.6	5
2687	Nano-pom-pom multiphasic MoS2 grown on carbonized wood as electrode for efficient hydrogen evolution in acidic and alkaline media. International Journal of Hydrogen Energy, 2021, 46, 28087-28097.	3.8	22
2688	Rational Design of Highly Stable and Active MXeneâ€Based Bifunctional ORR/OER Doubleâ€Atom Catalysts. Advanced Materials, 2021, 33, e2102595.	11.1	137

#	Article	IF	CITATIONS
2689	Hexagonal CoFe2O4/β-Ni(OH)2 heterojunction composite as an advanced electrocatalyst for the oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 27874-27882.	3.8	14
2690	Dual Doping of MoP with M(Mn,Fe) and S to Achieve High Hydrogen Evolution Reaction Activity in Both Acidic and Alkaline Media. ChemCatChem, 2021, 13, 4392-4402.	1.8	6
2691	Recent developments in the use of single-atom catalysts for water splitting. Chinese Journal of Catalysis, 2021, 42, 1269-1286.	6.9	44
2692	Mechanistic studies of oxygen reduction and evolution reactions on Ni3S2 surfaces. Applied Catalysis A: General, 2021, 624, 118324.	2.2	6
2693	TiO2 Nanotubes Architectures for Solar Energy Conversion. Coatings, 2021, 11, 931.	1.2	15
2694	Theory-guided design of atomic Fe–Ni dual sites in N,P-co-doped C for boosting oxygen evolution reaction. Chem Catalysis, 2021, 1, 734-745.	2.9	45
2695	On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry - A European Journal, 2021, 27, 16291-16308.	1.7	8
2696	Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of αâ€Nitrotoluenes to <i>E</i> â€Nitroethenes. Angewandte Chemie, 2021, 133, 22181-22187.	1.6	13
2697	Transition metal atoms (Fe, Co, Ni, Cu, Zn) doped RuIr surface for the hydrogen evolution reaction: A first-principles study. Applied Surface Science, 2021, 556, 149801.	3.1	27
2698	Interface-engineered Co ₃ S ₄ /CoMo ₂ S ₄ nanosheets as efficient bifunctional electrocatalysts for alkaline overall water splitting. Nanotechnology, 2021, 32, 455706.	1.3	5
2699	Amine group ligand-modified hydrotalcite-like nano cobalt hydroxide for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 29905-29915.	3.8	3
2700	Constructing the Au–CoNi2S4 core–shell heterostructure to promote the catalytic performance for oxygen evolution. Journal Physics D: Applied Physics, 2021, 54, 425501.	1.3	1
2701	Intermetallic IrGa-IrOx core-shell electrocatalysts for oxygen evolution. Nano Research, 2022, 15, 1853-1860.	5.8	25
2702	Recent decoupling and coupling strategies for water splitting. Nano Futures, 2021, 5, 042001.	1.0	8
2703	Electrochemical Visualization of Gas Bubbles on Superaerophobic Electrodes Using Scanning Electrochemical Cell Microscopy. Analytical Chemistry, 2021, 93, 12337-12345.	3.2	23
2704	Dual-atom catalysts: controllable synthesis and electrocatalytic applications. Science China Chemistry, 2021, 64, 1908-1922.	4.2	51
2705	Graphene Oxideâ€Assisted Covalent Triazine Framework for Boosting Photocatalytic H ₂ Evolution. Chemistry - A European Journal, 2021, 27, 13059-13066.	1.7	8
2706	Modulating Reaction Pathways on Perovskite Cobaltite Nanofibers through Excessive Surface Oxygen Defects for Efficient Water Oxidation. Energy & Fuels, 2021, 35, 13967-13974.	2.5	7

#	Article	IF	CITATIONS
2707	Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of αâ€Nitrotoluenes to <i>E</i> â€Nitroethenes. Angewandte Chemie - International Edition, 2021, 60, 22010-22016.	7.2	34
2708	Design single nonmetal atom doped 2D Ti2CO2 electrocatalyst for hydrogen evolution reaction by coupling electronic descriptor. Applied Surface Science, 2021, 556, 149778.	3.1	15
2709	Exceptionally Robust Face‧haring Motifs Enable Efficient and Durable Water Oxidation. Advanced Materials, 2021, 33, e2103392.	11.1	36
2710	Single-atom M–N–C catalysts for oxygen reduction electrocatalysis. Trends in Chemistry, 2021, 3, 779-794.	4.4	37
2711	A versatile electrochemical cell for hanging meniscus or flow cell measurement of planar model electrodes characterized with scanning tunneling microscopy and x-ray photoelectron spectroscopy. Review of Scientific Instruments, 2021, 92, 094101.	0.6	5
2712	Facile electrochemical synthesis of Ni-Co-B film on Cu sheet for dual-electrocatalysis of hydrogen and oxygen evolution reactions. Electrochimica Acta, 2021, 389, 138691.	2.6	38
2713	The FeOOH Decorated Fe-Doped Nickel Selenide Hierarchical Array for High-Performance Water Oxidation. Industrial & Engineering Chemistry Research, 2022, 61, 6146-6155.	1.8	4
2714	An overview of the active sites in transition metal electrocatalysts and their practical activity for hydrogen evolution reaction. Chemical Engineering Journal, 2022, 430, 132312.	6.6	24
2715	Palladium Nanoparticles Hardwired in Carbon Nanoreactors Enable Continually Increasing Electrocatalytic Activity During the Hydrogen Evolution Reaction. ChemSusChem, 2021, 14, 4973-4984.	3.6	6
2716	Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms. Nano Research, 2022, 15, 1753-1778.	5.8	44
2717	Highly Dispersed Mo ₂ C Nanodots in Carbon Nanocages Derived from Moâ€Based Xerogel: Efficient Electrocatalysts for Hydrogen Evolution. Small Methods, 2021, 5, e2100334.	4.6	26
2718	The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angewandte Chemie, 2021, 133, 23235.	1.6	1
2719	Self‧upported Electrocatalysts for Practical Water Electrolysis. Advanced Energy Materials, 2021, 11, 2102074.	10.2	161
2720	Zn‒air battery operated with a 3DOM trimetallic spinel (Mn0.5Ni0.5Co2O4) as the oxygen electrode. Electrochimica Acta, 2021, 391, 138900.	2.6	26
2721	Synthesis of Ni3S4/NiS2/FeS2 nanoparticles for hydrogen and oxygen evolution reaction. Applied Surface Science, 2021, 560, 149985.	3.1	42
2722	Bioinspired Precious-Metal-Free N4 Macrocycle as an Electrocatalyst for the Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 10826-10834.	2.5	15
2723	Co0.85Se nanoparticles armored by N-doped carbon layer with electronic structure regulation functions: An efficient oxygen evolution electrocatalyst. Chemical Engineering Journal, 2021, 420, 130461.	6.6	15
2724	Synthesis of noble metal-based intermetallic electrocatalysts by space-confined pyrolysis: Recent progress and future perspective. Journal of Energy Chemistry, 2021, 60, 61-74.	7.1	30

#	Article	IF	CITATIONS
2725	Design concept for electrocatalysts. Nano Research, 2022, 15, 1730-1752.	5.8	396
2726	Wood aerogel-derived sandwich-like layered nanoelectrodes for alkaline overall seawater electrosplitting. Applied Catalysis B: Environmental, 2021, 293, 120215.	10.8	112
2727	Biomass-based protic ionic liquid derived N, P, co-doped porous carbon-coated CoP nanocrystals for efficient hydrogen evolution reaction. Journal of Materials Science, 2021, 56, 18188-18199.	1.7	10
2728	N-doped ZrO2 nanoparticles embedded in a N-doped carbon matrix as a highly active and durable electrocatalyst for oxygen reduction. Fundamental Research, 2022, 2, 604-610.	1.6	5
2729	Recent development in electrocatalysts for hydrogen production through water electrolysis. International Journal of Hydrogen Energy, 2021, 46, 32284-32317.	3.8	236
2730	FeNi2P three-dimensional oriented nanosheet array bifunctional catalysts with better full water splitting performance than the full noble metal catalysts. Journal of Colloid and Interface Science, 2022, 608, 2192-2202.	5.0	20
2731	In-situ construction of C-S-Zn structures on Enteromorpha-based porous carbon for efficient oxygen reduction reaction. Electrochimica Acta, 2021, 391, 138918.	2.6	0
2732	Shelling with MoS2: Functional CuS@MoS2 hybrids as electrocatalysts for the oxygen reduction and hydrogen evolution reactions. Chemical Engineering Journal, 2021, 420, 129771.	6.6	35
2733	NiCo-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction: A Review. ACS Catalysis, 2021, 11, 12485-12509.	5.5	204
2734	Mono-coordinated metallocene ligands endow metal-organic frameworks with highly efficient oxygen evolution and urea electrolysis. Chemical Engineering Journal, 2022, 430, 132733.	6.6	26
2735	Construction of hydroxide pn junction for water splitting electrocatalysis. Applied Catalysis B: Environmental, 2021, 292, 120160.	10.8	78
2736	Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. Npj 2D Materials and Applications, 2021, 5, .	3.9	133
2737	CoNi alloy nanoparticles coated with carbon layer doped with P atom for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 36753-36762.	3.8	5
2738	CoS2 nanowires supported graphdiyne for highly efficient hydrogen evolution reaction. Journal of Energy Chemistry, 2021, 60, 272-278.	7.1	44
2739	Interface Engineering of Heterogeneous CeO ₂ –CoO Nanofibers with Rich Oxygen Vacancies for Enhanced Electrocatalytic Oxygen Evolution Performance. ACS Applied Materials & Interfaces, 2021, 13, 46998-47009.	4.0	40
2740	Iron and chromium co-doped cobalt phosphide porous nanosheets as robust bifunctional electrocatalyst for efficient water splitting. Nanotechnology, 2022, 33, 075204.	1.3	9
2741	Co3O4@carbon with high Co2+/Co3+ ratios derived from ZIF-67 supported on N-doped carbon nanospheres as stable bifunctional oxygen catalysts. Materials Today Energy, 2021, 21, 100737.	2.5	25
2742	Electrodeposited Cobalt Stannide: A Highly Efficient Oxygen Evolution Reaction Catalyst. Journal of the Electrochemical Society, 2021, 168, 096505.	1.3	3

#	Article	IF	CITATIONS
2743	Electrodeposited Co–W–P ternary catalyst for hydrogen evolution reaction. Nanotechnology, 2021, 32, 505604.	1.3	4
2744	Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Alâ^'S batteries. Nature Communications, 2021, 12, 5714.	5.8	80
2745	System Theoretical Study on the Effect of Variable Nonmetallic Doping on Improving Catalytic Activity of 2D-Ti3C2O2 for Hydrogen Evolution Reaction. Nanomaterials, 2021, 11, 2497.	1.9	6
2746	The electronic properties and catalytic activity of precious-metals adsorbed silicene for hydrogen evolution reaction and oxygen evolution reaction. Applied Surface Science, 2021, 560, 150041.	3.1	27
2747	Promotion for Full Water Splitting toward Vanadium-Incorporated MoO ₂ –MoNi ₄ Hybrid Nanoarrays. ACS Sustainable Chemistry and Engineering, 2021, 9, 13225-13232.	3.2	12
2748	Metal–Organic Frameworksâ€Derived Self‣upported Carbonâ€Based Composites for Electrocatalytic Water Splitting. Chemistry - A European Journal, 2021, 27, 15866-15888.	1.7	35
2749	Carbon dots-oriented synthesis of fungus-like CoP microspheres as a bifunctional electrocatalyst for efficient overall water splitting. Carbon, 2021, 182, 327-334.	5.4	46
2750	Electrocatalytic Hydrogen Evolution Reaction Related to Nanochannel Materials. Small Structures, 2021, 2, 2100076.	6.9	36
2751	Comparing electrocatalytic hydrogen and oxygen evolution activities of first-row transition metal complexes with similar coordination environments. Journal of Energy Chemistry, 2021, 63, 659-666.	7.1	40
2752	Two-dimensional metallic MoS2-amorphous CoNi(OH)2 nanocomposite for enhanced electrochemical water splitting in alkaline solutions. Applied Surface Science, 2021, 561, 150079.	3.1	18
2753	Application of layered nanoclay in electrochemical energy: Current status and future. EnergyChem, 2021, 3, 100062.	10.1	29
2754	Dimensional-Dependent Effects in Platinum Core–Shell-Based Catalysts for Fuel Cell Applications. ACS Applied Nano Materials, 2021, 4, 9697-9708.	2.4	13
2755	Recent Progresses in Engineering of Ni and Co based Phosphides for Effective Electrocatalytic Water Splitting. ChemElectroChem, 2021, 8, 4638-4685.	1.7	39
2756	The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angewandte Chemie - International Edition, 2021, 60, 23051-23067.	7.2	180
2757	Mo-chelate strategy for synthesizing ultrasmall Mo2C nanoparticles embedded in carbon nanosheets for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 31598-31607.	3.8	17
2758	ZIF-8@ZIF-67-Derived Co Embedded into Nitrogen-Doped Carbon Nanotube Hollow Porous Carbon Supported Pt as an Efficient Electrocatalyst for Methanol Oxidation. Nanomaterials, 2021, 11, 2491.	1.9	12
2759	Nanostructured Metal Borides for Energyâ€Related Electrocatalysis: Recent Progress, Challenges, and Perspectives. Small Methods, 2021, 5, e2100699.	4.6	47
2760	Surface Defect Engineering on Perovskite Oxides as Efficient Bifunctional Electrocatalysts for Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 42852-42860.	4.0	34

		CITATION REI	PORT	
#	Article		IF	CITATIONS
2761	The Role of Surface Curvature in Electrocatalysts. Chemistry - A European Journal, 202	2, 28, .	1.7	9
2762	In-situ growth of CNTs encapsulating P-doped NiSe2 nanoparticles on carbon framewor bifunctional electrocatalyst for overall water splitting. Journal of Energy Chemistry, 20	rk as efficient 21, 60, 111-120.	7.1	56
2763	Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for promembrane water electrolyzer. Nano Energy, 2021, 88, 106276.	ton exchange	8.2	49
2764	Tunable one-dimensional inorganic perovskite nanomeshes library for water splitting. I 2021, 88, 106251.	Vano Energy,	8.2	12
2765	A novel approach to facile synthesis of boron and nitrogen co-doped graphene and its lithium oxygen batteries. Energy Storage Materials, 2021, 41, 61-68.	application in	9.5	23
2766	Engineering highly active Ag/Nb2O5@Nb2CT (MXene) photocatalysts via steering cha strategy. Chemical Engineering Journal, 2021, 421, 128766.	rge kinetics	6.6	73
2767	Novel Ni–Cr-based alloys as hydrogen fuel sources through alkaline water electrolyte International Journal of Hydrogen Energy, 2021, 46, 34749-34766.	?S.	3.8	13
2768	Carbon nanomaterials: Synthesis, properties and applications in electrochemical sense conversion systems. Materials Science and Engineering B: Solid-State Materials for Adv Technology, 2021, 272, 115341.	rs and energy anced	1.7	40
2769	Ultrastable NiFeOOH/NiFe/Ni electrocatalysts prepared by in-situ electro-oxidation for evolution reaction at large current density. Applied Surface Science, 2021, 564, 15044	oxygen Ю.	3.1	30
2770	Au-Ru alloy nanofibers as a highly stable and active bifunctional electrocatalyst for acia splitting. Applied Surface Science, 2021, 563, 150293.	lic water	3.1	25
2771	Boron nanosheets induced microstructure and charge transfer tailoring in carbon nano towards highly efficient water splitting. Nano Energy, 2021, 88, 106246.	ofibrous mats	8.2	15
2772	Electrooxidation-enabled electroactive high-valence ferritic species in NiFe layered dou arrays as efficient oxygen evolution catalysts. Journal of Colloid and Interface Science, 168-177.	ble hydroxide 2021, 599,	5.0	14
2773	Two-dimensional IrN2 monolayer: An efficient bifunctional electrocatalyst for oxygen r oxygen evolution reactions. Journal of Colloid and Interface Science, 2021, 600, 711-7		5.0	27
2774	Fe-incorporated cobalt-based metal-organic framework ultrathin nanosheets for electr oxygen evolution. Chemical Engineering Journal, 2021, 422, 130055.	ocatalytic	6.6	19
2775	MXenes modified by single transition metal atom for hydrogen evolution reaction cata Surface Science, 2021, 562, 150151.	lysts. Applied	3.1	25
2776	Redox-responsive sorbents and mediators for electrochemically based CO2 capture. C in Green and Sustainable Chemistry, 2021, 31, 100504.	urrent Opinion	3.2	24
2777	Enhancing the hydrogen evolution reaction by non-precious transition metal (Non-met doping in defective MoSi2N4 monolayer. Applied Surface Science, 2021, 563, 150388		3.1	49
2778	Self-supporting NiFe LDH-MoS integrated electrode for highly efficient water splitting industrial electrolysis conditions. Chinese Journal of Catalysis, 2021, 42, 1732-1741.	at the	6.9	50

#	Article	IF	CITATIONS
2779	Heterogeneous iron oxide nanoparticles anchored on carbon nanotubes for high-performance lithium-ion storage and fenton-like oxidation. Journal of Colloid and Interface Science, 2021, 601, 283-293.	5.0	19
2780	Single tungsten atom steered band-gap engineering for graphitic carbon nitride ultrathin nanosheets boosts visible-light photocatalytic H2 evolution. Chemical Engineering Journal, 2021, 424, 130004.	6.6	39
2781	Lattice strain and atomic replacement of CoO6 octahedra in layered sodium cobalt oxide for boosted water oxidation electrocatalysis. Applied Catalysis B: Environmental, 2021, 297, 120477.	10.8	30
2782	Cobalt tetraphosphate as an efficient bifunctional electrocatalyst for hybrid sodium-air batteries. Nano Energy, 2021, 89, 106485.	8.2	11
2783	Porous MoWN/MoWC@N C Nano-octahedrons synthesized via confined carburization and vapor deposition in MOFs as efficient trifunctional electrocatalysts for oxygen reversible catalysis and hydrogen production in the same electrolyte. Journal of Colloid and Interface Science, 2021, 601, 626-639.	5.0	10
2784	Exceptional lattice-oxygen participation on artificially controllable electrochemistry-induced crystalline-amorphous phase to boost oxygen-evolving performance. Applied Catalysis B: Environmental, 2021, 297, 120484.	10.8	41
2785	Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials, 2021, 42, 317-369.	9.5	113
2786	Cu-doped molybdenum carbide encapsulated within two-dimensional nanosheets assembled hierarchical tubular nitrogen-doped carbon for enhanced hydrogen evolution. Journal of Electroanalytical Chemistry, 2021, 900, 115731.	1.9	6
2787	Ternary metal-based inverse spinel oxide NiCrFeO4 nanoparticles as a highly efficient oxygen evolution catalyst. Applied Surface Science, 2021, 566, 150653.	3.1	9
2788	Recycling valuable cobalt from spent lithium ion batteries for controllably designing a novel sea-urchin-like cobalt nitride-graphene hybrid catalyst: Towards efficient overall water splitting. Journal of Energy Chemistry, 2021, 62, 440-450.	7.1	38
2789	Evolution of interfacial coupling interaction of Ni-Ru species for pH-universal water splitting. Chemical Engineering Journal, 2021, 426, 130762.	6.6	36
2790	Modulating electronic structure of cobalt phosphide porous nanofiber by ruthenium and nickel dual doping for highly-efficiency overall water splitting at high current density. Applied Catalysis B: Environmental, 2021, 298, 120488.	10.8	93
2791	Electrochemical catalytic mechanism of single transition metal atom embedded BC3 monolayer for oxygen reduction and evolution reactions. Chemical Engineering Journal, 2021, 425, 130631.	6.6	18
2792	Graphene nanosheets supported high-defective Pd nanocrystals as an efficient electrocatalyst for hydrogen evolution reaction. Chemical Engineering Journal, 2021, 425, 131526.	6.6	11
2793	Bovine blood husbandry waste as a pathway to renewable energy. Nano Energy, 2021, 90, 106505.	8.2	7
2794	Utilizing the charge-transfer model to design promising electrocatalysts. Current Opinion in Electrochemistry, 2021, 30, 100805.	2.5	4
2795	Multifunctional electrocatalysts of nickel boride nanoparticles for superior hydrogen oxidation and water splitting. Materials Today Energy, 2021, 22, 100846.	2.5	24
2796	Synergistically integrated Co9S8@NiFe-layered double hydroxide core-branch hierarchical architectures as efficient bifunctional electrocatalyst for water splitting. Journal of Colloid and Interface Science, 2021, 604, 680-690.	5.0	39

#	Article	IF	CITATIONS
2797	Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: The key roles of bimetal components and high-content graphitic-N. Applied Catalysis B: Environmental, 2021, 298, 120512.	10.8	120
2798	Template-free synthesis of Co3O4 microtubes for enhanced oxygen evolution reaction. Chinese Journal of Catalysis, 2021, 42, 2275-2286.	6.9	20
2799	Facile coordination driven synthesis of metal-organic gels toward efficiently electrocatalytic overall water splitting. Applied Catalysis B: Environmental, 2021, 299, 120641.	10.8	39
2800	Novel strategy to enhance the desalination performance of flow-electrode capacitive deionization process via the assistance of electro-catalytic water splitting. Separation and Purification Technology, 2021, 279, 119753.	3.9	6
2801	Two-dimensional hetero-nanostructured electrocatalyst of Ni/NiFe-layered double oxide for highly efficient hydrogen evolution reaction in alkaline medium. Chemical Engineering Journal, 2021, 426, 131827.	6.6	42
2802	Stone-Wales defect-rich carbon-supported dual-metal single atom sites for Zn-air batteries. Nano Energy, 2021, 90, 106488.	8.2	55
2803	Hollow porous nitrogen-doped carbon formed by fe-modified bimetallic organic framework for rechargeable liquid/solid Zn-air batteries. Journal of Alloys and Compounds, 2021, 886, 161227.	2.8	16
2804	Hydrazine hydrate-assisted adjustment of sulfur-rich MoS2 as hydrogen evolution electrocatalyst. Journal of Alloys and Compounds, 2021, 885, 160990.	2.8	16
2805	Se and O co-insertion induce the transition of MoS2 from 2H to 1T phase for designing high-active electrocatalyst of hydrogen evolution reaction. Chemical Engineering Journal, 2021, 425, 130611.	6.6	25
2806	Ultrasmall Pt2Sr alloy nanoparticles as efficient bifunctional electrocatalysts for oxygen reduction and hydrogen evolution in acidic media. Journal of Energy Chemistry, 2022, 64, 315-322.	7.1	28
2807	Synthesis of a highly efficient bifunctional Co2P@N-doped carbon nanotubes electrocatalyst by GO-Induced assembly strategy for rechargeable Zn-air batteries. Journal of Alloys and Compounds, 2022, 889, 161628.	2.8	7
2808	Gold nanodot assembly within a cobalt chalcogenide nanoshell: Promotion of electrocatalytic activity. Journal of Colloid and Interface Science, 2022, 605, 274-285.	5.0	5
2809	d-Band center modulating of CoOx/Co9S8 by oxygen vacancies for fast-kinetics pathway of water oxidation. Chemical Engineering Journal, 2022, 427, 130915.	6.6	28
2810	Natural DNA-derived highly-graphitic N, P, S-tridoped carbon nanosheets for multiple electrocatalytic applications. Chemical Engineering Journal, 2022, 429, 132102.	6.6	22
2811	CoO/MnO heterostructure on three-dimensional nickel foam as efficient electrocatalyst for oxygen evolution reaction. Journal of Physics and Chemistry of Solids, 2022, 160, 110373.	1.9	9
2812	Directly anchoring non-noble metal single atoms on 1T-TMDs with tip structure for efficient hydrogen evolution. Chemical Engineering Journal, 2022, 428, 131210.	6.6	22
2813	Metal-organic framework-derived carbon nanotubes with multi-active Fe-N/Fe sites as a bifunctional electrocatalyst for zinc-air battery. Journal of Energy Chemistry, 2022, 66, 306-313.	7.1	56
2814	One-pot synthesis of FeNxC as efficient catalyst for high-performance zinc-air battery. Journal of Energy Chemistry, 2022, 66, 100-106.	7.1	28

#	Article	IF	CITATIONS
2815	In situ coupled MoO3 with CoP/rGO to construct three-dimensional self-supported catalyst for highly efficient alkaline hydrogen evolution reaction. Journal of Materials Science and Technology, 2022, 104, 194-201.	5.6	15
2816	Enabling photocatalytic hydrogen production over Fe-based MOFs by refining band structure with dye sensitization. Chemical Engineering Journal, 2022, 429, 132217.	6.6	29
2817	1 T-MoSe2 monolayer supported single Pd atom as a highly-efficient bifunctional catalyst for ORR/OER. Journal of Colloid and Interface Science, 2022, 605, 155-162.	5.0	55
2818	A visual electrochemiluminescence molecularly imprinted sensor with Ag+@UiO-66-NH2 decorated CsPbBr3 perovskite based on smartphone for point-of-care detection of nitrofurazone. Chemical Engineering Journal, 2022, 429, 132462.	6.6	39
2819	Self-supported hierarchical P,Cu-codoped cobalt selenide nanoarrays for enhanced overall water splitting. Journal of Alloys and Compounds, 2021, 889, 161696.	2.8	23
2820	Molecule functionalization to facilitate electrocatalytic oxygen reduction on graphdiyne. Journal of Energy Chemistry, 2022, 65, 141-148.	7.1	11
2821	Ternary duplex FeCoNi alloy prepared by cathode plasma electrolytic deposition as a high-efficient electrocatalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 891, 161934.	2.8	14
2822	Ni3S2@Ni5P4 nanosheets as highly productive catalyst for electrocatalytic oxygen evolution. Chemical Engineering Science, 2022, 247, 117020.	1.9	12
2823	Thermocatalytic hydrogenation of <scp>CO₂</scp> into aromatics by tailorâ€made catalysts: Recent advancements and perspectives. EcoMat, 2021, 3, e12080.	6.8	29
2824	Metal-organic framework–based materials and renewable energy. , 2021, , 153-166.		0
2825	<i>In situ</i> recycling of particulate matter for a high-performance supercapacitor and oxygen evolution reaction. Materials Chemistry Frontiers, 2021, 5, 2742-2748.	3.2	1
2827	Energy and environmental catalysis driven by stress and temperature-variation. Journal of Materials Chemistry A, 2021, 9, 12400-12432.	5.2	44
2828	Selenium tethered copper phthalocyanine hierarchical aggregates as electrochemical hydrogen evolution catalysts. Sustainable Energy and Fuels, 2021, 5, 3617-3631.	2.5	2
2829	Nb-Doped nickel nitride-derived catalysts for electrochemical water splitting. Catalysis Science and Technology, 2021, 11, 6455-6461.	2.1	6
2830	A branch-leaf-like hierarchical self-supporting electrode as a highly efficient catalyst for hydrogen evolution. New Journal of Chemistry, 2021, 45, 10890-10896.	1.4	5
2831	Reduced interfacial tension on ultrathin NiCr-LDH nanosheet arrays for efficient electrocatalytic water oxidation. Journal of Materials Chemistry A, 2021, 9, 16706-16712.	5.2	18
2832	Nano-spinel cobalt decorated sulphur doped graphene: an efficient and durable electrocatalyst for oxygen evolution reaction and non-enzymatic sensing of H ₂ O ₂ . New Journal of Chemistry, 2021, 45, 15544-15554.	1.4	3
2833	Recent advances in the metal–organic framework-based electrocatalysts for the hydrogen evolution reaction in water splitting: a review. RSC Advances, 2021, 11, 21904-21925.	1.7	58

#	Article	IF	CITATIONS
2834	Bimetal–Organic Frameworks from In Situ-Activated NiFe Foam for Highly Efficient Water Splitting. ACS Sustainable Chemistry and Engineering, 2021, 9, 1826-1836.	3.2	38
2835	Recent advances in the electrocatalytic synthesis of 2,5-furandicarboxylic acid from 5-(hydroxymethyl)furfural. Journal of Materials Chemistry A, 2021, 9, 20164-20183.	5.2	62
2836	Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy and Environmental Science, 2021, 14, 1897-1927.	15.6	415
2837	Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond. Advanced Materials Interfaces, 2021, 8, 2001677.	1.9	39
2838	Two- and three-dimensional l²,l²â€²-N-heterocycle fused porphyrins: concise construction, singlet oxygen production and electro-catalytic hydrogen evolution reaction. Organic Chemistry Frontiers, 0, , .	2.3	5
2839	Lithium doped nickel oxide nanocrystals with a tuned electronic structure for oxygen evolution reaction. Chemical Communications, 2021, 57, 6070-6073.	2.2	22
2840	Electrochemically dealloyed nanoporous Fe ₄₀ Ni ₂₀ Co ₂₀ P ₁₅ C ₅ metallic glass for efficient and stable electrocatalytic hydrogen and oxygen generation. RSC Advances, 2021, 11, 7369-7380.	1.7	13
2841	Coaxial Ni–S@N-Doped Carbon Nanofibers Derived Hierarchical Electrodes for Efficient H ₂ Production <i>via</i> Urea Electrolysis. ACS Applied Materials & Interfaces, 2021, 13, 3937-3948.	4.0	45
2842	Review on Synthesis and Catalytic Coupling Mechanism of Highly Active Electrocatalysts for Water Splitting. Energy Technology, 2021, 9, 2000855.	1.8	11
2843	Interfacial processes in electrochemical energy systems. Chemical Communications, 2021, 57, 10453-10468.	2.2	28
2844	Core-corona Co/CoP clusters strung on carbon nanotubes as a Schottky catalyst for glucose oxidation assisted H ₂ production. Journal of Materials Chemistry A, 2021, 9, 10893-10908.	5.2	56
2845	Hollow bimetallic selenide derived from a hierarchical MOF-based Prussian blue analogue for urea electrolysis. Inorganic Chemistry Frontiers, 2021, 8, 2788-2797.	3.0	34
2846	An ingeniously assembled metal–organic framework on the surface of FeMn co-doped Ni(OH) ₂ as a high-efficiency electrocatalyst for the oxygen evolution reaction. Dalton Transactions, 2021, 50, 11775-11782.	1.6	8
2847	Structural Dynamics of Ultrathin Cobalt Oxide Nanoislands under Potential Control. Advanced Functional Materials, 2021, 31, 2009923.	7.8	26
2848	A crystalline/amorphous CoP@CoB hierarchical core–shell nanorod array for enhanced hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 19719-19724.	5.2	29
2849	Better fuels for photocatalytic micromotors: a case study of triethanolamine. Chemical Communications, 2021, 57, 9902-9905.	2.2	9
2850	New atomically precise M1Ag21 (M = Au/Ag) nanoclusters as excellent oxygen reduction reaction catalysts. Chemical Science, 2021, 12, 3660-3667.	3.7	22
2851	A hierarchical CuO@NiCo layered double hydroxide core–shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2021, 8, 3049-3054.	3.0	191

#	Article	IF	CITATIONS
2852	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	18.7	461
2853	Active Phase on SrCo _{1–<i>x</i>} Fe _{<i>x</i>} O _{3â~î~} (0 ≤i>x ≤0. Perovskite for Water Oxidation: Reconstructed Surface versus Remaining Bulk. Jacs Au, 2021, 1, 108-115.	5) 3.6	47
2854	Improved Rate for the Oxygen Reduction Reaction in a Sulfuric Acid Electrolyte using a Pt(111) Surface Modified with Melamine. ACS Applied Materials & Interfaces, 2021, 13, 3369-3376.	4.0	29
2855	Fe-doping induced localized amorphization in ultrathin α-Ni(OH) ₂ nanomesh for superior oxygen evolution reaction catalysis. Journal of Materials Chemistry A, 2021, 9, 14372-14380.	5.2	44
2856	Hierarchical CoP Nanostructures on Nickel Foam as Efficient Bifunctional Catalysts for Water Splitting. ChemSusChem, 2021, 14, 1094-1102.	3.6	20
2857	A self-supported NiCo ₂ O ₄ /Cu _x O nanoforest with electronically modulated interfaces as an efficient electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2021, 9, 14466-14476.	5.2	52
2858	Threeâ€Dimensional Hierarchical Architectures Derived from Surfaceâ€Mounted Metal–Organic Framework Membranes for Enhanced Electrocatalysis. Angewandte Chemie, 2017, 129, 13969-13973.	1.6	42
2859	Rechargeable Photoactive Znâ€Air Batteries Using NiCo ₂ S ₄ as an Efficient Bifunctional Photocatalyst towards OER/ORR at the Cathode. Batteries and Supercaps, 2020, 3, 541-547.	2.4	40
2860	Highâ€Voltage Electrolytes for Aqueous Energy Storage Devices. Batteries and Supercaps, 2020, 3, 323-330.	2.4	92
2861	Boosting the Supercapacitance of Nitrogenâ€Doped Carbon by Tuning Surface Functionalities. ChemSusChem, 2017, 10, 4018-4024.	3.6	38
2862	Interface Chemistry of Platinum-Based Materials for Electrocatalytic Hydrogen Evolution in Alkaline Conditions. , 2020, , 453-473.		3
2863	Single-Atom Electrocatalysts for Water Splitting. , 2020, , 67-111.		1
2864	First principles investigation on the applicability of ruthenium as a potential ORR catalyst. Journal of Chemical Sciences, 2020, 132, 1.	0.7	4
2865	Black phosphorus-hosted single-atom catalyst for electrocatalytic nitrogen reduction. Science China Materials, 2021, 64, 1173-1181.	3.5	28
2866	Greatly boosting electrochemical hydrogen evolution reaction over Ni3S2 nanosheets rationally decorated by Ni3Sn2S2 quantum dots. Applied Catalysis B: Environmental, 2020, 267, 118675.	10.8	63
2867	Multiple-interface relay catalysis: Enhancing alkaline hydrogen evolution through a combination of Volmer promoter and electrical-behavior regulation. Chemical Engineering Journal, 2020, 397, 125457.	6.6	32
2868	Co, Mo2C encapsulated in N-doped carbon nanofiber as self-supported electrocatalyst for hydrogen evolution reaction. Chemical Engineering Journal, 2020, 397, 125481.	6.6	68
2869	Probing electrochemical surface/interfacial reactions with liquid cell transmission electron microscopy: a challenge or an opportunity?. Current Opinion in Electrochemistry, 2020, 23, 114-122.	2.5	8

#	Article	IF	CITATIONS
2870	A study on tandem photoanode and photocathode for photocatalytic formaldehyde fuel cell. Electrochimica Acta, 2020, 352, 136476.	2.6	22
2871	Catalyst Engineering for Electrochemical Energy Conversion from Water to Water: Water Electrolysis and the Hydrogen Fuel Cell. Engineering, 2020, 6, 653-679.	3.2	75
2872	Amorphous MoS2 nanosheets on MoO2 films/Mo foil as free-standing electrode for synergetic electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 17422-17433.	3.8	23
2873	Toward pH Independent Oxygen Reduction Reaction by Polydopamine Derived 3D Interconnected, Iron Carbide Embedded Graphitic Carbon. ACS Applied Materials & Interfaces, 2021, 13, 8147-8158.	4.0	15
2874	Dynamic Structure Evolution of Composition Segregated Iridium-Nickel Rhombic Dodecahedra toward Efficient Oxygen Evolution Electrocatalysis. ACS Nano, 2018, 12, 7371-7379.	7.3	75
2875	Biomass chitin-derived honeycomb-like nitrogen-doped carbon/graphene nanosheet networks for applications in efficient oxygen reduction and robust lithium storage. Journal of Materials Chemistry A, 2016, 4, 11789-11799.	5.2	71
2876	Aggregation dynamics of nanoparticles at solid–liquid interfaces. Nanoscale, 2017, 9, 10044-10050.	2.8	24
2877	Carbon quantum dots enhanced the activity for the hydrogen evolution reaction in ruthenium-based electrocatalysts. Materials Chemistry Frontiers, 2020, 4, 277-284.	3.2	95
2878	<i>In situ</i> oxidation transformation of trimetallic selenide to amorphous FeCo-oxyhydroxide by self-sacrificing MoSe ₂ for efficient water oxidation. Journal of Materials Chemistry A, 2020, 8, 7925-7934.	5.2	40
2879	Recent advancement in the electrocatalytic synthesis of ammonia. Nanoscale, 2020, 12, 8065-8094.	2.8	37
2880	Surface-coordinated metal–organic framework thin films (SURMOFs) for electrocatalytic applications. Nanoscale, 2020, 12, 12712-12730.	2.8	35
2881	Optimizing electron density of nickel sulfide electrocatalysts through sulfur vacancy engineering for alkaline hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 18207-18214.	5.2	31
2882	Ideal design of air electrode—A step closer toward robust rechargeable Zn–air battery. APL Materials, 2020, 8, .	2.2	27
2883	In situ evolved NiMo/NiMoO ₄ nanorods as a bifunctional catalyst for overall water splitting. Nanotechnology, 2020, 31, 495404.	1.3	14
2884	A new phosphonium-based ionic liquid to synthesize nickel metaphosphate for hydrogen evolution reaction. Nanotechnology, 2020, 31, 505402.	1.3	14
2885	Local Coordination and Ordering Engineering to Design Efficient Core-Shell Oxygen Reduction Catalysts. Journal of the Electrochemical Society, 2020, 167, 144501.	1.3	5
2886	Influence of Defects on Activity-Stability of Cu _{1.5} Mn _{1.5} O ₄ for Acid-Mediated Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2020, 167, 144511.	1.3	7
2887	Editors' Choice—Review—Creating Electrocatalytic Heterojunctions for Efficient Photoelectrochemical CO ₂ Reduction to Chemical Fuels. Journal of the Electrochemical Society, 2020, 167, 146518.	1.3	19

#	Article	IF	CITATIONS
2888	Density Functional Theory Investigation of Oxygen Evolution Reaction on the NiFe-LDHs (100) Surface. Journal of Advances in Physical Chemistry, 2017, 06, 75-83.	0.1	1
2889	Zeolitic-imidazolate Framework (ZIF)@ZnCo-ZIF Core-shell Template Derived Co, N-doped Carbon Catalysts for Oxygen Reduction Reaction. Engineered Science, 2018, , .	1.2	15
2890	Fabrication of Mn-N-C Catalyst for Oxygen Reduction Reactions Using Mn-Embedded Carbon Nanofiber. Energies, 2020, 13, 2561.	1.6	6
2891	Microbial electrolysis cells for electromethanogenesis: Materials, configurations and operations. Environmental Engineering Research, 2022, 27, 200484-0.	1.5	57
2892	Current progressions in transition metal based hydroxides as bi-functional catalysts towards electrocatalytic total water splitting. Sustainable Energy and Fuels, 2021, 5, 6215-6268.	2.5	44
2893	Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution. Energy and Environmental Science, 2021, 14, 6419-6427.	15.6	154
2894	Recent progress of electrocatalysts for hydrogen proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2022, 47, 41956-41973.	3.8	21
2895	Activity Origins of Graphdiyne Based Bifunctional Atom Catalysts for Hydrogen Evolution and Water Oxidation. Chemical Research in Chinese Universities, 2021, 37, 1334-1340.	1.3	4
2896	MOF-derived Zn–Co–Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis. Green Energy and Environment, 2023, 8, 798-811.	4.7	11
2897	Dynamic Visualization of Free Radicals at Single Oxygen Bubbles using Chemiluminescence. Chemistry - an Asian Journal, 2021, 16, 4049-4052.	1.7	2
2898	Research Progress of Oxygen Evolution Reaction Catalysts for Electrochemical Water Splitting. ChemSusChem, 2021, 14, 5359-5383.	3.6	70
2899	Recent Progress of Metal Organic Frameworksâ€Based Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction. Energy and Environmental Materials, 2022, 5, 1084-1102.	7.3	24
2900	Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. Electrochemical Energy Reviews, 2022, 5, 145-186.	13.1	86
2901	Building Ni ₉ S ₈ /MoS ₂ Nanosheets Decorated NiMoO ₄ Nanorods Heterostructure for Enhanced Water Splitting. Advanced Materials Interfaces, 2021, 8, 2101483.	1.9	18
2902	Monolithic Niâ€Moâ€B Bifunctional Electrode for Large Current Water Splitting. Advanced Functional Materials, 2022, 32, 2107308.	7.8	49
2903	1D/3D Heterogeneous Assembling Body as Trifunctional Electrocatalysts Enabling Zinc–Air Battery and Selfâ€Powered Overall Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	88
2904	Synergistic Cascade Hydrogen Evolution Boosting via Integrating Surface Oxophilicity Modification with Carbon Layer Confinement. Advanced Functional Materials, 2022, 32, 2108991.	7.8	30
2905	Multicomponent nickel-based phosphide catalyst for overall water splitting. Functional Materials Letters, 2021, 14, .	0.7	5

#	Article	IF	Citations
2906	In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Nature Communications, 2021, 12, 6118.	5.8	115
2907	Mo ₂ C-MXene/CdS Heterostructures as Visible-Light Photocatalysts with an Ultrahigh Hydrogen Production Rate. ACS Applied Energy Materials, 2021, 4, 12754-12766.	2.5	42
2909	Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nature Communications, 2021, 12, 6022.	5.8	132
2910	Grapheneâ€Supported Atomically Dispersed Metals as Bifunctional Catalysts for Nextâ€Generation Batteries Based on Conversion Reactions. Advanced Materials, 2022, 34, e2105812.	11.1	106
2911	Porogen-in-Resin-Induced Fe, N-Doped Interconnected Porous Carbon Sheets as Cathode Catalysts for Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 48962-48970.	4.0	12
2912	Recent advances in Ni3S2-based electrocatalysts for oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 39146-39182.	3.8	78
2913	Design Principles for Tungsten Oxide Electrocatalysts for Water Splitting. ChemElectroChem, 2021, 8, 4427-4440.	1.7	15
2914	Stable Water Oxidation Catalysts Based on in-situ Electrochemical Transition of Nickel Phosphate. Catalysis Letters, 0, , 1.	1.4	0
2915	Design and synthesis of noble metal–based electrocatalysts using metal–organic frameworks and derivatives. Materials Today Nano, 2022, 17, 100144.	2.3	17
2916	Ultrahighâ€Currentâ€Density and Longâ€Termâ€Durability Electrocatalysts for Water Splitting. Small, 2022, 18, e2104513.	5.2	49
2917	Importance of Nickel Oxide Lattice Defects for Efficient Oxygen Evolution Reaction. Chemistry of Materials, 2021, 33, 8259-8266.	3.2	42
2918	Chromium Oxynitride (CrON) Nanoparticles: an Unexplored Electrocatalyst for Oxygen Evolution Reaction. Electrocatalysis, 2022, 13, 62-71.	1.5	7
2919	Boosted electrocatalytic hydrogen production by methylene blue and urea and synergistic electrooxidation degradation. Materials Today Energy, 2021, 22, 100880.	2.5	6
2920	Geometric and electronic modulation of fcc NiCo alloy by Group-⥠B metal doping to accelerate hydrogen evolution reaction in acidic and alkaline media. Chemical Engineering Journal, 2022, 430, 133110.	6.6	31
2921	Construction of two-dimensional CoPS3@defective N-doped carbon composites for enhanced oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, , .	3.8	10
2922	MOFs fertilized transition-metallic single-atom electrocatalysts for highly-efficient oxygen reduction: Spreading the synthesis strategies and advanced identification. Journal of Energy Chemistry, 2022, 67, 391-422.	7.1	43
2923	Electrocatalytic Glycerol Oxidation with Concurrent Hydrogen Evolution Utilizing an Efficient MoO <i>_x</i> /Pt Catalyst. Small, 2021, 17, e2104288.	5.2	63
2924	Ab-initio study of the structural, optoelectronic, magnetic, hydrogen storage properties and mechanical behavior of novel combinations of hydride perovskites LiXH3 (X = Cr, Fe, Co, & Zn) for hydrogen storage applications. Journal of Computational Electronics, 2021, 20, 2284-2299.	1.3	18

#	Article	IF	CITATIONS
2925	Electrochemical Strain Dynamics in Noble Metal Nanocatalysts. Journal of the American Chemical Society, 2021, 143, 17068-17078.	6.6	22
2926	Fe7S8/FeS2/C as an efficient catalyst for electrocatalytic water splitting. International Journal of Hydrogen Energy, 2021, 46, 39216-39225.	3.8	24
2927	Engineering titanium oxide-based support for electrocatalysis. Journal of Energy Chemistry, 2022, 67, 168-183.	7.1	6
2928	Preparation and Catalytic Performance of Ni/NiO@C and SiO2@C Composites as using Bamboo as Carbon Source for Hydrogen Evolution Reaction. International Journal of Electrochemical Science, 0, , ArticleID:211134.	0.5	2
2929	Renewable energy storage and sustainable design of hybrid energy powered ships: A case study. Journal of Energy Storage, 2021, 43, 103266.	3.9	61
2930	Boosted hydrogen evolution in alkaline media enabled by a facile oxidation-involving surface modification. Electrochimica Acta, 2021, 398, 139337.	2.6	3
2931	A subtle functional design of hollow CoP@MoS2 hetero-nanoframes with excellent hydrogen evolution performance. Materials and Design, 2021, 211, 110165.	3.3	10
2932	Design of Metal-free Nanocatalysts. RSC Catalysis Series, 2019, , 163-183.	0.1	0
2933	In Situ Fabrication of Nickel–Iron Oxalate Catalysts for Electrochemical Water Oxidation at High Current Densities. ACS Applied Materials & Interfaces, 2021, 13, 52620-52628.	4.0	36
2934	Covalent Organic Framework (COF)â€Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. Small Methods, 2021, 5, e2100945.	4.6	36
2935	In-situ probing the rapid reconstruction of FeOOH-decorated NiMoO4 nanowires with boosted oxygen evolution activity. Materials Today Energy, 2022, 23, 100887.	2.5	15
2936	Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity. Applied Catalysis B: Environmental, 2022, 303, 120871.	10.8	69
2937	Poly (triazine imide) ligand based 2D metal coordination polymers: Design, synthesis and application in electrocatalytic water oxidation. Electrochimica Acta, 2022, 401, 139463.	2.6	7
2938	Metal-nitrogen intimacy of the nitrogen-doped ruthenium oxide for facilitating electrochemical hydrogen production. Applied Catalysis B: Environmental, 2022, 303, 120873.	10.8	19
2939	Recent advances in structural engineering of 2D hexagonal boron nitride electrocatalysts. Nano Energy, 2022, 91, 106661.	8.2	49
2940	Recent Advances in Complex Hollow Electrocatalysts for Water Splitting. Advanced Functional Materials, 2022, 32, 2108681.	7.8	107
2941	Plasma-induced alloying as a green technology for synthesizing ternary nanoparticles with an early transition metal. Nano Today, 2021, 41, 101316.	6.2	11
2942	Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy and Environment, 2022, 7, 1024-1032.	4.7	17

#	Article	IF	CITATIONS
2943	<i>In situ</i> ion-exchange preparation and topological transformation of trimetal–organic frameworks for efficient electrocatalytic water oxidation. Energy and Environmental Science, 2021, 14, 6546-6553.	15.6	72
2944	Conductive MOFs based on Thiol-functionalized Linkers: Challenges, Opportunities, and Recent Advances. Coordination Chemistry Reviews, 2022, 450, 214235.	9.5	42
2945	Bimetallic metal–organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications. Coordination Chemistry Reviews, 2022, 451, 214264.	9.5	203
2946	PBA composites and their derivatives in energy and environmental applications. Coordination Chemistry Reviews, 2022, 451, 214260.	9.5	80
2947	Rational manipulation of 3D hierarchical oxygenated nickel tungsten selenide nanosheet as the efficient bifunctional electrocatalyst for overall water splitting. Chemical Engineering Journal, 2022, 430, 132888.	6.6	29
2948	Highly Efficient Electrocatalytic Water Splitting. , 2020, , 1-33.		0
2949	New Approaches for Renewable Energy Using Metal Electrocatalysts for Lithium-O2 and Zinc-Air Batteries. Nanotechnology in the Life Sciences, 2020, , 45-61.	0.4	0
2950	Nanocellulose and nanohydrogel for energy, environmental, and biomedical applications. , 2020, , 33-64.		2
2951	Supported Vanadium Catalysts: Heterogeneous Molecular Complexes, Electrocatalysis and Biomass Transformation. RSC Catalysis Series, 2020, , 241-284.	0.1	0
2952	Intermetallic Cu ₅ Zr Clusters Anchored on Hierarchical Nanoporous Copper as Efficient Catalysts for Hydrogen Evolution Reaction. Research, 2020, 2020, 2987234.	2.8	21
2953	Study of photogenerated exciton dissociation in transition metal dichalcogenide van der Waals heterojunction A2-MWS ₄ : a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 26768-26779.	1.3	2
2954	The Synergetic Effect of MoSO ₂ /Graphite Nanosheets as Highly Efficient for Electrochemical Water Splitting in Acidic Media. Science of Advanced Materials, 2021, 13, 1574-1583.	0.1	0
2955	Dual Nanoislands on Ni/C Hybrid Nanosheet Activate Superior Hydrazine Oxidationâ€Assisted Highâ€Efficiency H ₂ Production. Angewandte Chemie, 2022, 134, .	1.6	6
2956	Dual Nanoislands on Ni/C Hybrid Nanosheet Activate Superior Hydrazine Oxidationâ€Assisted Highâ€Efficiency H ₂ Production. Angewandte Chemie - International Edition, 2022, 61, .	7.2	74
2957	Cobalt–Iron–Phosphate Hydrogen Evolution Reaction Electrocatalyst for Solar-Driven Alkaline Seawater Electrolyzer. Nanomaterials, 2021, 11, 2989.	1.9	14
2958	Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn–air batteries. Nano Energy, 2022, 91, 106675.	8.2	76
2959	Self-templated formation of twin-like metal-organic framework nanobricks as pre-catalysts for efficient water oxidation. Nano Research, 2022, 15, 2887-2894.	5.8	12
2960	A Lowâ€Power CuSCN Hydrogen Sensor Operating Reversibly at Room Temperature. Advanced Functional Materials, 2022, 32, 2102635.	7.8	8

#	Article	IF	CITATIONS
2961	Enhanced effect of H2O monolayer on metal doped nitrogen-containing graphene for hydrogen evolution reactions. Chemical Engineering Journal, 2022, 431, 133283.	6.6	2
2962	In-Situ Formed Micropores as Footholds Enabling Well-Dispersed High-Density Fe-Nx Active Sites for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 0, , .	1.5	5
2963	Identifying the Role of the Local Charge Density on the Hydrogen Evolution Reaction of the Photoelectrode. Journal of Physical Chemistry Letters, 2021, 12, 10829-10836.	2.1	8
2964	One-pot synthesis of N and P Co-doped carbon layer stabilized cobalt-doped MoP 3D porous structure for enhanced overall water splitting. Journal of Alloys and Compounds, 2022, 895, 162595.	2.8	22
2965	Boosting the Multifunctional Properties of MnCo ₂ O ₄ â€MnCo ₂ S ₄ Heterostructure for Portable Allâ€Solidâ€State Symmetric Supercapacitor, Methanol Oxidation and Hydrogen Evolution Reaction. ChemistrySelect, 2021, 6, 11466-11481.	0.7	11
2966	Scanning probe microscopy for electrocatalysis. Matter, 2021, 4, 3483-3514.	5.0	17
2967	One–dimensional metal–organic frameworks for electrochemical applications. Advances in Colloid and Interface Science, 2021, 298, 102562.	7.0	45
2968	Phase engineering of dual active 2D Bi ₂ O ₃ -based nanocatalysts for alkaline hydrogen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 808-817.	5.2	10
2969	Recent developments of Co ₃ O ₄ -based materials as catalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2022, 12, 436-461.	2.1	39
2970	In situ studies of energy-related electrochemical reactions using Raman and X-ray absorption spectroscopy. Chinese Journal of Catalysis, 2022, 43, 33-46.	6.9	28
2971	Controlling hydrophilic channel alignment of perfluorinated sulfonic acid membranes via biaxial drawing for high performance and durable polymer electrolyte membrane water electrolysis. Journal of Power Sources, 2022, 518, 230772.	4.0	11
2972	Electrochemical production of hydrogen in molten salt. Energy Conversion and Management, 2022, 251, 114980.	4.4	9
2973	Amorphous Ru nanoclusters onto Co-doped 1D carbon nanocages enables efficient hydrogen evolution catalysis. Chinese Journal of Catalysis, 2022, 43, 110-115.	6.9	37
2974	Gradient porous electrode-inducing bubble splitting for highly efficient hydrogen evolution. Applied Energy, 2022, 307, 118278.	5.1	13
2975	Controllable synthesis and phase-dependent catalytic performance of dual-phase nickel selenides on Ni foam for overall water splitting. Applied Catalysis B: Environmental, 2022, 303, 120915.	10.8	81
2976	Trace doping of early transition metal enabled efficient and durable oxygen reduction catalysis on Pt-based ultrathin nanowires. Applied Catalysis B: Environmental, 2022, 303, 120918.	10.8	30
2977	An Ultrafast and Ultra-Low-Temperature Hydrogen Gas–Proton Battery. Journal of the American Chemical Society, 2021, 143, 20302-20308.	6.6	73
2978	Cobalt Single Atom Incorporated in Ruthenium Oxide Sphere: A Robust Bifunctional Electrocatalyst for HER and OER. Angewandte Chemie, 2022, 134, .	1.6	105

#	Article	IF	CITATIONS
2979	Highâ€entropy alloys and compounds for electrocatalytic energy conversion applications. SusMat, 2021, 1, 482-505.	7.8	59
2980	Janus Mo ₂ P ₃ Monolayer as an Electrocatalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 57422-57429.	4.0	10
2981	Pyridinic-N Doped Porous Graphene Supported on Metal Substrates As the Promising Electrocatalyst for Oxygen Reduction Reaction. Energy & Fuels, 2021, 35, 19634-19640.	2.5	1
2982	A telluride-doped porous carbon as highly efficient bifunctional catalyst for rechargeable Zn-air batteries. Electrochimica Acta, 2022, 404, 139606.	2.6	12
2983	Recent Progress on Transition Metal Based Layered Double Hydroxides Tailored for Oxygen Electrode Reactions. Catalysts, 2021, 11, 1394.	1.6	8
2984	First-Principles Study of Pt-Based Bifunctional Oxygen Evolution & Reduction Electrocatalyst: Interplay of Strain and Ligand Effects. Energies, 2021, 14, 7814.	1.6	6
2985	Ammonium polyphosphate induced bimetallic phosphides nanoparticles coated with porous N-doped carbon for efficiently electrochemical hydrogen evolution. Chemical Engineering Journal, 2022, 431, 133696.	6.6	11
2986	Insights into the pH-dependent Behavior of N-Doped Carbons for the Oxygen Reduction Reaction by First-Principles Calculations. Journal of Physical Chemistry C, 2021, 125, 26429-26436.	1.5	3
2987	CoS ₂ Nanoparticlesâ€Decorated MoS ₂ /rGO Nanosheets as An Efficient Electrocatalyst for Ultrafast Hydrogen Evolution. Advanced Materials Interfaces, 2022, 9, .	1.9	19
2988	Enhancement of the OER Kinetics of the Less-Explored α-MnO ₂ <i>via</i> Nickel Doping Approaches in Alkaline Medium. Inorganic Chemistry, 2021, 60, 19429-19439.	1.9	17
2989	Interface Catalysis of Nickel Molybdenum (NiMo) Alloys on Two-Dimensional (2D) MXene for Enhanced Hydrogen Electrochemistry. Journal of Physical Chemistry Letters, 2021, 12, 11361-11370.	2.1	26
2990	Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
2991	yMoO42- modified amorphous Co(PO3)2 cubes as an efficient bifunctional electrocatalyst for alkaline overall water splitting. Journal of Colloid and Interface Science, 2022, 609, 269-278.	5.0	18
2992	Technoeconomics of large-scale clean hydrogen production – A review. International Journal of Hydrogen Energy, 2022, 47, 30788-30798.	3.8	22
2993	Self-supported bimetallic phosphides with artificial heterointerfaces for enhanced electrochemical water splitting. Applied Catalysis B: Environmental, 2022, 304, 120914.	10.8	143
2994	Recent Advances in Flexible Zn–Air Batteries: Materials for Electrodes and Electrolytes. Small Methods, 2022, 6, e2101116.	4.6	21
2995	Engineering the composition and structure of superaerophobic nanosheet array for efficient hydrogen evolution. Chemical Engineering Journal, 2022, 433, 133517.	6.6	12
2996	Low loaded MoS2/Carbon cloth as a highly efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 1579-1588.	3.8	9

ARTICLE IF CITATIONS Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for 2997 23.0 210 Organic Synthesis. Chemical Reviews, 2022, 122, 2487-2649. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic 2998 1.6 Acetone Hydrogenation to Propane. Angewandte Chemie, $\check{0},$, . Old Materials for New Functions: Recent Progress on Metal Cyanide Based Porous Materials. 2999 5.6 24 Advanced Science, 2022, 9, e2104234. Cobalt Single Atom Incorporated in Ruthenium Oxide Sphere: A Robust Bifunctional Electrocatalyst 3000 for HER and OER. Angewandte Chemie - International Edition, 2022, 61, . Interfacial engineering and hydrophilic/aerophobic tuning of Sn4P3/Co2P heterojunction nanoarrays for high-efficiency fully reversible water electrolysis. Applied Catalysis B: Environmental, 2022, 304, 3001 10.8 33 120923. Green synthesis of molybdenum-based nanoparticles and their applications in energy conversion and storage: A review. International Journal of Hydrogen Energy, 2022, 47, 31014-31057. 3.8 Pt⁴⁺ as an Active Site for Oxygen Evolution Reaction in 3003 La_{lâ€"<i>x</i>}Sr<i>_x(i>Co_{lâ€"<i>y</i>}Pt<i>_y</i>O₃. 8 Journal of Physical Chemistry C, 2021, 125, 25488-25496. Dechlorination-facilitated deprotonation of CoFe (Oxy)hydroxide catalysts under electrochemical 3004 1.9 oxygen evolution. Chemical Engineering Science, 2022, 252, 117270. Excellent HER and OER Catalyzing Performance of Seâ€Vacancies in Defectsâ€Engineered 3005 10.2 59 PtSe₂: From Simulation to Experiment. Advanced Energy Materials, 2022, 12, 2102359. Halide-Doping Effect of Strontium Cobalt Oxide Electrocatalyst and the Induced Activity for Oxygen 1.6 Evolution in an Alkaline Solution. Catalysts, 2021, 11, 1408. Oxygen Reduction Activity of Bâ†Nâ€Containing Organic Molecule Affected by Asymmetric Regulation. 3007 5.2 8 Small, 2022, 18, e2105524. Improving the Activity of Electrocatalysts toward the Hydrogen Evolution Reaction, the Oxygen Evolution Reaction, and the Oxygen Reduction Reaction via Modification of Metal and Ligand of 2.1 Conductive Two-Dimensional Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2021, 12.11652-11658. Enhanced the electrochemical performance of mesh nano composite based catalyst for oxygen 3009 3.8 5 evolution reaction: Recent development. International Journal of Hydrogen Energy, 2022, 47, 3556-3567. Vanadium-phosphorus incorporation induced interfacial modification on cobalt catalyst and its super electrocatalysis for water splitting in alkaline media. Applied Catalysis B: Environmental, 2022, 10.8 29 304, 120985. Metal Organic Framework Derived Cu–Doped Ni₂P Nanoparticles Incorporated with Porous Carbon as High Performance Electrocatalyst for Hydrogen Evolution Reaction in a Wide pH 3011 0.7 3 Range. ChemistrySelect, 2021, 6, 12926-12933. Quenchâ€Induced Surface Engineering Boosts Alkaline Freshwater and Seawater Oxygen Evolution 38 Reaction of Porous NiCo₂O₄ Nanowires. Small, 2022, 18, e2106187. Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts. Advanced 3013 5.6 21 Science, 2022, 9, e2104363. Self-supporting CoP-C nanosheet arrays derived from a metal–organic framework as synergistic 3014 1.6 catalysts for efficient water splitting. Dalton Transactions, 2021, 50, 17549-17558.

#	Article	IF	CITATIONS
3015	Ni ₃ S ₂ /Cu–NiCo LDH heterostructure nanosheet arrays on Ni foam for electrocatalytic overall water splitting. Journal of Materials Chemistry A, 2021, 9, 27639-27650.	5.2	74
3016	Low Overpotential Overall Water Splitting by a Cooperative Interface of Cobalt-Iron Hydroxide and Iron Oxyhydroxide. SSRN Electronic Journal, 0, , .	0.4	0
3017	Wrinkle facilitated hydrogen evolution reaction of vacancy-defected transition metal dichalcogenide monolayers. Nanoscale, 2021, 13, 20576-20582.	2.8	7
3018	Construction of a three-dimensional S,N co-doped ZIF-67 derivative assisted by PEDOT nanowires and its application in rechargeable Zn–air batteries. New Journal of Chemistry, 2021, 45, 22787-22797.	1.4	5
3019	Theoretical investigations into the hydrogen evolution reaction of the carbon schwarzites: From electronics to structure-catalytic activity relationship. Carbon, 2022, 190, 136-141.	5.4	9
3020	Review—Synthesis and Electrochemical Applications of Molybdenum Carbide: Recent Progress and Perspectives. Journal of the Electrochemical Society, 2022, 169, 016511.	1.3	31
3021	Octanuclear Cu(ii) cluster–tungstosilicate composite as efficient electrocatalyst for oxygen evolution reaction at near-neutral pH. Sustainable Energy and Fuels, 2021, 6, 223-230.	2.5	1
3022	Effect of Support on Oxygen Reduction Reaction Activity of Supported Iron Porphyrins. ACS Catalysis, 2022, 12, 1139-1149.	5.5	18
3023	Ultrafine ruthenium–iridium–tellurium nanotubes for boosting overall water splitting in acidic media. Journal of Materials Chemistry A, 2022, 10, 2021-2026.	5.2	36
3024	Structural, electronic, and electrocatalytic evaluation of spinel transition metal sulfide supported reduced graphene oxide. Journal of Materials Chemistry A, 2022, 10, 1999-2011.	5.2	51
3025	In situ formed CuInS2/SnS2 hybrid on foam-like nickel as bifunctional electrode for water splitting. Electrochimica Acta, 2022, 405, 139802.	2.6	8
3026	Enhanced electrocatalytic activity of N-doped nano-onion/gold nanorod nanocomposites for the oxygen reduction reaction. Electrochimica Acta, 2022, 405, 139816.	2.6	4
3027	Assessment of lignite upgrade and hydrogen evolution via electrolysis. Energy Conversion and Management, 2022, 253, 115181.	4.4	12
3028	Boundary in electrocatalytic hydrogen evolution reaction: From single metal to binary intermetallic compounds. Catalysis Communications, 2022, 162, 106378.	1.6	8
3029	Restructuring electronic structure via W doped 1T MoS2 for enhancing hydrogen evolution reaction. Applied Surface Science, 2022, 579, 152216.	3.1	20
3030	Highly dispersed active sites of Ni nanoparticles onto hierarchical reduced graphene oxide architecture towards efficient water oxidation. Fuel, 2022, 312, 122926.	3.4	15
3031	Unveiling the critical role of active site interaction in single atom catalyst towards hydrogen evolution catalysis. Nano Energy, 2022, 93, 106819.	8.2	19
3032	Tuning the interfacial electronic coupling of NiO via CeO2 and nitrogen co-decoration for highly efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 432, 134255.	6.6	28

#	Article	IF	CITATIONS
3033	Implementation of novel pulsed laser ablation strategy to control the morphological growth and enrich the electrochemically active sites of multifunctional Ni–CuO electrocatalyst. Journal of Alloys and Compounds, 2022, 901, 163446.	2.8	16
3034	In situ unraveling surface reconstruction of Ni5P4@FeP nanosheet array for superior alkaline oxygen evolution reaction. Applied Catalysis B: Environmental, 2022, 305, 121033.	10.8	104
3035	Advanced interfacial engineering of oxygen-enriched Fe Sn1â^'OSe nanostructures for efficient overall water splitting and flexible zinc-air batteries. Applied Catalysis B: Environmental, 2022, 305, 120924.	10.8	33
3036	Bulk and surface dual modification of nickel-cobalt spinel with ruthenium toward highly efficient overall water splitting. Applied Catalysis B: Environmental, 2022, 305, 121081.	10.8	34
3037	Theoretical Study Oxygen Reduction Activity of Phosphorus-doped Graphene Nanoribbons. Journal of Material Science and Technology Research, 0, 7, .	0.2	0
3038	Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting. Advanced Science, 2022, 9, e2105135.	5.6	110
3039	Unmasking the Critical Role of the Ordering Degree of Bimetallic Nanocatalysts on Oxygen Reduction Reaction by In Situ Raman Spectroscopy. Angewandte Chemie, 2022, 134, .	1.6	3
3040	Highly Efficient Oxygenâ€Modulated Ruâ€Based HER Electrocatalyst in a Wide pH Range. ChemElectroChem, 2022, 9, .	1.7	3
3041	Double-atom catalysts for energy-related electrocatalysis applications: a theoretical perspective. Journal Physics D: Applied Physics, 2022, 55, 203001.	1.3	57
3042	In situ Raman, FTIR, and XRD spectroscopic studies in fuel cells and rechargeable batteries. Nano Research, 2023, 16, 4855-4866.	5.8	20
3043	Switching Catalyst Selectivity via the Introduction of a Pendant Nitrophenyl Group. Inorganic Chemistry, 2022, 61, 1316-1326.	1.9	5
3044	MXene-supported copper-molybdenum sulfide nanostructures as catalysts for hydrogen evolution. New Journal of Chemistry, 2022, 46, 1127-1134.	1.4	4
3045	Facile Synthesis of Feâ€Doped CoO Nanotubes as Highâ€Efficient Electrocatalysts for Oxygen Evolution Reaction. Small Structures, 2022, 3, .	6.9	22
3046	Insight into enhanced hydrogen evolution of single-atom Cu1/TiO2 catalysts from first principles. International Journal of Hydrogen Energy, 2022, 47, 4653-4661.	3.8	15
3047	The controlled synthesis of nitrogen and iron co-doped Ni ₃ S ₂ @NiP ₂ heterostructures for the oxygen evolution reaction and urea oxidation reaction. Dalton Transactions, 2022, 51, 2444-2451.	1.6	24
3048	Superiority of Dualâ€Atom Catalysts in Electrocatalysis: One Step Further Than Singleâ€Atom Catalysts. Advanced Energy Materials, 2022, 12, .	10.2	189
3049	Charge transfer of carbon nanomaterials for efficient metalâ€free electrocatalysis. , 2022, 1, 28-50.		72
3050	Nickel Quantum Dots Anchored in Biomassâ€Derived Nitrogenâ€Doped Carbon as Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Materials Interfaces, 2022, 9, .	1.9	7

#	Article	IF	CITATIONS
3052	Exploring the physical origin of the electrocatalytic performance of an amorphous alloy catalyst <i>via</i> machine learning accelerated DFT study. Nanoscale, 2022, 14, 2660-2667.	2.8	8
3053	Interface engineering of metallic nickel nanoparticles/semiconductive nickel molybdate nanowires for efficiently electrocatalytic water splitting. Materials Today Nano, 2022, 18, 100176.	2.3	9
3054	Interfacial Engineering to Construct Antioxidative Pd ₄ S/Pd ₃ P _{0.95} Heterostructure for Robust Hydrogen Production at High Current Density. Advanced Energy Materials, 2022, 12, .	10.2	37
3055	A new MoCN monolayer containing stable cyano structural units as a high-efficiency catalyst for the hydrogen evolution reaction. Nanoscale, 2022, , .	2.8	1
3056	Applications of MXenes and their composites in catalysis and photoelectrocatalysis. , 2022, , 449-498.		0
3057	Oxides free nanomaterials for (photo)electrochemical water splitting. , 2022, , 369-408.		1
3058	Ruthenium-Doping-Induced Amorphization of VS ₄ Nanostructures with a Rich Sulfur Vacancy for Enhanced Hydrogen Evolution Reaction in a Neutral Electrolyte Medium. Inorganic Chemistry, 2022, 61, 1685-1696.	1.9	15
3059	The Underlying Molecular Mechanism of Fence Engineering to Break the Activity–Stability Tradeâ€Off in Catalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 0, , .	1.6	3
3060	Strategies for designing more efficient electrocatalysts towards the urea oxidation reaction. Journal of Materials Chemistry A, 2022, 10, 3296-3313.	5.2	80
3061	MoS ₂ nanosheets vertically grown on CoSe ₂ hollow nanotube arrays as an efficient catalyst for the hydrogen evolution reaction. Nanoscale, 2022, 14, 2490-2501.	2.8	18
3062	Electrocatalytic Conversion of Glycerol to Oxalate on Ni Oxide Nanoparticles-Modified Oxidized Multiwalled Carbon Nanotubes. ACS Catalysis, 2022, 12, 982-992.	5.5	49
3063	Modulating the Electronic Structure of Nickel Sulfide Electrocatalysts by Chlorine Doping toward Highly Efficient Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 6869-6875.	4.0	25
3064	Ionic liquid modified fct-PtCo/C@ILs as high activity and durability electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 6312-6322.	3.8	10
3065	Autocatalytic Surface Reductionâ€Assisted Synthesis of PtW Ultrathin Alloy Nanowires for Highly Efficient Hydrogen Evolution Reaction. Advanced Energy Materials, 2022, 12, .	10.2	40
3066	Boosting Electrocatalytic Activity of Single Atom Catalysts Supported on Nitrogenâ€Doped Carbon through N Coordination Environment Engineering. Small, 2022, 18, e2105329.	5.2	78
3067	Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery. Science China Materials, 2022, 65, 1176-1186.	3.5	44
3068	Effect of cobalt phosphide (CoP) vacancies on its hydrogen evolution activity <i>via</i> water splitting: a theoretical study. Physical Chemistry Chemical Physics, 2022, 24, 4644-4652.	1.3	20
3069	Rational design of Ru species on N-doped graphene promoting water dissociation for boosting hydrogen evolution reaction. Science China Chemistry, 2022, 65, 521-531	4.2	12

#	Article	IF	CITATIONS
3070	Atomically dispersed Fe–N–C catalyst displaying ultra-high stability and recyclability for efficient electroreduction of CO ₂ to CO. Chemical Communications, 2022, 58, 2512-2515.	2.2	10
3072	Catalytic activity of Ruâ€N ₄ doped vacancy fullerenes (Ruâ€N ₄ â€C ₅₄) Tj l theory investigation. Applied Organometallic Chemistry, 2022, 36, .	ETQq1 1 (1.7).784314 rg 2
3073	Coordination modulation of iridium single-atom catalyst maximizing water oxidation activity. Nature Communications, 2022, 13, 24.	5.8	99
3074	B2O and B4N monolayers supported single-metal atom as highly efficient bifunctional electrocatalyst for OER and ORR. Journal of Materials Science, 2022, 57, 398-410.	1.7	4
3075	Toward Excellence of Electrocatalyst Design by Emerging Descriptorâ€Oriented Machine Learning. Advanced Functional Materials, 2022, 32, .	7.8	43
3076	Liquid Metal Interfacial Growth and Exfoliation to Form Mesoporous Metallic Nanosheets for Alkaline Methanol Electroreforming. ACS Nano, 2022, 16, 2978-2987.	7.3	17
3077	Regulation of hydrogen evolution performance of titanium oxide–carbon composites at high current density with a Ti–O hybrid orbital. , 2022, 4, 480-490.		11
3078	Constructing nickel sulfide heterojunctions by W-doping-induced structural transition for enhanced oxygen evolution. Journal of Materials Chemistry A, 2022, 10, 3341-3345.	5.2	24
3079	Cu vacancy engineering on facet dependent CuO to enhance water oxidation efficiency. International Journal of Hydrogen Energy, 2022, 47, 9261-9272.	3.8	9
3080	The Underlying Molecular Mechanism of Fence Engineering to Break the Activity–Stability Tradeâ€Off in Catalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
3081	Recent Advancement in Pd-Decorated Nanostructures for Its Catalytic and Chemiresistive Gas Sensing Applications: A Review. Topics in Catalysis, 0, , 1.	1.3	7
3082	Cobalt Nanocluster-Decorated N-Rich Hierarchical Carbon Architectures Efficiently Catalyze Oxygen Reduction and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2022, 10, 2001-2009.	3.2	8
3083	Solvent modulated selfâ€assembled VS ₂ layered microstructure for electrocatalytic water and urea decomposition. International Journal of Energy Research, 2022, 46, 8413-8423.	2.2	23
3084	Band structure engineering of W replacement in ReSe ₂ nanosheets for enhancing hydrogen evolution. Chemical Communications, 2022, 58, 2682-2685.	2.2	9
3085	Functional group scission-induced lattice strain in chiral macromolecular metal-organic framework arrays for electrocatalytic overall water splitting. Applied Catalysis B: Environmental, 2022, 307, 121151.	10.8	31
3086	Unmasking the Critical Role of the Ordering Degree of Bimetallic Nanocatalysts on Oxygen Reduction Reaction by In Situ Raman Spectroscopy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
3087	Tunable Surface Electric Field of Electrocatalysts via Constructing Schottky Heterojunctions for Selective Conversion of Trash Ions to Treasures. Chemistry - A European Journal, 2022, 28, .	1.7	1
3088	Boosting the oxygen evolution reaction through migrating active sites from the bulk to surface of perovskite oxides. Journal of Energy Chemistry, 2022, 69, 434-441.	7.1	19

#	Article	IF	CITATIONS
3089	Dualâ€metal singleâ€atomic catalyst: The challenge in synthesis, characterization, and mechanistic investigation for electrocatalysis. SmartMat, 2022, 3, 533-564.	6.4	35
3090	Recent insights on iron based nanostructured electrocatalyst and current status of proton exchange membrane fuel cell for sustainable transport. Journal of Energy Chemistry, 2022, 69, 466-489.	7.1	27
3091	Underfocus Laser Induced Ni Nanoparticles Embedded Metallic MoN Microrods as Patterned Electrode for Efficient Overall Water Splitting. Advanced Science, 2022, 9, e2105869.	5.6	43
3092	Hole utilization in solar hydrogen production. Nature Reviews Chemistry, 2022, 6, 243-258.	13.8	59
3093	Exfoliated Fe3GeTe2 and Ni3GeTe2 materials as water splitting electrocatalysts. FlatChem, 2022, 32, 100334.	2.8	11
3094	Fe-doped Ni2P porous nanofibers as highly efficient electrocatalyst for oxygen evolution reaction. Catalysis Communications, 2022, 163, 106416.	1.6	7
3095	Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochimica Acta, 2022, 409, 139835.	2.6	8
3096	MOF-derived CoN/CoFe/NC bifunctional electrocatalysts for zinc-air batteries. Applied Surface Science, 2022, 582, 152375.	3.1	17
3097	Jagged carbon nanotubes from polyaniline: Strain-driven high-performance for Zn-air battery. Chemical Engineering Journal, 2022, 434, 134617.	6.6	16
3098	Metal substrates activate NiFe(oxy)hydroxide catalysts for efficient oxygen evolution reaction in alkaline media. Journal of Alloys and Compounds, 2022, 901, 163689.	2.8	16
3099	Achieving highly exposed active sites of molybdenum carbide with the assistance of NH4Cl for efficient hydrogen evolution. Applied Surface Science, 2022, 583, 152576.	3.1	3
3100	Non-precious metal electrocatalysts for two-electron oxygen electrochemistry: Mechanisms, progress, and outlooks. Journal of Energy Chemistry, 2022, 69, 54-69.	7.1	16
3101	Crystalline-amorphous interface of mesoporous Ni2PÂ@ÂFePOxHy for oxygen evolution at high current density in alkaline-anion-exchange-membrane water-electrolyzer. Applied Catalysis B: Environmental, 2022, 306, 121127.	10.8	90
3102	Understanding the effect of mechanical strains on the catalytic activity of transition metals. Physical Chemistry Chemical Physics, 2022, 24, 4832-4842.	1.3	5
3103	Highly active postspinel-structured catalysts for oxygen evolution reaction. RSC Advances, 2022, 12, 5094-5104.	1.7	3
3104	Tuning Twoâ€Electron Oxygenâ€Reduction Pathways for H ₂ O ₂ Electrosynthesis via Engineering Atomically Dispersed Single Metal Site Catalysts. Advanced Materials, 2022, 34, e2107954.	11.1	84
3105	Electron Irradiation Induces the Conversion from 2H-WSe ₂ to 1T-WSe ₂ and Promotes the Performance of Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 2420-2428.	3.2	10
3106	Exploring Highly Efficient Dual-Metal-Site Electrocatalysts for Oxygen Reduction Reaction by First Principles Screening. Journal of the Electrochemical Society, 2022, 169, 026524.	1.3	9

#	Article	IF	CITATIONS
3107	Band Engineering Induced Conducting 2Hâ€Phase MoS ₂ by PdSRe Sites Modification for Hydrogen Evolution Reaction. Advanced Energy Materials, 2022, 12, .	10.2	37
3108	Insight into the Fabrication and Characterization of Novel Heterojunctions of Fe ₂ O ₃ and V ₂ O ₅ with TiO ₂ and Graphene Oxide for Enhanced Photocatalytic Hydrogen Evolution: A Comparison Study. Industrial & amp; Engineering Chemistry Research. 2022. 61. 2714-2733.	1.8	10
3109	Boronâ€Tethering and Regulative Electronic States Around Iridium Species for Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .	7.8	35
3110	Interface Engineering of Co/CoMoN/NF Heterostructures for Highâ€Performance Electrochemical Overall Water Splitting. Advanced Science, 2022, 9, e2105313.	5.6	90
3111	Amorphization of Metal Nanoparticles by 2D Twisted Polymer for Super Hydrogen Evolution Reaction. Advanced Energy Materials, 2022, 12, .	10.2	26
3112	Tuning chemical and surface composition of nickel cobaltite-based nanocomposites through solvent and its impact on electrocatalytic activity for oxygen evolution. Journal of Materials Science, 2022, 57, 5097-5117.	1.7	3
3113	Prussian blue analogue derived cobalt–nickel phosphide/carbon nanotube composite as electrocatalyst for efficient and stable hydrogen evolution reaction in wide-pH environment. Journal of Colloid and Interface Science, 2022, 616, 210-220.	5.0	49
3114	Amorphous Ir atomic clusters anchored on crystalline IrO2 nanoneedles for proton exchange membrane water oxidation. Journal of Power Sources, 2022, 524, 231069.	4.0	25
3115	Graphene supported flower-like NiS2/MoS2 mixed phase nano-composites as a low cost electrode material for hydrogen evolution reaction in alkaline media. Materials Chemistry and Physics, 2022, 280, 125839.	2.0	11
3116	Bifunctional Ni-Fe/NiMoNx nanosheets on Ni foam for high-efficiency and durable overall water splitting. Catalysis Communications, 2022, 164, 106426.	1.6	9
3117	Electronic structure regulation toward the improvement of the hydrogenation properties of TiZrHfMoNb high-entropy alloy. Journal of Alloys and Compounds, 2022, 905, 164150.	2.8	6
3118	Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coordination Chemistry Reviews, 2022, 459, 214388.	9.5	38
3119	Mo,Fe-codoped metal phosphide nanosheets derived from Prussian blue analogues for efficient overall water splitting. Journal of Colloid and Interface Science, 2022, 615, 456-464.	5.0	15
3120	Revealing the interfacial electron modulation effect of CoFe alloys with CoC encapsulated in N-doped CNTs for superior oxygen reduction. , 2022, 1, 100023.		55
3121	Ab Initio Molecular Dynamics Studies of the Electric Double Layer Structure of Graphene-Based Electrodes in Aqueous Electrolytes in Supercapacitors and Kinetic Origin of Potential Window. SSRN Electronic Journal, 0, , .	0.4	0
3122	Surface-Adsorbed Phosphate Boosts Bifunctionally Electrocatalytic Activity of Nifes for Hydrogen Production. SSRN Electronic Journal, 0, , .	0.4	Ο
3123	A facile and simple microwave-assisted synthesis method for mesoporous ultrathin iron sulfide nanosheets as an efficient bifunctional electrocatalyst for overall water splitting. Dalton Transactions, 2022, 51, 6285-6292.	1.6	5
3124	Designed synthesis of a hierarchical MoSe ₂ @WSe ₂ hybrid nanostructure as a bifunctional electrocatalyst for total water-splitting. Sustainable Energy and Fuels, 2022, 6, 1708-1718.	2.5	7

#	Article	IF	CITATIONS
3125	Facile Hybrid Strategy of Srco0.5fe0.3mo0.2o3-Δ/Co3o4 Heterostructure for Efficient Oxygen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
3126	Chemical etching induced microporous nickel backbones decorated with metallic Fe@hydroxide nanocatalysts: an efficient and sustainable OER anode toward industrial alkaline water-splitting. Journal of Materials Chemistry A, 2022, 10, 8989-9000.	5.2	92
3127	Layered 2D PtX ₂ (X = S, Se, Te) for the electrocatalytic HER in comparison with Mo/WX ₂ and Pt/C: are we missing the bigger picture?. Energy and Environmental Science, 2022, 15, 1461-1478.	15.6	37
3128	Ternary Pdnimo Alloy as Bifunctional Nanocatalysts for Oxygen Reduction Reaction and Hydrogen Revolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
3129	Accelerating Water Oxidation Kinetics Via Synergistic In-Layer Modification and Interlayer Reconstruction Over Hetero-Epitaxial Fe-Mn-O Nanosheets. SSRN Electronic Journal, 0, , .	0.4	0
3130	Hydrogen Evolution Reaction Activity Obtained Using Platinum Single Atoms on Tio2 Nanosheets Modified with Graphene. SSRN Electronic Journal, 0, , .	0.4	0
3131	Understand the Copper-Iridium Nanocrystals as Highly Effective Bifunctional Ph-Universal Electrocatalysts for Electrolyzed Water. SSRN Electronic Journal, 0, , .	0.4	0
3132	Mo/Co doped 1T-VS ₂ nanostructures as a superior bifunctional electrocatalyst for overall water splitting in alkaline media. Journal of Materials Chemistry A, 2022, 10, 9067-9079.	5.2	38
3133	Spherical V-doped nickel–iron LDH decorated on Ni ₃ S ₂ as a high-efficiency electrocatalyst for the oxygen evolution reaction. Dalton Transactions, 2022, 51, 4853-4861.	1.6	12
3134	Facile Synthesis of Amorphous Bimetallic Hydroxide on Fe- Doped Ni3s2 as an Active Electrocatalyst for Oxygen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
3135	Sm0.5Sr0.5Co1â^'xNixO3â^'δ—A Novel Bifunctional Electrocatalyst for Oxygen Reduction/Evolution Reactions. Molecules, 2022, 27, 1263.	1.7	3
3136	Engineering Isolated S Vacancies over 2D MoS ₂ Basal Planes for Catalytic Hydrogen Evolution. ACS Applied Nano Materials, 2022, 5, 3521-3530.	2.4	14
3137	Applications of Nickelâ€Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	17
3138	Boosting ORR performance by single atomic divacancy Zn–N3C–C8 sites on ultrathin N-doped carbon nanosheets. Chem Catalysis, 2022, 2, 836-852.	2.9	25
3139	Bimetallic Multi‣evel Layered Coâ€NiOOH/Ni ₃ S ₂ @NF Nanosheet for Hydrogen Evolution Reaction in Alkaline Medium. Small, 2022, 18, e2106904.	5.2	31
3141	One-Dimensional Core–Shell Cd _{0.85} Zn _{0.15} S@Cd _{0.85} Zn _{0.15} MoO ₄ Binary Solid Solution Composite: In Situ Construction and Photocatalytic H ₂ Evolution Performance, Journal of Physical Chemistry C. 2022, 126, 3881-3890.	1.5	3
3142	Nanoscale Heterogeneities of Non-Noble Iron-Based Metallic Glasses toward Efficient Water Oxidation at Industrial-Level Current Densities. ACS Applied Materials & Interfaces, 2022, 14, 10288-10297.	4.0	18
3143	Theoretical Insights into the Hydrogen Evolution Reaction on VGe ₂ N ₄ and NbGe ₂ N ₄ Monolayers. ACS Omega, 2022, 7, 7837-7844.	1.6	11

#	Article	IF	CITATIONS
3144	Nickel-Based Metal-Organic Frameworks as Electrocatalysts for the Oxygen Evolution Reaction (OER). Molecules, 2022, 27, 1241.	1.7	28
3145	Hierarchical Architecture of Wellâ€Aligned Nanotubes Supported Bimetallic Catalysis for Efficient Oxygen Redox. Advanced Functional Materials, 2022, 32, .	7.8	20
3146	Low-overpotential overall water splitting by a cooperative interface of cobalt-iron hydroxide and iron oxyhydroxide. Cell Reports Physical Science, 2022, 3, 100762.	2.8	43
3147	Characterization of metal-organic frameworks by transmission electron microscopy. Advances in Physics: X, 2022, 7, .	1.5	3
3148	Porous Structure Controlling the Selectivity of Oxygen Reduction Reaction on Nâ€Đoped Carbon in Alkaline Solution. ChemistrySelect, 2022, 7, .	0.7	2
3149	Vibronic Coupling of Adjacent Single-Atom Co and Zn Sites for Bifunctional Electrocatalysis of Oxygen Reduction and Evolution Reactions. Journal of Physical Chemistry Letters, 2022, 13, 2548-2554.	2.1	7
3150	Bifunctional WC‧upported RuO ₂ Nanoparticles for Robust Water Splitting in Acidic Media. Angewandte Chemie - International Edition, 2022, 61, .	7.2	89
3151	Bifunctional WCâ€5upported RuO ₂ Nanoparticles for Robust Water Splitting in Acidic Media. Angewandte Chemie, 2022, 134, .	1.6	11
3152	MoSe ₂ /SnS Nanoheterostructures for Water Splitting. ACS Applied Nano Materials, 2022, 5, 4293-4304.	2.4	22
3153	A dual metal-organic framework strategy for synthesis of FeCo@NC bifunctional oxygen catalysts for clean energy application. Chinese Journal of Chemical Engineering, 2022, 43, 161-168.	1.7	6
3154	Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction. Nano Research, 2022, 15, 8751-8759.	5.8	61
3155	Operando Photo-Electrochemical Catalysts Synchrotron Studies. Nanomaterials, 2022, 12, 839.	1.9	4
3156	Efficient and Long-term Photoelectrochemical Hydrogen Liberation from Hydrazine Hydrate on CdS Nanorod Arrays. Journal of Electronic Materials, 0, , 1.	1.0	2
3157	Phosphorus-Doped Graphene Electrocatalysts for Oxygen Reduction Reaction. Nanomaterials, 2022, 12, 1141.	1.9	15
3158	The Effect of the 3D Nanoarchitecture and Niâ€Promotion on the Hydrogen Evolution Reaction in MoS ₂ /Reduced GO Aerogel Hybrid Microspheres Produced by a Simple Oneâ€Pot Electrospraying Procedure. Small, 2022, 18, e2105694.	5.2	5
3159	Amorphous–Amorphous Coupling Enhancing the Oxygen Evolution Reaction Activity and Stability of the NiFe-Based Catalyst. ACS Applied Materials & Interfaces, 2022, 14, 15205-15213.	4.0	16
3160	Nanoporous nickel with rich adsorbed oxygen for efficient alkaline hydrogen evolution electrocatalysis. Science China Materials, 2022, 65, 1825-1832.	3.5	6
3161	Co/Ni dual-metal embedded in heteroatom doped porous carbon core-shell bifunctional electrocatalyst for rechargeable Zn-air batteries. Materials Reports Energy, 2022, 2, 100090.	1.7	0

#	Article	IF	CITATIONS
3162	Photoelectrochemical and electrochemical urea oxidation with microwave-assisted synthesized Co-Fe2O3@NiO core–shell nanocomposites. Carbon Letters, 2022, 32, 999-1015.	3.3	3
3163	Heterointerface Created on Auâ€Clusterâ€Loaded Unilamellar Hydroxide Electrocatalysts as a Highly Active Site for the Oxygen Evolution Reaction. Advanced Materials, 2022, 34, e2110552.	11.1	36
3164	V ₂ O ₃ /MnS Arrays as Bifunctional Air Electrode for Long‣asting and Flexible Rechargeable Znâ€Air Batteries. Small, 2022, 18, e2104411.	5.2	16
3165	Well-dispersed ZIF-derived N-doped carbon nanoframes with anchored Ru nanoclusters as HER electrocatalysts. International Journal of Hydrogen Energy, 2022, 47, 14836-14846.	3.8	11
3166	Electrosynthesis of H2O2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. Environmental Science and Ecotechnology, 2022, 11, 100170.	6.7	29
3167	Reduction of Transition-Metal Columbite-Tantalite as a Highly Efficient Electrocatalyst for Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 15090-15102.	4.0	3
3168	Hierarchical flower-like CoS2-MoS2 heterostructure spheres as efficient bifunctional electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 12629-12641.	3.8	25
3169	Disclosing the active integration structure and robustness of a pseudo-tri-component electrocatalyst toward alkaline hydrogen evolution. Journal of Energy Chemistry, 2022, 72, 210-216.	7.1	11
3170	Latticeâ€Matching Formed Mesoporous Transition Metal Oxide Heterostructures Advance Water Splitting by Active Fe–O–Cu Bridges. Advanced Energy Materials, 2022, 12, .	10.2	139
3171	In Situ Simultaneous Cavitation–Doping Approach for Constructing Bimetallic Metal–Organic Framework Hollow Nanospheres with Enhanced Electrocatalytic Hydrogen Production. Inorganic Chemistry, 2022, 61, 5977-5981.	1.9	4
3172	NiFe LDH Anchoring on Fe/N-Doped Carbon Nanofibers as a Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 7523-7528.	1.8	13
3173	Boosting the electrochemical energy storage and conversion performance by structural distortion in metal–organic frameworks. Chemical Engineering Journal, 2022, 443, 136269.	6.6	12
3174	Direct and Simultaneous Identification of Multiple Mitochondrial Reactive Oxygen Species in Living Cells Using a SERS Borrowing Strategy. Angewandte Chemie, 0, , .	1.6	1
3175	Conversion of Catalytically Inert 2D Bismuth Oxide Nanosheets for Effective Electrochemical Hydrogen Evolution Reaction Catalysis via Oxygen Vacancy Concentration Modulation. Nano-Micro Letters, 2022, 14, 90.	14.4	51
3176	Direct and Simultaneous Identification of Multiple Mitochondrial Reactive Oxygen Species in Living Cells Using a SERS Borrowing Strategy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
3177	Morphology-Controlled Silver-Containing Rhodium Nanoparticles for the Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2022, 169, 044517.	1.3	2
3178	Electrochemically formed PtFeNi alloy nanoparticles on defective NiFe LDHs with charge transfer for efficient water splitting. Chinese Journal of Catalysis, 2022, 43, 1101-1110.	6.9	12
3179	From fundamentals and theories to heterostructured electrocatalyst design: An in-depth understanding of alkaline hydrogen evolution reaction. Nano Energy, 2022, 98, 107231.	8.2	76

#	Article	IF	CITATIONS
3180	Dual-phase MoS2/MXene/CNT ternary nanohybrids for efficient electrocatalytic hydrogen evolution. Npj 2D Materials and Applications, 2022, 6, .	3.9	34
3181	Covalent organic polymer derived N–doped carbon confined FeNi alloys as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. International Journal of Hydrogen Energy, 2022, 47, 16025-16035.	3.8	10
3182	Transition metal dichalcogenides as catalysts for the hydrogen evolution reaction: The emblematic case of "inert―ZrSe ₂ as catalyst for electrolyzers. Nano Select, 2022, 3, 1069-1081.	1.9	6
3183			

#	Article	IF	CITATIONS
3198	Sulfur and oxygen dual vacancies manipulation on 2D NiS2/CeO2 hybrid heterostructure to boost overall water splitting activity. Materials Today Chemistry, 2022, 24, 100791.	1.7	12
3199	Electron redistribution of ruthenium-tungsten oxides Mott-Schottky heterojunction for enhanced hydrogen evolution. Applied Catalysis B: Environmental, 2022, 308, 121229.	10.8	69
3200	Surface-adsorbed phosphate boosts bifunctionally electrocatalytic activity of Ni0.9Fe0.1S for hydrogen production. Journal of Colloid and Interface Science, 2022, 617, 525-532.	5.0	6
3201	Size effect of Rhodium nanoparticles supported on carbon black on the performance of hydrogen evolution reaction. Carbon, 2022, 194, 303-309.	5.4	12
3202	Ni3S2 nanostrips@FeNi-NiFe2O4 nanoparticles embedded in N-doped carbon microsphere: An improved electrocatalyst for oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 617, 1-10.	5.0	25
3203	Heterostructured Co/Mo-sulfide catalyst enables unbiased solar water splitting by integration with perovskite solar cells. Applied Catalysis B: Environmental, 2022, 309, 121272.	10.8	37
3204	Strain adjustment Pt-doped Ti2CO2 as an efficient bifunctional catalyst for oxygen reduction reactions and oxygen evolution reactions by first-principles calculations. Applied Surface Science, 2022, 590, 153149.	3.1	16
3205	Metal-organic frameworks-derived nitrogen-doped carbon with anchored dual-phased phosphides as efficient electrocatalyst for overall water splitting. Sustainable Materials and Technologies, 2022, 32, e00421.	1.7	6
3206	La-RuO2 nanocrystals with efficient electrocatalytic activity for overall water splitting in acidic media: Synergistic effect of La doping and oxygen vacancy. Chemical Engineering Journal, 2022, 439, 135699.	6.6	47
3207	Accelerating water oxidation kinetics via synergistic in-layer modification and interlayer reconstruction over hetero-epitaxial Fe-Mn-O nanosheets. Chemical Engineering Journal, 2022, 441, 136122.	6.6	10
3208	Improving intrinsic electrocatalytic activity of layered transition metal chalcogenides as electrocatalysts for water splitting. Current Opinion in Electrochemistry, 2022, 34, 100982.	2.5	7
3209	Design strategy for low-temperature sulfur etching to achieve high-performance hollow multifunctional electrode material. Journal of Materials Science and Technology, 2022, 119, 209-218.	5.6	7
3210	Cobalt nanoparticles embedded in porous N-doped carbon support as a superior catalyst for the p-nitrophenol reduction. Applied Surface Science, 2022, 592, 153292.	3.1	17
3211	Hofmann-Type Metal–Organic Framework Nanosheets for Oxygen Evolution. ACS Applied Nano Materials, 2021, 4, 14161-14168.	2.4	7
3212	Atomic Metal–Support Interaction Enables Reconstruction-Free Dual-Site Electrocatalyst. Journal of the American Chemical Society, 2022, 144, 1174-1186.	6.6	191
3213	Relation between Water Oxidation Activity and Coordination Environment of C,N-Coordinated Mononuclear Co Catalyst. ACS Catalysis, 2022, 12, 491-496.	5.5	22
3214	Atomically thin transition metal dichalcogenides for the hydrogen evolution reaction. ChemPhysMater, 2022, 1, 102-111.	1.4	11
3215	Integrating ceria with cobalt sulfide as high-performance electrocatalysts for overall water splitting. Fundamental Research, 2023, 3, 356-361.	1.6	5

#	Article	IF	CITATIONS
3216	Insights into lithium manganese oxide–water interfaces using machine learning potentials. Journal of Chemical Physics, 2021, 155, 244703.	1.2	18
3217	Multi-Hierarchical Porous Mn-Doped CoP Catalyst on Nickel Phosphide Foam for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 149-158.	2.5	14
3218	Machine-Learning Assisted Exploration: Toward the Next-Generation Catalyst for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2021, 168, 126523.	1.3	4
3219	Hybrid Nanostructure of Mixed Transition Metal Oxysulfides Supported by Porous PBA as Efficient Electrocatalysts for the Oxygen Evolution Reaction. Israel Journal of Chemistry, 2022, 62, .	1.0	6
3220	Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. Small, 2022, 18, e2105830.	5.2	103
3221	Wet-chemical synthesis and applications of amorphous metal-containing nanomaterials. Nano Research, 2023, 16, 4289-4309.	5.8	17
3222	Eggshell-like MoS ₂ Nanostructures with Negative Curvature and Stepped Faces for Efficient Hydrogen Evolution Reactions. ACS Applied Nano Materials, 2021, 4, 14086-14093.	2.4	5
3223	High Catalytic Performance of Silverâ€Doped Cold Nanocages for Methanol Electrooxidation. Particle and Particle Systems Characterization, 2022, 39, .	1.2	5
3224	Gold Nanoclusters Grown on MoS2 Nanosheets by Pulsed Laser Deposition: An Enhanced Hydrogen Evolution Reaction. Molecules, 2021, 26, 7503.	1.7	6
3225	MnO _x â€Decorated Nickelâ€Iron Phosphides Nanosheets: Interface Modifications for Robust Overall Water Splitting at Ultraâ€High Current Densities. Small, 2022, 18, e2105803.	5.2	55
3226	Synthesis of Cobalt-Nickel Nanoparticles via a Liquid-Phase Reduction Process. Journal of Nanotechnology, 2021, 2021, 1-7.	1.5	6
3227	Nanocatalytic Materials for Energy-Related Small-Molecules Conversions: Active Site Design, Identification and Structure–Performance Relationship Discovery. Accounts of Chemical Research, 2022, 55, 110-120.	7.6	7
3228	Bimetallic Ir _{<i>x</i>} Pb nanowire networks with enhanced electrocatalytic activity for the oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 11196-11204.	5.2	6
3229	Metal–organic frameworks and their composites for fuel and chemical production <i>via</i> CO ₂ conversion and water splitting. RSC Advances, 2022, 12, 11686-11707.	1.7	12
3230	Defect Engineering of Carbons for Energy Conversion and Storage Applications. Energy and Environmental Materials, 2023, 6, .	7.3	28
3231	Structures, stabilities, optoelectronic and photocatalytic properties of Janus aluminium mono-chalcogenides Al(Ga, In)STe monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142, 115229.	1.3	2
3232	Charge Transfer of Interfacial Catalysts for Hydrogen Energy. , 2022, 4, 967-977.		35
3233	Co-MOF Nanosheets Etched by FeCl ₂ Solution for Enhanced Electrocatalytic Oxygen Evolution. Energy & amp; Fuels, 2022, 36, 4524-4531.	2.5	4

#	Article	IF	CITATIONS
π 3234	Several Key Factors for Efficient Electrocatalytic Water Splitting: Active Site Coordination Environment, Morphology Changes and Intermediates Identification. Chemistry - A European Journal,	1.7	5
3235	2022, 28, . Photocatalytic materials for sustainable chemistry via cooperative photoredox catalysis. Catalysis Today, 2023, 410, 85-101.	2.2	36
3236	Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting. Tungsten, 2023, 5, 100-108.	2.0	36
3237	Graphdiyne-supported metal electrocatalysts: From nanoparticles and cluster to single atoms. Nano Research, 2022, 15, 9764-9778.	5.8	36
3238	Single-Source Deposition of Mixed-Metal Oxide Films Containing Zirconium and 3d Transition Metals for (Photo)electrocatalytic Water Oxidation. Inorganic Chemistry, 2022, 61, 6223-6233.	1.9	4
3239	Nanostructured Metallic Glass in a Highly Upgraded Energy State Contributing to Efficient Catalytic Performance. Advanced Materials, 2022, 34, e2200850.	11.1	34
3240	Two-Dimensionally Assembled Pd–Pt–Ir Supernanosheets with Subnanometer Interlayer Spacings toward High-Efficiency and Durable Water Splitting. ACS Catalysis, 2022, 12, 5305-5315.	5.5	26
3241	IrO2 modified Crystalline-PdO nanowires based bi-functional electro-catalyst for HOR/HER in acid and base. Renewable Energy, 2022, 191, 151-160.	4.3	8
3242	A trace of Pt can significantly boost RuO2 for acidic water splitting. Chinese Journal of Catalysis, 2022, 43, 1493-1501.	6.9	22
3243	2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chinese Journal of Catalysis, 2022, 43, 1380-1398.	6.9	33
3244	Conducting polymers-derived fascinating electrocatalysts for advanced hydrogen and oxygen electrocatalysis. Coordination Chemistry Reviews, 2022, 464, 214555.	9.5	32
3248	Electrochemistry in Magnetic Fields. Angewandte Chemie - International Edition, 2022, 61, .	7.2	64
3249	Free-standing Co/Zn sulfide supported on Cu-foam for efficient overall water splitting. New Journal of Chemistry, 2022, 46, 11149-11157.	1.4	3
3250	Zeolitic imidazolate framework 67 based metal oxides derivatives as electrocatalysts for oxygen evolution reaction. , 2022, , 471-495.		1
3251	Electronic modulation and surface reconstruction of cactus-like CoB ₂ O ₄ @FeOOH heterojunctions for synergistically triggering oxygen evolution reactions. Journal of Materials Chemistry A, 2022, 10, 11386-11393.	5.2	24
3252	Recent advances in noble metal MXene-based catalysts for electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 14674-14691.	5.2	48
3253	The fundamentals of metal oxides for electrocatalytic water splitting. , 2022, , 25-60.		0
3254	Doping engineering toward metal oxides for water splitting. , 2022, , 217-238.		0

#	Article	IF	CITATIONS
3255	Nanoporous Mo-Doped Nife Oxide Nanowires from Eutectic Dealloying as an Active Electrocatalyst for Alkaline Oxygen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
3256	Synergistically engineering of shell thickness and core ordering to boost the oxygen reduction performance. Physical Chemistry Chemical Physics, 0, , .	1.3	2
3257	CHARACTERIZATION OF ELECTRONIC STRUCTURES ON THE ADSORPTION BEHAVIORS OF MERCAPTOPURINE ANTICANCER DRUG FROM SURFACE MACROMOLECULE CALIX[4]AREN AS ADSORBENT BY SPECTRAL STUDIES AND DFT CALCULATIONS. Surface Review and Letters, 2022, 29, .	0.5	1
3258	Facile synthesis of zeolitic imidazolate frameworkâ€67/vanadiumâ€doped nickel hydroxide as active electrocatalyst for oxygen evolution reaction. International Journal of Energy Research, 0, , .	2.2	1
3259	Observation of oxygen evolution over a {Ni12}-cluster-based metal-organic framework. Science China Chemistry, 2022, 65, 1088-1093.	4.2	11
3260	Efficient Modulation of Electrocatalyst Interfaces by Atomic Layer Deposition: Fundamentals to Application. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	5
3261	Amorphous Iron Boride in Situ Grown on Black Phosphorus Sheets: A Promising Electrocatalyst for OER. Journal of Electronic Materials, 2022, 51, 3705-3713.	1.0	5
3262	Electrochemical catalysis and corrosion of defective MoS2: Microscopic behaviors and density-functional-theory calculations. Current Opinion in Electrochemistry, 2022, 34, 101008.	2.5	2
3263	Interfacial engineering of carbon-based materials for efficient electrocatalysis: Recent advances and future. EnergyChem, 2022, 4, 100074.	10.1	20
3264	Partial Sulfidation Strategy to NiFe‣DH@FeNi ₂ S ₄ Heterostructure Enable Highâ€Performance Water/Seawater Oxidation. Advanced Functional Materials, 2022, 32, .	7.8	100
3265	NiFe Alloys@N-doped Graphene-Like Carbon Anchored on N-Doped Graphitized Carbon as a Highly Efficient Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2022, 10, 6094-6105.	3.2	18
3266	Electrocatalytic hydrogen evolution performance of modified Ti3C2O2 doped with non-metal elements: A DFT study. ChemPhysMater, 2022, 1, 321-329.	1.4	3
3267	Design and Synthesis of Lead(II)-Based Electrocatalysts for Oxygen Evolution Reaction. Inorganic Chemistry, 2022, 61, 7579-7589.	1.9	2
3268	Carbon-based metal-free oxygen reduction reaction electrocatalysts: past, present and future. New Carbon Materials, 2022, 37, 338-354.	2.9	14
3269	RuCo Nanoparticles Embedded on Carbon Nanotubes through Spray Drying for Enhanced Hydrogen Evolution Electrocatalysis. ACS Applied Energy Materials, 2022, 5, 5633-5643.	2.5	4
3270	Electrochemistry in Magnetic Fields. Angewandte Chemie, 2022, 134, .	1.6	6
3271	Recent progress in microwave-assisted preparations of 2D materials and catalysis applications. Nanotechnology, 2022, 33, 342002.	1.3	8
3272	Rhenium oxide/sulfide binary phase flakes decorated on nanofiber support for enhanced activation of electrochemical conversion reactions. Chemical Engineering Journal, 2022, 446, 136951.	6.6	8

#	Article	IF	CITATIONS
3273	Self-supporting copper electrode prepared by ultrasonic impact for hydrogen evolution reaction. Journal of Alloys and Compounds, 2022, 916, 165283.	2.8	5
3274	Ni-Mo based metal/oxide heterostructured nanosheets with largely exposed interfacial atoms for overall water-splitting. Applied Surface Science, 2022, 597, 153597.	3.1	12
3275	Hierarchical Heterostructure of Amorphous CoFe@CoNi Hydroxides Composite on Nickel Foam as Efficient Electrocatalyst for Oxygen Evolution Reaction. ChemCatChem, 2022, 14, .	1.8	4
3276	Structure–Property Relationship of Oxygen-Doped Two-Dimensional Gallium Selenide for Hydrogen Evolution Reaction Revealed from Density Functional Theory. ACS Applied Energy Materials, 2022, 5, 6070-6079.	2.5	2
3277	Recent Advancement in Metalâ€Organic Framework for Water Electrolysis: A Review. ChemNanoMat, 2022, 8, .	1.5	8
3278	Anionic and Cationic Co-Substitutions of S into Vertically Aligned WTe ₂ Nanosheets as Catalysis for Hydrogen Evolution under Alkaline Conditions. ACS Applied Nano Materials, 2022, 5, 7123-7131.	2.4	3
3279	Stabilizing single-atomic ruthenium by ferrous ion doped NiFe-LDH towards highly efficient and sustained water oxidation. Chemical Engineering Journal, 2022, 446, 136962.	6.6	25
3280	Electrocatalytic Water Oxidation: An Overview With an Example of Translation From Lab to Market. Frontiers in Chemistry, 2022, 10, .	1.8	15
3281	Tuning the Electronic Structure of Layered Co-based Serpentine Nanosheets for Efficient Oxygen Evolution Reaction. Journal Physics D: Applied Physics, 0, , .	1.3	2
3282	AC magnetic field enhancement oxygen evolution reaction of bimetallic metal-organic framework. International Journal of Hydrogen Energy, 2022, 47, 18675-18687.	3.8	4
3283	Improved performance of cobalt hydroxychloride nanoparticles on poly (3-bromo thiophene) template for electrochemical oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 916, 116365.	1.9	4
3284	Effect of cobalt doping-regulated crystallinity in nickel-iron layered double hydroxide catalyzing oxygen evolution. Applied Catalysis B: Environmental, 2022, 314, 121491.	10.8	47
3285	Highly efficient electroreduction of oxygen to hydrogen peroxide on carbon catalyst via electrode-electrolyte interface engineering. Chemical Engineering Journal, 2022, 444, 136665.	6.6	13
3286	First-principles screening of Pt doped Ti2CNL (N = O, S and Se, L = F, Cl, Br and I) as high-performance catalysts for ORR/OER. Applied Surface Science, 2022, 596, 153574.	3.1	31
3287	Nickel sulfide-oxide heterostructured electrocatalysts: Bi-functionality for overall water splitting and in-situ reconstruction. Journal of Colloid and Interface Science, 2022, 622, 728-737.	5.0	21
3288	Metal-organic framework (MOF)-derived electrocatalysts for water splitting. , 2022, , 325-350.		0
3289	Morphological and Electronic Optimization of Nanostructured FeCoNi-Based Electrocatalysts by Al Dopants for Neutral/Alkaline Water Splitting. ACS Applied Energy Materials, 2022, 5, 5886-5900.	2.5	4
3290	High-current water electrolysis performance of metal phosphides grafted on porous 3D N-doped graphene prepared without using phosphine. Cell Reports Physical Science, 2022, 3, 100873.	2.8	4

#	Article	IF	CITATIONS
3291	Platinum nanoclusters by atomic layer deposition on three-dimensional TiO2 nanotube array for efficient hydrogen evolution. Materials Today Energy, 2022, 27, 101042.	2.5	8
3292	Polyoxometalate-based composite cluster with core–shell structure: Co ₄ (PW ₉) ₂ @graphdiyne as stable electrocatalyst for oxygen evolution and its mechanism research. New Journal of Chemistry, 2022, 46, 11553-11561.	1.4	1
3293	Low-temperature water electrolysis: fundamentals, progress, and new strategies. Materials Advances, 2022, 3, 5598-5644.	2.6	50
3294	Structural and Electronic Modulations of Imidazolium Covalent Organic Framework-Derived Electrocatalysts for Oxygen Redox Reactions in Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2022, 14, 24404-24414.	4.0	12
3295	2D single- and few-layered MXenes: synthesis, applications and perspectives. Journal of Materials Chemistry A, 2022, 10, 13651-13672.	5.2	56
3296	Electrocatalysis with metal-free carbon-based catalysts. , 2022, , 213-244.		1
3297	High-performance self-supporting AgCoPO ₄ /CFP for hydrogen evolution reaction under alkaline conditions. RSC Advances, 2022, 12, 15751-15758.	1.7	0
3298	rGO functionalized (Ni,Fe)-OH for an efficient trifunctional catalyst in low-cost hydrogen generation <i>via</i> urea decomposition as a proxy anodic reaction. Dalton Transactions, 2022, 51, 8994-9006.	1.6	33
3299	Enhancing the catalytic activity of CdX and ZnX (X = S, Se and Te) nanostructures for the hydrogen evolution reaction <i>via</i> transition metal doping. Materials Advances, 2022, 3, 5772-5777.	2.6	2
3300	Promoting oxygen reduction <i>via</i> coordination environment modulation through secondary metal-atom incorporation. Journal of Materials Chemistry A, 2022, 10, 19626-19634.	5.2	9
3301	Development of Core-Shell Rh@Pt and Rh@Ir Nanoparticle Thin Film Using Atomic Layer Deposition for HER Electrocatalysis Applications. Processes, 2022, 10, 1008.	1.3	6
3302	Oxygen-Plasma-Induced Hetero-Interface NiFe2O4/NiMoO4 Catalyst for Enhanced Electrochemical Oxygen Evolution. Materials, 2022, 15, 3688.	1.3	3
3303	Bimetallic Synergy in Ultrafine Cocatalyst Alloy Nanoparticles for Efficient Photocatalytic Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	35
3304	Uniform cobalt nanoparticles embedded in nitrogen-doped graphene with abundant defects as high-performance bifunctional electrocatalyst in overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 21191-21203.	3.8	10
3305	P-functionalized carbon nanotubes promote highly stable electrocatalysts based on Fe-phthalocyanines for oxygen reduction: Experimental and computational studies. Journal of Energy Chemistry, 2022, 72, 276-290.	7.1	11
3306	Boosting the hydrogen evolution reaction of N-C@CoP through an N atom induced p-d orbital coupling. Chemical Engineering Journal, 2022, 446, 137132.	6.6	5
3307	Facile hybrid strategy of SrCo0.5Fe0.3Mo0.2O3-Î′/Co3O4 heterostructure for efficient oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 917, 165508.	2.8	8
3308	Missing-Linker Bifunctional Mil-125(Ti)-Zn Interface Modulation Layer to Simultaneously Suppress Hydrogen Evolution Reaction and Dendrites for Zn Metal Anodes. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
3309	3d TransitionÂMetalÂDoping Induced Charge RearrangementÂAndÂTransferÂInÂNi3s2Â[101] Facet ForÂOverall Water-Splitting. SSRN Electronic Journal, 0, , .	0.4	0
3310	Boosting Elementary Steps Kinetics Towards Energetic Alkaline Hydrogen Evolution Via Dual Sites on Phase-Separated Ni–Cu–Mn/Hydroxide. SSRN Electronic Journal, 0, , .	0.4	0
3311	Dissecting Î-Conjugated Covalent-Coupling Over Conductive Mofs Toward Efficient Two-Electron Oxygen Reduction. SSRN Electronic Journal, 0, , .	0.4	0
3312	Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo ₂ C/NCâ€Ru for highly efficient alkaline hydrogen evolution. , 2022, 4, 856-866.		27
3313	Recent advances in metal-organic frameworks-derived carbon-based electrocatalysts for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 21634-21661.	3.8	25
3314	A Supported Palladium on Gallium-based Liquid Metal Catalyst for Enhanced Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 2022, 38, 1219-1225.	1.3	7
3315	Surface conversion derived core-shell nanostructures of Co particles@RuCo alloy for superior hydrogen evolution in alkali and seawater. Applied Catalysis B: Environmental, 2022, 315, 121554.	10.8	29
3316	Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting: From catalytic mechanism and synthesis method to optimization design. Nano Materials Science, 2022, , .	3.9	9
3317	Impact of Coordination Environment on Single-Atom-Embedded C ₃ N for Oxygen Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 7692-7701.	3.2	14
3318	Confining ultrafine Ru clusters into TiO2 lattice frameworks to yield efficient and ultrastable electrocatalysts towards practical hydrogen evolution. Chemical Engineering Journal, 2022, 446, 137248.	6.6	14
3319	Recent Advances in Solar Rechargeable Seawater Batteries Based on Semiconductor Photoelectrodes. Topics in Current Chemistry, 2022, 380, .	3.0	3
3320	Atomically dispersed dualâ€metalâ€site PGMâ€free electrocatalysts for oxygen reduction reaction: Opportunities and challenges. SusMat, 2022, 2, 569-590.	7.8	36
3321	Single-atom Fe-N5 catalyst for high-performance zinc-air batteries. Nano Research, 2022, 15, 8056-8064.	5.8	36
3322	Recent advances in transition metal selenides-based electrocatalysts: Rational design and applications in water splitting. Journal of Alloys and Compounds, 2022, 918, 165719.	2.8	45
3323	Electrocatalytic Hydrogen Evolution Using A Molecular Antimony Complex under Aqueous Conditions: An Experimental and Computational Study on Mainâ€Group Element Catalysis. Chemistry - A European Journal, 2022, 28, .	1.7	7
3324	Singleâ€Atom Catalysts for Hydrogen Generation: Rational Design, Recent Advances, and Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	42
3325	Cobalt doping in LaMnO3 perovskite catalysts – B site optimization by solution combustion for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 918, 116426.	1.9	12
3326	Electrocatalytic activity on single atoms catalysts: Synthesis strategies, characterization, classification, and energy conversion applications. Coordination Chemistry Reviews, 2022, 467, 214600.	9.5	16

# 3327	ARTICLE Investigation on bifunctional catalytic performance of Anti-Perovskite Ni3ZnC, Co3ZnC and Ni3FeN for Hydrogen/Oxygen evolution reactions. Applied Surface Science, 2022, 598, 153814.	IF 3.1	CITATIONS
3328	CoNi nano-alloys modified yolk-shell structure carbon cage via Saccharomycetes as carbon template for efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2022, 315, 121551.	10.8	41
3330	Catalytic Synergism in Mn-Heterostructured Molybdenum Oxysulfide Hybridized with Transition Metal Phosphates: A Robust Amorphous Water Oxidation Catalyst. SSRN Electronic Journal, 0, , .	0.4	0
3331	Dos and don'ts in screening water splitting electrocatalysts. Energy Advances, 2022, 1, 511-523.	1.4	23
3332	Doping-engineered biphenylene as a metal-free electrocatalyst for the hydrogen evolution reaction. Sustainable Energy and Fuels, 2022, 6, 3446-3452.	2.5	8
3333	Ni Electrodes with 3d-Ordered Surface Structures for High Current Density Alkaline Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
3334	High Catalytic Activity of Mbenes-Supported Single Atom Catalysts for Oxygen Reduction and Oxygen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
3335	Metal–organic framework (MOF)-derived plate-shaped CoS _{1.097} nanoparticles for an improved hydrogen evolution reaction. Dalton Transactions, 2022, 51, 10272-10278.	1.6	5
3336	Recent Advances in Perovskite Catalysts for Efficient Overall Water Splitting. Catalysts, 2022, 12, 601.	1.6	17
3337	Tailoring the spin state of active sites in amorphous transition metal sulfides to promote oxygen electrocatalysis. Science China Materials, 2022, 65, 3479-3489.	3.5	7
3338	Dual-metal atoms embedded into two-dimensional covalent organic framework as efficient electrocatalysts for oxygen evolution reaction: A DFT study. Nano Research, 2022, 15, 7994-8000.	5.8	25
3339	Potentialities of nanostructured SnS2 for electrocatalytic water splitting: A review. Journal of Alloys and Compounds, 2022, 921, 166018.	2.8	10
3340	Nitrogen-incorporated iron phosphosulfide nanosheets as efficient bifunctional electrocatalysts for energy-saving hydrogen evolution. Ionics, 2022, 28, 3927-3934.	1.2	34
3341	Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock. Nature Communications, 2022, 13, .	5.8	48
3342	Impedance Analysis of Electrochemical Systems. Chemical Reviews, 2022, 122, 11131-11168.	23.0	161
3343	Engineering Amorphous/Crystalline Structure of Manganese Oxide for Superior Oxygen Catalytic Performance in Rechargeable Zinc–Air Batteries. ChemSusChem, 2022, 15, .	3.6	6
3344	Tuning the Mn Dopant To Boost the Hydrogen Evolution Performance of CoP Nanowire Arrays. Inorganic Chemistry, 2022, 61, 9832-9839.	1.9	13
3345	Designing Multifunctional Cobalt Oxide Layers for Efficient and Stable Electrochemical Oxygen Evolution. Advanced Materials Interfaces, 2022, 9, .	1.9	4

#	ARTICLE <i>In Situ</i> Grown Mn(II) MOF upon Nickel Foam Acts as a Robust Self-Supporting Bifunctional	IF	CITATIONS
3346	Electrode for Overall Water Splitting: A Bimetallic Synergistic Collaboration Strategy. ACS Applied Materials & amp; Interfaces, 2022, 14, 29722-29734.	4.0	30
3347	Transition Metal Nonâ \in Oxides as Electrocatalysts: Advantages and Challenges. Small, 2022, 18, .	5.2	47
3348	Highâ€Alkaline Waterâ€Splitting Activity of Mesoporous 3D Heterostructures: An Amorphousâ€Shell@Crystallineâ€Core Nanoâ€Assembly of Coâ€Niâ€Phosphate Ultrathinâ€Nanosheets and Vâ€ Cobaltâ€Nitride Nanowires. Advanced Science, 2022, 9, .	•Daped	41
3349	Surface Design Strategy of Catalysts for Water Electrolysis. Small, 2022, 18, .	5.2	138
3350	<i>In situ</i> coupling of ligninâ€derived carbonâ€encapsulated CoFe o _{<i>x</i>} N heterojunction for oxygen evolution reaction. AICHE Journal, 2022, 68, .	1.8	34
3351	Process intensification for Fe/Mn-nitrogen-doped carbon-based catalysts toward efficient oxygen reduction reaction of Zn-air battery. Chemical Engineering Science, 2022, 259, 117811.	1.9	8
3352	Selfâ€Assembled 2D/2D Schottky Heterojunction of Ti ₃ C ₂ /UiOâ€66 Nanosheets for Boosting Photocatalytic H ₂ Evolution. Solar Rrl, 2022, 6, .	3.1	4
3353	Entwined Co(OH) ₂ <i>In Situ</i> Anchoring on 3D Nickel Foam with Phenomenal Bifunctional Activity in Overall Water Splitting. Energy & Fuels, 2022, 36, 7006-7016.	2.5	15
3354	Electron spin modulation engineering in oxygen-involved electrocatalysis. Journal of Physics Condensed Matter, 2022, 34, 364002.	0.7	4
3355	Flower-like nickel-cobalt aluminum composite prepared by hydrothermal method and its application as electrocatalyst for oxygen evolution reaction. International Journal of Electrochemical Science, 0, , ArticleID:220750.	0.5	0
3356	Enhanced Electrochemical Hydrogen Evolution of WTe2 by Introducing Te vacancies. International Journal of Electrochemical Science, 2022, 17, 220738.	0.5	0
3357	Facile synthesis of amorphous bimetallic hydroxide on Fe-doped Ni3S2 as an active electrocatalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 919, 165855.	2.8	12
3358	Approaching well-dispersed MoS2 assisted with cellulose nanofiber for highly durable hydrogen evolution reaction. Carbohydrate Polymers, 2022, 294, 119754.	5.1	5
3359	Heterogeneous interface-induced electrocatalytic efficiency boosting of bimetallic Cu/Zn selenides for stable water oxidation and oxygen reduction reactions. Catalysis Science and Technology, 2022, 12, 5302-5314.	2.1	7
3360	Tuning electrochemical water oxidation towards ozone evolution with heterojunction anode architectures. Journal of Materials Chemistry A, 2022, 10, 17132-17141.	5.2	3
3361	Co/N Nanoparticles Supported on a C3n4/Polydopamine Framework as a Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries. SSRN Electronic Journal, 0, , .	0.4	0
3362	Introductory chapter: Fundamentals of photocatalysis and electrocatalysis. , 2022, , 1-30.		0
3363	A self-supported S-doped Fe-based organic framework platform enhances electrocatalysis toward highly efficient oxygen evolution in alkaline media. Journal of Materials Chemistry A, 2022, 10, 17246-17253.	5.2	7

#	Article	IF	Citations
3365	Strain engineering in single-atom catalysts: GaPS ₄ for bifunctional oxygen reduction and evolution. Inorganic Chemistry Frontiers, 2022, 9, 4272-4280.	3.0	15
3366	Molybdenum-iron–cobalt oxyhydroxide with rich oxygen vacancies for the oxygen evolution reaction. Nanoscale, 2022, 14, 10873-10879.	2.8	12
3367	Understanding the factors governing the water oxidation reaction pathway of mononuclear and binuclear cobalt phthalocyanine catalysts. Chemical Science, 2022, 13, 8797-8803.	3.7	3
3368	Room Temperature Preparation of Two-Dimensional Black Phosphorus@Metal Organic Framework Heterojunctions and Their Efficient Overall Water-Splitting Electrocatalytic Reactions. ACS Applied Materials & Interfaces, 2022, 14, 31502-31509.	4.0	24
3369	Theoretical Advances in Understanding and Designing the Active Sites for Hydrogen Evolution Reaction. ACS Catalysis, 2022, 12, 8404-8433.	5.5	72
3370	Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nature Communications, 2022, 13, .	5.8	127
3371	A holistic green system coupling hydrogen production with wastewater valorisation. EcoMat, 0, , .	6.8	1
3372	Modeling Electrochemical Processes with Grand Canonical Treatment of Many-Body Perturbation Theory. Journal of Physical Chemistry Letters, 2022, 13, 6079-6084.	2.1	8
3373	Carbene Ligands Enabled C–N Coupling for Methylamine Electrosynthesis: A Computational Study. Energy & Fuels, 2022, 36, 7213-7218.	2.5	4
3374	Ambient Fast Synthesis of Superaerophobic/Superhydrophilic Electrode for Superior Electrocatalytic Water Oxidation. Energy and Environmental Materials, 2023, 6, .	7.3	4
3375	Theoretical inspection of TM-P4C single-atom electrocatalysts: High performance for oxygen reduction and evolution reactions. Electrochimica Acta, 2022, 427, 140853.	2.6	4
3376	Newly Designed Oneâ€Pot Inâ€&itu Synthesis of VS ₂ /rGO Nanocomposite to Explore Its Electrochemical Behavior towards Oxygen Electrode Reactions**. ChemElectroChem, 2022, 9, .	1.7	8
3377	Ir single atoms modified Ni(OH)2 nanosheets on hierarchical porous nickel foam for efficient oxygen evolution. Nano Research, 2022, 15, 10014-10020.	5.8	17
3378	Highly dispersed platinum deposited on nitrogen-doped vertical graphene array for efficient electrochemical hydrogen evolution. 2D Materials, 2022, 9, 045011.	2.0	5
3379	Regulating the electronic structure of cobalt phosphide via dual-metal doping engineering to trigger efficient hydrogen evolution. Applied Physics Letters, 2022, 121, .	1.5	5
3380	The High Electrocatalytic Performance of NiFeSe/CFP for Hydrogen Evolution Reaction Derived from a Prussian Blue Analogue. Catalysts, 2022, 12, 739.	1.6	4
3381	Interconnected Porous Structural Construction of Mn- and N-Doped Carbon Nanosheets for Fuel Cell Application. Energy & Fuels, 2022, 36, 8432-8438.	2.5	7
3382	Iridium–Iron Diatomic Active Sites for Efficient Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2022, 12, 9397-9409.	5.5	47

#	Article	IF	CITATIONS
3383	RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. Nature Communications, 2022, 13, .	5.8	145
3384	Engineering MOFsâ€Derived Nanoarchitectures with Efficient Polysulfides Catalytic Sites for Advanced Li–S Batteries. Advanced Materials Technologies, 2023, 8, .	3.0	4
3385	Feâ€Incorporated Ni ₃ S ₄ /NiS ₂ Nanocomposite as an Efficient Electrocatalyst for Alkaline Water Oxidation. ChemNanoMat, 2022, 8, .	1.5	4
3386	Density functional theory study of the hydrogen evolution reaction in haeckelite boron nitride quantum dots. International Journal of Hydrogen Energy, 2022, 47, 41783-41794.	3.8	12
3387	Unfolding essence of nanoscience for improved water splitting hydrogen generation in the light of newly emergent nanocatalysts. International Journal of Hydrogen Energy, 2022, 47, 26915-26955.	3.8	16
3388	Calculation screening of Janus WSSe monolayer modified with single platinum group metal atom as efficient bifunctional oxygen electrocatalysts. Applied Catalysis A: General, 2022, 643, 118777.	2.2	6
3389	Interface engineering of CoS/SnS2 nanosheets for boosting electrocatalytic overall water splitting in alkaline medium. Vacuum, 2022, 203, 111308.	1.6	11
3390	Phosphorus-doping promotes the electrochemical etching of metals to nanoporous electrodes for efficient and durable overall water splitting. Journal of Power Sources, 2022, 542, 231774.	4.0	3
3391	Enhanced bifunctional catalytic activity of surface-modified vanadyl ethylene glycolate for oxygen reduction and evolution reactions. Materials Chemistry and Physics, 2022, 289, 126506.	2.0	0
3392	Directed synthesis of an unusual uniform trimetallic hydrogen evolution catalyst by a predesigned cobalt-bipy modified bivanadyl capped polymolybdate. Journal of Solid State Chemistry, 2022, 314, 123403.	1.4	3
3393	Microrods-evolved WO3 nanospheres with enriched oxygen-vacancies anchored on dodecahedronal CoO(Co2+)@carbon as durable catalysts for oxygen reduction/evolution reactions. Applied Surface Science, 2022, 601, 154195.	3.1	5
3394	Dissecting π-conjugated covalent-coupling over conductive MOFs toward efficient two-electron oxygen reduction. Applied Catalysis B: Environmental, 2022, 317, 121706.	10.8	15
3395	Carbide-directed enhancement of electrochemical hydrogen evolution reaction on tungsten carbide–oxide heterostructure. Chemical Engineering Journal, 2022, 450, 137915.	6.6	12
3396	Co-Doped Ni ₉ S ₈ Nanostructures for Electrocatalytic Water Splitting over a Wide pH Range. ACS Applied Nano Materials, 2022, 5, 11823-11838.	2.4	14
3397	Noble Metal-Based Catalysts with Core-Shell Structure for Oxygen Reduction Reaction: Progress and Prospective. Nanomaterials, 2022, 12, 2480.	1.9	24
3398	Electronic Tuning of Core–Shell CoNi Nanoalloy/N-Doped Few-Layer Graphene for Efficient Oxygen Electrocatalysis in Rechargeable Zinc–Air Batteries. Journal of Physical Chemistry Letters, 2022, 13, 6743-6748.	2.1	9
3399	Fe–N–C single atom catalysts for the electrochemical conversion of carbon, nitrogen and oxygen elements. Materials Reports Energy, 2022, 2, 100141.	1.7	5
3400	Interfacing nickel with molybdenum oxides as monolithic catalyst to accelerate alkaline hydrogen electrocatalysis with robust stability. Applied Catalysis B: Environmental, 2022, 317, 121786.	10.8	19

#	Article	IF	CITATIONS
3401	Robust NiCoP@FeP derived from Prussian blue analog for efficient overall water splitting. CrystEngComm, 0, , .	1.3	2
3402	Bimetallic Ni-Mo nitride@C3N4 for highly active and stable water catalysis. Frontiers of Materials Science, 2022, 16, .	1.1	4
3403	Tuned d-band states over lanthanum doped nickel oxide for efficient oxygen evolution reaction. Nano Materials Science, 2023, 5, 228-236.	3.9	13
3404	CeO ₂ Nanoparticles Boosted Feâ€N Sites Derived from Dual Metal Organic Frameworks toward Highly Active and Durable Oxygen Reduction Reaction. Advanced Materials Interfaces, 2022, 9, .	1.9	4
3405	2022 roadmap on hydrogen energy from production to utilizations. Rare Metals, 2022, 41, 3251-3267.	3.6	68
3406	Electrochemically Activated Ni-Fe Oxyhydroxide for Mimic Saline Water Oxidation. ACS Sustainable Chemistry and Engineering, 2022, 10, 11232-11241.	3.2	10
3407	Co-doped CeO ₂ /N–C nanorods as a bifunctional oxygen electrocatalyst and its application in rechargeable Zn-air batteries. Nanotechnology, 2022, 33, 415404.	1.3	3
3408	Woodâ€Đerived Monolithic Catalysts with the Ability of Activating Water Molecules for Oxygen Electrocatalysis. Small, 2022, 18, .	5.2	17
3409	Synergistic Effects in N,O omodified Carbon Nanotubes Boost Highly Selective Electrochemical Oxygen Reduction to H ₂ O ₂ . Advanced Science, 2022, 9, .	5.6	21
3410	Theoretical Study on the High HER/OER Electrocatalytic Activities of 2D GeSi, SnSi, and SnGe Monolayers and Further Improvement by Imposing Biaxial Strain or Doping Heteroatoms. Molecules, 2022, 27, 5092.	1.7	6
3411	Hierarchical Thiospinel NiCo ₂ S ₄ /Polyaniline Hybrid Nanostructures as a Bifunctional Electrocatalyst for Highly Efficient and Durable Overall Water Splitting. Advanced Materials Interfaces, 2022, 9, .	1.9	6
3412	Electrochemically Tuned Synergistic Nanoâ€Interface of a Tertiary Ni(OH) ₂ â^NiO(OH)/Ni _x P Heterojunction Material for Enhanced and Durable Alkaline Water Splitting. ChemistrySelect, 2022, 7, .	0.7	2
3413	Nanocomposite: Co4-substituted polyoxometalate@ ^{î2} -FeOOH as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions. Applied Catalysis A: General, 2022, 644, 118810.	2.2	1
3414	Recent progress on the longâ€ŧerm stability of hydrogen evolution reaction electrocatalysts. InformaÄnÄ-Materiály, 2022, 4, .	8.5	64
3415	Barrel-Shaped-Polyoxometalates Exhibiting Electrocatalytic Water Reduction at Neutral pH: A Synergy Effect. Inorganic Chemistry, 2022, 61, 13868-13882.	1.9	3
3416	Biomass-Derived Mo ₂ C@N, P Co-Doped Carbon as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Energy & Fuels, 2022, 36, 11261-11268.	2.5	5
3417	Selfâ€Derivation and Surface Reconstruction of Feâ€Doped Ni ₃ S ₂ Electrode Realizing Highâ€Efficient and Stable Overall Water and Urea Electrolysis. Advanced Energy Materials, 2022, 12, .	10.2	84
3418	Coreâ€shell nanocatalysts with reduced platinum content toward more costâ€effective proton exchange membrane fuel cells. Nano Select, 2022, 3, 1459-1483.	1.9	2

#	Article	IF	CITATIONS
3419	Selfâ€supported Co, Pâ€codoped MnCO ₃ pyramid as an efficient Electrocatalyst for hydrogen evolution reaction. International Journal of Energy Research, 0, , .	2.2	0
3420	Mechanistic Insights of Electrochemical Cl ₂ and O ₂ Generation from Lanthanum Cobalt Manganese Oxide. Advanced Materials Interfaces, 2022, 9, .	1.9	4
3421	Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels. Nano Research, 2022, 15, 10090-10109.	5.8	21
3422	The Role of Hydroxide Binding Energy in Alkaline Hydrogen Oxidation Reaction Kinetics on <scp>RuCr</scp> Nanosheet ^{â€} . Chinese Journal of Chemistry, 2022, 40, 2495-2501.	2.6	7
3423	Nd ₆ Ir ₂ O ₁₃ as an Efficient Electrocatalyst Boosts the Oxygen Evolution Reaction in Acidic Media. ACS Sustainable Chemistry and Engineering, 2022, 10, 10658-10665.	3.2	11
3424	Combined Cornerâ€Sharing and Edgeâ€Sharing Networks in Hybrid Nanocomposite with Unusual Latticeâ€Oxygen Activation for Efficient Water Oxidation. Advanced Functional Materials, 2022, 32, .	7.8	26
3425	Mitigating Pt Loss in Polymer Electrolyte Membrane Fuel Cell Cathode Catalysts Using Graphene Nanoplatelet Pickering Emulsion Processing. Advanced Functional Materials, 2022, 32, .	7.8	10
3426	Inorganic doped libethenite nanoparticle clusters show high catalytic activity in hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 7019-7025.	3.8	1
3427	Influence of the molecular structure of metal-phthalocyanine on electrocatalytic reactions. Science China Materials, 2022, 65, 3324-3333.	3.5	7
3428	Ti3C2 MXene: recent progress in its fundamentals, synthesis, and applications. Rare Metals, 2022, 41, 3268-3300.	3.6	51
3429	Stable Sn@Cu foam enables long cycling life of zinc metal anode for aqueous zinc batteries. International Journal of Energy Research, 2022, 46, 18562-18572.	2.2	4
3430	Study on Ammonia Content and Distribution in the Microenvironment Based on Covalent Organic Framework Nanochannels. Analytical Chemistry, 2022, 94, 11224-11229.	3.2	4
3431	Recent advances in nature-inspired nanocatalytic reduction of organic molecules with water. Nano Research, 2022, 15, 10292-10315.	5.8	9
3432	Recent advances in transition metalâ€based electrocatalysts for seawater electrolysis. International Journal of Energy Research, 2022, 46, 17952-17975.	2.2	11
3433	Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide. Science Bulletin, 2022, 67, 1763-1775.	4.3	63
3434	Enhanced Activities in Alkaline Hydrogen and Oxygen Evolution Reactions on MoS ₂ Electrocatalysts by Inâ€Plane Sulfur Defects Coupled with Transition Metal Doping. Small, 2022, 18, .	5.2	36
3435	Achieving Highâ€Performance Oxygen Reduction Catalyst and Zn–Air Battery through a Synergistic Nitrogen Doping Strategy. Energy Technology, 2022, 10, .	1.8	4
3436	Recent advances in electrocatalysts for seawater splitting in hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 29685-29697.	3.8	38

# 3437	ARTICLE Highly Selective Electrocatalytic Oxidation of Amines to Nitriles Assisted by Water Oxidation on Metal-Doped α-Ni(OH) ₂ . Journal of the American Chemical Society, 2022, 144, 15185-15192.	IF 6.6	Citations 54
3438	Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
3439	Metal–Organic Frameworks (MOFs) Derived Materials Used in Zn–Air Battery. Materials, 2022, 15, 5837.	1.3	8
3440	A review of heteroatomic doped two-dimensional materials as electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 29698-29729.	3.8	14
3441	Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angewandte Chemie, 2022, 134, .	1.6	4
3442	Interrogating the oxygen evolution reaction mechanism at the atomic scale. Chem Catalysis, 2022, 2, 1835-1837.	2.9	0
3443	Rational Design of Atomic Site Catalysts for Electrocatalytic Nitrogen Reduction Reaction: One Step Closer to Optimum Activity and Selectivity. Electrochemical Energy Reviews, 2022, 5, .	13.1	22
3444	Co/N nanoparticles supported on a C3N4/polydopamine framework as a bifunctional electrocatalyst for rechargeable zinc-air batteries. Journal of Electroanalytical Chemistry, 2022, 921, 116702.	1.9	4
3445	Facile one-step synthesis of CuGaS2 nanosheets and its electrocatalytic activity towards hydrogen evolution. Journal of Physics and Chemistry of Solids, 2022, 170, 110929.	1.9	0
3446	Nanopetals shaped CuNi alloy with defects abundant active surface for efficient electrocatalytic oxygen evolution reaction and high performance supercapacitor applications. Journal of Energy Storage, 2022, 55, 105488.	3.9	13
3447	Recent advances in the electrochemical applications of Ni-based metal organic frameworks (Ni-MOFs) and their derivatives. Chemosphere, 2022, 307, 135729.	4.2	35
3448	Catalysts for the hydrogen evolution reaction in alkaline medium: Configuring a cooperative mechanism at the Ag-Ag2S-MoS2 interface. Journal of Energy Chemistry, 2022, 74, 481-488.	7.1	8
3449	In-situ generating highly efficient sites for multifunctional water splitting/Zn-air battery over hierarchically architectured Fe2Ni3 nanoalloy/N-incorporated carbon matrix. Chemical Engineering Journal, 2022, 450, 138245.	6.6	9
3450	Ru decorated Co nanoparticles supported by N-doped carbon sheet implements Pt-like hydrogen evolution performance in wide pH range. Chemical Engineering Journal, 2022, 450, 138254.	6.6	9
3451	Emerging electrocatalytic activities in transition metal selenides: synthesis, electronic modulation, and structure-performance correlations. Chemical Engineering Journal, 2023, 451, 138514.	6.6	28
3452	High catalytic activity of MBenes-supported single atom catalysts for oxygen reduction and oxygen evolution reaction. Applied Surface Science, 2022, 604, 154522.	3.1	18
3453	Boosting elementary steps kinetics towards energetic alkaline hydrogen evolution via dual sites on phase-separated Ni–Cu–Mn/hydroxide. Chemical Engineering Journal, 2023, 451, 138540.	6.6	11
3454	Defect engineering of electrocatalysts for organic synthesis. Nano Research, 2023, 16, 1890-1912.	5.8	13

#	Article	IF	CITATIONS
3455	Effect of constituent cations on the electrocatalytic oxygen evolution reaction in high-entropy oxide (Mg0.2Fe0.2Co0.2Ni0.2Cu0.2)O. Journal of Electroanalytical Chemistry, 2022, 922, 116737.	1.9	7
3456	Recent advances in metallic transition metal dichalcogenides as electrocatalysts for hydrogen evolution reaction. IScience, 2022, 25, 105098.	1.9	14
3457	Missing-linker bifunctional MIL-125(Ti)-Zn interface modulation layer to simultaneously suppress hydrogen evolution reaction and dendrites for Zn metal anodes. Energy Storage Materials, 2022, 53, 322-330.	9.5	37
3458	Rational design of MOFs-derived Co-Ru species embedded N-doped carbon/carbon matrix for highly-efficient and multifunctional electrocatalysis. Applied Surface Science, 2022, 606, 154818.	3.1	1
3459	Engineering the interface of porous CoMoO3 nanosheets with Co3Mo nanoparticles for high-performance electrochemical overall water splitting. Journal of Materials Science and Technology, 2023, 137, 184-192.	5.6	9
3460	Understanding the role of Cl doping in the oxygen evolution reaction on cuprous oxide by DFT. Physical Chemistry Chemical Physics, 2022, 24, 25347-25355.	1.3	2
3461	Improving the Orr Performance by Enhancing the Pt Oxidation Resistance. SSRN Electronic Journal, 0, ,	0.4	0
3462	3d Transition metal doping induced charge rearrangement and transfer to enhance overall water-splitting on Ni ₃ S ₂ (101) facet: a first-principles calculation study. RSC Advances, 2022, 12, 26866-26874.	1.7	4
3463	Non-precious transition metal single-atom catalysts for the oxygen reduction reaction: progress and prospects. Nanoscale, 2022, 14, 14322-14340.	2.8	29
3464	Valence-variable thiospinels for ampere-scale water electrolysis. Catalysis Science and Technology, 2022, 12, 6875-6882.	2.1	3
3465	Catalytic centers with multiple oxidation states: a strategy for breaking the overpotential ceiling from the linear scaling relation in oxygen evolution. Journal of Materials Chemistry A, 2022, 10, 23079-23086.	5.2	2
3466	Low-temperature N-anchored ordered Pt ₃ Co intermetallic nanoparticles as electrocatalysts for methanol oxidation reaction. Nanoscale, 2022, 14, 14199-14211.	2.8	9
3467	Two new Ni/Co-MOFs as electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. New Journal of Chemistry, 2022, 46, 18996-19001.	1.4	1
3468	A highly efficient and stable platinum film deposited <i>via</i> a mixed metal-imidazole casting method as a benchmark cathode for electrocatalytic hydrogen evolution. Sustainable Energy and Fuels, 2022, 6, 4265-4274.	2.5	4
3469	Electronic modulation of Co ₂ P nanoneedle arrays by the doping of transition metal Cr atoms for a urea oxidation reaction. Dalton Transactions, 2022, 51, 13255-13262.	1.6	9
3470	Plasmon-enhanced electrocatalytic hydrogen evolution based on tannic acid–platinum film functionalized gold nanoparticles. New Journal of Chemistry, 2022, 46, 19263-19270.	1.4	1
3471	Recent advances in the metal–organic framework-based electrocatalysts for trifunctional electrocatalysis. Dalton Transactions, 2022, 51, 13573-13590.	1.6	16
3472	Development of New Mixed-Metal Ruthenium and Iridium Oxides as Electrocatalysts for Oxygen Evolution: Part II. Johnson Matthey Technology Review, 2022, 66, 406-417.	0.5	3

#	Article	IF	CITATIONS
3473	Ru nanoclusters confined on α/β cobalt hydroxide nanosheets as efficient bifunctional oxygen electrocatalysts for Zn–air batteries. Inorganic Chemistry Frontiers, 2022, 9, 5774-5782.	3.0	3
3474	Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: from the perspective of nanoarchitectonics. Chemical Science, 2022, 13, 10836-10845.	3.7	115
3475	Synthesis of poly(2,6-diaminopyridine) using a rotating packed bed toward efficient production of polypyrrole-derived electrocatalysts. Reaction Chemistry and Engineering, 0, , .	1.9	0
3476	Unravelling the potential of disposable and modifiable pencils as catalyst supports for hydrogen evolution reaction. New Journal of Chemistry, 0, , .	1.4	0
3477	Transition metal quantum dots for the electrocatalytic hydrogen evolution reaction: recent progresses and challenges. Energy Advances, 2022, 1, 738-760.	1.4	9
3478	Robust and promising hydrogen and oxygen evolution reactions by a nanostructured bifunctional FeCoPd alloy electrocatalyst. Journal of Materials Chemistry A, 2022, 10, 23731-23743.	5.2	12
3479	Recent development and challenges in fuel cells and water electrolyzer reactions: an overview. RSC Advances, 2022, 12, 28227-28244.	1.7	10
3480	Challenges and prospects of high-voltage aqueous electrolytes for energy storage applications. Physical Chemistry Chemical Physics, 2022, 24, 20674-20688.	1.3	3
3481	Superior bifunctional cobalt/nitrogen-codoped carbon nanosheet arrays on copper foam enable stable energy-saving hydrogen production accompanied with glucose upgrading. Green Chemistry, 2022, 24, 6544-6555.	4.6	20
3482	Constructing Self-Supported Nicofe Nanotube Array Electrocatalysts Enabling High-Efficiency Alkaline Oxygen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
3483	Nanostructured Pt-doped 2D MoSe ₂ : an efficient bifunctional electrocatalyst for both hydrogen evolution and oxygen reduction reactions. Physical Chemistry Chemical Physics, 2022, 24, 22823-22844.	1.3	7
3484	An efficient vanadium/cobalt metaphosphate electrocatalyst for hydrogen and oxygen evolution in alkaline water splitting. Inorganic Chemistry Frontiers, 2022, 9, 4808-4816.	3.0	4
3485	Strain engineering of metal nanostructures for catalysis. , 2022, , .		0
3486	Direct growth and post-treatment of zeolitic imidazolate framework-67 on carbon paper: an effective and stable electrode system for electrocatalytic reactions. Journal of Materials Chemistry A, 2022, 10, 20770-20778.	5.2	8
3487	Engineering the solid $\hat{a} \in$ "liquid interfaces for photoelectrochemical water reduction. , 2023, , .		1
3488	Integrating electronic structure regulation and dynamic active sites construction on NixCd1-xS-Ni0 photocatalyst for efficient hydrogen evolution. Journal of Colloid and Interface Science, 2023, 629, 1015-1026.	5.0	3
3489	Co-Ni-Mo phosphides hierarchical nanoarrays as bifunctional electrocatalysts for excellent overall water splitting. Fuel, 2023, 332, 126131.	3.4	16
3490	Yttrium- and Cerium-Codoped Ultrathin Metal–Organic Framework Nanosheet Arrays for High-Efficiency Electrocatalytic Overall Water Splitting. Nano Letters, 2022, 22, 7238-7245.	4.5	48

#	Article	IF	CITATIONS
3491	Supramolecular assembly-derived carbon-nitrogen-based functional materials for photo/electrochemical applications: progress and challenges. , 2023, 2, 20220032.		4
3492	Confinement Engineering of Electrocatalyst Surfaces and Interfaces. Advanced Functional Materials, 2022, 32, .	7.8	43
3493	Effect of Nitrogen Doping and Oxygen Vacancy on the Oxygen Reduction Reaction on the Tetragonal Zirconia(101) Surface. Journal of Physical Chemistry C, 2022, 126, 15662-15670.	1.5	4
3494	Combined nano/micro-structure of Ni12P5-Ni2P nanorod array for effective wide pH range HER and overall alkaline water-splitting. Journal of Electroanalytical Chemistry, 2022, 925, 116862.	1.9	1
3495	On the Role of Interfacial Water Dynamics for Electrochemical Stability of RuO ₂ and IrO ₂ . ChemCatChem, 2022, 14, .	1.8	9
3496	Interfacial Electron Redistribution of FeCo2S4/N-S-rGO Boosting Bifunctional Oxygen Electrocatalysis Performance. Catalysts, 2022, 12, 1002.	1.6	2
3498	Layered double hydroxide nanomaterials for bifunctional ORR/OER electro-catalyst. Journal of the Korean Ceramic Society, 2022, 59, 763-774.	1.1	11
3499	Improving Catalytic Activity of "Janus―MoSSe Based on Surface Interface Regulation. Molecules, 2022, 27, 6038.	1.7	2
3500	Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation. Nature Communications, 2022, 13, .	5.8	77
3501	Lattice Oxygen-Induced <i>d</i> Band Shifting for Enhanced Hydrogen Oxidation Reaction on Nickel. ACS Catalysis, 2022, 12, 11830-11837.	5.5	19
3502	Oxygen Vacancies Boosted by Laser Irradiation Enable NiCo Layered Double Hydroxide with a High Oxygen Reduction/Evolution Catalytic Activity in Zn–Air Batteries and Water Splitting. ACS Applied Energy Materials, 2022, 5, 12427-12436.	2.5	11
3503	Highly-stable, bifunctional, binder-free & stand-alone photoelectrode (FexNi1-xO@a-CC) for natural waters splitting into hydrogen. International Journal of Hydrogen Energy, 2022, 47, 36032-36045.	3.8	9
3504	2D CoFe-LDH Nanosheet-Incorporated 1D Microfibers as a High-Performance OER Electrocatalyst in Neutral and Alkaline Media. ACS Applied Energy Materials, 2022, 5, 11483-11497.	2.5	23
3505	Applications of Transition Metal (Fe, Co, Ni)-Based Metal–Organic Frameworks and their Derivatives in Batteries and Supercapacitors. Transactions of Tianjin University, 2022, 28, 446-468.	3.3	4
3506	Surface reconstruction-derived heterostructures for electrochemical water splitting. EnergyChem, 2023, 5, 100091.	10.1	36
3507	Cu2O-templated fabrication of Ni(OH)2·0.75H2O hollow tubes for electrocatalytic oxygen evolution reaction. Progress in Natural Science: Materials International, 2022, 32, 554-560.	1.8	8
3508	Selfâ€Passivated Metal Klein Edge of 1Tâ€Phase Transition Metal Dichalcogenides and the Induced Highâ€Efficient Hydrogen Evolution Reaction Activity. Advanced Functional Materials, 2022, 32, .	7.8	2
3509	Layered Double Hydroxides for Oxygen Evolution Reaction towards Efficient Hydrogen Generation. Energy Material Advances, 2022, 2022, .	4.7	16

#	Article	IF	CITATIONS
3510	Comparison of the Activity of 3D Binary or Ternary Cobalt Coatings for Hydrogen and Oxygen Evolution Reactions. Batteries, 2022, 8, 129.	2.1	3
3511	Recent Advancement in Rational Design Modulation of MXene: A Voyage from Environmental Remediation to Energy Conversion and Storage. Chemical Record, 2022, 22, .	2.9	16
3512	Greenly Reduced CoFeâ€₽BA/Nickel Foam: A Robust Dual Electrocatalyst for Solarâ€Đriven Alkaline Water Electrolysis with a Low Cell Voltage. ChemistrySelect, 2022, 7, .	0.7	13
3513	Pyrophosphate Na ₂ CoP ₂ O ₇ Polymorphs as Efficient Bifunctional Oxygen Electrocatalysts for Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2022, 14, 40761-40770.	4.0	4
3514	Tuning the electronic structure of a metal–organic framework for an efficient oxygen evolution reaction by introducing minor atomically dispersed ruthenium. , 2023, 5, .		88
3515	Electronic Properties and Electrocatalytic Water Splitting Activity for Precious-Metal-Adsorbed Silicene with Nonmetal Doping. ACS Omega, 2022, 7, 33156-33166.	1.6	2
3516	Fullerene-Derived Carbon Nanotubes and Their Electrocatalytic Properties in Oxygen Reduction and Zn–Air Batteries. ACS Applied Materials & Interfaces, 2022, 14, 42337-42346.	4.0	5
3517	Hierarchal Porous Graphene-Structured Electrocatalysts with Fe–N ₅ Active Sites Modified with Fe Clusters for Enhanced Performance Toward Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2022, 14, 42038-42047.	4.0	8
3518	Hydrogen evolution reaction activity obtained using platinum single atoms on TiO2 nanosheetsÂmodified with graphene. Journal of Materials Science, 2022, 57, 16448-16459.	1.7	2
3519	Recent advance in MXenes: New horizons in electrocatalysis and environmental remediation technologies. Progress in Solid State Chemistry, 2022, 68, 100370.	3.9	9
3520	Advancing the Electrochemistry of Gasâ€Involved Reactions through Theoretical Calculations and Simulations from Microscopic to Macroscopic. Advanced Functional Materials, 2022, 32, .	7.8	29
3521	Partial deligandation activated ZIF-67 for efficient electrocatalytic oxygen reduction reaction. Frontiers in Chemistry, 0, 10, .	1.8	4
3522	Ïf-Alkynyl Adsorption Enables Electrocatalytic Semihydrogenation of Terminal Alkynes with Easy-Reducible/Passivated Groups over Amorphous PdS <i>_x</i> Nanocapsules. Journal of the American Chemical Society, 2022, 144, 19456-19465.	6.6	25
3523	Improved Corrosionâ€Resistance and Regulated Electroâ€state of Elastic Polyaniline Coated Nickel Phosphide for Efficient Water Oxidation. ChemCatChem, 2022, 14, .	1.8	4
3524	Effect of the interfacial electronic coupling of nickel-iron sulfide nanosheets with layer Ti3C2 MXenes as efficient bifunctional electrocatalysts for anion-exchange membrane water electrolysis. Applied Catalysis B: Environmental, 2023, 321, 122039.	10.8	27
3525	Bias-free solar hydrogen production at 19.8 mA cmâ^'2 using perovskite photocathode and lignocellulosic biomass. Nature Communications, 2022, 13, .	5.8	33
3526	Engineering the Coordination Interface of Isolated Co Atomic Sites Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2022, 14, 46401-46409.	4.0	11
3527	Ultralight conductive IrO2 nanostructured textile enables highly efficient hydrogen and oxygen evolution reaction: Importance of catalyst layer sheet resistance. Applied Catalysis B: Environmental, 2023, 321, 122030.	10.8	10

			0
#		IF	CITATIONS
3528	Non-metal/metalloid modification of perovskite oxide enables lattice oxygen participation in accelerating oxygen evolution activity. International Journal of Hydrogen Energy, 2022, , .	3.8	2
3529	Nanoscale hetero-interfaces for electrocatalytic and photocatalytic water splitting. Science and Technology of Advanced Materials, 2022, 23, 587-616.	2.8	4
3530	Boron-Doped Platinum-Group Metals in Electrocatalysis: A Perspective. ACS Catalysis, 2022, 12, 12750-12764.	5.5	31
3531	P-doped MoS2/CoxSy heterojunction for high-efficiency electrocatalytic hydrogen evolution performance in both acidic and alkaline electrolytes. Electrochimica Acta, 2022, 433, 141269.	2.6	6
3532	Catalytic synergism in Mn-heterostructured molybdenum oxysulfide hybridized with transition metal phosphides: A robust amorphous water oxidation catalyst. Electrochimica Acta, 2022, 433, 141249.	2.6	3
3533	Theoretically revealing the activity origin of the hydrogen evolution reaction on carbon-based single-atom catalysts and finding ideal catalysts for water splitting. Journal of Materials Chemistry A, 2022, 10, 24362-24372.	5.2	5
3534	Enhanced interaction between Ru nanoparticles and N, C-modified mesoporous TiO ₂ for efficient electrocatalytic hydrogen evolution at all pH values. Journal of Materials Chemistry A, 2022, 10, 23751-23759.	5.2	7
3535	Direct Z-scheme polymeric heterojunction boosts photocatalytic hydrogen production <i>via </i> a rebuilt extended i€-delocalized network. Energy and Environmental Science, 2022, 15, 5059-5068.	15.6	40
3536	Catalytically active silver nanoparticles stabilized on a thiol-functionalized metal–organic framework for an efficient hydrogen evolution reaction. Nanoscale, 2022, 14, 17345-17353.	2.8	5
3537	Enhancing the catalytic OER performance of MoS ₂ <i> via</i> Fe and Co doping. Nanoscale, 2022, 14, 16148-16155.	2.8	24
3538	Key Components and Design Strategy for a Proton Exchange Membrane Water Electrolyzer. Small Structures, 2023, 4, .	6.9	32
3539	Simultaneously Improved Surface and Bulk Participation of Evolved Perovskite Oxide for Boosting Oxygen Evolution Reaction Activity Using a Dynamic Cation Exchange Strategy. Small, 2022, 18, .	5.2	9
3540	Potential dependence of OER/EOP performance on heteroatom-doped carbon materials by grand canonical density functional theory. Journal of Chemical Physics, 2022, 157, .	1.2	4
3541	Electrostatic Spinning Strategy to Prepare Cage-like PAN-Fiber Network-Wrapped Co–N–C Structures for the Oxygen Reduction Reaction. ACS Applied Energy Materials, 2022, 5, 14155-14163.	2.5	4
3542	In-situ formation and integration of graphene into MoS2 interlayer spacing: expansion of interlayer spacing for superior hydrogen evolution reaction in acidic and alkaline electrolyte. Journal of Materials Science, 2022, 57, 18993-19005.	1.7	16
3543	Enhanced OER Performance by Cu Substituted Spinel Cobalt Oxide. Catalysis Letters, 0, , .	1.4	0
3544	Surface Reconstruction of Cobalt-Based Polyoxometalate and CNT Fiber Composite for Efficient Oxygen Evolution Reaction. Catalysts, 2022, 12, 1242.	1.6	13
3545	Self-supported AlFeNiCoMo high-entropy alloy with micropillar array structure for efficient oxygen evolution reaction. APL Materials, 2022, 10, .	2.2	5

#	Article	IF	CITATIONS
3546	Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution. Nature Communications, 2022, 13, .	5.8	25
3547	Controlled Electrophoretic Deposition Strategy of Binder-Free CoFe ₂ O ₄ Nanoparticles as an Enhanced Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2022, 14, 48598-48608.	4.0	4
3548	Paired electrocatalysis in 5-hydroxymethylfurfural valorization. Frontiers in Chemistry, 0, 10, .	1.8	8
3549	NiSe and Fe-Based Layerd Double Hydroxide Nanosheet/Ni Foam Bifunctional Catalyst for Water Splitting. ACS Applied Nano Materials, 2022, 5, 16793-16803.	2.4	8
3550	A Universal Saline-Alkaline Etching Procedure to Enhance the Activity of Oxygen Evolution Catalysts. ACS Energy Letters, 2022, 7, 3910-3916.	8.8	6
3551	<scp>Surfaceâ€Enhanced</scp> Raman Spectroscopy: Principles, Methods, and Applications in Energy Systems ^{â€} . Chinese Journal of Chemistry, 2023, 41, 355-369.	2.6	10
3552	Advanced Two-Dimensional Materials for Green Hydrogen Generation: Strategies toward Corrosion Resistance Seawater Electrolysis─Review and Future Perspectives. Energy & Fuels, 2022, 36, 13417-13450.	2.5	18
3553	Two-dimensional carbon-based heterostructures as bifunctional electrocatalysts for water splitting and metal–air batteries. Nano Materials Science, 2022, , .	3.9	12
3554	Test of conductor and semiconductor electrocatalysts in high voltage alkaline electrolyzer as production media for green hydrogen. International Journal of Hydrogen Energy, 2023, 48, 1717-1732.	3.8	4
3555	Application of in situ/operando characterization techniques in heterostructure catalysts toward water electrolysis. Nano Research, 2023, 16, 1984-1991.	5.8	8
3556	Pressure-induced bimetallic carbon nanotubes from metal–organic frameworks as optimized bifunctional electrocatalysts for water splitting. Rare Metals, 2023, 42, 155-164.	3.6	23
3557	Ruâ^'RuO ₂ Nanoparticles Decorated on Various Substrates via Reductionâ€Hydrolysis Strategy for Boosting Overall Waterâ€5plitting Performance. ChemCatChem, 2022, 14, .	1.8	3
3558	Fluorine-doped nickel oxyhydroxide as a robust electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2023, 437, 141475.	2.6	6
3559	Intermetallic Nanoarchitectures for Efficient Electrocatalysis. ACS Nanoscience Au, 2023, 3, 28-36.	2.0	10
3560	Transition Metalâ€Based Electrocatalysts for Seawater Oxidation. Advanced Materials Interfaces, 2022, 9, .	1.9	11
3561	Highly Conductive Nitrogenâ€Doped sp ² /sp ³ Hybrid Carbon as a Conductorâ€Free Charge Storage Host. Advanced Functional Materials, 2022, 32, .	7.8	20
3562	Advanced electrochemical energy storage and conversion on graphdiyne interface. , 2022, 1, e9120036.		24
3563	Electronic structural engineering of transition metal-based electrocatalysts for the hydrogen evolution reaction. Nano Energy, 2022, 104, 107882.	8.2	61

		CITATION R	EPORT	
#	Article		IF	CITATIONS
3564	Hierarchical NiCo2S4@NiMoO4 nanotube arrays on nickel foam as an advanced bifund electrocatalyst for efficient overall water splitting. Electrochimica Acta, 2022, 436, 14		2.6	10
3565	Reduced nickel on cobalt sulphide with carbon supported (Ni-CoS/C) composite mater and efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 202	ial as a low-cost 2, 435, 141437.	2.6	12
3566	Tunable active-sites of Co– nanoparticles encapsulated in carbon nanofiber as high p bifunctional OER/ORR electrocatalyst. Journal of Colloid and Interface Science, 2023, 6		5.0	36
3567	Intellectually constructing amorphous NiCoP dendrites for efficient oxygen evolution r Applied Surface Science, 2023, 609, 155338.	eaction.	3.1	1
3568	A comprehensive review of hydrogen generation by water splitting using 2D nanomate electro-catalysis. Fuel, 2023, 332, 125905.	rials: Photo vs	3.4	38
3569	Triple-phase interfacial engineering Pt-CeO2-nitrogen-doped carbon electrocatalysts fo exchange membrane fuel cells. Applied Surface Science, 2023, 609, 155302.	r proton	3.1	4
3570	Interface engineering of Ni/NiO heterostructures with abundant catalytic active sites for methanol oxidation electrocatalysis. Journal of Colloid and Interface Science, 2023, 63		5.0	20
3571	Membrane-free pure H2 production over single dispersed Ru-anchored Pt3Ni alloys via ethanol selective electrooxidation. Applied Catalysis B: Environmental, 2023, 321, 122		10.8	15
3572	Dual-purpose nickel-iron layered double hydroxides by controlled lanthanide and phosp incorporation for promoting overall water splitting efficiency. Journal of Alloys and Cor 2023, 933, 167743.	phide npounds,	2.8	7
3573	A ternary PdNiMo alloy as a bifunctional nanocatalyst for the oxygen reduction reactio hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2022, 9, 6574-6583.	n and	3.0	8
3574	The active ruthenium (101) crystal plane selectively exposed by <i>in situ</i> metal hyp on a living plant for overall water splitting. Green Chemistry, 2022, 24, 9668-9676.	eraccumulation	4.6	4
3575	Accelerating NADH oxidation and hydrogen production with mid-gap states of nitroge nitride photocatalyst. IScience, 2022, 25, 105567.	n-rich carbon	1.9	7
3577	Promoted oxygen evolution reaction efficiency by Ni3S2/WO3 nanocomposite anchor International Journal of Hydrogen Energy, 2023, 48, 3373-3384.	ed over rGO.	3.8	2
3578	Improving the ORR performance by enhancing the Pt oxidation resistance. Journal of C 416, 311-321.	atalysis, 2022,	3.1	13
3579	Recycling Solar Cells for Hydrogen Production Coupling Hydrazine Degradation with E High-Chaos Nickel Molybdenum Phosphorus Sulfide Oxides. ACS Catalysis, 2022, 12, 1	ntropy-Driven 4387-14397.	5.5	4
3580	Fe-N4/Co-N4 active sites engineered porous carbon with encapsulated FeCo alloy as an bifunctional catalyst for rechargeable zinc-air battery. Journal of Alloys and Compound 168107.		2.8	7
3581	A short review of the kinetic parameters of carbon quantum dots for Electrocatalytic H evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 3807-3823.	lydrogen	3.8	5
3582	Advanced In Situ Characterization Techniques for Direct Observation of Gasâ€Involvec Reactions. Energy and Environmental Materials, 2023, 6, .	Electrochemical	7.3	8

#	Article	IF	CITATIONS
3583	IrPt Alloy Nanoparticles with Controllable Compositions as Catalysts for Electrochemical Oxygen and Hydrogen Evolution. ACS Applied Nano Materials, 2022, 5, 17152-17158.	2.4	3
3584	Spinel Iron Oxide Nanoparticles Decorated on Pyridinicâ€N and Carbon Surface: A Highly Efficient Inexpensive Electrocatalyst for Oxygen Reduction and Oxygen Evolution Eeactions. ChemistrySelect, 2022, 7, .	0.7	4
3585	Feâ€NiS Nanorod Encapsulated in Ceâ€doped NiOx Shell for Oxygen Evolution Reaction. ChemNanoMat, 0, ,	1.5	0
3586	Multifunctional catalytic activity of Cu3N (001) surface: A first-principles study. ChemPhysMater, 2022, , .	1.4	2
3587	Constructing collaborative interface between Mo2N and NiS as efficient bifunctional electrocatalysts for overall water splitting. Applied Surface Science, 2023, 611, 155656.	3.1	12
3588	Activation of inert Ag by nanoplasmonic synergy for enhanced hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 3316-3327.	3.8	2
3589	Heterostructure Fe ₂ O ₃ /BiVO ₄ as a Photoanode for a Visible-Light-Responsive Photocatalytic Fuel Cell. ACS Applied Energy Materials, 2022, 5, 13562-13570.	2.5	2
3590	Advances in Graphene-Supported Single-Atom Catalysts for Clean Energy Conversion. Electrochemical Energy Reviews, 2022, 5, .	13.1	17
3591	Zeolitic imidazolate framework-67Âderived cobalt-based catalysts for water splitting. Materials Today Chemistry, 2022, 26, 101210.	1.7	2
3592	A metal/semiconductor contact induced Mott–Schottky junction for enhancing the electrocatalytic activity of water-splitting catalysts. Sustainable Energy and Fuels, 2022, 7, 12-30.	2.5	7
3593	Designing cactus-like Fe-P doped CoNi-S arrays as highly efficient electrocatalyst for overall water splitting. Journal of Industrial and Engineering Chemistry, 2023, 118, 383-392.	2.9	1
3594	Tuning the Spin State of Co ³⁺ by Crystal Facet Engineering for Enhancing the Oxygen Evolution Reaction Activity. Chemistry of Materials, 2022, 34, 10509-10516.	3.2	7
3595	Unveiling Chemically Robust Bimetallic Squarateâ€Based Metal–Organic Frameworks for Electrocatalytic Oxygen Evolution Reaction. Advanced Energy Materials, 2023, 13, .	10.2	22
3596	Direct Visualization of Atomic Structure in Multivariate Metalâ€Organic Frameworks (MOFs) for Guiding Electrocatalysts Design. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
3597	Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Advances in Colloid and Interface Science, 2023, 311, 102811.	7.0	17
3598	Self-Supporting Metal-Organic Framework-Based Nanoarrays for Electrocatalysis. ACS Nano, 2022, 16, 19913-19939.	7.3	31
3599	Direct Visualization of Atomic Structure in Multivariate Metalâ€Organic Frameworks (MOFs) for Guiding Electrocatalysts Design. Angewandte Chemie, 2023, 135, .	1.6	7
3600	Z-scheme transfer pathway assisted photoelectrocatalyst Zn2SnO4/rGO/Ag/AgBr for organic pollutants treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130552.	2.3	6

#	Article	IF	CITATIONS
3601	Fe–N/C catalysts with tunable mesoporous structures and carbon layer numbers reveal the role of interlayer O ₂ activation. , 2023, 1, 62-73.		5
3602	Electro-(Photo)catalysis for Concurrent Evolution of Hydrogen and High Value-Added Chemicals. , 0, 1, .		0
3603	Nanocomposites for Overall Water-Splitting. , 2022, , 1-31.		0
3604	Bifunctional intermetallic PdZn nanoparticle-loaded deficient TiO ₂ nanosheet electrocatalyst for electrochemical water splitting. Materials Advances, 2023, 4, 561-569.	2.6	14
3605	Electrochemical fabrication of mesoporous metal-alloy films. Materials Advances, 2023, 4, 408-431.	2.6	5
3606	Current progresses in two-dimensional MXene-based framework: prospects from superficial synthesis to energy conversion and storage applications. Materials Today Chemistry, 2023, 27, 101238.	1.7	8
3607	Sm2MoO6-TiO2-bentonite as an active electrocatalyst toward electrochemical oxygen evolution reaction and effective photocatalyst for ciprofloxacin removal. Journal of Electroanalytical Chemistry, 2023, 929, 117097.	1.9	2
3608	Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting. Chinese Journal of Catalysis, 2023, 44, 7-49.	6.9	47
3609	Laser induced trace doping of Pd on Ru nanoparticles for an efficient hydrogen evolution electrocatalyst. Nanoscale, 2023, 15, 1554-1560.	2.8	1
3610	Vacancy defect tuning of electronic structures of transition metal (hydr)oxide-based electrocatalysts for enhanced oxygen evolution. Energy Advances, 2023, 2, 73-85.	1.4	5
3611	<i>In situ</i> characterisation for nanoscale structure–performance studies in electrocatalysis. Nanoscale Horizons, 2023, 8, 146-157.	4.1	6
3612	Screen-printed nickel hydroxide electrodes: Semiconducting, electrocatalytic, and electrochromic properties. Journal of Electroanalytical Chemistry, 2023, 928, 117052.	1.9	1
3613	Mass Production of Dealloyed Pt3Co/C Catalyst for Oxygen Reduction Catalysis in PEMFC. Journal of Materials Chemistry A, 0, , .	5.2	2
3614	Research progress on high entropy alloys and high entropy derivatives as OER catalysts. Journal of Environmental Chemical Engineering, 2023, 11, 109080.	3.3	13
3615	The role of various components in Ru-NiCo alloys in boosting the performance of overall water splitting. Journal of Colloid and Interface Science, 2023, 633, 189-198.	5.0	16
3616	Machine learning utilized for the development of proton exchange membrane electrolyzers. Journal of Power Sources, 2023, 556, 232389.	4.0	6
3617	Controlled synthesis of NiCoP@NiM LDH (M=Cu, Fe, Co) as efficient hydrogen evolution reaction electrocatalyst. Journal of Alloys and Compounds, 2023, 937, 168412.	2.8	9
3618	Annealing and electrochemically activated amorphous ribbons: Surface nanocrystallization and oxidation effects enhanced for oxygen evolution performance. Journal of Colloid and Interface Science, 2023, 633, 303-313.	5.0	4

#	Article	IF	CITATIONS
3619	Constructing abundant phase interfaces of the sulfides/metal-organic frameworks p-p heterojunction array for efficient overall water splitting and urea electrolysis. Journal of Colloid and Interface Science, 2023, 634, 630-641.	5.0	11
3620	Two-dimensional alloying MNS4 (M, NÂ=ÂMn, Fe, Co, Ni, Pd) materials with pentagonal pucker for highly efficient electrocatalytic hydrogen reaction. Applied Surface Science, 2023, 612, 155897.	3.1	2
3621	FeNi coordination polymer based highly efficient and durable bifunction oxygen electrocatalyst for rechargeable zinc-air battery. Separation and Purification Technology, 2023, 308, 122974.	3.9	10
3622	Conductivity-enhanced porous N/P co-doped metal-free carbon significantly enhances oxygen reduction kinetics for aqueous/flexible zinc-air batteries. Journal of Colloid and Interface Science, 2023, 633, 500-510.	5.0	14
3623	Coherent nanointerface between light-harvesting and catalytic transition metal sulfides for efficient photochemical conversion. Applied Catalysis B: Environmental, 2023, 324, 122300.	10.8	1
3624	Acid-stable antimonate based catalysts for the electrocatalytic oxygen evolution reaction. Nano Research, 2023, 16, 4691-4697.	5.8	4
3625	Rational engineering of metal–organic coordination networks into facetâ€controlled phosphides for overall water splitting. EcoMat, 2023, 5, .	6.8	2
3626	Recent Advances and Future Perspectives of Metalâ€Based Electrocatalysts for Overall Electrochemical Water Splitting. Chemical Record, 2023, 23, .	2.9	16
3627	Ultrathin oxygen-containing graphdiyne wrapping CoP for enhanced electrocatalytic hydrogen generation. Nano Research, 2023, 16, 5073-5079.	5.8	3
3628	Innovative Electrochemical Strategies for Hydrogen Production: From Electricity Input to Electricity Output. Angewandte Chemie - International Edition, 2023, 62, .	7.2	37
3629	Innovative elektrochemische Strategien für die Wasserstoffproduktion: Von der Stromspeicherung bis zur Stromerzeugung. Angewandte Chemie, 2023, 135, .	1.6	1
3630	Water induced ultrathin Mo2C nanosheets with high-density grain boundaries for enhanced hydrogen evolution. Nature Communications, 2022, 13, .	5.8	44
3631	Integrated Routing Architecture and Efficiency Optimization Based on Partial Power Conversion. , 2022, , .		0
3632	Construction of Self-Supporting NiCoFe Nanotube Arrays Enabling High-Efficiency Alkaline Oxygen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 54758-54768.	4.0	7
3633	N, S co-doped NiCo2O4@CoMoO4/NF hierarchical heterostructure as an efficient bifunctional electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2022, , .	3.8	5
3634	Recent advances on bioreceptors and metal nanomaterials-based electrochemical impedance spectroscopy biosensors. Rare Metals, 2023, 42, 1098-1117.	3.6	11
3635	Ultrafine Coreâ€ 5 hell Nanostructured Iron Cobalt Ferrocyanide with Excellent Electrocatalytic Activity toward Overall Water Splitting. ChemistrySelect, 2022, 7, .	0.7	8
3636	Dataâ€Driven Machine Learning for Understanding Surface Structures of Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26

#	Article	IF	CITATIONS
3637	Dataâ€Driven Machine Learning for Understanding Surface Structures of Heterogeneous Catalysts. Angewandte Chemie, 2023, 135, .	1.6	5
3638	Magnetoelectric Coupling for Metal–Air Batteries. Advanced Functional Materials, 2023, 33, .	7.8	8
3639	Synthesis and study of electrochemical properties of Ni-Co-V@PrGO to enhance hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, , .	3.8	0
3640	Designing High-Quality Electrocatalysts Based on CoO:MnO ₂ @C Supported on Carbon Cloth Fibers as Bifunctional Air Cathodes for Application in Rechargeable Zn–Air Battery. ACS Applied Materials & Interfaces, 2022, 14, 55594-55607.	4.0	6
3641	Synchronous regulation of morphology and electronic structure of FeNi-P nanosheet arrays by Zn implantation for robust overall water splitting. Nano Research, 2023, 16, 5733-5742.	5.8	4
3642	Longâ€Term Stability Challenges and Opportunities in Acidic Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2023, 135, .	1.6	2
3643	Understanding the Atomic and Defective Interface Effect on Ruthenium Clusters for the Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 49-59.	5.5	47
3644	Heteroatom Doping Synergistic Iron Nitride Induced Charge Redistribution of Carbon based Electrocatalyst with Boosted Oxygen Reduction Reaction. ChemElectroChem, 0, , .	1.7	1
3645	Orbital Modulation with P Doping Improves Acid and Alkaline Hydrogen Evolution Reaction of MoS2. Nanomaterials, 2022, 12, 4273.	1.9	2
3646	Structure Engineering and Electronic Modulation of Transition Metal Interstitial Compounds for Electrocatalytic Water Splitting. Accounts of Materials Research, 2023, 4, 42-56.	5.9	20
3647	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-37.	0.5	6
3648	Ru tailored hydrous cobalt phosphate as a rational approach for high-performance alkaline oxygen evolution reaction. Materials Today Chemistry, 2022, 26, 101267.	1.7	2
3649	Recent advances in transition metal nitrides for hydrogen electrocatalysis in alkaline media: From catalyst design to application. Frontiers in Chemistry, 0, 10, .	1.8	15
3650	Ru-Substituted MnO ₂ for Accelerated Water Oxidation: The Feedback of Strain-Induced and Polymorph-Dependent Structural Changes to the Catalytic Activity and Mechanism. ACS Catalysis, 2023, 13, 256-266.	5.5	15
3651	Recent progress in non-noble metal-based electrocatalysts for urea-assisted electrochemical hydrogen production. International Journal of Hydrogen Energy, 2023, 48, 7219-7259.	3.8	20
3653	Pristine Metal–Organic Frameworks and their Composites for Renewable Hydrogen Energy Applications. Advanced Functional Materials, 2023, 33, .	7.8	18
3654	3D nanosheet networks like mesoporous structure of NiO/CoSe ₂ nanohybrid directly grown on nickel foam for oxygen evolution process. Journal of Taibah University for Science, 2022, 16, 1171-1180.	1.1	3
3655	Electronic structure regulation of nickel-iron layered double hydroxides by tuning ternary component for overall water splitting. Materials Today Sustainability, 2023, 21, 100295.	1.9	4

#	Article	IF	CITATIONS
3656	Role of Electrode Thickness in NiFe Nanogranular Films for Oxygen Evolution Reaction. Journal of Physical Chemistry C, 2022, 126, 21759-21770.	1.5	3
3657	Electrochemical Investigation of the OER Activity for Nickel Phosphite-Based Compositions and Its Morphology-Dependent Fluorescence Properties. Crystals, 2022, 12, 1803.	1.0	2
3658	Unraveling the Electrocatalytic Activity of Platinum Doped Zirconium Disulfide toward the Oxygen Reduction Reaction. Energy & Fuels, 2023, 37, 567-579.	2.5	3
3659	Spin-State Regulation of Nickel Cobalt Spinel toward Enhancing the Electron Transfer Process of Oxygen Redox Reactions in Lithium–Oxygen Batteries. Energy & Fuels, 2023, 37, 735-745.	2.5	3
3660	Longâ€Term Stability Challenges and Opportunities in Acidic Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	61
3661	Power management and system optimization for high efficiency self-powered electrolytic hydrogen and formic acid production. Nano Energy, 2023, 107, 108124.	8.2	9
3662	Construction of ultra-stable NiFe armored catalyst for liquid and flexible quasi-solid-state rechargeable Zn-air batteries. Nano Research, 2023, 16, 4980-4986.	5.8	7
3663	Metal Hydroxides for Water Splitting Applications. ACS Symposium Series, 0, , 101-131.	0.5	1
3664	Highâ€Density NiMnFe Hydroxide Nanoparticleâ€Nanosheet Arrays for Industrial‣evel Electrochemical Oxygen Evolution Reaction. ChemistrySelect, 2022, 7, .	0.7	0
3665	Skeletal Nanostructures Promoting Electrocatalytic Reactions with Three-Dimensional Frameworks. ACS Catalysis, 2023, 13, 355-374.	5.5	10
3666	Controlled fabrication of Ru–O–Se composites for enhanced acidic oxygen evolution. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	2
3667	Surface Engineering in MgCo ₂ O ₄ Spinel Oxide for an Improved Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2023, 11, 744-750.	3.2	6
3668	Nanolaminated Ternary Transition Metal Carbide (MAX Phase)-Derived Core–Shell Structure Electrocatalysts for Hydrogen Evolution and Oxygen Evolution Reactions in Alkaline Electrolytes. Journal of Physical Chemistry Letters, 2023, 14, 481-488.	2.1	14
3669	Atomic design of bidirectional electrocatalysts for reversible Li-CO2 batteries. Materials Today, 2023, 63, 120-136.	8.3	9
3670	Modulating the electronic structure of nickel sulfide via defect engineering for efficient bifunctional overall water splitting. Applied Physics Letters, 2023, 122, .	1.5	4
3671	Mechanisms of Oxygen Evolution Reaction in Metal Oxides: Adsorbate Evolution Mechanism versus Lattice Oxygen Mechanism. , 0, 2, .		0
3672	Pd-based Metallic Glasses as Promising Materials for Hydrogen Energy Applications. Journal of the Electrochemical Society, 2023, 170, 014503.	1.3	5
3673	Solubility of Mercaptopurine as an anti-cancer drug in green solvents by spectral studies and DFT. Main Group Chemistry, 2023, , 1-6.	0.4	0

#	Article	IF	CITATIONS
3674	Two-dimensional ruthenium boride: a Dirac nodal loop quantum electrocatalyst for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 3717-3724.	5.2	4
3675	Modulation of Structural, Electronic, and Optical Properties of Titanium Nitride Thin Films by Regulated In Situ Oxidation. ACS Applied Materials & Interfaces, 2023, 15, 4733-4742.	4.0	4
3676	Manganese and selenium co-doped CeO ₂ @Co ₃ O ₄ porous core–shell nanospheres for enhanced oxygen evolution reactions. Energy Advances, 2023, 2, 338-345.	1.4	1
3677	Single Cobalt Atoms Immobilized on Palladiumâ€Based Nanosheets as 2D Singleâ€Atom Alloy for Efficient Hydrogen Evolution Reaction. Small, 2023, 19, .	5.2	10
3678	Electrocatalytic Porphyrin/Phthalocyanineâ€Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structureâ€Performance Relationships. Advanced Science, 2023, 10, .	5.6	23
3679	Improving the Catalytic Performance of the Hydrogen Evolution Reaction of αâ€MoB ₂ via Rational Doping by Transition Metal Elements. ChemPhysChem, 2023, 24, .	1.0	1
3680	Graphene-Based Derivatives Heterostructured Catalytic Systems for Sustainable Hydrogen Energy via Overall Water Splitting. Catalysts, 2023, 13, 109.	1.6	11
3681	RE-doped (RE = La, Ce and Er) Ni ₂ P porous nanostructures as promising electrocatalysts for hydrogen evolution reaction. Dalton Transactions, 2023, 52, 1895-1901.	1.6	3
3682	Atomic {Pdn+-X} States at Nanointerfaces: Implications in Energy-Related Catalysis. Energies, 2023, 16, 913.	1.6	1
3683	Fabrication of Ru/WO3-W2N/N-doped carbon sheets for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2023, 636, 618-626.	5.0	12
3684	Tailoring Pore Size and Catalytic Activity in Cobalt Iron Layered Double Hydroxides and Spinels by Microemulsionâ€Assisted pHâ€Controlled Coâ€Precipitation. ChemSusChem, 2023, 16, .	3.6	2
3685	Functional Surfactant-Induced Long-Range Compressive Strain in Curved Ultrathin Nanodendrites Boosts Electrocatalysis. Nano Letters, 2023, 23, 1085-1092.	4.5	19
3686	(NiFeCu) ₃ S ₂ @(NiFeCu)O Core-Shelled Heterostructure Having Dual-Anion Vacancies for Stable, High-Efficiency Urea Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2023, 11, 1207-1220.	3.2	7
3687	Facial synthesis of p-p heterojunction composites: Evaluation of their electrochemical properties with photovoltaics-electrolyzer water splitting using two-electrode system. International Journal of Hydrogen Energy, 2023, 48, 13814-13826.	3.8	10
3688	Stabilizing lattice oxygen and interface chemistry of Ni-rich and Co-poor cathodes for high-energy lithium-ion batteries. Journal of Materials Chemistry A, 2023, 11, 2979-2984.	5.2	9
3689	Pd–PdO Nanodomains on Amorphous Ru Metallene Oxide for Highâ€Performance Multifunctional Electrocatalysis. Advanced Materials, 2023, 35, .	11.1	51
3690	Long-term durability test of highly efficient membrane electrode assemblies for anion exchange membrane seawater electrolyzers. Journal of Power Sources, 2023, 558, 232564.	4.0	12
3691	High‑index‑faceted and electron density-optimized Ni3S2 in hierarchical NiWO4-Ni3S2@NiO/NF nanofibers for robust alkaline electrocatalytic hydrogen evolution. Chemical Engineering Journal, 2023, 457, 141188.	6.6	10

#	Article	IF	CITATIONS
3692	Enhanced electrocatalytic activity with an incorporation of oxygen on the surface of di-nickel di-selenide for water splitting: A DFT-based computational design. Applied Surface Science, 2023, 614, 156255.	3.1	2
3693	Review of photo- and electro-catalytic multi-metallic layered double hydroxides. Coordination Chemistry Reviews, 2023, 480, 215008.	9.5	21
3694	Application of rare-earth high entropy boride in electrocatalytic hydrogen evolution reaction. Applied Surface Science, 2023, 615, 156413.	3.1	5
3695	Machine-Learning-Assisted Discovery of High-Efficient Oxygen Evolution Electrocatalysts. Journal of Physical Chemistry Letters, 2023, 14, 170-177.	2.1	5
3696	Effects of Metal–Support Interaction in the Electrocatalysis of the Hydrogen Evolution Reaction of the Metal-Decorated Titanium Dioxide Supported Carbon. Catalysts, 2023, 13, 22.	1.6	4
3697	Construction of binary metal sulphides via lignosulfonate as sulphur source for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 9636-9646.	3.8	4
3698	Self-assembly synthesis of Ru nanoparticles anchored on B, N co-doping carbon support for hydrogen evolution: Electronic state induced by the strong metal-support interactions. International Journal of Hydrogen Energy, 2023, 48, 9682-9689.	3.8	5
3699	Amorphous mixed Ir–Mn oxide catalysts for the oxygen evolution reaction in PEM water electrolysis for H2 production. International Journal of Hydrogen Energy, 2023, 48, 10532-10544.	3.8	9
3700	Future Applications of Photocatalysis. , 2016, , 232-252.		0
3701	Synthesis of Platinum Nanocrystals Dispersed on Nitrogen-Doped Hierarchically Porous Carbon with Enhanced Oxygen Reduction Reaction Activity and Durability. Nanomaterials, 2023, 13, 444.	1.9	2
3702	Controllable synthesis of MOFs-derived porous and tubular bimetallic Fe–Ni phosphides for efficient electrocatalytic water splitting. Catalysis Science and Technology, 2023, 13, 1512-1517.	2.1	8
3703	Recent Progress of Non-Pt Catalysts for Oxygen Reduction Reaction in Fuel Cells. Processes, 2023, 11, 361.	1.3	8
3704	Synthesis of amorphous trimetallic PdCuNiP nanoparticles for enhanced OER. Frontiers in Chemistry, 0, 11, .	1.8	2
3705	Data-driven design of electrocatalysts: principle, progress, and perspective. Journal of Materials Chemistry A, 2023, 11, 3849-3870.	5.2	8
3706	A hybrid PEMFC/supercapacitor device with high energy and power densities based on reduced graphene oxide/Nafion/Pt electrode. International Journal of Hydrogen Energy, 2023, 48, 16072-16082.	3.8	2
3707	A review on electrocatalysis for alkaline oxygen evolution reaction (OER) by Fe-based catalysts. Journal of Materials Science, 0, , .	1.7	3
3708	A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Advances, 2023, 13, 3843-3876.	1.7	81
3709	Superaerophilic/superaerophobic cooperative electrode for efficient hydrogen evolution reaction via enhanced mass transfer. Science Advances, 2023, 9, .	4.7	36

#	Article	IF	CITATIONS
3710	Kinetically Accelerating Elementary Steps via Bridged Ruâ€H State for the Hydrogenâ€Evolution in Anionâ€Exchange Membrane Electrolyzer. Advanced Functional Materials, 2023, 33, .	7.8	19
3711	Activating the hydrogen evolution reaction in low-dimensional carbon by partial hydrogenation: Role of the hybrid sp2-sp3 orbital interface. ChemPhysMater, 2023, 2, 180-184.	1.4	3
3713	Transition Metalâ€based Perovskite Oxides: Emerging Electrocatalysts for Oxygen Evolution Reaction. ChemCatChem, 2023, 15, .	1.8	16
3714	Elucidating the chirality transfer mechanisms during enantioselective synthesis for the spin-controlled oxygen evolution reaction. Energy and Environmental Science, 2023, 16, 1187-1199.	15.6	6
3715	Construction of a S and Fe co-regulated metal Ni electrocatalyst for efficient alkaline overall water splitting. Journal of Materials Chemistry A, 2023, 11, 4661-4671.	5.2	13
3716	Engineering Electronic Spin State of a CoNi Alloy for an Efficient Oxygen Reduction Reaction. ACS Applied Energy Materials, 2023, 6, 1888-1896.	2.5	9
3717	Self-supporting NiMo-Fe-P nanowire arrays as bifunctional catalysts for efficient overall water splitting. Dalton Transactions, 0, , .	1.6	0
3718	Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. , 2023, 42, 100021.		2
3719	Heterostructured nanocatalysts to boost the hydrogen evolution reaction in neutral electrolyte. Chem Catalysis, 2023, 3, 100499.	2.9	3
3720	Leadâ€Free Bismuthâ€Based Halide Perovskites with Excellent Stability for Visibleâ€lightâ€Driven Photoelectrochemical Water Splitting. ChemistrySelect, 2023, 8, .	0.7	1
3721	(Fe, F) co-doped nickel oxyhydroxide for highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 4619-4626.	5.2	12
3722	MXenes for energy applications. , 2023, , 475-502.		1
3723	Tuning of the electronic and photocatalytic properties of Janus WSiGeZ ₄ (Z = N, P, and As) monolayers <i>via</i> strain engineering. Physical Chemistry Chemical Physics, 2023, 25, 7278-7288.	1.3	12
3724	Bi-Phase NiCo2S4-NiS2/CFP Nanocomposites as a Highly Active Catalyst for Oxygen Evolution Reaction. Coatings, 2023, 13, 313.	1.2	3
3725	Direct Use of 3d-Transition Metal Organic Framework as Catalyst for Oxygen Evolving Reaction (OER) and Hydrogen Evolving Reaction (HER). Asian Journal of Chemistry, 2023, 35, 277-288.	0.1	1
3726	Ag Nanoparticle-Decorated V ₂ CT _{<i>x</i>} MXene Nanosheets as Catalysts for Water Splitting. ACS Applied Nano Materials, 2023, 6, 2374-2384.	2.4	13
3727	Understanding the influence of bending on OER activity in metal phthalocyanines: A first-principles study. Applied Surface Science, 2023, 618, 156582.	3.1	6
3728	High-entropy alloys in water electrolysis: Recent advances, fundamentals, and challenges. Science China Materials, 2023, 66, 1681-1701.	3.5	24

#	Article	IF	CITATIONS
3729	A trifunctional Co _{0.85} Se/NC collaborated electrocatalyst enables a self-powered energy system for uninterrupted H ₂ production. Journal of Materials Chemistry A, 2023, 11, 8024-8037.	5.2	13
3730	Progress in electrocatalytic hydrogen evolution of transition metal alloys: synthesis, structure, and mechanism analysis. Nanoscale, 2023, 15, 7202-7226.	2.8	8
3731	Recent advances in the synthesis and electrocatalytic application of MXene materials. Chemical Communications, 2023, 59, 3968-3999.	2.2	15
3732	Structural transformation of metal–organic frameworks and identification of electrocatalytically active species during the oxygen evolution reaction under neutral conditions. Inorganic Chemistry Frontiers, 2023, 10, 2961-2977.	3.0	4
3733	Hybrid Nanostructure of Sputter Decorated Nanodots of Ag ₂ 0/AgO over Flower-like Mn–Co–Cu Ternary Metal Oxide for Electrocatalytic Oxygen Evolution Reaction. ACS Applied Energy Materials, 2023, 6, 2286-2295.	2.5	8
3734	Surface-Dependent Hydrogen Evolution Activity of Copper Foil. Materials, 2023, 16, 1777.	1.3	0
3735	Electronic properties and hydrogen evolution reaction performance of silicene with precious metal-doped nonmetal ring: first-principles calculations. Journal of Materials Science, 2023, 58, 4487-4498.	1.7	0
3736	A review on the synthesis, properties, and characterizations of graphitic carbon nitride (g-C3N4) for energy conversion and storage applications. Materials Today Physics, 2023, 34, 101080.	2.9	17
3737	Prussian blue-derived hollow carbon-wrapped Fe-doped CoS2 nanocages as durable electrocatalyst for efficient hydrogen evolution. Electrochimica Acta, 2023, 448, 142187.	2.6	7
3738	Cobalt-doped IrRu bifunctional nanocrystals for reversal-tolerant anodes in proton-exchange membrane fuel cells. Chemical Engineering Journal, 2023, 461, 141823.	6.6	2
3739	Advanced in-situ electrochemical scanning probe microscopies in electrocatalysis. Chinese Journal of Catalysis, 2023, 47, 93-120.	6.9	7
3740	Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chinese Journal of Catalysis, 2023, 47, 32-66.	6.9	9
3741	Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coordination Chemistry Reviews, 2023, 483, 215066.	9.5	29
3742	Oxygen Reduction and Hydrogen Evolution Reactions on Zigzag ReS2 Nanoribbons. Applied Surface Science, 2023, 618, 156677.	3.1	1
3743	Electronically modulated d-band centers of MOF-derived carbon-supported Ru/HfO2 for oxygen reduction and aqueous/flexible zinc-air batteries. Journal of Energy Chemistry, 2023, 80, 247-255.	7.1	7
3744	Mo, V and M (M=Mn, Fe, Co, Cu) Co-modulated Ni oxides in-situ derived from nickel foam as efficient electrocatalysts for alkaline hydrogen evolution and oxygen evolution. Molecular Catalysis, 2023, 542, 113132.	1.0	4
3745	Metal-organic frameworks based single-atom catalysts for advanced fuel cells and rechargeable batteries. Journal of Energy Chemistry, 2023, 80, 501-534.	7.1	17
3746	Phytic acid empowered two nanos "Polypyrrole tunnels and transition Metal-(Oxy)hydroxide Sheets― in a single platform for unmitigated redox water splitting. Chemical Engineering Journal, 2023, 463, 142280.	6.6	13

#	Article	IF	CITATIONS
3747	Low temperature plasma-assisted synthesis and modification of water splitting electrocatalysts. Electrochimica Acta, 2023, 449, 142179.	2.6	6
3748	Material-based generation, storage, and utilisation of hydrogen. Progress in Materials Science, 2023, 135, 101104.	16.0	31
3749	Advances in MXenes synthesis and MXenes derived electrocatalysts for oxygen electrode in metal-air batteries: A review. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 292, 116400.	1.7	5
3750	Screening of transition metal-based MOF as highly efficient bifunctional electrocatalysts for oxygen reduction and oxygen evolution. Surfaces and Interfaces, 2023, 38, 102821.	1.5	9
3751	Understanding the potential-induced activation of a cobalt MOF electrocatalyst for the oxygen evolution reaction. Applied Surface Science, 2023, 623, 157001.	3.1	3
3752	CoPx co-catalyst decorated CdS hollow nanocubes as efficient photocatalysts for hydrogen production under visible light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 666, 131368.	2.3	2
3753	Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coordination Chemistry Reviews, 2023, 484, 215117.	9.5	7
3754	Understanding the copper-iridium nanocrystals as highly effective bifunctional pH-universal electrocatalysts for water splitting. Journal of Colloid and Interface Science, 2023, 642, 779-788.	5.0	2
3755	Controlled synthesis of NiWO4 combined with NiSe2 with heterostructure on nickel foam for efficient overall water splitting. Journal of Alloys and Compounds, 2023, 951, 169941.	2.8	8
3756	Template-based synthesis of Co3O4 and Co3O4/SnO2 bifunctional catalysts with enhanced electrocatalytic properties for reversible oxygen evolution and reduction reaction. International Journal of Hydrogen Energy, 2023, 48, 27568-27581.	3.8	4
3757	Mainâ€Group <i>s</i> â€Block Element Lithium Atoms within Carbon Frameworks as Highâ€Active Sites for Electrocatalytic Reduction Reactions. Advanced Functional Materials, 2023, 33, .	7.8	4
3758	Anion assisted completely reconfigured manganese oxides with optimal proton adsorption for boosting acidic hydrogen evolution reaction. Chemical Engineering Journal, 2023, 465, 143006.	6.6	2
3759	Origin of Surface Reconstruction in Lattice Oxygen Oxidation Mechanism Basedâ€Transition Metal Oxides: A Spontaneous Chemical Process. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
3760	Emerging trends of electrocatalytic technologies for renewable hydrogen energy from seawater: Recent advances, challenges, and techno-feasible assessment. Journal of Energy Chemistry, 2023, 80, 658-688.	7.1	20
3761	Ni3N@Ni juncture layer enabled performance enhanced electrocatalytic water oxidation. Journal of Electroanalytical Chemistry, 2023, 938, 117470.	1.9	2
3762	Metal-organic framework derived FeNi alloy nanoparticles embedded in N-doped porous carbon as high-performance bifunctional air-cathode catalysts for rechargeable zinc-air battery. Journal of Colloid and Interface Science, 2023, 641, 265-276.	5.0	6
3763	Strong phosphide-metaphosphate interaction in RuP/CoNiP4O12 for enhanced electrocatalytic water splitting. Applied Catalysis B: Environmental, 2023, 328, 122447.	10.8	23
3764	Boosting alkaline photocatalytic H2O2 generation by incorporating pyrophosphate on g-C3N4 for effective proton shuttle and oxygen activation. Applied Catalysis B: Environmental, 2023, 328, 122490.	10.8	21

#	Article	IF	CITATIONS
3765	Surface hydroxyl group-enriched nickel cobalt molybdate hydrate for improved oxygen evolution activity in an anion exchange membrane water electrolyzer. Applied Catalysis B: Environmental, 2023, 328, 122504.	10.8	12
3766	Direct Growth of Uniform Bimetallic Coreâ€Shell or Intermetallic Nanoparticles on Carbon via a Surfaceâ€Confinement Strategy for Electrochemical Hydrogen Evolution Reaction. Advanced Functional Materials, 2023, 33, .	7.8	10
3767	Bi-functional Ni3S2@MoS2 heterostructure with strong built-in field as highly-efficient electrolytic catalyst. Journal of Electroanalytical Chemistry, 2023, 931, 117185.	1.9	2
3768	A controllable cobalt-doping improve electrocatalytic activity of ZnO basal plane for oxygen evolution reaction: A first-principles calculation study. Journal of Electroanalytical Chemistry, 2023, 932, 117191.	1.9	2
3769	Rational design of amorphous NiFe-LDH/Co3O4–P heterostructure bifunctional electrocatalysts for overall water splitting. Materials Chemistry and Physics, 2023, 297, 127412.	2.0	1
3770	NiFe-based tungstate@layered double hydroxide heterostructure supported on graphene as efficient oxygen evolution reaction catalyst. Materials Today Chemistry, 2023, 28, 101369.	1.7	2
3771	Embedded 1T-rich MoS2 into C3N4 hollow microspheres for effective photocatalytic hydrogen production. Chemical Physics Letters, 2023, 814, 140331.	1.2	3
3772	Triclosan and related compounds in the environment: Recent updates on sources, fates, distribution, analytical extraction, analysis, and removal techniques. Science of the Total Environment, 2023, 870, 161885.	3.9	6
3773	Fe/N/S Co-doped Porous Carbon from the Co-processing Residue of Coal and Heavy Oil for an Efficient Oxygen Reduction Reaction. Industrial & Engineering Chemistry Research, 2023, 62, 2536-2547.	1.8	2
3774	Activating MoS ₂ Basal Plane via Nonâ€noble Metal Doping For Enhanced Hydrogen Production. ChemistrySelect, 2023, 8, .	0.7	4
3775	Co3C-stabilized-CoFe heterostructure wrapped by bamboo-like N-doped carbon nanotubes for highly-efficient oxygen electrocatalysis. Chemical Engineering Journal, 2023, 459, 141591.	6.6	5
3776	Boosting Oxygen Electrocatalytic Activity of Fe–N–C Catalysts by Phosphorus Incorporation. Journal of the American Chemical Society, 2023, 145, 3647-3655.	6.6	93
3777	Lignin-derived dual-doped carbon nanocomposites as low-cost electrocatalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663, 131105.	2.3	0
3778	Hydrochloric acid etching induced flower-like NiFe-layered double hydroxide as efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 17045-17054.	3.8	6
3780	Carbon-supported non-noble metal single-atom catalysts for electro-catalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 17106-17136.	3.8	9
3781	Soft Fiber Electronics Based on Semiconducting Polymer. Chemical Reviews, 2023, 123, 4693-4763.	23.0	40
3782	Nanoarchitectonics of Layered Metal Chalcogenides-Based Ternary Electrocatalyst for Water Splitting. Energies, 2023, 16, 1669.	1.6	3
3783	First-principles study of the effect of the local coordination environment on the electrochemical activity of Pd1-CxNy single atom catalysts. Chemical Engineering Science, 2023, 270, 118551.	1.9	2

#	Article	IF	CITATIONS
3784	Rhenium Suppresses Iridium (IV) Oxide Crystallization and Enables Efficient, Stable Electrochemical Water Oxidation. Small, 2023, 19, .	5.2	14
3785	Tuning of magnetic, electronic and electrolytic water properties of silicene supported precious-metal by non-metal doping and vacancy defect. FlatChem, 2023, 38, 100486.	2.8	2
3786	Metal organic frameworks: Mastery in electroactivity for hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 2023, 48, 17801-17826.	3.8	8
3787	Single Atom Catalysis for Hydrogen Evolution Reaction using Transitionâ€metal Atoms Doped gâ€C ₃ N ₃ : A Density Functional Theory Study. ChemistrySelect, 2023, 8, .	0.7	3
3788	Floret-like Fe-Nx nanoparticle-embedded porous carbon superstructures from a Fe-covalent triazine polymer boosting oxygen electroreduction. Frontiers of Chemical Science and Engineering, 2023, 17, 525-535.	2.3	2
3789	Enhancing the oxygen evolution reaction of cobalt hydroxide by fabricating nanocomposites with fluorine-doped graphene oxide. Dalton Transactions, 2023, 52, 3877-3883.	1.6	3
3790	Ambient Electrosynthesis toward Singleâ€Atom Sites for Electrocatalytic Green Hydrogen Cycling. Advanced Materials, 2023, 35, .	11.1	26
3791	Achieving Efficient Electrocatalytic Oxygen Evolution in Acidic Media on Yttrium Ruthenate Pyrochlore through Cobalt Incorporation. Advanced Functional Materials, 2023, 33, .	7.8	25
3792	Rhenium-Based Electrocatalysts for Water Splitting. ACS Materials Au, 2023, 3, 177-200.	2.6	11
3793	Nano Siâ€Doped Ruthenium Oxide Particles from Caged Precursors for Highâ€Performance Acidic Oxygen Evolution. Advanced Science, 2023, 10, .	5.6	9
3794	Recent developments in transition metal-based MOFs for electrocatalytic water splitting emphasizing fundamental and structural aspects. Materials Chemistry Frontiers, 2023, 7, 2120-2152.	3.2	12
3795	Plasma Etching of Pyrite-Type Nickel Diselenide Nanosheets to Create Selenium Vacancies for Applications as Electrocatalysts for Hydrogen Evolution. ACS Applied Nano Materials, 2023, 6, 3848-3855.	2.4	3
3796	F and rare V ⁴⁺ doped cobalt hydroxide hybrid nanostructures: excellent OER activity with ultralow overpotential. Dalton Transactions, 2023, 52, 4606-4615.	1.6	3
3797	Metal-free carbon-based catalysts design for oxygen reduction reaction towards hydrogen peroxide: From 3D to 0D. Materials Today, 2023, 63, 339-359.	8.3	14
3798	A new iron(II) complex as bi-functional electrocatalyst for hydrogen evolution reaction and hydrogen peroxide sensing. Journal of Coordination Chemistry, 2023, 76, 479-493.	0.8	0
3799	Development of copper foam-based composite catalysts for electrolysis of water and beyond. Sustainable Energy and Fuels, 2023, 7, 1604-1626.	2.5	2
3800	Encapsulating dual-phase WC-W2C nanoparticles into hollow carbon dodecahedrons for all-pH electrocatalytic hydrogen evolution. Chemical Engineering Journal, 2023, 462, 142132.	6.6	7
3801	Morphologyâ€Engineering Construction of Antiâ€Aggregated Co/Nâ€Doped Hollow Carbon from Metalâ€Organic Frameworks for Efficient Biomass Upgrading. Small, 2023, 19, .	5.2	10

#	Article	IF	CITATIONS
3802	Metal-organic frameworks-derived layered double hydroxides: From controllable synthesis to various electrochemical energy storage/conversion applications. Advances in Colloid and Interface Science, 2023, 313, 102865.	7.0	15
3803	Recent progress in synergistic electrocatalysis for generation of valuable products based on water cycle. Nano Research, 2023, 16, 6444-6476.	5.8	6
3804	Spinel-Anchored Iridium Single Atoms Enable Efficient Acidic Water Oxidation via Intermediate Stabilization Effect. ACS Catalysis, 2023, 13, 3757-3767.	5.5	21
3805	Research on engineered electrocatalysts for efficient water splitting: a comprehensive review. Physical Chemistry Chemical Physics, 2023, 25, 8992-9019.	1.3	4
3806	Effects of Group IB Metals of Au/Ag/Cu on Boosting Oxygen Evolution Reaction of Cobalt Hydroxide. ChemCatChem, 2023, 15, .	1.8	3
3807	Recent advances and future prospects on Ni3S2-Based electrocatalysts for efficient alkaline water electrolysis. Green Energy and Environment, 2024, 9, 659-683.	4.7	1
3808	The RuO ₂ /NiRu heterogeneous interface optimizes the d-band center of the Ni–Ru catalyst for high-performance alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 10720-10726.	5.2	3
3809	Stepwise Monomicelle Assembly for Highly Ordered Mesoporous TiO ₂ Membranes with Precisely Tailored Mesophase and Porosity. Jacs Au, 2023, 3, 1141-1150.	3.6	7
3810	Emerging high entropy metal sulphides and phosphides for electrochemical water splitting. Journal of Materials Chemistry A, 2023, 11, 10463-10472.	5.2	13
3811	Identification and Understanding of Active Sites of Nonâ€Noble Ironâ€Nitrogenâ€Carbon Catalysts for Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2023, 33, .	7.8	16
3812	Boosting alkaline hydrogen evolution performance by constructing ultrasmall Ru clusters/Na+, K+-decorated porous carbon composites. Nano Research, 2023, 16, 8836-8844.	5.8	10
3813	Metal-organic frameworks derived interfacing Fe2O3/ZnCo2O4 multimetal oxides as a bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2023, 449, 142242.	2.6	7
3814	Interface engineering of CeO ₂ nanoparticle/Bi ₂ WO ₆ nanosheet nanohybrids with oxygen vacancies for oxygen evolution reactions under alkaline conditions. RSC Advances, 2023, 13, 8873-8881.	1.7	0
3815	Origin of Surface Reconstruction in Lattice Oxygen Oxidation Mechanism Basedâ€Transition Metal Oxides: A Spontaneous Chemical Process. Angewandte Chemie, 2023, 135, .	1.6	0
3816	Directed Ureaâ€ŧoâ€Nitrite Electrooxidation via Tuning Intermediate Adsorption on Co, Ge Coâ€Đoped Ni Sites. Advanced Functional Materials, 2023, 33, .	7.8	21
3817	Ternary compound heterojunction from isomerism h-CdS/c-CdSe exhibits boosting photoelectrochemical and hydrogen evolution reaction properties. International Journal of Hydrogen Energy, 2023, 48, 20324-20337.	3.8	10
3818	Synthesis of FeOOH scaly hollow tubes based on Cu2O wire templates toward high-efficiency oxygen evolution reaction. Rare Metals, 2023, 42, 1836-1846.	3.6	6
3819	Trends and Prospects of Bulk and Singleâ€Atom Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2023, 13, .	10.2	25

#	Article	IF	CITATIONS
3820	A Prompt Decarbonization Pathway for Shipping: Green Hydrogen, Ammonia, and Methanol Production and Utilization in Marine Engines. Atmosphere, 2023, 14, 584.	1.0	36
3821	Heteroatom-doped carbon materials from bimetal covalent organic polymers as efficient bifunctional electrocatalysts in oxygen reduction and oxygen evolution reactions. Materials Today Sustainability, 2023, 22, 100389.	1.9	1
3822	Hollow tubular Co3S4/NiS/FeS as high-efficiency tri-functional electrocatalyst for Zn-air battery and overall water splitting. Journal of Alloys and Compounds, 2023, 948, 169752.	2.8	5
3823	Oxygen Evolution/Reduction Reaction Catalysts: From <i>In Situ</i> Monitoring and Reaction Mechanisms to Rational Design. Chemical Reviews, 2023, 123, 6257-6358.	23.0	81

 $3824 \qquad \texttt{w}^{\texttt{o}} \texttt{t}^{\texttt{o}} \texttt{v}^{\texttt{o}} \texttt{t}^{\texttt{a}} \texttt{c}^{\texttt{o}}, \texttt{v}^{\texttt{a}} \texttt{t}^{\texttt{a}} \texttt{c}^{\texttt{a}}, \texttt{v}^{\texttt{a}} \texttt{t}^{\texttt{a}} \texttt{c}^{\texttt{a}}, \texttt{v}^{\texttt{a}} \texttt{c}^{\texttt{a}}, \texttt{v}^{\texttt{a}}, \texttt{v}^{\texttt{a}} \texttt{c}^{\texttt{a}}, \texttt{v}^{\texttt{a}}, \texttt{v}^{\texttt{a}} \texttt{c}^{\texttt{a}}, \texttt{v}^{\texttt{a}}, \texttt{v}^{\texttt{a}, \texttt{v}^{\texttt{a}}, \texttt{v}^{\texttt{a}}, \texttt{v}^{\texttt{a}}, \texttt{v}^{\texttt{a}, \texttt{v}^{\texttt{a}}, \texttt{v}^{\texttt{a}, \texttt{v}^{\texttt{a}}, \texttt{v}^{\texttt{a}}, \texttt{v}^{\texttt{a}, \texttt{v}^{\texttt{a}}, \texttt{v}^{\texttt{$

3825	Sulfur-doped NiFe(CN) ₅ NO nanoparticles as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 8904-8911.	5.2	7
3826	Passivating Oxygen Evolution Activity of NiFe‣DH through Heterostructure Engineering to Realize Highâ€Efficiency Electrocatalytic Formate and Hydrogen Coâ€Production. Small, 2023, 19, .	5.2	10
3827	Easy and Support-Free Synthesis of Bimetallic Borates for Boosting the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2023, 6, 3735-3744.	2.5	3
3828	Promoting Plasmonic Hot Hole Extraction and Photothermal Effect for the Oxygen Evolution Reactions. Chemistry - A European Journal, 2023, 29, .	1.7	1
3829	Bifunctional Catalysts with Morphology-Controllable Iron Sulfide Nanosheets for Overall Water Splitting. International Journal of Energy Research, 2023, 2023, 1-11.	2.2	0
3830	Design Strategy of Corrosion-Resistant Electrodes for Seawater Electrolysis. Materials, 2023, 16, 2709.	1.3	3
3831	Nonâ€planar Nestâ€like [Fe ₂ S ₂] Cluster Sites for Efficient Oxygen Reduction Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
3832	Lithium Electrochemical Tuning Engineering in an Aqueous System of LiCoO ₂ for Enhanced Oxygen Evolution Activity. Journal of the Electrochemical Society, 2023, 170, 046502.	1.3	1
3833	Metal Phosphates/Phosphonates for Fuel Cells. Engineering Materials, 2023, , 193-207.	0.3	0
3834	A corpus of CO2 electrocatalytic reduction process extracted from the scientific literature. Scientific Data, 2023, 10, .	2.4	5
3835	Nonâ€planar Nestâ€like [Fe ₂ S ₂] Cluster Sites for Efficient Oxygen Reduction Catalysis. Angewandte Chemie, 2023, 135, .	1.6	1
3836	Defects in Carbon-Based Materials for Electrocatalysis: Synthesis, Recognition, and Advances. Accounts of Chemical Research, 2023, 56, 948-958.	7.6	24
3837	Cuâ€Doped Heterointerfaced Ru/RuSe ₂ Nanosheets with Optimized H and H ₂ O Adsorption Boost Hydrogen Evolution Catalysis. Advanced Materials, 2023, 35, .	11.1	26

#	Article	IF	CITATIONS
3838	Emerging Novel Chalcogenide-Based Materials for Electro Water Splitting Applications. , 2023, , 245-269.		0
3839	Colossal Dielectric Perovskites of Calcium Copper Titanate (CaCu ₃ Ti ₄ O ₁₂) with Lowâ€Iridium Dopants Enables Ultrahigh Mass Activity for the Acidic Oxygen Evolution Reaction. Advanced Science, 2023, 10, .	5.6	5
3841	3D Flower-like Zn substituted CuCo2O4 spinel catalyst for electrochemical oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2023, 937, 117406.	1.9	5
3842	Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution. Nature Communications, 2023, 14, .	5.8	28
3843	Synergistic effects of Mo2C/CeO2 nanoparticles anchored on nitrogen-doped carbon as an efficiently electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 23831-23841.	3.8	5
3844	DFTç"ç©¶ä,‰å•原åå,¬åŒ–å‰,用于ä,€æ¥N–C–Nå¶è"啿^•å°¿ç´. Science China Materials, 2023, 66, 2346	-23553.	3
3845	Atomically Structured Metalâ€Organic Frameworks: A Powerful Chemical Path for Noble Metalâ€Based Electrocatalysts. Advanced Functional Materials, 2023, 33, .	7.8	6
3846	NiS/MoS ₂ Anchored Multiwall Carbon Nanotube Electrocatalyst for Hydrogen Generation and Energy Storage Applications. ChemNanoMat, 2023, 9, .	1.5	12
3847	Ni electrodes with 3D-ordered surface structures for boosting bubble releasing toward high current density alkaline water splitting. Ultrasonics Sonochemistry, 2023, 96, 106398.	3.8	3
3848	Recent Advances in Manganese-Based Materials for Electrolytic Water Splitting. International Journal of Molecular Sciences, 2023, 24, 6861.	1.8	3
3849	Interstitial Hydrogen Atom to Boost Intrinsic Catalytic Activity of Tungsten Oxide for Hydrogen Evolution Reaction. Small, 2023, 19, .	5.2	4
3850	Unconventional Self-Reconstructed Trimer-like Metal Zigzag Edge of 1T-Phase Transition Metal Dichalcogenides. Journal of Physical Chemistry Letters, 2023, 14, 3651-3657.	2.1	0
3851	In Situ Construction of Highâ€Đensity Solid Electrolyte Interphase from MOFs for Advanced Zn Metal Anodes. Advanced Functional Materials, 2023, 33, .	7.8	18
3852	Tuning the Electronic Structure of a Novel 3D Architectured Co-N-C Aerogel to Enhance Oxygen Evolution Reaction Activity. Gels, 2023, 9, 313.	2.1	0
3853	Boron-Doped Activated Carbon Supports for Cobalt-Catalyzed Oxygen Evolution in Alkaline Electrolyte. ACS Applied Materials & Interfaces, 2023, 15, 18771-18780.	4.0	3
3854	Significant improvement of TiO2 photocatalytic hydrogen generation by photothermic synergistic action and underlying mechanism. International Journal of Hydrogen Energy, 2023, 48, 26665-26675.	3.8	4
3855	A Review of Cobalt-Based Metal Hydroxide Electrode for Applications in Supercapacitors. Advances in Materials Science and Engineering, 2023, 2023, 1-15.	1.0	3
3856	Basal plane activation of two-dimensional transition metal dichalcogenides <i>via</i> alloying for the hydrogen evolution reaction: first-principles calculations and machine learning prediction. Journal of Materials Chemistry A, 2023, 11, 9964-9975.	5.2	4

#	Article	IF	CITATIONS
3857	V modified Ni-based layer hydroxides for the electrocatalytic upgrading of amines to nitriles. Inorganic Chemistry Frontiers, 2023, 10, 4695-4701.	3.0	4
3858	Recent Advances in Nanocarbon-Based Nonprecious Metal Catalysts for Oxygen/Hydrogen Reduction/Evolution Reactions and Zn-Air Battery. Bulletin of the Chemical Society of Japan, 2023, 96, 429-443.	2.0	3
3859	Recent advances, properties, fabrication and opportunities in two-dimensional materials for their potential sustainable applications. Energy Storage Materials, 2023, 59, 102780.	9.5	12
3860	Highly enhanced electrocatalytic OER activity of water-coordinated copper complexes: effect of lattice water and bridging ligand. RSC Advances, 2023, 13, 12065-12071.	1.7	2
3861	Mo/P doped NiFeSe as bifunctional electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2023, 48, 27642-27651.	3.8	7
3862	Controlled growth of Sb ₂ S ₃ nanorods on phosphorous doped reduced graphene oxide for enhanced overall water splitting. New Journal of Chemistry, 0, , .	1.4	1
3863	Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions. Chemical Society Reviews, 2023, 52, 3215-3264.	18.7	36
3864	Intrinsic carbon structural imperfections for enhancing energy conversion electrocatalysts. Chemical Engineering Journal, 2023, 466, 143060.	6.6	7
3865	Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). Advanced Materials, 2024, 36, .	11.1	13
3866	Nickel sulfide-based electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2023, 48, 27992-28017.	3.8	8
3867	Cyclic ether on Pt-based carbon support for enhanced alkaline hydrogen evolution. Journal of Electroanalytical Chemistry, 2023, 939, 117476.	1.9	4
3868	Monolithic Nickel Catalyst Featured with Highâ€Density Crystalline Steps for Stable Hydrogen Evolution at Large Current Density. Small, 2023, 19, .	5.2	4
3880	Electrochemically exfoliated \hat{I}^2 -Co(OH)2 for energy conversion reactions. , 2023, , 107-124.		0
3884	Operando Electrochemical Raman Spectroscopy. Springer Handbooks, 2023, , 189-211.	0.3	1
3885	Surface self-reconstruction of catalysts in electrocatalytic oxygen evolution reaction. , 2024, , 316-327.		0
3886	Catalysts: Platinum-free. , 2023, , .		0
3894	Functionalization of Graphene and Factors Affecting Catalytic Performance. , 2023, , 154-207.		0
3901	Strategies for the design of ruthenium-based electrocatalysts toward acidic oxygen evolution reaction. , 2023, 1, 619-644.		2

#	Article	IF	CITATIONS
3919	Engineering Iridium-Based Oxygen Evolution Reaction Electrocatalysts for Proton Exchange Membrane Water Electrolyzers. ACS Catalysis, 2023, 13, 8670-8691.	5.5	8
3944	Environmental applications of single-atom catalysts based on graphdiyne. Catalysis Science and Technology, 2023, 13, 5154-5174.	2.1	2
3950	Emerging transition metal and carbon nanomaterial hybrids as electrocatalysts for water splitting: a brief review. Materials Horizons, 2023, 10, 2764-2799.	6.4	5
3973	Urea electrooxidation: Research progress and application of supported nickel-based catalysts. Ionics, 2023, 29, 2969-2987.	1.2	0
3986	Hybrid water electrolysis with integrated and cascading reactions using two-dimensional electrocatalysts. Journal of Materials Chemistry A, 2023, 11, 16433-16457.	5.2	5
3989	Shining light on layered metal phosphosulphide catalysts for efficient water electrolysis: preparation, promotion strategies, and perspectives. Green Chemistry, 2023, 25, 6170-6187.	4.6	2
3999	Dynamic investigation of oxygen defects on transition metal-based electrocatalysts: formation, characterization, and mechanism during alkaline oxygen evolution reaction. Science China Chemistry, 2023, 66, 2221-2237.	4.2	1
4007	Surface engineering of 1-D nanocatalysts for value-added selective electrooxidation of organic chemicals. Nano Research, 2024, 17, 1327-1336.	5.8	1
4027	Electroreforming injects a new life into solid waste. , 2023, 1, 892-920.		7
4030	Antimony oxides-protected ultrathin Ir-Sb nanowires as bifunctional hydrogen electrocatalysts. Nano Research, 2024, 17, 1042-1049.	5.8	2
4032	Fullerene-derived nanocomposite as efficient electrocatalyst for water splitting and Zn-air battery. Materials Chemistry Frontiers, 0, , .	3.2	0
4035	Emerging on-chip microcells in electrocatalysis: functions of window and circuit. , 2023, 1, 874-891.		1
4040	Recent advances in two-dimensional nanomaterials as bifunctional electrocatalysts for full water splitting. Journal of Materials Chemistry A, 2023, 11, 18502-18529.	5.2	7
4043	Amazing enhancement of OER performances: creating a well-designed functional Ni and N-doped carbon layer as a support material for fabricating a NiFe-LDH electrocatalyst. Chemical Communications, 2023, 59, 11572-11575.	2.2	1
4044	Anion-induced electronic localization and polarized cobalt clusters for highly efficient water splitting. Materials Horizons, 2023, 10, 5633-5642.	6.4	1
4069	2D-Transition Metal Carbides and Nitrides: Materials for the Next Generation. ACS Symposium Series, 0, , 1-25.	0.5	0
4076	Metal Oxides for Future Electrochemical Energy Storage Devices: Batteries and Supercapacitors. Progress in Optical Science and Photonics, 2023, , 291-330.	0.3	0
4089	Domestically Interacted Scientists Drive Nanocarbon Applied Research in China. , 2023, , .		Ο

~			_	
C^{-1}		ON	DEDC	NDT
	IAH		REPC	UK L

#	Article	IF	CITATIONS
4093	Bimetallic Heterogeneous Catalysis for Oxygen Evaluation Reaction with Varying Concentrations of Silica. Springer Proceedings in Materials, 2023, , 389-394.	0.1	0
4128	Application of Organic–Inorganic Nanodielectrics for Energy Storage. Nanostructure Science and Technology, 2024, , 385-414.	0.1	0
4138	2D non-layered metal dichalcogenides. Semiconductors and Semimetals, 2023, , 63-100.	0.4	0
4145	Promising Ce single-atom-dispersed nitrogen-doped graphene catalysts for the hydrogen evolution reaction. Materials Advances, 2023, 4, 6498-6506.	2.6	0
4150	Unified ORR mechanism criteria <i>via</i> charge–spin–coordination of Fe functional units. Energy and Environmental Science, 2024, 17, 27-48.	15.6	1
4190	Metal–organic frameworks for electrocatalytic hydrogen peroxide production. Materials Chemistry Frontiers, 2024, 8, 1084-1100.	3.2	0
4193	High-performance artificial leaf: from electrocatalyst design to solar-to-chemical conversion. Materials Chemistry Frontiers, 2024, 8, 1300-1333.	3.2	0
4201	Recent advances in trifunctional electrocatalysts for Zn–air battery and water splitting. Materials Chemistry Frontiers, 0, , .	3.2	0
4206	The fabrication and application of triphase reaction interface based on superwettability for improved reaction efficiency. Journal of Materials Chemistry A, O, , .	5.2	0
4219	Local reaction environment in electrocatalysis. Chemical Society Reviews, 2024, 53, 2022-2055.	18.7	2
4237	Surpassing water-splitting potential in aqueous redox flow batteries: insights from kinetics and thermodynamics. , 2024, 2, 522-544.		0
4253	<i>In situ</i> assembly of Ni ₃ S ₂ nanosheets encapsulated with NiFe(oxy)hydroxides for efficient water oxidation. Chemical Communications, 2024, 60, 2086-2089.	2.2	0
4263	Photochemical engineering unsaturated Pt islands on supported Pd nanocrystals for a robust pH-universal hydrogen evolution reaction. Materials Horizons, 0, , .	6.4	0
4269	Single-atom catalysts for electrocatalytic oxygen reduction. , 2024, , 91-118.		0
4279	Emerging transmission electron microscopy solutions for electrocatalysts: from synthesis to deactivation. Materials Chemistry Frontiers, 0, , .	3.2	0
4301	One-Dimensional Carbon for Electrocatalytic Activities. Engineering Materials, 2024, , 81-98.	0.3	0