Amorphous intergranular phases control the properties

Science 347, 746-750

DOI: 10.1126/science.1258950

Citation Report

#	Article	IF	CITATIONS
1	Microscopy techniques for investigating the control of organic constituents on biomineralization. MRS Bulletin, 2015, 40, 480-489.	3.5	16
2	Dental development and microstructure of bamboo rat incisors. Biosurface and Biotribology, 2015, 1, 263-269.	1.5	5
3	Chemical Imaging of Interfaces and in Interphases in Tooth Enamel. Microscopy and Microanalysis, 2015, 21, 2293-2294.	0.4	0
4	A Systematic Study on Tooth Enamel Microstructures of Lambdopsalis bulla (Multituberculate,) Tj ETQq1 1 0.784	1314 rgBT 2.5	/Overlock 10
5	Mapping residual organics and carbonate at grain boundaries and the amorphous interphase in mouse incisor enamel. Frontiers in Physiology, 2015, 6, 57.	2.8	45
6	Built for tough conditions. Science, 2015, 347, 712-713.	12.6	12
7	When $1+1~$ > 2: Nanostructured composites for hard tissue engineering applications. Materials Science and Engineering C, 2015, 57, 434-451.	7.3	39
8	Monitoring Demineralization and Subsequent Remineralization of Human Teeth at the Dentin–Enamel Junction with Atomic Force Microscopy. ACS Applied Materials & Samp; Interfaces, 2015, 7, 18937-18943.	8.0	21
10	The Evolution of Microstructures and the Properties of Bulk Metallic Glass with Consubstantial Composition Laser Welding. Metals, 2016, 6, 233.	2.3	5
12	Advances in atom probe tomography instrumentation: Implications for materials research. MRS Bulletin, 2016, 41, 40-45.	3 . 5	28
13	Diagenesis-inspired reaction of magnesium ions with surface enamel mineral modifies properties of human teeth. Acta Biomaterialia, 2016, 37, 174-183.	8.3	30
14	Anisotropic nanowire growth via a self-confined amorphous template process: A reconsideration on the role of amorphous calcium carbonate. Nano Research, 2016, 9, 1334-1345.	10.4	9
15	The effect of grain size on carbonate contaminant removal from tooth enamel: Towards an improved pretreatment for radiocarbon dating. Quaternary Geochronology, 2016, 36, 174-187.	1.4	13
16	Nonclassical crystallization in vivo et in vitro (I): Process-structure-property relationships of nanogranular biominerals. Journal of Structural Biology, 2016, 196, 244-259.	2.8	60
17	Detailed magnetic monitoring of the enhanced magnetism of ferrihydrite along its progressive transformation into hematite. Journal of Geophysical Research: Solid Earth, 2016, 121, 4118-4129.	3.4	14
18	Atom Probe Tomographic Mapping Directly Reveals the Atomic Distribution of Phosphorus in Resin Embedded Ferritin. Scientific Reports, 2016, 6, 22321.	3.3	56
19	Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility. Nature Communications, 2016, 7, 10802.	12.8	210
20	Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Science Advances, 2016, 2, e1601145.	10.3	107

#	Article	IF	CITATIONS
21	Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nature Materials, 2016, 15, 1023-1030.	27.5	132
22	Beavers (Castoridae, Rodentia, Mammalia) from the Quaternary sites of the Sierra de Atapuerca, in Burgos, Spain. Quaternary International, 2017, 433, 263-277.	1.5	17
23	Structural characterization of fluoride species in shark teeth. Chemical Communications, 2017, 53, 3838-3841.	4.1	6
24	A cytoplasmic role of Wnt/ \hat{l}^2 -catenin transcriptional cofactors Bcl9, Bcl9l, and Pygopus in tooth enamel formation. Science Signaling, 2017, 10, .	3.6	50
25	<i>De Novo</i> Genome and Transcriptome Assembly of the Canadian Beaver (<i>Castor canadensis</i>). G3: Genes, Genomes, Genetics, 2017, 7, 755-773.	1.8	18
26	Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate. Materials Science and Engineering C, 2017, 75, 565-571.	7.3	19
27	Dental Enamel Formation and Implications for Oral Health and Disease. Physiological Reviews, 2017, 97, 939-993.	28.8	282
28	An environmental transfer hub for multimodal atom probe tomography. Advanced Structural and Chemical Imaging, 2017, 3, 12.	4.0	47
29	Materials Nanoarchitecturing via Cationâ€Mediated Protein Assembly: Making Limpet Teeth without Mineral. Advanced Materials, 2017, 29, 1701171.	21.0	27
30	Atomic scale chemical tomography of human bone. Scientific Reports, 2017, 7, 39958.	3.3	51
31	Magnesium-Assisted Continuous Growth of Strongly Iron-Enriched Incisors. ACS Nano, 2017, 11, 239-248.	14.6	13
32	Atom Probe Tomography of Human Tooth Enamel and the Accurate Identification of Magnesium and Carbon in the Mass Spectrum. Microscopy and Microanalysis, 2017, 23, 676-677.	0.4	1
33	Preparation and tribological properties of Fe-hydroxyapatite bioceramics. Biosurface and Biotribology, 2017, 3, 75-81.	1.5	11
34	Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy. Science, 2017, 358, 1294-1298.	12.6	97
36	The bone-implant interface of dental implants in humans on the atomic scale. Acta Biomaterialia, 2017, 48, 445-450.	8.3	46
37	3.9 Microindentation â ⁻ †. , 2017, , 144-168.		1
38	Influence of indenter geometry on the frictional sliding resistance of tooth enamel. Biosurface and Biotribology, 2017, 3, 224-237.	1.5	1
39	Multi-scale structural design and biomechanics of the pistol shrimp snapper claw. Acta Biomaterialia, 2018, 73, 449-457.	8.3	15

#	Article	IF	CITATIONS
40	The limiting layer of fish scales: Structure and properties. Acta Biomaterialia, 2018, 67, 319-330.	8.3	53
41	Three-dimensional nanoscale characterisation of materials by atom probe tomography. International Materials Reviews, 2018, 63, 68-101.	19.3	119
42	Structure and composition of tooth enamel in quaternary soricines (Mammalia). Quaternary International, 2018, 481, 52-60.	1.5	5
43	Advances in Multiscale Characterization Techniques of Bone and Biomaterials Interfaces. ACS Biomaterials Science and Engineering, 2018, 4, 3678-3690.	5.2	17
44	Proteomic Mapping of Dental Enamel Matrix from Inbred Mouse Strains: Unraveling Potential New Players in Enamel. Caries Research, 2018, 52, 78-87.	2.0	6
45	A near atomic-scale view at the composition of amyloid-beta fibrils by atom probe tomography. Scientific Reports, 2018, 8, 17615.	3.3	20
46	Hydration-induced nano- to micro-scale self-recovery of the tooth enamel of the giant panda. Acta Biomaterialia, 2018, 81, 267-277.	8.3	19
47	Craniometry of the Slovak northeastern beavers (Castor fiber) in comparison with the Ukrainian and Polish populations and contribution to the knowledge of the enamel thickness of beaver's incisors. Biologia (Poland), 2018, 73, 379-387.	1.5	1
48	Hierarchical Biomineralization: from Nature's Designs to Synthetic Materials for Regenerative Medicine and Dentistry. Advanced Healthcare Materials, 2018, 7, e1800178.	7.6	60
49	Effect of pH and Mg2+ on Amorphous Magnesium-Calcium Phosphate (AMCP) stability. Journal of Colloid and Interface Science, 2018, 531, 681-692.	9.4	21
50	Preliminary Data on the Nanoscale Chemical Characterization of the Inter-Crystalline Organic Matrix of a Calcium Carbonate Biomineral. Minerals (Basel, Switzerland), 2018, 8, 223.	2.0	10
51	A Novel Enamel and Dentin Etching Protocol Using α-hydroxy Glycolic Acid: Surface Property, Etching Pattern, and Bond Strength Studies. Operative Dentistry, 2018, 43, 101-110.	1.2	28
52	HRTEM study of individual bone apatite nanocrystals reveals symmetry reduction with respect to P63/m apatite. Materials Science and Engineering C, 2019, 104, 109966.	7.3	6
53	Disrupted Iron Storage in Dental Fluorosis. Journal of Dental Research, 2019, 98, 994-1001.	5.2	13
54	Polymer-Functionalised Nanograins of Mg-Doped Amorphous Calcium Carbonate via a Flow-Chemistry Approach. Materials, 2019, 12, 1818.	2.9	2
55	Atom Probe Tomography (APT) Characterization of Organics Occluded in Single Calcite Crystals: Implications for Biomineralization Studies. Journal of Carbon Research, 2019, 5, 50.	2.7	8
56	Proceeding of the 42nd International Conference on Advanced Ceramics and Composites. Ceramic Engineering and Science Proceedings, 2019, , .	0.1	0
57	Thermodynamic Control of Amorphous Precursor Phases for Calcium Carbonate via Additive lons. Chemistry of Materials, 2019, 31, 7547-7557.	6.7	10

#	ARTICLE	IF	Citations
58	Synthesis of magnetic Fe-doped hydroxyapatite nanocages with highly efficient and selective adsorption for Cd2+. Materials Letters, 2019, 253, 144-147.	2.6	20
59	The importance of being amorphous: calcium and magnesium phosphates in the human body. Advances in Colloid and Interface Science, 2019, 269, 219-235.	14.7	67
60	Peptide-Assisted 2-D Assembly toward Free-Floating Ultrathin Platinum Nanoplates as Effective Electrocatalysts. Nano Letters, 2019, 19, 3730-3736.	9.1	44
61	The effect of cadmium exposition on the structure and mechanical properties of rat incisors. PLoS ONE, 2019, 14, e0215370.	2.5	7
62	Phosphoryl oligosaccharides of calcium enhance mineral availability and fluorapatite formation. Archives of Oral Biology, 2019, 101, 135-141.	1.8	3
63	Short-Range Structure of Amorphous Calcium Hydrogen Phosphate. Crystal Growth and Design, 2019, 19, 3030-3038.	3.0	35
64	Optimized biological tools: ultrastructure of rodent and bat teeth compared to human teeth. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 247-253.	0.9	1
65	Structure and composition of the incisor enamel of extant and fossil mammals with tooth pigmentation. Lethaia, 2019, 52, 370-388.	1.4	0
66	Instrumental investigation of oxygen isotopes in human dental enamel from the Bronze Age battlefield site at Tollense, Germany. Journal of Archaeological Science, 2019, 105, 70-80.	2.4	6
67	Designing Solid Materials from Their Solute State: A Shift in Paradigms toward a Holistic Approach in Functional Materials Chemistry. Journal of the American Chemical Society, 2019, 141, 4490-4504.	13.7	108
68	Influence of Er:YAG laser pulse duration on the long-term stability of organic matrix and resin-dentin interface. Lasers in Medical Science, 2019, 34, 1391-1399.	2.1	9
69	Dental enamel-mimetic large-sized multi-scale ordered architecture built by a well controlled bottom-up strategy. Chemical Engineering Journal, 2019, 360, 1633-1645.	12.7	19
70	Nanoscale pathways for human tooth decay – Central planar defect, organic-rich precipitate and high-angle grain boundary. Biomaterials, 2020, 235, 119748.	11.4	26
71	Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography. Materials Today, 2020, 32, 260-274.	14.2	73
72	ATG7 is essential for secretion of iron from ameloblasts and normal growth of murine incisors during aging. Autophagy, 2020, 16, 1851-1857.	9.1	20
73	Structural Orientation and Anisotropy in Biological Materials: Functional Designs and Mechanics. Advanced Functional Materials, 2020, 30, 1908121.	14.9	59
74	New frontiers in atom probe tomography: a review of research enabled by cryo and/or vacuum transfer systems. Materials Today Advances, 2020, 7, 100090.	5.2	34
75	Shape-preserving erosion controlled by the graded microarchitecture of shark tooth enameloid. Nature Communications, 2020, 11, 5971.	12.8	17

#	ARTICLE	IF	Citations
76	A comparative genomics multitool for scientific discovery and conservation. Nature, 2020, 587, 240-245.	27.8	216
77	Molecular Fingerprint Imaging to Identify Dental Caries Using Raman Spectroscopy. Materials, 2020, 13, 4900.	2.9	15
78	Mechanical and Tribological Performances Enhanced by Selfâ€Assembled Structures. Advanced Materials, 2020, 32, e2002004.	21.0	11
79	Monitoring a Mechanochemical Reaction Reveals the Formation of a New ACC Defect Variant Containing the HCO ₃ [–] Anion Encapsulated by an Amorphous Matrix. Crystal Growth and Design, 2020, 20, 6831-6846.	3.0	7
80	Three-Dimensional Evaluation on Cortical Bone During Orthodontic Surgical Treatment. Journal of Craniofacial Surgery, 2020, 31, 1637-1646.	0.7	14
81	Field evaporation and atom probe tomography of pure water tips. Scientific Reports, 2020, 10, 20271.	3.3	22
82	Challenges and Solutions in the Characterization of Hierarchically Structured, Functionally Graded Tooth Biominerals. Microscopy and Microanalysis, 2020, 26, 1592-1594.	0.4	0
83	Magnesium-rich nanoprecipitates in calcite: atomistic mechanisms responsible for toughening in <i>Ophiocoma wendtii</i> . Physical Chemistry Chemical Physics, 2020, 22, 10056-10062.	2.8	4
84	A method for mapping submicron-scale crystallographic order/disorder applied to human tooth enamel. Powder Diffraction, 2020, 35, $117-123$.	0.2	11
85	Bioinspired fiberboard-and-mortar structural nanocomposite based on ultralong hydroxyapatite nanowires with high mechanical performance. Chemical Engineering Journal, 2020, 399, 125666.	12.7	18
86	Solid-State Phase Transformation and Self-Assembly of Amorphous Nanoparticles into Higher-Order Mineral Structures. Journal of the American Chemical Society, 2020, 142, 12811-12825.	13.7	26
87	Introducing the crystalline phase of dicalcium phosphate monohydrate. Nature Communications, 2020, 11, 1546.	12.8	26
88	Chemical gradients in human enamel crystallites. Nature, 2020, 583, 66-71.	27.8	112
89	Nature's design solutions in dental enamel: Uniting high strength and extreme damage resistance. Acta Biomaterialia, 2020, 107, 1-24.	8.3	48
90	Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nature Communications, 2020, 11, 938.	12.8	238
91	Probing Heterogeneity in Bovine Enamel Composition through Nanoscale Chemical Imaging using Atom Probe Tomography. Archives of Oral Biology, 2020, 112, 104682.	1.8	4
92	Using Microstructures and Composition to Decipher the Alterations of Rodent Teeth in Modern Regurgitation Pellets—A Good News-Bad News Story. Minerals (Basel, Switzerland), 2020, 10, 63.	2.0	5
93	Metallic glass instability induced by the continuous dislocation absorption at an amorphous/crystalline interface. Acta Materialia, 2020, 189, 10-24.	7.9	24

#	Article	IF	CITATIONS
94	Phosphorylated/Nonphosphorylated Motifs in Amelotin Turn Off/On the Acidic Amorphous Calcium Phosphate-to-Apatite Phase Transformation. Langmuir, 2020, 36, 2102-2109.	3.5	12
95	Atom Probe Tomography: Development and Application to the Geosciences. Geostandards and Geoanalytical Research, 2020, 44, 5-50.	3.1	84
96	Enamel Repair with Amorphous Ceramics. Advanced Materials, 2020, 32, e1907067.	21.0	30
97	Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: mechanism of action. Biomedical Materials (Bristol), 2021, 16, 015018.	3.3	9
98	Crystal misorientation correlates with hardness in tooth enamels. Acta Biomaterialia, 2021, 120, 124-134.	8.3	23
99	Magnesium incorporation into primary dental enamel and its effect on mechanical properties. Acta Biomaterialia, 2021, 120, 104-115.	8.3	18
100	Characterization of elemental distribution across human <scp>dentinâ€enamel</scp> junction by scanning electron microscopy with <scp>energyâ€dispersive</scp> Xâ€ray spectroscopy. Microscopy Research and Technique, 2021, 84, 881-890.	2.2	11
101	Microstructural and chemical characterization of a purple pigment from a Faiyum mummy portrait. International Journal of Ceramic Engineering & Science, 2021, 3, 4-17.	1.2	1
102	Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles. Small Methods, 2021, 5, e2000692.	8.6	8
103	Human Tooth Enamel, a Sophisticated Material. Biology of Extracellular Matrix, 2021, , 243-259.	0.3	4
105	DO WEAK OR STRONG ACIDS REMOVE CARBONATE CONTAMINATION FROM ANCIENT TOOTH ENAMEL MORE EFFECTIVELY? THE EFFECT OF ACID PRETREATMENT ON RADIOCARBON AND $\hat{\Gamma}$ (sup>13C ANALYSES. Radiocarbon, 2021, 63, 935-952.	1.8	4
106	Bioprocess-Inspired Room-Temperature Synthesis of Enamel-like Fluorapatite/Polymer Nanocomposites Controlled by Magnesium Ions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25260-25269.	8.0	15
107	Persistent polyamorphism in the chiton tooth: From a new biomineral to inks for additive manufacturing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
108	Supervariate ceramics: biomineralization mechanism. Materials Today Advances, 2021, 10, 100144.	5.2	8
109	Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen. Microscopy and Microanalysis, 0, , 1-12.	0.4	1
110	Atom probe tomography. Nature Reviews Methods Primers, 2021, 1, .	21.2	131
111	Exploring Biases in Atom Probe Tomography Compositional Analysis of Minerals. Geostandards and Geoanalytical Research, 2021, 45, 457-476.	3.1	7
112	Tooth structure, mechanical properties, and diet specialization of Piranha and Pacu (Serrasalmidae): A comparative study. Acta Biomaterialia, 2021, 134, 531-545.	8.3	11

#	Article	IF	CITATIONS
113	Biomimetic inorganic-organic hybrid nanoparticles from magnesium-substituted amorphous calcium phosphate clusters and polyacrylic acid molecules. Bioactive Materials, 2021, 6, 2303-2314.	15.6	14
114	Advanced materials design based on waste wood and bark. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200345.	3.4	9
115	High Resolution STEM Images of the Human Tooth Enamel Crystals. Applied Sciences (Switzerland), 2021, 11, 7477.	2.5	3
116	Phase Transformation Mechanism of Amorphous Calcium Phosphate to Hydroxyapatite Investigated by Liquid-Cell Transmission Electron Microscopy. Crystal Growth and Design, 2021, 21, 5126-5134.	3.0	29
117	Effect of HAP crystallite orientation upon corrosion and tribocorrosion behavior of bovine and human dental enamel. Corrosion Science, 2021, 190, 109670.	6.6	3
118	The homogenous alternative to biomineralization: Zn- and Mn-rich materials enable sharp organismal "tools―that reduce force requirements. Scientific Reports, 2021, 11, 17481.	3.3	19
119	Frozen <i>n</i> -Tetradecane Investigated by Cryo-Atom Probe Tomography. Microscopy and Microanalysis, 2022, 28, 1289-1299.	0.4	5
120	Beyond oral hygiene, are capacity-altering, biologically based interventions within the moral domain of dentistry?. British Dental Journal, 2021, 231, 277-280.	0.6	0
121	Mechanism of Mn incorporation into hydroxyapatite: Insights from SR-XRD, Raman, XAS, and DFT calculation. Chemical Geology, 2021, 579, 120354.	3.3	19
122	Studies of Peculiar Mg-Containing and Oscillating Bioapatites in Sheep and Horse Teeth. Biomolecules, 2021, 11, 1436.	4.0	2
123	Exploring the effect of Mg2+ substitution on amorphous calcium phosphate nanoparticles. Journal of Colloid and Interface Science, 2022, 606, 444-453.	9.4	15
126	Red Iron-Pigmented Tooth Enamel in a Multituberculate Mammal from the Late Cretaceous Transylvanian "Haţeg Island― PLoS ONE, 2015, 10, e0132550.	2.5	28
127	Novel Approach to Tooth Chemistry: Quantification of Human Enamel Apatite in Context for New Biomaterials and Nanomaterials Development. International Journal of Molecular Sciences, 2021, 22, 279.	4.1	8
128	Developing Atom Probe Tomography to Characterize Sr-Loaded Bioactive Glass for Bone Scaffolding. Microscopy and Microanalysis, 0 , $1\cdot11$.	0.4	2
129	Microstructure and Composition Characterization of Teeth From Different Species. Ceramic Engineering and Science Proceedings, 0, , 233-241.	0.1	1
130	lonic Dimethacrylates for Antimicrobial and Remineralizing Dental Composites. , 2018, 2, .		3
131	A Hydroxypropyl Methylcellulose Film Loaded with AFCP Nanoparticles for Inhibiting Formation of Enamel White Spot Lesions. International Journal of Nanomedicine, 2021, Volume 16, 7623-7637.	6.7	6
132	Standardizing Spatial Reconstruction Parameters for the Atom Probe Analysis of Common Minerals. Microscopy and Microanalysis, 2022, 28, 1221-1230.	0.4	11

#	Article	IF	CITATIONS
133	Biomimetic Feâ€hydroxyapatite nanoparticleâ€reinforced bisphenol Aâ€glycol methacrylate/triethyleneglycolâ€dimethacrylate resins for dental restorative application. Journal of Applied Polymer Science, 2022, 139, .	2.6	0
134	Recent Advances in 3D Atom Probe Analysis. Materia Japan, 2022, 61, 72-77.	0.1	0
135	Improvement of acid resistance of Zn-doped dentin by newly generated chemical bonds. Materials and Design, 2022, 215, 110412.	7.0	4
136	Multiscale engineered artificial tooth enamel. Science, 2022, 375, 551-556.	12.6	138
137	Advances in biomineralization-inspired materials for hard tissue repair. International Journal of Oral Science, 2021, 13, 42.	8.6	54
138	Species-specific enamel differences in hardness and abrasion resistance between the permanent incisors of cattle (Bos primigenius taurus) and the ever-growing incisors of nutria (Myocastor) Tj ETQq1 1 0.7843	31 4. æBT/	Oværlock 10
139	Applications of scanning electron microscopy and focused ion beam milling in dental research. European Journal of Oral Sciences, 2022, 130, e12853.	1.5	7
140	Biomineralized Materials as Model Systems for Structural Composites: Intracrystalline Structural Features and Their Strengthening and Toughening Mechanisms. Advanced Science, 2022, 9, e2103524.	11.2	23
141	Loss of biological control of enamel mineralization in amelogenin-phosphorylation-deficient mice. Journal of Structural Biology, 2022, 214, 107844.	2.8	4
142	3Dâ€Printed Strong Dental Crown with Multiâ€Scale Ordered Architecture, Highâ€Precision, and Bioactivity. Advanced Science, 2022, 9, e2104001.	11.2	12
143	Distribution of Elements in Beaver (Castor fiber) Tooth Enamel as a Sign of Environmental Adaptation: the Special Role of Fe, Co, Mg, and Fluorides (Fâ^'). Biological Trace Element Research, 2022, , .	3.5	0
144	Beyond Natural Tooth Enamel. Innovation(China), 2022, , 100266.	9.1	0
145	Engineered fabrication of enamel-mimetic materials. Engineering, 2022, , .	6.7	1
146	Surface and Structural Studies of Age-Related Changes in Dental Enamel: An Animal Model. Materials, 2022, 15, 3993.	2.9	1
147	Atom probe tomography for biomaterials and biomineralization. Acta Biomaterialia, 2022, 148, 44-60.	8.3	11
148	Natural tooth enamel and its analogs. Cell Reports Physical Science, 2022, 3, 100945.	5.6	6
149	Multifunctional artificial nacre via biomimetic matrix-directed mineralization., 2022, 52, 1.		0
150	Mechanically Reinforced Artificial Enamel by Mg ²⁺ -Induced Amorphous Intergranular Phases. ACS Nano, 2022, 16, 10422-10430.	14.6	8

#	Article	IF	CITATIONS
151	Biogeochemical fingerprinting of magnetotactic bacterial magnetite. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	1
152	Erosion-Driven Enamel Crystallite Growth Phenomenon at the Tooth Surface In Vitro. ACS Applied Bio Materials, 2022, 5, 3753-3765.	4.6	1
153	Advanced materials for enamel remineralization. Frontiers in Bioengineering and Biotechnology, 0, 10 ,	4.1	10
154	Finite Element Analysis of Zirconia Dental Implant. Prosthesis, 2022, 4, 490-499.	2.9	14
155	Influence of Sharkletâ€Inspired Micropatterned Polymers on Spatioâ€Temporal Variations of Marine Biofouling. Macromolecular Bioscience, 2022, 22, .	4.1	4
156	Adam10-dependent Notch signaling establishes dental epithelial cell boundaries required for enamel formation. IScience, 2022, 25, 105154.	4.1	5
157	Nanoscale analysis of frozen honey by atom probe tomography. Scientific Reports, 2022, 12, .	3.3	1
158	Gradient Magnesium Content Affects Nanomechanics via Decreasing the Size and Crystallinity of Nanoparticles of Pseudoosteodentine of the Pacific Cutlassfish, <i>Trichiurus lepturus I veth. ACS Omega, 2022, 7, 39214-39223.</i>	3.5	0
159	Role of Inorganic Amorphous Constituents in Highly Mineralized Biomaterials and Their Imitations. ACS Nano, 2022, 16, 17486-17496.	14.6	10
160	Effects of Fam83h truncation mutation on enamel developmental defects in male C57/BL6J mice. Bone, 2023, 166, 116595.	2.9	3
161	Effects of an orthodontic primer containing amorphous fluorinated calcium phosphate nanoparticles on enamel white spot lesions. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 137, 105567.	3.1	2
162	The correlation between biotribological function and structural characteristics of bamboo rat teeth. Biosurface and Biotribology, 2022, 8, 323-328.	1.5	1
163	Mesoscale structural gradients in human tooth enamel. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
164	Microstructurally driven self-sharpening mechanism in beaver incisor enamel facilitates their capacity to fell trees. Acta Biomaterialia, 2023, 158, 412-422.	8.3	2
165	Biomimetic Construction of the Enamel-like Hierarchical Structure. Chemical Research in Chinese Universities, 2023, 39, 61-71.	2.6	1
166	Tooth Diversity Underpins Future Biomimetic Replications. Biomimetics, 2023, 8, 42.	3.3	3
167	Biomineralogical signatures of breast microcalcifications. Science Advances, 2023, 9, .	10.3	6
168	The nonclassical crystallization mechanism and growth kinetics of densely packed fluorapatite nanorod arrays: effects of the ion transportation rate and fluoride concentration. Materials Chemistry Frontiers, 0, , .	5.9	0

#	Article	IF	Citations
169	Thermo-regulating mesoporous semi-rigid metal–organic–polymer frameworks for controllable adsorption and confinement. Journal of Materials Chemistry A, 2023, 11, 7432-7440.	10.3	2
170	Synchrotron X-ray Studies of the Structural and Functional Hierarchies in Mineralised Human Dental Enamel: A State-of-the-Art Review. Dentistry Journal, 2023, 11, 98.	2.3	8
171	Resolving protein-mineral interfacial interactions during inÂvitro mineralization by atom probe tomography. Materials Today Advances, 2023, 18, 100378.	5.2	0
172	Formation of Amorphous Iron alcium Phosphate with High Stability. Advanced Materials, 2023, 35, .	21.0	2
173	Elucidating the Structure and Composition of Individual Bimetallic Nanoparticles in Supported Catalysts by Atom Probe Tomography. Journal of the American Chemical Society, 2023, 145, 17299-17308.	13.7	2
174	Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. Exploration, 2023, 3, .	11.0	3
175	High-resolution Raman spectroscopy reveals compositional differences between pigmented incisor enamel and unpigmented molar enamel in Rattus norvegicus. Scientific Reports, 2023, 13 , .	3.3	0
176	Fluorapatite nanorod arrays with enamel-like bundle structure regulated by iron ions. RSC Advances, 2023, 13, 28112-28119.	3.6	0
177	Iron Metabolism of the Skin: Recycling versus Release. Metabolites, 2023, 13, 1005.	2.9	0
178	Thermally Resistant, Mechanically Robust, Enamelâ€Inspired Hydroxyapatite/Polyethylene Nanocomposite Battery Separator. Advanced Functional Materials, 2024, 34, .	14.9	0
179	Contribution to Knowledge on Bioapatites: Does Mg Level Reflect the Organic Matter and Water Contents of Enamel?. International Journal of Molecular Sciences, 2023, 24, 15974.	4.1	0
180	Progress in the Application of Biomimetic Mineralization for Tooth Repair. Minerals (Basel,) Tj ETQq1 1 0.784314	rgBT /Ove	erlyck 10 Tf 5
181	Cryogenic atom probe tomography and its applications: a review., 0, 3, .		0
182	The synthesis and application of crystalline–amorphous hybrid materials. Chemical Society Reviews, 2024, 53, 684-713.	38.1	0
183	Tubular Nanoclay-Enhanced Calcium Phosphate Mineralization and Assembly to Impart High Stiffness and Antimicrobial Properties. ACS Applied Materials & Samp; Interfaces, 2024, 16, 9190-9200.	8.0	0
184	Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chemical Society Reviews, 2024, 53, 4490-4606.	38.1	0