Cation order-disorder in Fe-bearing pyrope and grossul NMR and 57Fe Mossbauer spectroscopy study

American Mineralogist 100, 536-547

DOI: 10.2138/am-2015-5062

Citation Report

#	Article	IF	Citations
1	Transition metal cation site preferences in forsterite (Mg ₂ SiO ₄) determined from paramagnetically shifted NMR resonances. American Mineralogist, 2015, 100, 1265-1276.	0.9	19
2	An investigation of local Fe2 + order-disorder in a mantle grospydite garnet using paramagnetically shifted 27Al and 29Si MAS NMR resonances. European Journal of Mineralogy, 2015, 27, 463-470.	0.4	3
3	Trivalent transition-metal cations and local structure in pyrope- and grossular-rich solid solutions investigated by 27Al and 29Si MAS NMR spectroscopy. European Journal of Mineralogy, 2016, 28, 179-187.	0.4	3
4	Short-range atomic arrangements in minerals. I: The minerals of the amphibole, tourmaline and pyroxene supergroups. European Journal of Mineralogy, 2016, 28, 513-536.	0.4	33
5	Investigating lanthanide dopant distributions in Yttrium Aluminum Garnet (YAG) using solid state paramagnetic NMR. Solid State Nuclear Magnetic Resonance, 2016, 79, 11-22.	1.5	18
6	Exploiting NMR spectroscopy for the study of disorder in solids. International Reviews in Physical Chemistry, 2017, 36, 39-115.	0.9	65
7	Hydroxyferrorom \tilde{A} @ite, a new secondary weathering mineral from Oms, France. European Journal of Mineralogy, 2017, 29, 307-314.	0.4	10
8	Solid-state NMR and short-range order in crystalline oxides and silicates: a new tool in paramagnetic resonances. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 128-136.	0.2	14
9	Anharmonic motions <i>versus</i> dynamic disorder at the Mg ion from the charge densities in pyrope (Mg ₃ Al ₂ Si ₃ O ₁₂) crystals at 30â€K: six of one, half a dozen of the other. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 722-736.	0.5	12
10	Toward the wider application of 29Si NMR spectroscopy to paramagnetic transition metal silicate minerals: Copper(II) silicates. American Mineralogist, 2017, 102, 2406-2414.	0.9	8
11	Recent developments and the future of lowâ€∢i>T⟨li> calorimetric investigations in the Earth sciences: Consequences for thermodynamic calculations and databases. Journal of Metamorphic Geology, 2018, 36, 283-295.	1.6	12
12	Toward the wider application of 29Si NMR spectroscopy to paramagnetic transition metal silicate minerals and glasses: Fe(II), Co(II), and Ni(II) silicates. American Mineralogist, 2018, 103, 776-791.	0.9	8
13	IR spectroscopy and OH– in silicate garnet: The long quest to document the hydrogarnet substitution. American Mineralogist, 2018, 103, 384-393.	0.9	33
14	An analysis of the magnetic behavior of olivine and garnet substitutional solid solutions. American Mineralogist, 2019, 104, 1246-1255.	0.9	5
15	The degree of polymerization and structural disorder in (Mg,Fe)SiO3 glasses and melts: Insights from high-resolution 29Si and 17O solid-state NMR. Geochimica Et Cosmochimica Acta, 2019, 250, 268-291.	1.6	14
16	Depression of the selective separation of rutile from almandine by Sodium Hexametaphosphate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 593, 124631.	2.3	17
17	Micro- and nano-size hydrogarnet clusters in calcium silicate garnet: Part II. Mineralogical, petrological, and geochemical aspects. American Mineralogist, 2020, 105, 468-478.	0.9	9
18	Micro- and nano-size hydrogrossular-like clusters in pyrope crystals from ultra-high-pressure rocks of the Dora-Maira Massif, western Alps. Contributions To Mineralogy and Petrology, 2020, 175, 1.	1.2	3

#	Article	IF	CITATIONS
19	Micro- and nano-size hydrogarnet clusters and proton ordering in calcium silicate garnet: Part I. The quest to understand the nature of "water―in garnet continues. American Mineralogist, 2020, 105, 455-467.	0.9	15
20	Solid-state NMR spectroscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	196
21	Are the thermodynamic properties of natural and synthetic Mg2SiO4-Fe2SiO4 olivines the same?. American Mineralogist, 2021, 106, 317-321.	0.9	2
22	Effect of Spinning Speed on ²⁹ Si and ²⁷ Al Solid-state MAS NMR Spectra for Iron-bearing Silicate Glasses. Journal of the Mineralogical Society of Korea, 2018, 31, 295-306.	0.2	0
23	The Structure and Elasticity of CaO3 Under High Pressure by First-Principles Simulation. Frontiers in Earth Science, 2022, 10, .	0.8	1