A genetic strategy generating wheat with very high amy

Plant Biotechnology Journal 13, 1276-1286 DOI: 10.1111/pbi.12345

Citation Report

#	Article	IF	CITATIONS
1	Mutations in Durum Wheat <i>SBEII</i> Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats. Crop Science, 2015, 55, 2813-2825.	1.8	35
2	Genes involved in the accumulation of starch and lipids in wheat and rice: characterization using molecular and cytogenetic techniques. Nucleus (India), 2015, 58, 185-190.	2.2	0
3	The impact of the SSIIa <i>null</i> mutations on grain traits and composition in durum wheat. Breeding Science, 2016, 66, 572-579.	1.9	28
4	Role of food processing in food and nutrition security. Trends in Food Science and Technology, 2016, 56, 115-125.	15.1	180
5	Development of EMS-induced mutation population for amylose and resistant starch variation in bread wheat (Triticum aestivum) and identification of candidate genes responsible for amylose variation. BMC Plant Biology, 2016, 16, 217.	3.6	54
6	Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12844-12849.	7.1	154
7	Combined mutations in five wheat STARCH BRANCHING ENZYME II genes improve resistant starch but affect grain yield and bread-making quality. Journal of Cereal Science, 2017, 75, 165-174.	3.7	36
8	Cultivated Ancient Wheats (<i>Triticum</i> spp.): A Potential Source of Healthâ€Beneficial Food Products. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 477-488.	11.7	211
9	Transposon insertion resulted in the silencing of Wx-B1n in Chinese wheat landraces. Theoretical and Applied Genetics, 2017, 130, 1321-1330.	3.6	14
10	Novel <i>ssIIa</i> Alleles Produce Specific Seed Amylose Levels in Hexaploid Wheat. Cereal Chemistry, 2017, 94, 1008-1015.	2.2	10
11	Progress in High-Amylose Cereal Crops through Inactivation of Starch Branching Enzymes. Frontiers in Plant Science, 2017, 8, 469.	3.6	48
12	Combining mutations at genes encoding key enzymes involved in starch synthesis affects the amylose content, carbohydrate allocation and hardness in the wheat grain. Plant Biotechnology Journal, 2018, 16, 1723-1734.	8.3	57
13	Alternative splicing results in a lack of starch synthase IIa-D in Chinese wheat landrace. Genome, 2018, 61, 201-208.	2.0	5
14	Rice starch biotechnology: Rice endosperm as a model of cereal endosperms. Starch/Staerke, 2018, 70, 1600375.	2.1	44
15	Contributions of Three Starch Branching Enzyme Isozymes to the Fine Structure of Amylopectin in Rice Endosperm. Frontiers in Plant Science, 2018, 9, 1536.	3.6	42
16	Crop resistant starch and genetic improvement: a review of recent advances. Theoretical and Applied Genetics, 2018, 131, 2495-2511.	3.6	31
17	High amylose wheat: A platform for delivering human health benefits. Journal of Cereal Science, 2018, 82, 99-105.	3.7	40
18	Regulating Safety of Novel Food and Genetically Modified Crops. Advances in Botanical Research, 2018, 86, 89-110.	1.1	2

#	Article	IF	CITATIONS
19	An introductory review of resistant starch type 2 from high-amylose cereal grains and its effect on glucose and insulin homeostasis. Nutrition Reviews, 2019, 77, 748-764.	5.8	29
20	Single Nucleotide Polymorphisms in Starch Biosynthetic Genes Associated With Increased Resistant Starch Concentration in Rice Mutant. Frontiers in Genetics, 2019, 10, 946.	2.3	23
21	Starch branching enzymes contributing to amylose and amylopectin fine structure in wheat. Carbohydrate Polymers, 2019, 224, 115185.	10.2	31
22	Altering starch branching enzymes in wheat generates high-amylose starch with novel molecular structure and functional properties. Food Hydrocolloids, 2019, 92, 51-59.	10.7	75
23	Highâ€Amylose Starches to Bridge the "Fiber Gap― Development, Structure, and Nutritional Functionality. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 362-379.	11.7	172
24	High-Amylose Wheat Lowers the Postprandial Glycemic Response to Bread in Healthy Adults: A Randomized Controlled Crossover Trial. Journal of Nutrition, 2019, 149, 1335-1345.	2.9	47
25	Cas9â€mediated mutagenesis of potato starchâ€branching enzymes generates a range of tuber starch phenotypes. Plant Biotechnology Journal, 2019, 17, 2259-2271.	8.3	105
26	A single-base change at a splice site in Wx-A1 caused incorrect RNA splicing and gene inactivation in a wheat EMS mutant line. Theoretical and Applied Genetics, 2019, 132, 2097-2109.	3.6	17
27	Emmer (Triticum turgidum ssp. dicoccum) Flour and Bread. , 2019, , 89-98.		9
28	Milling and baking quality of hexaploid spring wheat starch synthase IIa (<i>ssIIa</i>) mutants with elevated amylose content. Cereal Chemistry, 2019, 96, 532-544.	2.2	3
29	A critical review on structural properties and formation mechanism of heterogeneous starch granules in cereal endosperm lacking starch branching enzyme. Food Hydrocolloids, 2020, 100, 105434.	10.7	19
30	Sexually Dimorphic Response of Increasing Dietary Intake of High Amylose Wheat on Metabolic and Reproductive Outcomes in Male and Female Mice. Nutrients, 2020, 12, 61.	4.1	1
31	Effects of BEIIb-Deficiency on the Cluster Structure of Amylopectin and the Internal Structure of Starch Granules in Endosperm and Culm of Japonica-Type Rice. Frontiers in Plant Science, 2020, 11, 571346.	3.6	12
32	Extraction and Characterization of Tunisian <i>Quercus ilex</i> Starch and Its Effect on Fermented Dairy Product Quality. International Journal of Analytical Chemistry, 2020, 2020, 1-9.	1.0	9
33	Strategies to improve wheat for human health. Nature Food, 2020, 1, 475-480.	14.0	54
34	High-amylose wheat starch: Structural basis for water absorption and pasting properties. Carbohydrate Polymers, 2020, 245, 116557.	10.2	61
35	Modification of starch composition, structure and properties through editing of <i>TaSBElla</i> in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnology Journal, 2021, 19, 937-951.	8.3	90
37	Genome-wide transcriptome profiling indicates the putative mechanism underlying enhanced grain size in a wheat mutant. 3 Biotech, 2021, 11, 54.	2.2	3

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
38	Analysis of the starch properties in tetraploid wheat–Aegilops sharonensis amphidiploid. Cereal Research Communications, 0, , 1.	1.6	1
39	Effects of SGP-B1 protein on the qualities of grain and starch in a recombinant inbred lines population. Cereal Research Communications, 2021, 49, 619-624.	1.6	0
40	Genotyping-by-sequencing based QTL mapping identified a novel waxy allele contributing to high amylose starch in wheat. Euphytica, 2021, 217, 1.	1.2	4
41	Identification of four functional component content QTLs of brown rice in the Yunnan mini-core collection and its near-isogenic lines using association mapping. Cereal Research Communications, 2022, 50, 357-366.	1.6	2
42	Pasting properties and the baking functionality of wholeâ€grain wheat flour with different amylose and dietary fibers content. Journal of Food Processing and Preservation, 0, , e15805.	2.0	1
43	Starch biosynthesis in cereal endosperms: AnÂupdated review over the last decade. Plant Communications, 2021, 2, 100237.	7.7	105
44	The Triple Jags of Dietary Fibers in Cereals: How Biotechnology Is Longing for High FiberGrains. Frontiers in Plant Science, 2021, 12, 745579.	3.6	15
45	Milling and rheological properties of high amylose wheat. Journal of Cereal Science, 2021, 102, 103335.	3.7	12
46	Improving nutritional quality of wheat under changing climate scenario: challenges and progress. , 2021, , 65-79.		0
47	Theoretical and experimental approaches to understand the biosynthesis of starch granules in a physiological context. Photosynthesis Research, 2020, 145, 55-70.	2.9	13
48	Evaluation of an Ileorectostomised Rat Model for Resistant Starch Determination. Nutrients, 2021, 13, 91.	4.1	1
49	Variation of resistant starch content in different processing types and their starch granules properties in rice. Carbohydrate Polymers, 2022, 276, 118742.	10.2	13
50	Starch and Starch-Associated Proteins: Impacts on Wheat Grain Quality. , 2020, , 21-38.		2
51	Substitution of Refined Conventional Wheat Flour with Wheat High in Resistant Starch Modulates the Intestinal Microbiota and Fecal Metabolites in Healthy Adults: A Randomized, Controlled Trial. Journal of Nutrition, 2022, 152, 1426-1437.	2.9	13
52	Mining of Potential Gene Resources for Breeding Nutritionally Improved Maize. Plants, 2022, 11, 627.	3.5	5
53	Perspective: Utilizing High Amylose Wheat Flour to Increase Dietary Fiber Intake of Children and Adolescents: A Health by Stealth Approach. Frontiers in Public Health, 2022, 10, 817967.	2.7	6
54	Grain Yield Performance and Quality Characteristics of Waxy and Non-Waxy Winter Wheat Cultivars under High and Low-Input Farming Systems. Plants, 2022, 11, 882.	3.5	2
55	High-amylose starch: Structure, functionality and applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 8568-8590.	10.3	12

CITATION REPORT

#	Article	IF	CITATIONS
56	[Regular Paper] Digestive Properties of New Mutant Rice Cultivars. Bulletin of Applied Glycoscience, 2021, 11, 180-187.	0.0	0
57	Effects of the different waxy proteins on starch biosynthesis, starch physicochemical properties and Chinese noodle quality in wheat. Molecular Breeding, 2022, 42, 1.	2.1	5
58	Resistant starch formation in rice: Genetic regulation and beyond. Plant Communications, 2022, 3, 100329.	7.7	19
66	Health benefits of resistant starch: A review of the literature. Journal of Functional Foods, 2022, 93, 105094.	3.4	78
67	[Review] Understanding of Starch Biosynthesis and Development of New Rice Cultivars from Mutants. Bulletin of Applied Glycoscience, 2022, 12, 4-7.	0.0	0
68	Increasing the level of resistant starch in â€~Presidio' rice through multiplex CRISPR–Cas9 gene editing of <i>starch branching enzyme</i> genes. Plant Genome, 2023, 16, .	2.8	11
69	Loss of starch synthase IIIa changes starch molecular structure and granule morphology in grains of hexaploid bread wheat. Scientific Reports, 2022, 12, .	3.3	11
71	Characterization of Fresh Pasta Made of Common and High-Amylose Wheat Flour Mixtures. Foods, 2022, 11, 2510.	4.3	4
72	Impact of storage on starch digestibility and texture of a high-amylose wheat bread. Food Hydrocolloids, 2023, 135, 108139.	10.7	6
73	Insights into breeding history, hotspot regions of selection, and untapped allelic diversity for bread wheat breeding. Plant Journal, 2022, 112, 897-918.	5.7	3
74	Environmental Profile of a Novel High-Amylose Bread Wheat Fresh Pasta with Low Glycemic Index. Foods, 2022, 11, 3199.	4.3	1
75	Novel quality features to expand durum wheat applications. Journal of the Science of Food and Agriculture, 2023, 103, 4268-4274.	3.5	0
76	Effect of Three Bakery Products Formulated with High-Amylose Wheat Flour on Post-Prandial Glycaemia in Healthy Volunteers. Foods, 2023, 12, 319.	4.3	2
77	Polarized light microscopy guarantees the use of autochthonous wheat in the production of flour for the Protected Geographical Indication †Galician Bread'. Food Control, 2023, 147, 109597.	5.5	1
78	Unlocking the Potential of High-Amylose Starch for Gut Health: Not All Function the Same. Fermentation, 2023, 9, 134.	3.0	5
79	High amylose wheat foods: A new opportunity to improve human health. Trends in Food Science and Technology, 2023, 135, 93-101.	15.1	3
80	TabHLH95-TaNF-YB1 module promotes grain starch synthesis in bread wheat. Journal of Genetics and Genomics, 2023, 50, 883-894.	3.9	1
81	Field management practices to produce nutritional and healthier main crops. , 2023, , 137-173.		1

		CITATION REPORT		
#	Article		IF	CITATIONS
82	Screening and use of nutritional and health-related benefits of the main crops. , 2023,	, 25-55.		0
83	Structures and digestibility of B-type high-amylose rice starches compared with A-type rice starches. Journal of Cereal Science, 2023, 112, 103713.	high-amylose	3.7	3
84	Altering structure and enzymatic resistance of high-amylose maize starch by irradiative depolymerization and annealing with palmitic acid as V-type inclusion compound. Carl Polymers, 2023, 322, 121343.	? oohydrate	10.2	1
85	Production and characterization of starch-lignin based materials: A review. Biotechnolo 2024, 70, 108281.	ogy Advances,	11.7	0
87	Genetic improvement of dietary fiber in wheat grains. , 2024, 3, 0-0.			0
88	Characterization of Subâ€Tropically Adapted Maize Breeding Lines for Loci Governing and Resistant Starch. Starch/Staerke, 0, , .	Kernel Amylose	2.1	0