CHCHD2 mutations in autosomal dominant late-onset l linkage and sequencing study

Lancet Neurology, The 14, 274-282 DOI: 10.1016/s1474-4422(14)70266-2

Citation Report

#	Article	IF	CITATIONS
1	ll. Familial Parkinson's Disease Causative Genes Shed Light on the Molecular Pathogenesis. The Journal of the Japanese Society of Internal Medicine, 2015, 104, 1552-1557.	0.0	0
2	α-Synuclein and Lewy pathology in Parkinson's disease. Current Opinion in Neurology, 2015, 28, 375-381.	1.8	79
3	Mitochondrial Dysfunction in Parkinson's Disease. Experimental Neurobiology, 2015, 24, 103-116.	0.7	267
4	Mitophagy Regulated by the PINK1-Parkin Pathway. , 2015, , .		8
5	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 679-680.	4.9	13
6	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 678-679.	4.9	50
7	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 679.	4.9	16
8	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 680-681.	4.9	9
9	CHCHD2 and Parkinson's disease. Lancet Neurology, The, 2015, 14, 681-682.	4.9	29
10	CHCHD2 and Parkinson's disease—Authors' reply. Lancet Neurology, The, 2015, 14, 682-683.	4.9	6
11	Mitochondrial targeting sequence variants of the <i>CHCHD2</i> gene are a risk for Lewy body disorders. Neurology, 2015, 85, 2016-2025.	1.5	51
12	Rare genetic variants support mitochondrial dysfunction in Lewy body disorders. Neurology, 2015, 85, 2002-2003.	1.5	0
13	A new gene for Parkinson's disease: should we care?. Lancet Neurology, The, 2015, 14, 238-239.	4.9	7
14	Parkinson's disease. Lancet, The, 2015, 386, 896-912.	6.3	4,079
15	Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson's disease. FEBS Letters, 2015, 589, 3702-3713.	1.3	99
16	Mutation analysis of <i>CHCHD10</i> in different neurodegenerative diseases. Brain, 2015, 138, e380-e380.	3.7	86
17	Mutation analysis of CHCHD2 gene in Chinese familial Parkinson's disease. Neurobiology of Aging, 2015, 36, 3117.e7-3117.e8.	1.5	22
18	Insights from late-onset familial parkinsonism on the pathogenesis of idiopathic Parkinson's disease. Lancet Neurology, The, 2015, 14, 1054-1064.	4.9	56

TION RE

ARTICLE IF CITATIONS # The mTOR Signaling Pathway in Neurodegenerative Diseases., 2016,, 85-104. 3 19 Genetics of movement disorders in the nextâ€generation sequencing era. Movement Disorders, 2016, 31, 2.2 34 458-470. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. 21 2.0 197 EMBO Reports, 2016, 17, 300-316. A homozygous parkin p.G284R mutation in a Chinese family with autosomal recessive juvenile parkinsonism. Neuroscience Letters, 2016, 624, 100-104. Mutation analysis of the CHCHD2 gene in Chinese Han patients with Parkinson's disease. Parkinsonism 23 1.1 9 and Related Disorders, 2016, 29, 143-144. Evidence of mutations in <i>RIC3 </i> autosomal-dominant Parkinson's disease with non-motor phenotypes. Journal of Medical Genetics, 1.5 2016, 53, 559-566. Mutational analysis of CHCHD2 in Chinese patients with multiple system atrophy and amyotrophic 25 0.3 8 lateral sclerosis. Journal of the Neurological Sciences, 2016, 368, 389-391. SLC6A3 rs28363170 and rs3836790 variants in Han Chinese patients with sporadic Parkinson's disease. 1.0 26 Neuroscience Letters, 2016, 629, 48-51. Brain glucose metabolism changes in Parkinson's disease patients with CHCHD2 mutation based on 18 27 0.3 7 F-FDG PET imaging. Journal of the Neurological Sciences, 2016, 369, 303-305. A customized high-resolution array-comparative genomic hybridization to explore copy number variations in Parkinson's disease. Neurogenetics, 2016, 17, 233-244. Gsk3Î² and Tomm2O are substrates of the SCFFbxo7/PARK15 ubiquitin ligase associated with Parkinson's 29 1.7 45 disease. Biochemical Journal, 2016, 473, 3563-3580. Genetic analysis of the CHCHD2 gene in Chinese patients with familial essential tremor. Neuroscience 1.0 Letters, 2016, 634, 104-106. Genetic analysis of <i>CHCHD2</i> gene in Chinese Parkinson's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 1148-1152. $\mathbf{31}$ 1.1 10 Genetic analysis of the CHCHD2 gene in a cohort of Chinese patients with Parkinson disease. 1.0 Neuroscience Letters, 2016, 629, 116-118. Genetics of Parkinson's disease. Molecular and Cellular Probes, 2016, 30, 386-396. 33 0.9 282 Mitochondrial dysfunction in Parkinson's disease. Translational Neurodegeneration, 2016, 5, 14. 34 129 Autosomal dominant Parkinson's disease: Incidence of mutations in LRRK2, SNCA, VPS35 and GBA genes 35 1.0 13 in Brazil. Neuroscience Letters, 2016, 635, 67-70. Mutational scanning of the CHCHD2 gene in Han Chinese patients with Parkinson's disease and 1.1 meta-analysis of the literature. Parkinsonism and Related Disorders, 2016, 29, 42-46.

#	Article	IF	CITATIONS
37	The Evolution of Genetics: Alzheimer's and Parkinson's Diseases. Neuron, 2016, 90, 1154-1163.	3.8	81
38	Association of GCH1 and MIR4697 , but not SIPA1L2 and VPS13C polymorphisms, with Parkinson's disease in Taiwan. Neurobiology of Aging, 2016, 39, 221.e1-221.e5.	1.5	15
39	A nonsense mutation in <i>CHCHD2</i> in a patient with Parkinson disease. Neurology, 2016, 86, 577-579.	1.5	20
40	Mutation analysis of CHCHD2 in Canadian patients with familial Parkinson's disease. Neurobiology of Aging, 2016, 38, 217.e7-217.e8.	1.5	16
41	CHCHD2 gene mutations in familial and sporadic Parkinson's disease. Neurobiology of Aging, 2016, 38, 217.e9-217.e13.	1.5	56
42	Movement disorders: advances in 2015. Lancet Neurology, The, 2016, 15, 8-9.	4.9	8
43	Exonic rearrangements in the known Parkinson's disease-causing genes are a rare cause of the disease in South African patients. Neuroscience Letters, 2016, 619, 168-171.	1.0	10
44	Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease. Trends in Biochemical Sciences, 2016, 41, 245-260.	3.7	104
45	Discovery of a frameshift mutation in podocalyxin-like (PODXL) gene, coding for a neural adhesion molecule, as causal for autosomal-recessive juvenile Parkinsonism. Journal of Medical Genetics, 2016, 53, 450-456.	1.5	37
46	Lack of CHCHD2 mutations in Parkinson's disease in a Taiwanese population. Neurobiology of Aging, 2016, 38, 218.e1-218.e2.	1.5	16
47	An updated review of Parkinson's disease genetics and clinicopathological correlations. Acta Neurologica Scandinavica, 2017, 135, 273-284.	1.0	137
48	Investigating the role of ALS genes CHCHD10 and TUBA4A in Belgian FTD-ALS spectrum patients. Neurobiology of Aging, 2017, 51, 177.e9-177.e16.	1.5	60
49	Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing. Genome Biology, 2017, 18, 22.	3.8	96
50	Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways. Cell Systems, 2017, 4, 157-170.e14.	2.9	102
52	Varied pathological and therapeutic response effects associated with <i>CHCHD2</i> mutant and risk variants. Human Mutation, 2017, 38, 978-987.	1.1	21
53	Genetic analysis of CHCHD2 in a southern Spanish population. Neurobiology of Aging, 2017, 50, 169.e1.	1.5	6
54	Molecular analyses of neurogenic defects in a human pluripotent stem cell model of fragile X syndrome. Brain, 2017, 140, aww357.	3.7	52
55	Loss of Parkinson's disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome c. Nature Communications, 2017, 8, 15500.	5.8	123

#	Article	IF	CITATIONS
56	Loss of function CHCHD10 mutations in cytoplasmic TDP-43 accumulation and synaptic integrity. Nature Communications, 2017, 8, 15558.	5.8	93
57	Genetic analysis of CHCHD2 and CHCHD10 in Italian patients with Parkinson's disease. Neurobiology of Aging, 2017, 53, 193.e7-193.e8.	1.5	8
59	Role of the VPS35 D620N mutation in Parkinson's disease. Parkinsonism and Related Disorders, 2017, 36, 10-18.	1.1	24
60	Precise Evaluation of Striatal Oxidative Stress Corrected for Severity of Dopaminergic Neuronal Degeneration in Patients with Parkinson's Disease: A Study with ⁶² Cu-ATSM PET and ¹²³ I-FP-CIT SPECT. European Neurology, 2017, 78, 161-168.	0.6	17
61	Mitochondrial-Associated Membranes in Parkinson's Disease. Advances in Experimental Medicine and Biology, 2017, 997, 157-169.	0.8	26
62	Decreased long-chain acylcarnitines from insufficient β-oxidation as potential early diagnostic markers for Parkinson's disease. Scientific Reports, 2017, 7, 7328.	1.6	95
63	New Genes Causing Hereditary Parkinson's Disease or Parkinsonism. Current Neurology and Neuroscience Reports, 2017, 17, 66.	2.0	89
64	Screening for TMEM230 mutations in young-onset Parkinson's disease. Neurobiology of Aging, 2017, 58, 239.e9-239.e10.	1.5	8
65	Modeling the genetic complexity of Parkinson's disease by targeted genome edition in iPS cells. Current Opinion in Genetics and Development, 2017, 46, 123-131.	1.5	16
66	Neuropathology of genetic synucleinopathies with parkinsonism: Review of the literature. Movement Disorders, 2017, 32, 1504-1523.	2.2	229
67	Analysis of CHCHD2 gene in familial Parkinson's disease from Calabria. Neurobiology of Aging, 2017, 50, 169.e5-169.e6.	1.5	8
68	Mutation analysis of CHCHD2 gene in Chinese Han familial essential tremor patients and familial Parkinson's disease patients. Neurobiology of Aging, 2017, 49, 218.e9-218.e11.	1.5	9
69	A novel mutation of CHCHD2 p.R8H in a sporadic case of Parkinson's disease. Parkinsonism and Related Disorders, 2017, 34, 66-68.	1.1	14
70	Mitochondrial CHCHD-Containing Proteins: Physiologic Functions and Link with Neurodegenerative Diseases. Molecular Neurobiology, 2017, 54, 5534-5546.	1.9	43
71	The Neurogenetics of Parkinson's Disease and Putative Links to Other Neurodegenerative Disorders. , 2017, , 1-40.		3
72	Parkinson's Disease: From Pathogenesis to Pharmacogenomics. International Journal of Molecular Sciences, 2017, 18, 551.	1.8	383
73	Mitochondria: A Common Target for Genetic Mutations and Environmental Toxicants in Parkinson's Disease. Frontiers in Genetics, 2017, 8, 177.	1.1	58
74	Mutation Analysis of <i>HTRA2</i> Gene in Chinese Familial Essential Tremor and Familial Parkinson's Disease. Parkinson's Disease, 2017, 2017, 1-6.	0.6	13

#	Article	IF	CITATIONS
75	MNRR1, a Biorganellar Regulator of Mitochondria. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1017, 1017.	1.9	23
76	Evidence for prehistoric origins of the G2019S mutation in the North African Berber population. PLoS ONE, 2017, 12, e0181335.	1.1	13
77	Mitochondrial Dynamics in Neurodegenerative Diseases. Advances in Neurotoxicology, 2017, , 211-246.	0.7	3
78	Progress toward an integrated understanding of Parkinson's disease. F1000Research, 2017, 6, 1121.	0.8	23
79	Treadmill in Parkinson's: influence on gait, balance, BDNF and Reduced Glutathione. Fisioterapia Em Movimento, 2017, 30, 93-100.	0.4	2
80	Genetics of Parkinson disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 147, 211-227.	1.0	96
81	Mitochondrial Dysfunction in Parkinson's Disease: New Mechanistic Insights and Therapeutic Perspectives. Current Neurology and Neuroscience Reports, 2018, 18, 21.	2.0	401
82	Sleep disorders and Parkinson disease; lessons from genetics. Sleep Medicine Reviews, 2018, 41, 101-112.	3.8	35
83	Mutation Screening of the CHCHD2 Gene for Alzheimer's Disease and Frontotemporal Dementia in Chinese Mainland Population. Journal of Alzheimer's Disease, 2018, 61, 1283-1288.	1.2	15
84	The genetic architecture of mitochondrial dysfunction in Parkinson's disease. Cell and Tissue Research, 2018, 373, 21-37.	1.5	131
85	Mutations in bassoon in individuals with familial and sporadic progressive supranuclear palsy-like syndrome. Scientific Reports, 2018, 8, 819.	1.6	26
86	The genetics of Parkinson disease. Ageing Research Reviews, 2018, 42, 72-85.	5.0	398
87	A new CHCHD2 mutation identified in a southern italy patient with multiple system atrophy. Parkinsonism and Related Disorders, 2018, 47, 91-93.	1.1	11
88	Mutation analysis of CHCHD2 and CHCHD10 in Italian patients with mitochondrial myopathy. Neurobiology of Aging, 2018, 66, 181.e1-181.e2.	1.5	8
89	Parkinson Disease from Mendelian Forms to Genetic Susceptibility: New Molecular Insights into the Neurodegeneration Process. Cellular and Molecular Neurobiology, 2018, 38, 1153-1178.	1.7	102
90	ALS Genes in the Genomic Era and their Implications for FTD. Trends in Genetics, 2018, 34, 404-423.	2.9	229
91	Current perspective of mitochondrial biology in Parkinson's disease. Neurochemistry International, 2018, 117, 91-113.	1.9	71
92	Genetics of Parkinson's disease and related disorders. Journal of Medical Genetics, 2018, 55, 73-80.	1.5	55

#	Article	IF	CITATIONS
93	Morbus Parkinson. Medizinische Genetik, 2018, 30, 267-273.	0.1	0
94	Identification of CHCHD2 mutations in patients with Alzheimer's disease, amyotrophic lateral sclerosis and frontotemporal dementia in China. Molecular Medicine Reports, 2018, 18, 461-466.	1.1	4
95	SPECT Molecular Imaging in Familial Parkinson's Disease. International Review of Neurobiology, 2018, 142, 225-260.	0.9	3
96	The genetic landscape of Parkinson's disease. Revue Neurologique, 2018, 174, 628-643.	0.6	176
97	Early-onset Parkinson disease caused by a mutation in CHCHD2 and mitochondrial dysfunction. Neurology: Genetics, 2018, 4, e276.	0.9	26
98	Environmental and Genetic Variables Influencing Mitochondrial Health and Parkinson's Disease Penetrance. Parkinson's Disease, 2018, 2018, 1-8.	0.6	13
99	Identifying genes in Parkinson disease: state of the art. Medical Journal of Australia, 2018, 208, 381-382.	0.8	0
100	CHCHD2 accumulates in distressed mitochondria and facilitates oligomerization of CHCHD10. Human Molecular Genetics, 2018, 27, 3881-3900.	1.4	38
101	Parkinson's Disease and Other Synucleinopathies. , 2018, , 117-143.		0
102	Arylsulfatase A, a genetic modifier of Parkinson's disease, is an α-synuclein chaperone. Brain, 2019, 142, 2845-2859.	3.7	44
103	Alpha-synuclein structure and Parkinson's disease – lessons and emerging principles. Molecular Neurodegeneration, 2019, 14, 29.	4.4	262
104	Associations with metabolites in Chinese suggest new metabolic roles in Alzheimer's and Parkinson's diseases. Human Molecular Genetics, 2019, 29, 189-201.	1.4	12
105	Approach to Assessment of Parkinson Disease with Emphasis on Genetic Testing. Medical Clinics of North America, 2019, 103, 1055-1075.	1.1	9
106	Mutation analysis of LRP10 in Japanese patients with familial Parkinson's disease, progressive supranuclear palsy, and frontotemporal dementia. Neurobiology of Aging, 2019, 84, 235.e11-235.e16.	1.5	10
107	Mutations in CHCHD2 cause α-synuclein aggregation. Human Molecular Genetics, 2019, 28, 3895-3911.	1.4	48
108	DJ-1 is dispensable for human stem cell homeostasis. Protein and Cell, 2019, 10, 846-853.	4.8	13
109	Lysosomal Dysfunction at the Centre of Parkinson's Disease and Frontotemporal Dementia/Amyotrophic Lateral Sclerosis. Trends in Neurosciences, 2019, 42, 899-912.	4.2	89
110	Mitochondria function associated genes contribute to Parkinson's Disease risk and later age at onset. Npj Parkinson's Disease, 2019, 5, 8.	2.5	95

		CITATION REPORT	
#	Article	IF	Citations
111	Parkinson's disease in the Western Pacific Region. Lancet Neurology, The, 2019, 18, 865-879.	4.9	116
112	Mitochondrial Dysfunction in Parkinson's Disease—Cause or Consequence?. Biology, 2019,	8, 38. 1.3	153
113	Nonsense mutation in <i>CFAP43</i> causes normal-pressure hydrocephalus with ciliary abnormalities. Neurology, 2019, 92, e2364-e2374.	1.5	65
114	Molecular insights of the C2019S substitution in LRRK2 kinase domain associated with Parkinson disease: A molecular dynamics simulation approach. Journal of Theoretical Biology, 2019, 469, 16		31
116	Twin CHCH Proteins, CHCHD2, and CHCHD10: Key Molecules of Parkinson's Disease, Amyotr Lateral Sclerosis, and Frontotemporal Dementia. International Journal of Molecular Sciences, 2019 20, 908.	ophic 9, 1.8	39
117	Molecular targets for modulating the protein translation vital to proteostasis and neuron degeneration in Parkinson's disease. Translational Neurodegeneration, 2019, 8, 6.	3.6	21
118	A Subcellular Quantitative Proteomic Analysis of Herpes Simplex Virus Type 1-Infected HEK 293T Molecules, 2019, 24, 4215.	Cells. 1.7	13
119	Light-driven activation of mitochondrial proton-motive force improves motor behaviors in a Drosophila model of Parkinson's disease. Communications Biology, 2019, 2, 424.	2.0	25
120	Advances in the Research of Risk Factors and Prodromal Biomarkers of Parkinson's Disease. A Chemical Neuroscience, 2019, 10, 973-990.	CS 1.7	39
121	Systematically analyzing rare variants of autosomal-dominant genes for sporadic Parkinson's dise in a Chinese cohort. Neurobiology of Aging, 2019, 76, 215.e1-215.e7.	ase 1.5	17
122	CHCHD10 is involved in the development of Parkinson's disease caused by CHCHD2 loss-of-funct mutation p.T611. Neurobiology of Aging, 2019, 75, 38-41.	ion 1.5	14
123	CHCHD2 mutational screening in Brazilian patients with familial Parkinson's disease. Neurobiolog Aging, 2019, 74, 236.e7-236.e8.	ry of 1.5	5
124	Underappreciated Roles of the Translocase of the Outer and Inner Mitochondrial Membrane Prote Complexes in Human Disease. DNA and Cell Biology, 2019, 38, 23-40.	ein 0.9	21
125	PD-linked CHCHD2 mutations impair CHCHD10 and MICOS complex leading to mitochondria dysfunction. Human Molecular Genetics, 2019, 28, 1100-1116.	1.4	48
126	Genetics of REM Sleep Behavior Disorder. , 2019, , 589-609.		2
127	Mitochondrial CHCHD2 and CHCHD10: Roles in Neurological Diseases and Therapeutic Implicatio Neuroscientist, 2020, 26, 170-184.	ns. 2.6	12
128	Chchd2 regulates mitochondrial morphology by modulating the levels of Opa1. Cell Death and Differentiation, 2020, 27, 2014-2029.	5.0	33
129	The â€~mitochondrial contact site and cristae organising system' (MICOS) in health and huma Journal of Biochemistry, 2020, 167, 243-255.	an disease. 0.9	62

#	Article	IF	CITATIONS
130	Mitochondrial Quality Control and Restraining Innate Immunity. Annual Review of Cell and Developmental Biology, 2020, 36, 265-289.	4.0	73
131	Identification of Disease-Associated Variants by Targeted Gene Panel Resequencing in Parkinson's Disease. Frontiers in Neurology, 2020, 11, 576465.	1.1	4
132	An integrated approach to unravel a putative crosstalk network in Alzheimer's disease and Parkinson's disease. Neuropeptides, 2020, 83, 102078.	0.9	12
133	TREM2 Alzheimer's variant R47H causes similar transcriptional dysregulation to knockout, yet only subtle functional phenotypes in human iPSC-derived macrophages. Alzheimer's Research and Therapy, 2020, 12, 151.	3.0	35
134	Progress in the molecular pathogenesis and nucleic acid therapeutics for Parkinson's disease in the precision medicine era. Medicinal Research Reviews, 2020, 40, 2650-2681.	5.0	32
135	α-Synuclein in Parkinson's Disease: Does a Prion-Like Mechanism of Propagation from Periphery to the Brain Play a Role?. Neuroscientist, 2021, 27, 107385842094318.	2.6	5
136	Analysis of rare variants of autosomalâ€dominant genes in a Chinese population with sporadic Parkinson's disease. Molecular Genetics & Genomic Medicine, 2020, 8, e1449.	0.6	7
137	A 17-bp InDel (rs668420586) within goat CHCHD7 gene located in growth-related QTL affecting body measurement traits. 3 Biotech, 2020, 10, 441.	1.1	4
138	Tissue- and Sex-Specific DNA Methylation Changes in Mice Perinatally Exposed to Lead (Pb). Frontiers in Genetics, 2020, 11, 840.	1.1	16
139	PET Imaging for Oxidative Stress in Neurodegenerative Disorders Associated with Mitochondrial Dysfunction. Antioxidants, 2020, 9, 861.	2.2	25
140	Improved Parkinsons disease motor score in a single-arm open-label trial of febuxostat and inosine. Medicine (United States), 2020, 99, e21576.	0.4	16
141	Mitochondrial Homeostasis and Signaling in Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 100.	1.7	27
142	Protein import by the mitochondrial disulfide relay in higher eukaryotes. Biological Chemistry, 2020, 401, 749-763.	1.2	16
143	Variants in saposin D domain of prosaposin gene linked to Parkinson's disease. Brain, 2020, 143, 1190-1205.	3.7	72
144	Epigenetics in Lewy Body Diseases: Impact on Gene Expression, Utility as a Biomarker, and Possibilities for Therapy. International Journal of Molecular Sciences, 2020, 21, 4718.	1.8	15
145	PINK1-Parkin signaling in Parkinson's disease: Lessons from Drosophila. Neuroscience Research, 2020, 159, 40-46.	1.0	24
146	Mitochondrial E3 Ubiquitin Ligase Parkin: Relationships with Other Causal Proteins in Familial Parkinson's Disease and Its Substrate-Involved Mouse Experimental Models. International Journal of Molecular Sciences, 2020, 21, 1202.	1.8	8
147	CHCHD2 harboring Parkinson's disease-linked T61I mutation precipitates inside mitochondria and induces precipitation of wild-type CHCHD2. Human Molecular Genetics, 2020, 29, 1096-1106.	1.4	20

#	Article	IF	CITATIONS
149	Genetics of Parkinson's disease: An introspection of its journey towards precision medicine. Neurobiology of Disease, 2020, 137, 104782.	2.1	241
150	Loss of CHCHD2 and CHCHD10 activates OMA1 peptidase to disrupt mitochondrial cristae phenocopying patient mutations. Human Molecular Genetics, 2020, 29, 1547-1567.	1.4	42
151	Genetic analysis of N6-methyladenosine modification genes in Parkinson's disease. Neurobiology of Aging, 2020, 93, 143.e9-143.e13.	1.5	35
152	Genetic predispositions of Parkinson's disease revealed in patient-derived brain cells. Npj Parkinson's Disease, 2020, 6, 8.	2.5	90
153	Mitochondria and Parkinson's Disease: Clinical, Molecular, and Translational Aspects. Journal of Parkinson's Disease, 2021, 11, 45-60.	1.5	100
154	Mitochondrial Dysfunction and Mitophagy in Parkinson's Disease: From Mechanism to Therapy. Trends in Biochemical Sciences, 2021, 46, 329-343.	3.7	234
155	The multiâ€faceted role of mitochondria in the pathology of Parkinson's disease. Journal of Neurochemistry, 2021, 156, 715-752.	2.1	42
156	Targeting mitophagy in Parkinson's disease. Journal of Biological Chemistry, 2021, 296, 100209.	1.6	65
157	Etiology and pathogenesis of Parkinson disease. , 2021, , 121-163.e16.		2
158	Regulation of COX Assembly and Function by Twin CX9C Proteins—Implications for Human Disease. Cells, 2021, 10, 197.	1.8	10
159	Alpha-Synucleinopathies. , 2021, , 387-410.		0
160	Clinical overview and phenomenology of movement disorders. , 2021, , 1-51.e27.		3
161	Homeostatic p62 levels and inclusion body formation in CHCHD2 knockout mice. Human Molecular Genetics, 2021, 30, 443-453.	1.4	21
162	Genetics of frontotemporal dementia in China. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 321-335.	1.1	11
163	Early death of ALS-linked CHCHD10-R15L transgenic mice with central nervous system, skeletal muscle, and cardiac pathology. IScience, 2021, 24, 102061.	1.9	10
164	Neurodegenerative disorders associated with genes of mitochondria. Future Journal of Pharmaceutical Sciences, 2021, 7, .	1.1	6
165	Reduced erythrocytic CHCHD2 mRNA is associated with brain pathology of Parkinson's disease. Acta Neuropathologica Communications, 2021, 9, 37.	2.4	8
166	Prioritization of candidate genes for a South African family with Parkinson's disease using in-silico tools. PLoS ONE, 2021, 16, e0249324.	1.1	9

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
167	Hunting for Familial Parkinson's Disease Mutations in the Post Genome Era. Genes, 2021, 12, 430.	1.0	4
168	Analysis of genetic risk factors in Japanese patients with Parkinson's disease. Journal of Human Genetics, 2021, 66, 957-964.	1.1	4
169	PGC-1s in the Spotlight with Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 3487.	1.8	40
170	MICOS and the mitochondrial inner membrane morphology – when things get out of shape. FEBS Letters, 2021, 595, 1159-1183.	1.3	43
171	Gene4PD: A Comprehensive Genetic Database of Parkinson's Disease. Frontiers in Neuroscience, 2021, 15, 679568.	1.4	16
172	Mitochondrial CHCHD2: Disease-Associated Mutations, Physiological Functions, and Current Animal Models. Frontiers in Aging Neuroscience, 2021, 13, 660843.	1.7	28
173	Connecting the dots between mitochondrial dysfunction and Parkinson's disorder: focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity. Environmental Science and Pollution Research, 2021, 28, 37060-37081.	2.7	11
175	Targeting cellular batteries for the therapy of neurological diseases. Environmental Science and Pollution Research, 2021, 28, 41517-41532.	2.7	3
176	Atremorine in Parkinson's disease: From dopaminergic neuroprotection to pharmacogenomics. Medicinal Research Reviews, 2021, 41, 2841-2886.	5.0	7
177	PARK Genes Link Mitochondrial Dysfunction and Alpha-Synuclein Pathology in Sporadic Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 612476.	1.8	32
178	Human Induced Pluripotent Stem Cell-Derived TDP-43 Mutant Neurons Exhibit Consistent Functional Phenotypes Across Multiple Gene Edited Lines Despite Transcriptomic and Splicing Discrepancies. Frontiers in Cell and Developmental Biology, 2021, 9, 728707.	1.8	13
179	Genotype-Phenotype Correlations in Monogenic Parkinson Disease: A Review on Clinical and Molecular Findings. Frontiers in Neurology, 2021, 12, 648588.	1.1	23
180	Genetic Models of Parkinson's. Neuromethods, 2021, , 37-84.	0.2	2
181	ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons. Neurobiology of Disease, 2020, 141, 104940.	2.1	24
182	Systematic analysis of genetic variants in Han Chinese patients with sporadic Parkinson's disease. Scientific Reports, 2016, 6, 33850.	1.6	12
184	Diagnostic exome sequencing in earlyâ€onset Parkinson's disease confirms <i>VPS13C</i> as a rare cause of autosomalâ€recessive Parkinson's disease. Clinical Genetics, 2018, 93, 603-612.	1.0	70
185	Loss of α-Synuclein Does Not Affect Mitochondrial Bioenergetics in Rodent Neurons. ENeuro, 2017, 4, ENEURO.0216-16.2017.	0.9	16
186	Role of Genes and Treatments for Parkinson's Disease. The Open Biology Journal, 2020, 8, 47-65.	0.5	4

ARTICLE IF CITATIONS # Mechanisms of ebselen as a therapeutic and its pharmacology applications. Future Medicinal 187 1.1 27 Chemistry, 2020, 12, 2141-2160. Poverty and Slowness of Voluntary Movement., 2016, , 1-47. 188 Peking University - Juntendo University Joint Symposium on Brain and Skin Diseases. Juntendo Medical 189 0.1 0 Journal, 2016, 62, 308-310. Survey of Metaheuristics and Statistical Methods for Multifactorial Diseases Analyses. AIMS Medical 0.2 Science, 2017, 4, 291-331. Genetics of Movement Disorders., 2017, , 77-92. 191 0 194 Alpha-Synucleinopathies. Advances in Medical Diagnosis, Treatment, and Care, 2019, , 274-297. 0.1 196 Phenotypic Heterogeneity. Statistics in the Health Sciences, 2020, , 99-127. 0.2 0 Research Progress on Polymorphisms and Phenotypic Characteristics of Parkinson's Disease-Related Genes in Chinese Population. Advances in Clinical Medicine, 2020, 10, 568-577. Mouse midbrain dopaminergic neurons survive loss of the PD-associated mitochondrial protein 199 1.4 5 CHCHD2. Human Molecular Genetics, 2021, , . Profile of Basal Cell Carcinoma Mutations and Copy Number Alterations - Focus on Gene-Associated 1.3 Noncoding Variants. Frontiers in Oncology, 2021, 11, 752579. Therapeutic Potential of α-Synuclein Evolvability for Autosomal Recessive Parkinson's Disease. 201 0.6 1 Parkinson's Disease, 2021, 2021, 1-11. Mitochondrial Membrane Remodeling. Frontiers in Bioengineering and Biotechnology, 2021, 9, 786806. Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network 203 2.0 10 of Parkinson's disease. Communications Biology, 2022, 5, 49. Roles of α-Synuclein and Disease-Associated Factors in Drosophila Models of Parkinson's Disease. 204 1.8 International Journal of Molecular Sciences, 2022, 23, 1519. The neuroinflammatory role of glucocerebrosidase in Parkinson's disease. Neuropharmacology, 2022, 205 2.0 7 207, 108964. Modulation of miR-181 influences dopaminergic neuronal degeneration in a mouse model of 206 Parkinson's disease. Molecular Therapy - Nucleic Acids, 2022, 28, 1-15. CHCHD2 Regulates Mitochondrial Function and Apoptosis of Ectopic Endometrial Stromal Cells in the 207 1.1 4 Pathogenesis of Endometriosis. Reproductive Sciences, 2022, 29, 2152-2164. CHCHD2 and CHCHD10 regulate mitochondrial dynamics and integrated stress response. Cell Death and Disease, 2022, 13, 156.

#	Article	IF	CITATIONS
209	Current Status of Next-Generation Sequencing Approaches for Candidate Gene Discovery in Familial Parkinson´s Disease. Frontiers in Genetics, 2022, 13, 781816.	1.1	3
210	Deep Brain Stimulation for a Patient with Familial Parkinson's Disease Harboring <scp><i>CHCHD2</i></scp> p. <scp>T61I</scp> . Movement Disorders Clinical Practice, 2022, 9, 407-409.	0.8	2
211	Monogenic Parkinson's Disease: Genotype, Phenotype, Pathophysiology, and Genetic Testing. Genes, 2022, 13, 471.	1.0	41
212	Downregulation of CHCHD2 may Contribute to Parkinson's Disease by Reducing Expression of NFE2L2 and RQCD1. Current Neurovascular Research, 2022, 19, .	0.4	0
213	Mitochondrial Function and Parkinson's Disease: From the Perspective of the Electron Transport Chain. Frontiers in Molecular Neuroscience, 2021, 14, 797833.	1.4	25
215	Pathological characterization of a novel mouse model expressing the PD-linked CHCHD2-T611 mutation. Human Molecular Genetics, 2022, 31, 3987-4005.	1.4	4
227	Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force – An Update. Movement Disorders, 2022, 37, 905-935.	2.2	49
230	What have we learned from genome-wide association studies (GWAS) in Parkinson's disease?. Ageing Research Reviews, 2022, 79, 101648.	5.0	9
231	Clinical Manifestations and Molecular Backgrounds of Parkinson's Disease Regarding Genes Identified From Familial and Population Studies. Frontiers in Neurology, 0, 13, .	1.1	6
232	Mitochondrial Dysfunction in Parkinson's Disease: From Mechanistic Insights to Therapy. Frontiers in Aging Neuroscience, 0, 14, .	1.7	31
233	OMA1 mediates local and global stress responses against protein misfolding in CHCHD10 mitochondrial myopathy. Journal of Clinical Investigation, 2022, 132, .	3.9	24
234	Molecular genetics of Parkinson's disease: Contributions and global trends. Journal of Human Genetics, 2023, 68, 125-130.	1.1	39
235	CHCHD2 maintains mitochondrial contact site and cristae organizing system stability and protects against mitochondrial dysfunction in an experimental model of Parkinson's disease. Chinese Medical Journal, 2022, 135, 1588-1596.	0.9	5
236	Targeting Mitochondria as a Therapeutic Approach for Parkinson's Disease. Cellular and Molecular Neurobiology, 2023, 43, 1499-1518.	1.7	7
237	A bibliometric analysis of neuroimaging biomarkers in Parkinson disease based on Web of Science. Medicine (United States), 2022, 101, e30079.	0.4	3
238	The relationship of alpha-synuclein to mitochondrial dynamics and quality control. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	14
239	CHCHD2 and CHCHD10: Future therapeutic targets in cognitive disorder and motor neuron disorder. Frontiers in Neuroscience, 0, 16, .	1.4	6
240	Production of a human iPSC line from an early-onset Parkinson's disease patient with a novel CHCHD2 gene truncated mutation. Stem Cell Research, 2022, 64, 102881.	0.3	1

#	Article	IF	CITATIONS
242	Genetics and Pathogenesis of Parkinson's Syndrome. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 95-121.	9.6	49
243	Calabria as a Genetic Isolate: A Model for the Study of Neurodegenerative Diseases. Biomedicines, 2022, 10, 2288.	1.4	4
244	Neurodegeneration-associated mitochondrial proteins, CHCHD2 and CHCHD10–what distinguishes the two?. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
245	5. Genome Analysis and Drug Discovery for Parkinson'S Disease. The Journal of the Japanese Society of Internal Medicine, 2021, 110, 1904-1909.	0.0	0
246	Druggable transcriptomic pathways revealed in Parkinson's patient-derived midbrain neurons. Npj Parkinson's Disease, 2022, 8, .	2.5	9
247	<scp>CHCHD2</scp> p. <scp>Thr61lle</scp> knockâ€in mice exhibit motor defects and neuropathological features of Parkinson's disease. Brain Pathology, 2023, 33, .	2.1	7
248	Increased CHCHD2 expression promotes liver fibrosis in nonalcoholic steatohepatitis via Notch/osteopontin signaling. JCI Insight, 2022, 7, .	2.3	8
249	Miro1 R272Q disrupts mitochondrial calcium handling and neurotransmitter uptake in dopaminergic neurons. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	3
250	In vitro characterization on the role of <scp><i>APOE</i></scp> polymorphism in human hippocampal neurogenesis. Hippocampus, 2023, 33, 322-346.	0.9	3
251	Genetic Movement Disorders Commonly Seen in Asians. Movement Disorders Clinical Practice, 2023, 10, 878-895.	0.8	5
252	PRKN/parkin-mediated mitophagy is induced by the probiotics <i>Saccharomyces boulardii</i> and <i>Lactococcus lactis</i> . Autophagy, 2023, 19, 2094-2110.	4.3	1
253	Loss of mitochondrial Chchd10 or Chchd2 in zebrafish leads to an ALSâ€like phenotype and Complex I deficiency independent of the mitochondrial integrated stress response. Developmental Neurobiology, 2023, 83, 54-69.	1.5	2
254	Evidence for the participation of CHCHD2/MNRR1, a mitochondrial protein, in spontaneous labor at term and in preterm labor with intra-amniotic infection. Journal of Maternal-Fetal and Neonatal Medicine, 2023, 36, .	0.7	1
255	mTORC1-Dependent Protein and Parkinson's Disease: A Mendelian Randomization Study. Brain Sciences, 2023, 13, 536.	1.1	2
256	CHCHD2 and CHCHD10-related neurodegeneration: molecular pathogenesis and the path to precision therapy. Biochemical Society Transactions, 2023, 51, 797-809.	1.6	5
257	Interview with Nobutaka Hattori: a life researching Parkinson's disease pathogenesis. Neurodegenerative Disease Management, 0, , .	1.2	0
264	Different pieces of the same puzzle: a multifaceted perspective on the complex biological basis of Parkinson's disease. Npj Parkinson's Disease, 2023, 9, .	2.5	5
265	Pretectum p1 (Prosomere 1). , 2023, , 499-535.		0

#	Article	IF	CITATIONS
270	Genetic modulators of neurodegenerative diseases and their amelioration by natural products. , 2023, , 303-329.		0