Integrated guidance and control law for cooperative att

Aerospace Science and Technology 42, 1-11 DOI: 10.1016/j.ast.2014.11.018

Citation Report

#	Article	IF	CITATIONS
1	A Three-Dimensional Cooperative Guidance Law of Multimissile System. International Journal of Aerospace Engineering, 2015, 2015, 1-8.	0.5	8
2	A distributed cooperative guidance law for salvo attack of multiple anti-ship missiles. Chinese Journal of Aeronautics, 2015, 28, 1438-1450.	2.8	79
3	Distributed cooperative guidance of multiple anti-ship missiles with arbitrary impact angle constraint. Aerospace Science and Technology, 2015, 46, 299-311.	2.5	85
4	Cooperative guidance and control for rendezvous with uncooperative target based on Augment Proportional Navigation. , 2016, , .		2
5	Three dimensional impact angle constrained integrated guidance and control for missiles with input saturation and actuator failure. Aerospace Science and Technology, 2016, 53, 169-187.	2.5	78
6	Non-singular terminal dynamic surface control based integrated guidance and control design and simulation. ISA Transactions, 2016, 63, 112-120.	3.1	36
7	Group cooperative guidance for multiple missiles with directed topologies. , 2016, , .		8
8	Distributed cooperative guidance for multiple missiles. , 2016, , .		3
9	Dynamic surface control and active disturbance rejection control-based integrated guidance and control design and simulation for hypersonic reentry missile. International Journal of Modeling, Simulation, and Scientific Computing, 2016, 07, 1650025.	0.9	2
10	Lateral guidance and control of UAVs using second-order sliding modes. Aerospace Science and Technology, 2016, 49, 88-100.	2.5	25
11	Three-dimensional cooperative guidance law for multiple missiles with finite-time convergence. Aerospace Science and Technology, 2017, 67, 193-205.	2.5	128
12	Distributed group cooperative guidance for multiple missiles with fixed and switching directed communication topologies. Nonlinear Dynamics, 2017, 90, 2507-2523.	2.7	48
13	Integrated guidance and control design of the suicide UCAV for terminal attack. Journal of Systems Engineering and Electronics, 2017, 28, 546.	1.1	13
14	Minimum time state consensus for cooperative attack of multi-missile systems. Aerospace Science and Technology, 2017, 69, 87-96.	2.5	17
15	Distributed cooperative guidance for multiple missiles with fixed and switching communication topologies. Chinese Journal of Aeronautics, 2017, 30, 1570-1581.	2.8	69
16	A composite formation strategy for multiple missiles. , 2017, , .		3
17	Distributed group cooperative guidance for multiple missiles with switching directed communication topologies. , 2017, , .		4
18	Autopilot and guidance law design considering impact angle and time. IET Control Theory and Applications, 2018, 12, 221-232.	1.2	5

#	Article	IF	CITATIONS
19	Integrated cooperative guidance framework and cooperative guidance law for multi-missile. Chinese Journal of Aeronautics, 2018, 31, 546-555.	2.8	46
20	Integrated 3â€Ð Flight Trajectory Tracking Control with Aerodynamic Constraints on Attitude and control Surfaces. Asian Journal of Control, 2018, 20, 1891-1906.	1.9	4
21	Fixed-Time Cooperative Guidance Law for Multiple Missiles Against Maneuvering Target. , 2018, , .		4
22	Cooperative Guidance Law with Multiple Missiles Against a Maneuvering Target. , 2018, , .		4
23	Adaptive fault-tolerant cooperative guidance law for simultaneous arrival. Aerospace Science and Technology, 2018, 82-83, 243-251.	2.5	51
24	Distributed Zero-Sum Differential Game for Multi-Agent Nonlinear Systems via Adaptive Dynamic Programming. , 2018, , .		Ο
25	Research on Integrated Guidance and Control of Distributed Cooperation of Multi-Interceptor with State Coupling. Journal of Control Science and Engineering, 2018, 2018, 1-15.	0.8	0
26	Coverage-based cooperative target acquisition for hypersonic interceptions. Science China Technological Sciences, 2018, 61, 1575-1587.	2.0	6
27	A composite impact-time-control guidance law and simultaneous arrival. Aerospace Science and Technology, 2018, 80, 403-412.	2.5	22
28	Distributed zero-sum differential game for multi-agent systems in strict-feedback form with input saturation and output constraint. Neural Networks, 2018, 106, 8-19.	3.3	43
29	Distributed Fuzzy Adaptive Backstepping Optimal Control for Nonlinear Multi-missile Guidance Systems with Input Saturation. IEEE Transactions on Fuzzy Systems, 2018, , 1-1.	6.5	34
30	Adaptive integrated guidance and control for impact angle constrained interception with actuator saturation. Aeronautical Journal, 2019, 123, 1437-1453.	1.1	5
31	Robust partial integrated guidance and control approaches for maneuvering targets. International Journal of Robust and Nonlinear Control, 2019, 29, 6522-6541.	2.1	6
32	Integrated Guidance and Control of Multiple Interceptor Missiles Based on Improved Distributed Cooperative Control Strategy. Journal of Aerospace Technology and Management, 0, , .	0.3	4
33	Integrated Guidance and Control of Interceptor Missile Based on Asymmetric Barrier Lyapunov Function. International Journal of Aerospace Engineering, 2019, 2019, 1-17.	0.5	3
34	Co-operative 3D salvo attack of multiple missiles under switching topologies subject to time-varying communication delays. Aeronautical Journal, 2019, 123, 464-483.	1.1	6
35	Adaptive terminal sliding mode cooperative control for multiple missiles with input saturation. , 2019, , .		0
36	Optimal control based guidance law to control both impact time and impact angle. Aerospace Science and Technology, 2019, 84, 454-463.	2.5	82

#	Article	IF	Citations
37	Integrated strapdown missile guidance and control based on neural network disturbance observer. Aerospace Science and Technology, 2019, 84, 170-181.	2.5	53
38	Field-of-view constrained two-stage guidance law design for three-dimensional salvo attack of multiple missiles via an optimal control approach. Aerospace Science and Technology, 2019, 85, 334-346.	2.5	39
39	Impact time and angle constrained integrated guidance and control with application to salvo attack. Asian Journal of Control, 2020, 22, 1211-1220.	1.9	4
40	Fuzzy adaptive fault tolerant IGC method for STT missiles with time-varying actuator faults and multisource uncertainties. Journal of the Franklin Institute, 2020, 357, 59-81.	1.9	11
41	Distributed guidance law design for multi-UAV multi-direction attack based on reducing surrounding area. Aerospace Science and Technology, 2020, 99, 105571.	2.5	12
42	Multiple Missiles Cooperative Guidance Based on Proportional Navigation Guidance. , 2020, , .		3
43	Near space interceptor on-line correction research based on predictive intercept point. IOP Conference Series: Materials Science and Engineering, 2020, 768, 042021.	0.3	0
44	Sequential Guidance of Multiple Unmanned Surface Vehicles. , 2020, , .		0
45	Full State Constrained Stochastic Adaptive Integrated Guidance and Control for STT Missiles with Non-Affine Aerodynamic Characteristics. Information Sciences, 2020, 529, 42-58.	4.0	11
46	Multiple Tactical Missiles Cooperative Attack With Formation-Containment Tracking Requirement Along the Planned Trajectory. IEEE Access, 2020, 8, 87929-87946.	2.6	2
47	Design of distributed guidance laws for multiple unmanned aerial vehicles cooperative attack of a moving target based on reducing surrounding area. Transactions of the Institute of Measurement and Control, 2020, 42, 2155-2165.	1.1	0
48	Distributed synergetic guidance law for multiple missiles with angle-of-attack constraint. Aeronautical Journal, 2020, 124, 533-548.	1.1	6
49	Impact Angle Constrained Distributed Cooperative Guidance Against Maneuvering Targets With Undirected Communication Topologies. IEEE Access, 2020, 8, 117867-117876.	2.6	5
50	Three-Dimensional Cooperative Mid-Course Guidance Law Against the Maneuvering Target. IEEE Access, 2020, 8, 18841-18851.	2.6	7
51	Optimal Design of Cooperative Penetration Trajectories for Multiaircraft. International Journal of Aerospace Engineering, 2020, 2020, 1-12.	0.5	1
52	Fixed-time cooperative guidance law with input delay for simultaneous arrival. International Journal of Control, 2021, 94, 1664-1673.	1.2	26
53	Integral barrier Lyapunov functions-based integrated guidance and control design for strap-down missile with field-of-view constraint. Transactions of the Institute of Measurement and Control, 2021, 43, 1464-1477.	1.1	7
54	Variational method-based distributed optimal guidance laws for multi-attackers' simultaneous attack. Transactions of the Institute of Measurement and Control, 2021, 43, 1868-1879.	1.1	4

#	Article	IF	CITATIONS
55	Fully Distributed Time-Varying Formation Control for Multiple Uncertain Missiles. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57, 1646-1656.	2.6	10
56	Cooperative Guidance Law with Predefined-Time Convergence for Multimissile Systems. Mathematical Problems in Engineering, 2021, 2021, 1-13.	0.6	3
57	Cooperative Midcourse Guidance Law with Communication Delay. International Journal of Aerospace Engineering, 2021, 2021, 1-16.	0.5	3
58	Terminal Distributed Cooperative Guidance Law for Multiple UAVs Based on Consistency Theory. Applied Sciences (Switzerland), 2021, 11, 8326.	1.3	3
59	Distributed cooperative guidance law for multiple missiles with input delay and topology switching. Journal of the Franklin Institute, 2021, 358, 9061-9085.	1.9	18
60	Fixed-Time Cooperative Guidance for Salvo Attack: A Leader-Followers Approach. , 2021, , .		1
61	Prescribed-time Group Consensus Cooperative Guidance. , 2021, , .		1
62	Intelligent Control for Integrated Guidance and Control based on Intelligent Characteristic Model. Intelligent Automation and Soft Computing, 2018, 24, 623-632.	1.6	1
63	Studies on Multi-Constraints Cooperative Guidance Method Based on Distributed MPC for Multi-Missiles. Applied Sciences (Switzerland), 2021, 11, 10857.	1.3	5
64	Cooperative integrated guidance and control design for simultaneous interception. Aerospace Science and Technology, 2022, 120, 107262.	2.5	12
65	Finite-time Cooperative Guidance Law for Multiple Hypersonic Vehicles in Dive Phase. , 2020, , .		1
66	Multi-missile Cooperative Control Based on ESO for Simultaneous Arrival. Lecture Notes in Electrical Engineering, 2022, , 2981-2991.	0.3	3
67	Intelligent Guidance and Control Methods for Missile Swarm. Computational Intelligence and Neuroscience, 2022, 2022, 1-9.	1.1	6
69	A Robust Adaptive Control Algorithm for Multimissile Cooperative Formation. International Journal of Aerospace Engineering, 2022, 2022, 1-10.	0.5	2
70	Integrated impact time guidance and control against non-maneuvering targets. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236, 3327-3343.	0.7	1
71	Cooperative guidance law for multiple missiles simultaneous attacks with fixed-time convergence. International Journal of Control, 2023, 96, 2167-2180.	1.2	3
72	Cooperative target capture using predefined-time consensus over fixed and switching networks. Aerospace Science and Technology, 2022, 127, 107686.	2.5	7
74	A New Sliding Mode Control Algorithm of IGC System for Intercepting Great Maneuvering Target Based on EDO. Sensors, 2022, 22, 7618.	2.1	2

#	Article	IF	Citations
75	Impact angle constrained fuzzy adaptive fault tolerant IGC method for Ski-to-Turn missiles with unsteady aerodynamics and multiple disturbances. Journal of Systems Engineering and Electronics, 2022, 33, 1210-1226.	1.1	0
76	Neural learning control of missile interception against dynamics uncertainty and target evasive maneuver. International Journal of Robust and Nonlinear Control, 2023, 33, 1456-1478.	2.1	1
77	Fixed Time Cooperative Scheme Design for Missiles Salvo Attack. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71, 672-676.	2.2	0
78	A Distributed Guidance Strategy for a Cooperative Dual Interceptor System. , 2023, , .		0