Occurrence of perfluoroalkyl acids in environmental wa

Chemosphere 122, 115-124 DOI: 10.1016/j.chemosphere.2014.11.023

Citation Report

#	Article	IF	CITATIONS
1	Perfluorononanoic acid disturbed the metabolism of lipid in the liver of streptozotocin-induced diabetic rats. Toxicology Mechanisms and Methods, 2015, 25, 622-627.	2.7	7
2	Persistent Toxic Substances in Vietnam: A Review of Environmental Contamination and Human Exposure. ACS Symposium Series, 2016, , 55-83.	0.5	2
3	Screening and health risk of organic micropollutants in rural groundwater of Liaodong Peninsula, China. Environmental Pollution, 2016, 218, 739-748.	7.5	51
4	Fatty acid metabolism in fish species as a biomarker for environmental monitoring. Environmental Pollution, 2016, 218, 297-312.	7.5	70
5	Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. Environmental Pollution, 2016, 208, 704-713.	7.5	189
6	A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: Distributions and bioconcentration profiles. Journal of Hazardous Materials, 2017, 323, 116-127.	12.4	113
7	Spatiotemporal distribution and potential sources of perfluoroalkyl acids in Huangpu River, Shanghai, China. Chemosphere, 2017, 174, 127-135.	8.2	42
8	Recent developments in polyfluoroalkyl compounds research: a focus on human/environmental health impact, suggested substitutes and removal strategies. Environmental Monitoring and Assessment, 2017, 189, 402.	2.7	29
9	Perfluoroalkyl acids in aqueous samples from Germany and Kenya. Environmental Science and Pollution Research, 2017, 24, 11031-11043.	5.3	19
10	Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam. Environmental Science and Pollution Research, 2018, 25, 7147-7156.	5.3	72
11	Distribution, source identification and health risk assessment of PFASs and two PFOS alternatives in groundwater from non-industrial areas. Ecotoxicology and Environmental Safety, 2018, 152, 141-150.	6.0	105
12	Biomonitoring PFAAs in blood and semen samples: Investigation of a potential link between PFAAs exposure and semen mobility in China. Environment International, 2018, 113, 50-54.	10.0	57
13	A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardous Materials, 2018, 344, 146-162.	12.4	589
14	Pollution levels and risk assessment of perfluoroalkyl acids (PFAAs) in beef muscle and liver from southern Xinjiang. Environmental Science and Pollution Research, 2018, 25, 25486-25495.	5.3	2
15	Soil repellency and stain resistance through hydrophobic and oleophobic treatments. , 2018, , 73-88.		4
16	Levels of perfluorinated compounds (PFCs) in groundwater around improper municipal and industrial waste disposal sites in Thailand and health risk assessment. Water Science and Technology, 2018, 2017, 457-466.	2.5	21
17	Investigating recycled water use as a diffuse source of per- and polyfluoroalkyl substances (PFASs) to groundwater in Melbourne, Australia. Science of the Total Environment, 2018, 644, 1409-1417.	8.0	70
18	Occurrence and spatial distribution of perfluorinated compounds in groundwater receiving reclaimed water through river bank infiltration. Chemosphere, 2018, 211, 1203-1211	8.2	19

#	Article	IF	CITATIONS
19	Occurrence and distribution of perfluorooctane sulfonate and perfluorooctanoic acid in three major rivers of Xinjiang, China. Environmental Science and Pollution Research, 2019, 26, 28062-28070.	5.3	4
20	Occurrence of perfluoroalkyl substances in selected Victorian rivers and estuaries: An historical snapshot. Heliyon, 2019, 5, e02472.	3.2	22
21	Where has the pollution gone? A survey of organic contaminants in Ho Chi Minh city / Saigon River (Vietnam) bed sediments. Chemosphere, 2019, 217, 261-269.	8.2	30
22	Contamination profiles and risk assessment of per- and polyfluoroalkyl substances in groundwater in China. Environmental Monitoring and Assessment, 2020, 192, 76.	2.7	6
23	Photoelectrochemical degradation of perfluorooctanoic acid (PFOA) with GOP25/FTO anodes: Intermediates and reaction pathways. Journal of Hazardous Materials, 2020, 391, 122247.	12.4	32
24	The occurrence and distributions of per- and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018. Environmental Pollution, 2021, 268, 115395.	7.5	42
25	Determination of Per- and Polyfluoroalkyl Substances in Craft Villages and Industrial Environments of Vietnam. Journal of Analytical Methods in Chemistry, 2021, 2021, 1-9.	1.6	7
26	Occurrence and toxicity of perfluoroalkyl acids along the estuarine and coastal regions under varied environmental factors. Science of the Total Environment, 2021, 769, 144584.	8.0	6
27	Per- and polyfluoroalkyl substances (PFAS) as contaminants of emerging concern in Asia's freshwater resources. Environmental Research, 2021, 197, 111122.	7.5	31
28	Priority perfluoroalkyl substances in surface waters - A snapshot survey from 22 developing countries. Chemosphere, 2021, 273, 129612.	8.2	35
29	A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Research, 2021, 199, 117187.	11.3	233
30	Screening and ecological risk of 1200 organic micropollutants in Yangtze Estuary water. Water Research, 2021, 201, 117341.	11.3	35
31	Investigation of distribution, sources and flux of perfluorinated compounds in major southern Indian rivers and their risk assessment. Chemosphere, 2021, 277, 130228.	8.2	19
32	PFAS and Potential Adverse Effects on Bone and Adipose Tissue Through Interactions With PPARÎ ³ . Endocrinology, 2021, 162, .	2.8	29
33	Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. Journal of Hazardous Materials, 2021, 419, 126361.	12.4	207
34	Enhanced perfluorooctane acid mineralization by electrochemical oxidation using Ti3+ self-doping TiO2 nanotube arrays anode. Chemosphere, 2022, 286, 131804.	8.2	21
35	Perfluorooctanesulfonate (PFOS), Its Occurrence, Fate, Transport and Removal in Various Environmental Media: A Review. Springer Transactions in Civil and Environmental Engineering, 2021, , 405-436.	0.4	3
36	Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Science of the Total Environment, 2022, 809, 151003.	8.0	230

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Analysis Characteristics of Perfluorinated Compounds Using Solid Phase Extraction. Daehan Hwan'gyeong Gonghag Hoeji, 2018, 40, 465-472.	1.1	1
38	Distribution, source identification and health risk assessment of PFASs in groundwater from Jiangxi Province, China. Chemosphere, 2022, 291, 132946.	8.2	13
39	Occurrences and impacts of perfluorinated compounds in soils and groundwater. , 2022, , 83-118.		0
40	Perfluoroalkyl substances (PFAS) in freshwater fish from urban lakes in Hanoi, Vietnam: concentrations, tissue distribution, and implication for risk assessment. Environmental Science and Pollution Research, 2022, 29, 52057-52069.	5.3	15
41	First report of perfluoroalkyl acids (PFAAs) in the Indus Drainage System: Occurrence, source and environmental risk. Environmental Research, 2022, 211, 113113.	7.5	10
42	Contamination of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in sediment of the Cau River, Vietnam. Environmental Monitoring and Assessment, 2022, 194, 380.	2.7	4
43	Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater: current understandings and challenges to overcome. Environmental Science and Pollution Research, 2022, 29, 49513-49533.	5.3	11
44	Occurrence of Emerging Contaminants in Southeast Asian Environments: Present Status, Challenges, and Future Prospects. ACS ES&T Water, 2022, 2, 907-931.	4.6	18
45	Global distributions, source-type dependencies, and concentration ranges of per- and polyfluoroalkyl substances in groundwater. Science of the Total Environment, 2022, 841, 156602.	8.0	35
46	Recent progress and challenges on the removal of per- and poly-fluoroalkyl substances (PFAS) from contaminated soil and water. Environmental Science and Pollution Research, 2022, 29, 58405-58428.	5.3	18
47	Temporal trend of perfluorinated compounds in untreated wastewater and surface water in the middle part of the Danube River belonging to the northern part of Serbia. Journal of the Serbian Chemical Society, 2022, 87, 1425-1437.	0.8	1
48	Perfluoroalkyl substances in freshwater and marine fish from northern Vietnam: Accumulation levels, profiles, and implications for human consumption. Marine Pollution Bulletin, 2022, 182, 113995.	5.0	4
49	Occurrence, spatial heterogeneity, and risk assessment of perfluoroalkyl acids (PFAAs) in the major rivers of the Tibetan Plateau. Science of the Total Environment, 2023, 856, 159026.	8.0	4
50	Impact of a megacity on the water quality of a tropical estuary assessed by a combination of chemical analysis and in-vitro bioassays. Science of the Total Environment, 2023, 877, 162525.	8.0	6
51	Occurrence of per- and polyfluoroalkyl substances (PFAS): A special reference to their monitoring, distribution, and environmental fate. , 2023, , 173-202.		1
52	Per-and polyfluoroalkyl substances (PFAS) as a health hazard: Current state of knowledge and strategies in environmental settings across Asia and future perspectives. Chemical Engineering Journal, 2023, 475, 145064.	12.7	8
53	Perfluoroalkyl substances in food contact materials: preliminary investigation in Vietnam and global comparison. Environmental Science and Pollution Research, 2023, 30, 104181-104193.	5.3	0
54	Per- and polyfluoroalkyl Substances (PFAS) In China's Groundwater Resources: Concentration, Composition, and Human Health Risk. E3S Web of Conferences, 2023, 406, 02047.	0.5	Ο

#	Article	IF	CITATIONS
55	Southeast Asia's environmental challenges: emergence of new contaminants and advancements in testing methods. Frontiers in Toxicology, 0, 6, .	3.1	0