An update to polyketide synthase and non-ribosomal sy Fusarium

Fungal Genetics and Biology 75, 20-29 DOI: 10.1016/j.fgb.2014.12.004

Citation Report

#	Article	IF	CITATIONS
1	Evolution of Chemical Diversity in a Group of Non-Reduced Polyketide Gene Clusters: Using Phylogenetics to Inform the Search for Novel Fungal Natural Products. Toxins, 2015, 7, 3572-3607.	1.5	27
2	Factors Influencing Production of Fusaristatin A in Fusarium graminearum. Metabolites, 2015, 5, 184-191.	1.3	11
3	De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster. PLoS ONE, 2015, 10, e0140398.	1.1	34
4	Secondary metabolites in fungus-plant interactions. Frontiers in Plant Science, 2015, 6, 573.	1.7	439
5	Phylogenomics and evolution of secondary metabolism in plant-associated fungi. Current Opinion in Plant Biology, 2015, 26, 37-44.	3.5	24
6	Genomic insights into the distribution, genetic diversity and evolution of polyketide synthases and nonribosomal peptide synthetases. Current Opinion in Genetics and Development, 2015, 35, 79-85.	1.5	33
7	Different Culture Metabolites of the Red Sea Fungus Fusarium equiseti Optimize the Inhibition of Hepatitis C Virus NS3/4A Protease (HCV PR). Marine Drugs, 2016, 14, 190.	2.2	24
8	Fast Screening of Antibacterial Compounds from Fusaria. Toxins, 2016, 8, 355.	1.5	32
9	FgSsn3 kinase, a component of the mediator complex, is important for sexual reproduction and pathogenesis in Fusarium graminearum. Scientific Reports, 2016, 6, 22333.	1.6	27
10	Comparative "Omics―of the <i>Fusarium fujikuroi</i> Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis. Genome Biology and Evolution, 2016, 8, 3574-3599.	1.1	124
11	Whole genome sequencing and comparative genomics of closely related Fusarium Head Blight fungi: Fusarium graminearum, F. meridionale and F. asiaticum. BMC Genomics, 2016, 17, 1014.	1.2	58
12	Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Fungal Biology, 2016, 120, 111-123.	1.1	93
13	Real-time imaging of the growth-inhibitory effect of JS399-19 on Fusarium. Pesticide Biochemistry and Physiology, 2016, 134, 24-30.	1.6	14
14	Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase. Journal of Antibiotics, 2016, 69, 541-548.	1.0	46
15	Living apart together: crosstalk between the core and supernumerary genomes in a fungal plant pathogen. BMC Genomics, 2016, 17, 670.	1.2	53
16	<i>Fusarium agapanthi</i> sp. nov., a novel bikaverin and fusarubin-producing leaf and stem spot pathogen of <i>Agapanthus praecox</i> (African lily) from Australia and Italy. Mycologia, 2016, 108, 981-992.	0.8	31
17	Sound of silence: the beauvericin cluster in <i>Fusarium fujikuroi</i> is controlled by clusterâ€specific and global regulators mediated by H3K27 modification. Environmental Microbiology, 2016, 18, 4282-4302.	1.8	45
18	Marine Fungi. , 2016, , 99-153.		8

#	Article	IF	CITATIONS
19	Draft genome sequence and chemical profiling of Fusarium langsethiae, an emerging producer of type A trichothecenes. International Journal of Food Microbiology, 2016, 221, 29-36.	2.1	27
20	Insights into natural products biosynthesis from analysis of 490 polyketide synthases from Fusarium. Fungal Genetics and Biology, 2016, 89, 37-51.	0.9	66
21	Identification of the non-ribosomal peptide synthetase responsible for biosynthesis of the potential anti-cancer drug sansalvamide in Fusarium solani. Current Genetics, 2016, 62, 799-807.	0.8	22
22	A genomic comparison of putative pathogenicity-related gene families in five members of the Ophiostomatales with different lifestyles. Fungal Biology, 2017, 121, 234-252.	1.1	9
23	Recent advances in tenuazonic acid as a potential herbicide. Pesticide Biochemistry and Physiology, 2017, 143, 252-257.	1.6	44
24	Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic, Necrotrophic, and Other Specific Interactions. , 2017, , 133-190.		3
25	Plant diversity and plant identity influence <i>Fusarium</i> communities in soil. Mycologia, 2017, 109, 128-139.	0.8	21
27	Detection of Transcriptionally Active Mycotoxin Gene Clusters: DNA Microarray. Methods in Molecular Biology, 2017, 1542, 345-365.	0.4	1
28	Chrysogine Biosynthesis Is Mediated by a Two-Module Nonribosomal Peptide Synthetase. Journal of Natural Products, 2017, 80, 2131-2135.	1.5	37
29	Biatriospora (Ascomycota: Pleosporales) is an ecologically diverse genus including facultative marine fungi and endophytes with biotechnological potential. Plant Systematics and Evolution, 2017, 303, 35-50.	0.3	33
30	Establishment of the Inducible Tet-On System for the Activation of the Silent Trichosetin Gene Cluster in Fusarium fujikuroi. Toxins, 2017, 9, 126.	1.5	48
31	Lack of the COMPASS Component Ccl1 Reduces H3K4 Trimethylation Levels and Affects Transcription of Secondary Metabolite Genes in Two Plant–Pathogenic Fusarium Species. Frontiers in Microbiology, 2016, 07, 2144.	1.5	42
32	Mycotoxin Biosynthesis and Central Metabolism Are Two Interlinked Pathways in Fusarium graminearum, as Demonstrated by the Extensive Metabolic Changes Induced by Caffeic Acid Exposure. Applied and Environmental Microbiology, 2018, 84, .	1.4	25
33	<i>Fusarium</i> mycotoxins: a trans-disciplinary overview. Canadian Journal of Plant Pathology, 2018, 40, 161-171.	0.8	37
34	A highâ€resolution genetic map of the cereal crown rot pathogen <i>Fusarium pseudograminearum</i> provides a nearâ€complete genome assembly. Molecular Plant Pathology, 2018, 19, 217-226.	2.0	35
35	Fusarium crown rot caused by <i>Fusarium pseudograminearum</i> in cereal crops: recent progress and future prospects. Molecular Plant Pathology, 2018, 19, 1547-1562.	2.0	177
36	In silico Prediction, Characterization, Molecular Docking, and Dynamic Studies on Fungal SDRs as Novel Targets for Searching Potential Fungicides Against Fusarium Wilt in Tomato. Frontiers in Pharmacology, 2018, 9, 1038.	1.6	79
37	Gramillin A and B: Cyclic Lipopeptides Identified as the Nonribosomal Biosynthetic Products of <i>Fusarium graminearum</i> . Journal of the American Chemical Society, 2018, 140, 16783-16791.	6.6	36

CITATION REPORT

#	Article	IF	CITATIONS
38	Who Needs Neighbors? PKS8 Is a Stand-Alone Gene in Fusarium graminearum Responsible for Production of Gibepyrones and Prolipyrone B. Molecules, 2018, 23, 2232.	1.7	16
39	Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi. MBio, 2018, 9, .	1.8	73
40	Multiple independent origins for a subtelomeric locus associated with growth rate in Fusarium circinatum. IMA Fungus, 2018, 9, 27-36.	1.7	14
41	Evolution and Diversity of Biosynthetic Gene Clusters in Fusarium. Frontiers in Microbiology, 2018, 9, 1158.	1.5	41
42	Genome Sequencing and analyses of Two Marine Fungi from the North Sea Unraveled a Plethora of Novel Biosynthetic Gene Clusters. Scientific Reports, 2018, 8, 10187.	1.6	25
43	Diversity and evolution of polyketide biosynthesis gene clusters in the Ceratocystidaceae. Fungal Biology, 2018, 122, 856-866.	1.1	19
44	Effect of deletion of a trichothecene toxin regulatory gene on the secondary metabolism transcriptome of the saprotrophic fungus Trichoderma arundinaceum. Fungal Genetics and Biology, 2018, 119, 29-46.	0.9	27
45	A metabolomics-guided approach to discover Fusarium graminearum metabolites after removal of a repressive histone modification. Fungal Genetics and Biology, 2019, 132, 103256.	0.9	30
46	Heterologous expression of intact biosynthetic gene clusters in Fusarium graminearum. Fungal Genetics and Biology, 2019, 132, 103248.	0.9	15
47	Characterization of Eight Novel Spiroleptosphols from Fusarium avenaceum. Molecules, 2019, 24, 3498.	1.7	5
49	Fusarium Secondary Metabolism Biosynthetic Pathways: So Close but So Far Away. Reference Series in Phytochemistry, 2019, , 1-37.	0.2	3
50	Biological Control of Fusarium Crown and Root Rot of Wheat by <i>Streptomyces</i> Isolates – It's Complicated. Phytobiomes Journal, 2019, 3, 52-60.	1.4	13
51	Genomic Characterization and Virulence Potential of Two <i>Fusarium oxysporum</i> Isolates Cultured from the International Space Station. MSystems, 2019, 4, .	1.7	26
52	Comparative Genomics and Transcriptomics During Sexual Development Gives Insight Into the Life History of the Cosmopolitan Fungus Fusarium neocosmosporiellum. Frontiers in Microbiology, 2019, 10, 1247.	1.5	15
53	Advances in linking polyketides and non-ribosomal peptides to their biosynthetic gene clusters in Fusarium. Current Genetics, 2019, 65, 1263-1280.	0.8	17
54	Aerobic dissipation of the novel cyanoacrylate fungicide phenamacril in soil and sludge incubations. Chemosphere, 2019, 233, 873-878.	4.2	10
55	Fusaoctaxin A, an Example of a Two-Step Mechanism for Non-Ribosomal Peptide Assembly and Maturation in Fungi. Toxins, 2019, 11, 277.	1.5	17
56	Variation in secondary metabolite production potential in the Fusarium incarnatum-equiseti species complex revealed by comparative analysis of 13 genomes. BMC Genomics, 2019, 20, 314.	1.2	68

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
57	Intercellular communication is required for trap formation in the nematode-trapping fungus Duddingtonia flagrans. PLoS Genetics, 2019, 15, e1008029.	1.5	59
58	A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nature Communications, 2019, 10, 922.	5.8	74
59	Epitypification of <i> Fusarium oxysporum</i> – clearing the taxonomic chaos. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2019, 43, 1-47.	1.6	131
60	A new vector system for targeted integration and overexpression of genes in the crop pathogen Fusarium solani. Fungal Biology and Biotechnology, 2019, 6, 25.	2.5	6
61	Real-time PCR quantification of Fusarium avenaceum in soil and seeds. Journal of Microbiological Methods, 2019, 157, 21-30.	0.7	18
62	Regulation of a novel Fusarium cytokinin in Fusarium pseudograminearum. Fungal Biology, 2019, 123, 255-266.	1.1	9
63	There it is! Fusarium pseudograminearum did not lose the fusaristatin gene cluster after all. Fungal Biology, 2019, 123, 10-17.	1.1	12
64	Expression of Fusarium pseudograminearum FpNPS9 in wheat plant and its function in pathogenicity. Current Genetics, 2020, 66, 229-243.	0.8	10
65	Heterologous and Engineered Biosynthesis of Nematocidal Polyketide–Nonribosomal Peptide Hybrid Macrolactone from Extreme Thermophilic Fungi. Journal of the American Chemical Society, 2020, 142, 1957-1965.	6.6	41
66	Fusaristatin A production negatively affects the growth and aggressiveness of the wheat pathogen Fusarium pseudograminearum. Fungal Genetics and Biology, 2020, 136, 103314.	0.9	6
67	Characterization of non anonical G betaâ€like protein FvGbb2 and its relationship with heterotrimeric G proteins in <scp> <i>Fusarium verticillioides </i> </scp> . Environmental Microbiology, 2020, 22, 615-628.	1.8	14
68	A novel fungal gene regulation system based on inducible VPR-dCas9 and nucleosome map-guided sgRNA positioning. Applied Microbiology and Biotechnology, 2020, 104, 9801-9822.	1.7	12
69	Identification and distribution of gene clusters required for synthesis of sphingolipid metabolism inhibitors in diverse species of the filamentous fungus Fusarium. BMC Genomics, 2020, 21, 510.	1.2	21
70	Simulation of electrochemical properties of naturally occurring quinones. Scientific Reports, 2020, 10, 13571.	1.6	28
71	Heterologous Expression of the Core Genes in the Complex Fusarubin Gene Cluster of Fusarium Solani. International Journal of Molecular Sciences, 2020, 21, 7601.	1.8	11
72	Pathogenicity and Virulence Factors of Fusarium graminearum Including Factors Discovered Using Next Generation Sequencing Technologies and Proteomics. Microorganisms, 2020, 8, 305.	1.6	33
73	Fusarium Secondary Metabolism Biosynthetic Pathways: So Close but So Far Away. Reference Series in Phytochemistry, 2020, , 211-247.	0.2	7
74	Polyketide Synthase Gene Expression in Relation to Chloromonilicin and Melanin Production in Monilinia fructicola. Phytopathology, 2020, 110, 1465-1475.	1.1	6

#	Article	IF	CITATIONS
75	Using metabolomics to guide strategies to tackle the issue of the contamination of food and feed with mycotoxins: A review of the literature with specific focus on Fusarium mycotoxins. Food Control, 2021, 121, 107610.	2.8	15
76	Mind the mushroom: natural product biosynthetic genes and enzymes of Basidiomycota. Natural Product Reports, 2021, 38, 702-722.	5.2	54
77	Interspecies Genomic Variation and Transcriptional Activeness of Secondary Metabolism-Related Genes in Aspergillus Section Fumigati. Frontiers in Fungal Biology, 2021, 2, .	0.9	5
78	Accessory Chromosome-Acquired Secondary Metabolism in Plant Pathogenic Fungi: The Evolution of Biotrophs Into Host-Specific Pathogens. Frontiers in Microbiology, 2021, 12, 664276.	1.5	17
79	The effects of different potato dextrose agar media on secondary metabolite production in Fusarium. International Journal of Food Microbiology, 2021, 347, 109171.	2.1	8
80	Cyclic, Hydrophobic Hexapeptide Fusahexin Is the Product of a Nonribosomal Peptide Synthetase in <i>Fusarium graminearum</i> . Journal of Natural Products, 2021, 84, 2070-2080.	1.5	8
81	Mycotoxin Production in <i>Fusarium</i> According to Contemporary Species Concepts. Annual Review of Phytopathology, 2021, 59, 373-402.	3.5	51
82	Apicidin biosynthesis is linked to accessory chromosomes in Fusarium poae isolates. BMC Genomics, 2021, 22, 591.	1.2	7
83	Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic, Necrotrophic, and Other Specific Interactions. , 2016, , 1-58.		5
84	Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic pathways. Applied Microbiology and Biotechnology, 2018, 102, 615-630.	1.7	33
85	Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Applied Microbiology and Biotechnology, 2021, 105, 8157-8193.	1.7	16
86	Plant-Fungal Interactions: Special Secondary Metabolites of the Biotrophic, Necrotrophic, and Other Specific Interactions. Reference Series in Phytochemistry, 2016, , 1-58.	0.2	2
89	Genomics- and Metabolomics-Based Investigation of the Deep-Sea Sediment-Derived Yeast, Rhodotorula mucilaginosa 50-3-19/20B. Marine Drugs, 2021, 19, 14.	2.2	15
92	Phylogenetic Diversity and Mycotoxin Potential of Emergent Phytopathogens Within the <i>Fusarium tricinctum</i> Species Complex. Phytopathology, 2022, 112, 1284-1298.	1.1	12
93	Secondary Metabolite Gene Regulation in Mycotoxigenic Fusarium Species: A Focus on Chromatin. Toxins, 2022, 14, 96.	1.5	12
94	Genus-Wide Analysis of Fusarium Polyketide Synthases Reveals Broad Chemical Potential. SSRN Electronic Journal, 0, , .	0.4	0
95	Marine Fungi. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 243-295.	0.2	4
111	Genus-wide analysis of Fusarium polyketide synthases reveals broad chemical potential. Fungal Genetics and Biology, 2022, 160, 103696.	0.9	3

#	Article	IF	CITATIONS
112	Targeted Genetic Engineering via Agrobacterium-Mediated Transformation in Fusarium solani. Methods in Molecular Biology, 2022, 2489, 93-114.	0.4	0
113	Potential of Zingiber zerumbet endophytic Fusarium oxysporum as biopriming agents to control Pythium mediated soft-rot and optimization of fermentation conditions for cytotoxic metabolite(s) production. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 163-173.	0.9	1
114	Genome-Based Analysis of Verticillium Polyketide Synthase Gene Clusters. Biology, 2022, 11, 1252.	1.3	2
115	Control of dry rot and resistance induction in potato tubers against Fusarium sambucinum using red onion peel extract. Postharvest Biology and Technology, 2023, 195, 112119.	2.9	3
116	Gramiketides, Novel Polyketide Derivatives of Fusarium graminearum, Are Produced during the Infection of Wheat. Journal of Fungi (Basel, Switzerland), 2022, 8, 1030.	1.5	2
117	Endophytic fungi from the common walnut and their in vitro antagonistic activity against Ophiognomonia leptostyla. , 2023, 78, 361-371.		2
118	Quick guide to secondary metabolites from Apiospora and Arthrinium. Fungal Biology Reviews, 2023, 43, 100288.	1.9	2