Rh-catalyzed C–C bond cleavage by transfer hydrofor

Science 347, 56-60 DOI: 10.1126/science.1261232

Citation Report

#	Article	IF	CITATIONS
1	Rapid Asymmetric Transfer Hydroformylation (ATHF) of Disubstituted Alkenes Using Paraformaldehyde as a Syngas Surrogate. Chemistry - A European Journal, 2015, 21, 10645-10649.	1.7	35
4	The Retro-Hydroformylation Reaction. Angewandte Chemie, 2015, 127, 8578-8581.	1.6	11
5	The Retroâ€Hydroformylation Reaction. Angewandte Chemie - International Edition, 2015, 54, 8458-8461.	7.2	51
6	Rh(I)-catalyzed decarbonylation synthesis of carbazoles via C–N cleavage. Tetrahedron, 2015, 71, 4035-4038.	1.0	12
7	Mechanisms and stereoselectivities of the Rh(<scp>i</scp>)-catalyzed carbenoid carbon insertion reaction of benzocyclobutenol with diazoester. Organic and Biomolecular Chemistry, 2015, 13, 6587-6597.	1.5	36
8	Preparation of Rh/C and its high electro-catalytic activity for ethanol oxidation in alkaline media. RSC Advances, 2015, 5, 91829-91835.	1.7	24
9	Construction and deconstruction of aldehydes by transfer hydroformylation. Science, 2015, 347, 29-30.	6.0	29
10	Rh-catalyzed reagent-free ring expansion of cyclobutenones and benzocyclobutenones. Chemical Science, 2015, 6, 5440-5445.	3.7	61
11	Mechanistic Study on Ligand-Controlled Rh(I)-Catalyzed Coupling Reaction of Alkene-Benzocyclobutenone. ACS Catalysis, 2015, 5, 4881-4889.	5.5	34
12	Selectfluor-Mediated Simultaneous Cleavage of C–O and C–C Bonds in α,β-Epoxy Ketones Under Transition-Metal-Free Conditions: A Route to 1,2-Diketones. Journal of Organic Chemistry, 2015, 80, 6856-6863.	1.7	26
13	Rh-catalyzed decarbonylation of conjugated ynones via carbon–alkyne bond activation: reaction scope and mechanistic exploration via DFT calculations. Chemical Science, 2015, 6, 3201-3210.	3.7	64
14	Accessible protocol for asymmetric hydroformylation of vinylarenes using formaldehyde. Organic and Biomolecular Chemistry, 2015, 13, 4632-4636.	1.5	37
15	Cobalt(III)-Catalyzed Functionalization of Unstrained Carbon–Carbon Bonds through β-Carbon Cleavage of Alcohols. ACS Catalysis, 2015, 5, 6458-6462.	5.5	77
16	Visible-Light-Promoted Photoredox Syntheses of α,β-Epoxy Ketones from Styrenes and Benzaldehydes under Alkaline Conditions. Organic Letters, 2015, 17, 5260-5263.	2.4	74
17	Theoretical studies of nickel-catalyzed ring-opening hydroacylation of methylenecyclopropanes and benzaldehydes. Journal of Molecular Modeling, 2015, 21, 203.	0.8	1
18	Reverse-hydroformylation: a missing reaction explored. Organic Chemistry Frontiers, 2015, 2, 1422-1424.	2.3	3
19	Observation of Spontaneous C=C Bond Breaking in the Reaction between Atomic Boron and Ethylene in Solid Neon. Angewandte Chemie, 2016, 128, 8511-8514.	1.6	3
20	Observation of Spontaneous C=C Bond Breaking in the Reaction between Atomic Boron and Ethylene in Solid Neon. Angewandte Chemie - International Edition, 2016, 55, 8371-8374.	7.2	9

#	Article	IF	Citations
21	Chemoselective dehydrogenative esterification of aldehydes and alcohols with a dimeric rhodium(<scp>ii</scp>) catalyst. Chemical Science, 2016, 7, 4428-4434.	3.7	75
23	Cleavage of a C–C σ bond between two phenyl groups under mild conditions during the construction of Zn(<scp>ii</scp>) organic frameworks. Green Chemistry, 2016, 18, 5418-5422.	4.6	14
24	Catalytic Transfer Functionalization through Shuttle Catalysis. ACS Catalysis, 2016, 6, 7528-7535.	5.5	93
25	Catalytic Câ€2 Allylation of Indoles by Electronic Modulation of the Indole Ring and its Application to the Synthesis of Functionalized Carbazoles. Advanced Synthesis and Catalysis, 2016, 358, 3458-3470.	2.1	28
26	Photocatalytic Câ^'C Bond Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride Complex. Angewandte Chemie, 2016, 128, 15545-15548.	1.6	59
27	Photocatalytic Câ^'C Bond Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride Complex. Angewandte Chemie - International Edition, 2016, 55, 15319-15322.	7.2	242
28	C-C bond cleavage: Metal-free-catalyzed reaction of Betti bases with various heterocycles under microwave irradiation. Synthetic Communications, 2016, 46, 1940-1946.	1.1	9
29	Substituent effect and ligand exchange control the reactivity in ruthenium(II)-catalyzed hydroacylation of isoprenes and aldehydes ‖ A DFT study. Journal of Theoretical and Computational Chemistry, 2016, 15, 1650019.	1.8	3
30	Catalytic reversible alkene-nitrile interconversion through controllable transfer hydrocyanation. Science, 2016, 351, 832-836.	6.0	251
31	A molecular shuttle for hydrogen cyanide. Science, 2016, 351, 817-817.	6.0	11
32	Mechanism of Rhodium-Catalyzed Formyl Activation: A Computational Study. Journal of Organic Chemistry, 2016, 81, 2320-2326.	1.7	25
33	Mechanisms and reactivity differences for the cobalt-catalyzed enantioselective intramolecular hydroacylation of ketones and alkenes: insights from density functional calculations. Journal of Molecular Modeling, 2016, 22, 60.	0.8	6
34	Iron-catalyzed aerobic oxidative cleavage of the C–C σ-bond using air as the oxidant: chemoselective synthesis of carbon chain-shortened aldehydes, ketones and 1,2-dicarbonyl compounds. Chemical Communications, 2016, 52, 489-492.	2.2	36
35	Transition-metal-catalyzed transfer carbonylation with HCOOH or HCHO as non-gaseous C1 source. Coordination Chemistry Reviews, 2017, 336, 43-53.	9.5	119
36	Mechanisms of the transfer hydroformylation catalyzed by rhodium, cobalt, and iridium complexes: Insights from density functional theory study. Journal of Organometallic Chemistry, 2017, 833, 71-79.	0.8	8
37	Shuttle Catalysis—New Strategies in Organic Synthesis. Chemistry - A European Journal, 2017, 23, 12004-12013.	1.7	57
38	Mechanisms for nickel(0)/N-heterocyclic carbene-catalyzed intramolecular alkene hydroacylation: insights from a DFT study. Journal of Molecular Modeling, 2017, 23, 11.	0.8	6
39	Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes. Journal of the American Chemical Society, 2017, 139, 1774-1777.	6.6	142

#	Article	IF	CITATIONS
40	Palladium-Catalyzed Hydrohalogenation of 1,6-Enynes: Hydrogen Halide Salts and Alkyl Halides as Convenient HX Surrogates. Journal of the American Chemical Society, 2017, 139, 3546-3557.	6.6	88
41	Nickel-Catalyzed Decarbonylation of Aromatic Aldehydes. Journal of Organic Chemistry, 2017, 82, 4924-4929.	1.7	38
42	Merging C–H and C–C bond cleavage in organic synthesis. Nature Reviews Chemistry, 2017, 1, .	13.8	145
43	Mechanism for ruthenium hydride-catalyzed regioselective hydroacylation of enones and aldehydes to give 1,3-diketones: Insights from density functional calculations. Molecular Catalysis, 2017, 433, 55-61.	1.0	3
44	Theoretical Studies for Switching Regioselectivity in Ruthenium Hydride atalyzed Alkyne Hydroacylation. ChemistrySelect, 2017, 2, 2858-2865.	0.7	1
45	Nickel-catalysed retro-hydroamidocarbonylation of aliphatic amides to olefins. Nature Communications, 2017, 8, 14993.	5.8	79
46	Rhodiumâ€Complexâ€Catalyzed Hydroformylation of Olefins with CO ₂ and Hydrosilane. Angewandte Chemie, 2017, 129, 316-319.	1.6	21
47	Rhodiumâ€Complexâ€Catalyzed Hydroformylation of Olefins with CO ₂ and Hydrosilane. Angewandte Chemie - International Edition, 2017, 56, 310-313.	7.2	117
48	CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis. Nature Chemistry, 2017, 9, 1105-1109.	6.6	84
49	Palladium atalyzed Deformylation Reactions with Detailed Experimental and in Silico Mechanistic Studies. European Journal of Organic Chemistry, 2017, 2017, 4168-4174.	1.2	15
50	Iron-catalyzed C C bond activation/C O bond formation: Direct conversion of ketones to esters. Tetrahedron Letters, 2017, 58, 4667-4671.	0.7	7
51	Mechanistic Insight into Weak Baseâ€Catalyzed Generation of Carbon Monoxide from Phenyl Formate and Its Application to Catalytic Carbonylation at Room Temperature without Use of External Carbon Monoxide Gas. Advanced Synthesis and Catalysis, 2017, 359, 3592-3601.	2.1	19
52	Transfer Hydrocyanation by Nickel(0)/Lewis Acid Cooperative Catalysis, Mechanism Investigation, and Computational Prediction of Shuttle Catalysts. Organometallics, 2017, 36, 2746-2754.	1.1	29
55	Mechanism of Rhodium-Catalyzed C–H Functionalization: Advances in Theoretical Investigation. Accounts of Chemical Research, 2017, 50, 2799-2808.	7.6	203
56	Asymmetric Hydroformylation Using Rhodium. Topics in Organometallic Chemistry, 2017, , 99-143.	0.7	8
57	Cobalt Catalysis for Enantioselective Cyclobutanone Construction. Journal of the American Chemical Society, 2017, 139, 10208-10211.	6.6	82
58	Toward a mild dehydroformylation using base-metal catalysis. Chemical Science, 2017, 8, 1954-1959.	3.7	35
59	One-Pot Synthesis of Deuterated Aldehydes from Arylmethyl Halides. Organic Letters, 2018, 20, 1712-1715.	2.4	23

#	Article	IF	CITATIONS
60	Furan-2-carbaldehydes as C1 building blocks for the synthesis of quinazolin-4(3 <i>H</i>)-ones <i>via</i> ligand-free photocatalytic C–C bond cleavage. Green Chemistry, 2018, 20, 2449-2454.	4.6	15
61	Conquering amide planarity: Structural distortion and its hidden reactivity. Tetrahedron Letters, 2018, 59, 1147-1158.	0.7	48
62	Isodesmic Reactions in Catalysis – Only the Beginning?. Israel Journal of Chemistry, 2018, 58, 94-103.	1.0	22
63	Intramolecular Acetyl Transfer to Olefins by Catalytic Câ^'C Bond Activation of Unstrained Ketones. Angewandte Chemie - International Edition, 2018, 57, 475-479.	7.2	45
64	Intramolecular Acetyl Transfer to Olefins by Catalytic Câ^'C Bond Activation of Unstrained Ketones. Angewandte Chemie, 2018, 130, 484-488.	1.6	9
65	Featuring Xantphos. Catalysis Science and Technology, 2018, 8, 26-113.	2.1	97
66	Cerium-Catalyzed Formal Cycloaddition of Cycloalkanols with Alkenes through Dual Photoexcitation. Journal of the American Chemical Society, 2018, 140, 13580-13585.	6.6	162
67	Cooperative Palladium/Lewis Acid-Catalyzed Transfer Hydrocyanation of Alkenes and Alkynes Using 1-Methylcyclohexa-2,5-diene-1-carbonitrile. Journal of the American Chemical Society, 2018, 140, 16353-16359.	6.6	69
68	Rhodium(III) atalyzed C—H Vinylation of Arenes: Access to Functionalized Styrenes. Chinese Journal of Chemistry, 2018, 36, 1143-1146.	2.6	22
69	Merging base-promoted C–C bond cleavage and iron-catalyzed skeletal rearrangement involving C–C/C–H bond activation: synthesis of highly functionalized carbazoles. Chemical Communications, 2018, 54, 11009-11012.	2.2	19
70	Mechanism for Co(dppp)-catalyzed regioselective intermolecular hydroacylation of 1,3-dienes and benzaldehydes: Insights from density functional calculations. Journal of Organometallic Chemistry, 2018, 868, 102-111.	0.8	7
71	Rh nanoparticles from thiolate dimers: selective and reusable hydrogenation catalysts in ionic liquids. Catalysis Science and Technology, 2018, 8, 4373-4382.	2.1	13
72	Tandem Catalysis: Transforming Alcohols to Alkenes by Oxidative Dehydroxymethylation. Journal of the American Chemical Society, 2018, 140, 10126-10130.	6.6	42
73	A Rh-Catalyzed Air and Moisture Tolerable Aldehyde (Ketone)-Directed Fluorosulfonylvinylation of Aryl C(<i>sp</i> ²)–H Bonds. Organic Letters, 2018, 20, 4699-4703.	2.4	59
74	Transitionâ€Metalâ€Catalyzed Decarbonylative Coupling Reactions: Concepts, Classifications, and Applications. Chemistry - A European Journal, 2018, 24, 7794-7809.	1.7	106
75	Direct Synthesis of Structurally Divergent Indole Alkaloids from Simple Chemicals. Chinese Journal of Chemistry, 2018, 36, 815-818.	2.6	20
76	Contra-thermodynamic Olefin Isomerization by Chain-Walking Hydrofunctionalization and Formal Retro-hydrofunctionalization. Organic Letters, 2019, 21, 7129-7133.	2.4	11
77	Direct synthesis of 8-acylated quinoline N-oxidesviapalladium-catalyzed selective C–H activation and C(sp2)–C(sp2) cleavage. New Journal of Chemistry, 2019, 43, 1667-1670.	1.4	25

#	Article	IF	CITATIONS
78	Density Functional Computations for Co(I) atalyzed Intermolecular Hydroacylation of Benzaldehydes. ChemistrySelect, 2019, 4, 11315-11320.	0.7	1
79	Copper Nanoparticle Catalysed Aerobic Oxidation of α-pinene. IOP Conference Series: Materials Science and Engineering, 2019, 546, 042023.	0.3	3
80	Modular Access to Eightâ€Membered Nâ€Heterocycles by Directed Carbonylative Câ^'C Bond Activation of Aminocyclopropanes. Angewandte Chemie, 2019, 131, 19020-19024.	1.6	5
81	C Bond Cleavage by the Reaction of Cyclic Amines or Indoles with Activated Olefins: A Redoxâ€Neutral Mechanism for the Reducing Action of Tetrahydroisoquinolines. ChemistrySelect, 2019, 4, 10425-10429.	0.7	4
82	Modular Access to Eightâ€Membered Nâ€Heterocycles by Directed Carbonylative Câ^'C Bond Activation of Aminocyclopropanes. Angewandte Chemie - International Edition, 2019, 58, 18844-18848.	7.2	25
83	Synthesis of Biaryls via Decarbonylative Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of Carboxylic Acids. IScience, 2019, 19, 749-759.	1.9	71
84	Copper Catalyzed Oxidative C–C Bond Cleavage of 1,2-Diketones: AÂDivergent Approach to 1,8-Naphthalimides, Biphenyl-2,2′-dicarboxamides, and <i>N</i> -Heterocyclic Amides. Journal of Organic Chemistry, 2019, 84, 2112-2125.	1.7	10
86	Real-time electrochemical ATR-SEIRAS investigation of CO adsorption and oxidation on Rh electrode in 0.1 M NaOH and 0.1 M H2SO4. Journal of Electroanalytical Chemistry, 2019, 840, 462-467.	1.9	5
87	Bioinspired Metalâ€Free Formal Decarbonylation of αâ€Branched Aliphatic Aldehydes at Ambient Temperature. Chemistry - A European Journal, 2019, 25, 8508-8512.	1.7	11
88	Syntheses and Catalytic Hydrogenation Performance of Cationic Bis(phosphine) Cobalt(I) Diene and Arene Compounds. Angewandte Chemie - International Edition, 2019, 58, 9194-9198.	7.2	65
89	Syntheses and Catalytic Hydrogenation Performance of Cationic Bis(phosphine) Cobalt(I) Diene and Arene Compounds. Angewandte Chemie, 2019, 131, 9292-9296.	1.6	28
90	Highly-chemoselective step-down reduction of carboxylic acids to aromatic hydrocarbons <i>via</i> palladium catalysis. Chemical Science, 2019, 10, 5736-5742.	3.7	45
91	Copper-Catalyzed Radical Acyl-Cyanation of Alkenes with Mechanistic Studies on the <i>tert</i> -Butoxy Radical. ACS Catalysis, 2019, 9, 5191-5197.	5.5	50
92	A Concise Synthesis of <i>rac</i> â€ <i>Ambrox</i> ® <i>via</i> the Palladium(0)â€Catalyzed Carboalkoxylation of an Allylic Ammonium Salt, as Compared to a Formaldehyde Hetero <i>Diels–Alder</i> Approach. Helvetica Chimica Acta, 2019, 102, e1900097.	1.0	2
93	Metal-Free Aerobic Oxidative Selective C–C Bond Cleavage in Heteroaryl-Containing Primary and Secondary Alcohols. Organic Letters, 2019, 21, 3028-3033.	2.4	26
94	Rhodium(I)-Catalyzed Aryl C–H Carboxylation of 2-Arylanilines with CO ₂ . Organic Letters, 2019, 21, 3663-3669.	2.4	65
95	Hydrofunctionalization of Olefins to Higher Aliphatic Alcohols via Visible-Light Photocatalytic Coupling. Catalysis Letters, 2019, 149, 1651-1659.	1.4	3
96	Potential-Dependent Selectivity of Ethanol Complete Oxidation on Rh Electrode in Alkaline Media: A Synergistic Study of Electrochemical ATR-SEIRAS and IRAS. ACS Catalysis, 2019, 9, 4046-4053.	5.5	82

# 97	ARTICLE Deacylative transformations of ketones via aromatization-promoted C–C bond activation. Nature, 2019, 567, 373-378.	IF 13.7	Citations
98	Syngasâ€Free Highly Regioselective Rhodiumâ€Catalyzed Transfer Hydroformylation of Alkynes to α,βâ€Unsaturated Aldehydes. Angewandte Chemie, 2019, 131, 7518-7522.	1.6	8
99	Syngasâ€Free Highly Regioselective Rhodiumâ€Catalyzed Transfer Hydroformylation of Alkynes to α,βâ€Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2019, 58, 7440-7444.	7.2	38
100	Alkenyl Exchange of Allylamines via Nickel(0)-Catalyzed C–C Bond Cleavage. Journal of the American Chemical Society, 2019, 141, 2889-2893.	6.6	43
101	Catalytic Isofunctional Reactions—Expanding the Repertoire of Shuttle and Metathesis Reactions. Angewandte Chemie - International Edition, 2019, 58, 10074-10103.	7.2	87
102	Katalytische, isofunktionelle Reaktionen – Erweiterung des Repertoires an Shuttle―und Metathesereaktionen. Angewandte Chemie, 2019, 131, 10178-10209.	1.6	17
103	Iron-Catalyzed Radical Acyl-Azidation of Alkenes with Aldehydes: Synthesis of Unsymmetrical β-Azido Ketones. Organic Letters, 2019, 21, 256-260.	2.4	41
105	From alkylarenes to anilines via site-directed carbon–carbon amination. Nature Chemistry, 2019, 11, 71-77.	6.6	102
106	Transformations of N-arylpropiolamides to indoline-2,3-diones and acids via C≡C triple bond oxidative cleavage and C(sp2)–H functionalization. Science China Chemistry, 2020, 63, 222-227.	4.2	13
107	Selective C-C Bond Scission of Ketones via Visible-Light-Mediated Cerium Catalysis. CheM, 2020, 6, 266-279.	5.8	94
108	Mechanistic Study on Ringâ€Contracting Skeletal Rearrangement from Porphycene to Isocorrole by Experimental and Theoretical Methods. European Journal of Organic Chemistry, 2020, 2020, 1811-1816.	1.2	2
109	Iridiumâ€Catalyzed Hydrochlorination and Hydrobromination of Alkynes by Shuttle Catalysis. Angewandte Chemie - International Edition, 2020, 59, 2904-2910.	7.2	42
110	Iridiumâ€katalysierte Hydrochlorierung und Hydrobromierung von Alkinen durch Shuttlekatalyse. Angewandte Chemie, 2020, 132, 2926-2932.	1.6	13
111	Decarbonylative ether dissection by iridium pincer complexes. Chemical Science, 2020, 11, 12130-12138.	3.7	8
112	Palladium-Catalyzed Oxidative Dehydrosilylation for Contra-Thermodynamic Olefin Isomerization. ACS Catalysis, 2020, 10, 8736-8741.	5.5	9
113	Atroposelective Synthesis of Axially Chiral Nâ€Arylpyrroles by Chiralâ€atâ€Rhodium Catalysis. Angewandte Chemie, 2020, 132, 13654-13658.	1.6	22
114	Synthesis of indoline-fused eight-membered azaheterocycles through Zn-catalyzed dearomatization of indoles and subsequent base-promoted C–C activation. Organic and Biomolecular Chemistry, 2020, 18, 6916-6926.	1.5	5

Ethanol Electrooxidation on Rhodium–Lead Catalysts in Alkaline Media: High Mass Activity, Longâ€Term Durability, and Considerable CO₂ Selectivity. Small, 2020, 16, e2004380.

#	Article	IF	CITATIONS
116	Selective valorization of lignin to phenol by direct transformation of C _{sp2} –C _{sp3} and C–O bonds. Science Advances, 2020, 6, .	4.7	62
117	Palladium/Copper Cocatalyzed C–H Activation and C–C Bond Regioselective Cleavage Reaction for the Synthesis of Fused Chromeno Quinolines. Organic Letters, 2020, 22, 8860-8865.	2.4	12
118	Catalyst-free photodecarbonylation of ortho-amino benzaldehyde. Green Chemistry, 2020, 22, 3421-3426.	4.6	9
119	Overcoming Selectivity Issues in Reversible Catalysis: A Transfer Hydrocyanation Exhibiting High Kinetic Control. Journal of the American Chemical Society, 2020, 142, 10914-10920.	6.6	37
120	Atroposelective Synthesis of Axially Chiral Nâ€Arylpyrroles by Chiralâ€atâ€Rhodium Catalysis. Angewandte Chemie - International Edition, 2020, 59, 13552-13556.	7.2	66
121	Thioglycerol tabilized Rhodium Nanoparticles in Biphasic Medium as Catalysts in Multistep Reactions. European Journal of Inorganic Chemistry, 2020, 2020, 2506-2511.	1.0	5
122	Enantioselective Cobaltâ€Catalyzed Intermolecular Hydroacylation of 1,6â€Enynes. Angewandte Chemie - International Edition, 2020, 59, 16409-16413.	7.2	44
123	Enantioselective Cobaltâ€Catalyzed Intermolecular Hydroacylation of 1,6â€Enynes. Angewandte Chemie, 2020, 132, 16551-16555.	1.6	6
124	C–H/C–C Functionalization Approach to N-Fused Heterocycles from Saturated Azacycles. Journal of the American Chemical Society, 2020, 142, 13041-13050.	6.6	36
125	Rhodium-Catalyzed Transarylation of Benzamides: C–C Bond vs C–N Bond Activation. ACS Catalysis, 2020, 10, 3398-3403.	5.5	27
126	Ester Transfer Reaction of Aromatic Esters with Haloarenes and Arenols by a Nickel Catalyst. ACS Catalysis, 2020, 10, 3490-3494.	5.5	22
127	Übergangsmetallvermittelte Spaltung von C â€Einfachbindungen. Angewandte Chemie, 2020, 132, 19058-19080.	1.6	22
128	Transition Metalâ€Mediated Câ^'C Single Bond Cleavage: Making the Cut in Total Synthesis. Angewandte Chemie - International Edition, 2020, 59, 18898-18919.	7.2	100
129	Synthesis of Spiro[5.n (n=6–8)]heterocycles through Successive Ringâ€Expansion/Indole Câ€2 Functionalization. Advanced Synthesis and Catalysis, 2020, 362, 1298-1302.	2.1	15
130	Palladium-catalyzed intermolecular transthioetherification of aryl halides with thioethers and thioesters. Chemical Science, 2020, 11, 2187-2192.	3.7	54
131	Alternative sources of syngas for hydroformylation of unsaturated compounds. Russian Chemical Bulletin, 2020, 69, 625-634.	0.4	10
132	Selective Decarbonylation via Transition-Metal-Catalyzed Carbon–Carbon Bond Cleavage. Chemical Reviews, 2021, 121, 365-411.	23.0	160
133	Visible Light Induced Bifunctional Rhodium Catalysis for Decarbonylative Coupling of Imides with Alkynes. Angewandte Chemie - International Edition, 2021, 60, 1583-1587.	7.2	29

#	Article	IF	CITATIONS
134	Visible Light Induced Bifunctional Rhodium Catalysis for Decarbonylative Coupling of Imides with Alkynes. Angewandte Chemie, 2021, 133, 1607-1611.	1.6	5
135	Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations. Science, 2021, 371, 507-514.	6.0	127
136	Copper-catalyzed Beckmann-type fragmentation of less-strained cycloketoxime esters. Organic Chemistry Frontiers, 2021, 8, 2985-2989.	2.3	9
137	Teaching Aldehydes New Tricks Using Rhodium- and Cobalt-Hydride Catalysis. Accounts of Chemical Research, 2021, 54, 1236-1250.	7.6	42
138	A blueprint for green chemists: lessons from nature for sustainable synthesis. Pure and Applied Chemistry, 2021, 93, 537-549.	0.9	1
139	Synthesis of Spirocycles via Niâ€Catalyzed Intramolecular Coupling of Thioesters and Olefins. Chemistry - A European Journal, 2021, 27, 7651-7656.	1.7	6
140	Aldehydeâ€Directed C(<i>sp</i> ²)â^'H Functionalization under Transitionâ€Metal Catalysis. Advanced Synthesis and Catalysis, 2021, 363, 3868-3878.	2.1	17
141	Development and applications of selective hydroesterification reactions. Trends in Chemistry, 2021, 3, 469-484.	4.4	25
142	Ni-Catalyzed Aryl Sulfide Synthesis through an Aryl Exchange Reaction. Journal of the American Chemical Society, 2021, 143, 10333-10340.	6.6	50
143	Sustainable production of benzene from lignin. Nature Communications, 2021, 12, 4534.	5.8	100
144	Zn-Nx sites on N-doped carbon for aerobic oxidative cleavage and esterification of C(CO)-C bonds. Nature Communications, 2021, 12, 4823.	5.8	76
145	Arene C–H lodination Using Aryl lodides. CCS Chemistry, 2022, 4, 1889-1900.	4.6	21
146	Enolate-Based Regioselective Anti-Beckmann C–C Bond Cleavage of Ketones. Journal of Organic Chemistry, 2021, 86, 11608-11632.	1.7	3
147	Palladium atalyzed Cascade Carbonylation to α,βâ€Unsaturated Piperidones via Selective Cleavage of Carbon–Carbon Triple Bonds. Angewandte Chemie - International Edition, 2021, 60, 22393-22400.	7.2	14
148	Palladiumâ€Catalyzed Cascade Carbonylation to α,βâ€Unsaturated Piperidones via Selective Cleavage of Carbon–Carbon Triple Bonds. Angewandte Chemie, 2021, 133, 22567-22574.	1.6	7
149	A donor–acceptor complex enables the synthesis of <i>E</i> -olefins from alcohols, amines and carboxylic acids. Chemical Science, 2021, 12, 6684-6690.	3.7	22
150	Palladium-catalysed carboformylation of alkynes using acid chlorides as a dual carbon monoxide and carbon source. Nature Chemistry, 2021, 13, 123-130.	6.6	21
151	Neutral chiral cyclopentadienyl Ru(<scp>ii</scp>)Cl catalysts enable enantioselective [2+2]-cycloadditions. Chemical Science, 2017, 8, 1862-1866.	3.7	54

#	Article	IF	Citations
152	Pd-Catalyzed Double-Decarbonylative Aryl Sulfide Synthesis through Aryl Exchange between Amides and Thioesters. Organic Letters, 2021, 23, 8098-8103.	2.4	27
153	Enabling the Facile Synthesis of Arenes by Transition Metal Catalyzed Decarbonylation Methodology. Chemical Record, 2021, , .	2.9	3
154	Hydroformylation: Alternatives to Rh and Syn-gas. , 2021, , .		0
155	Towards gallium(III)-catalyzed aldehyde deformylation. Inorganica Chimica Acta, 2022, 531, 120708.	1.2	1
156	Olefination via Cu-Mediated Dehydroacylation of Unstrained Ketones. Journal of the American Chemical Society, 2021, 143, 20042-20048.	6.6	28
157	Visible-light-induced transition metal and photosensitizer free decarbonylative addition of amino-arylaldehydes to ketones. Chemical Science, 2022, 13, 698-703.	3.7	9
158	Contra-thermodynamic Olefin Isomerization by Chain-Walking Hydroboration and Dehydroboration. Organic Letters, 2022, 24, 1005-1010.	2.4	2
159	Copper-catalyzed thiocarbonylation and thiolation of alkyl iodides. Organic and Biomolecular Chemistry, 2022, 20, 1186-1190.	1.5	4
160	Development of an Operationally Simple, Scalable, and HCN-Free Transfer Hydrocyanation Protocol Using an Air-Stable Nickel Precatalyst. Organic Process Research and Development, 2022, 26, 1165-1173.	1.3	9
161	Iridium Dimer Anion-Mediated C≡C Triple Bond Cleavage and Successive Dehydrogenation of Acetylene in the Gas Phase. Journal of Physical Chemistry A, 2022, 126, 1711-1717.	1.1	0
162	Selective, Transition Metalâ€free 1,2â€Diboration of Alkyl Halides, Tosylates, and Alcohols. Chemistry - A European Journal, 2022, 28, .	1.7	9
163	Carbon-based nucleophiles as leaving groups in organic synthesis via cleavage of C–C sigma bonds. Tetrahedron, 2022, 112, 132738.	1.0	1
164	Transfer C–H borylation of alkenes under Rh(I) catalysis: Insight into the synthetic capacity, mechanism, and selectivity control. Chem Catalysis, 2022, 2, 762-778.	2.9	6
165	Light-driven transition-metal-free direct decarbonylation of unstrained diaryl ketones via a dual C–C bond cleavage. Nature Communications, 2022, 13, 1805.	5.8	9
166	Selective Biocatalytic Defunctionalization of Raw Materials. ChemSusChem, 2022, 15, .	3.6	11
167	Transaminase-Mediated Amine Borrowing <i>via</i> Shuttle Biocatalysis. Organic Letters, 2022, 24, 74-79.	2.4	2
168	Metal-free hypervalent iodine-promoted tandem carbonyl migration and unactivated C(Ph)–C(Alkyl) bond cleavage for quinolone scaffold synthesis. Chemical Communications, 2022, 58, 8340-8343.	2.2	1
169	Rhodium-Catalyzed Deuterated Tsuji–Wilkinson Decarbonylation of Aldehydes with Deuterium Oxide. Journal of the American Chemical Society, 2022, 144, 11081-11087.	6.6	7

#	Article	IF	CITATIONS
170	Theoretical investigation on cobalt-catalyzed hydroacylation reaction: Mechanism and origin of stereoselectivity. Molecular Catalysis, 2022, 527, 112410.	1.0	7
171	Photoinduced ring-opening olefination of cycloalkanols and access to tunable cycloenones. Chem Catalysis, 2022, , .	2.9	1
172	Metal-Free Catalysis in C–C Single-Bond Cleavage: Achievements and Prospects. Topics in Current Chemistry, 2022, 380, .	3.0	3
173	Iron-catalyzed deconstructive alkylation through chlorine radical induced C–C single bond cleavage under visible light. Chemical Communications, 2022, 58, 9886-9889.	2.2	15
174	Boosting ethanol electrooxidation at RhBi alloy and Bi ₂ O ₃ composite surfaces in alkaline media. Journal of Materials Chemistry A, 2022, 10, 20946-20952.	5.2	6
175	Interfacial engineering Pb skin-layer at Rh surface to promote ethanol electrooxidation into CO2 in alkaline media. International Journal of Hydrogen Energy, 2022, 47, 34932-34942.	3.8	2
176	Controlling Selectivity in Shuttle Heteroâ€difunctionalization Reactions: Electrochemical Transfer Haloâ€thiolation of Alkynes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
177	Kontrolle der Selektivitäin Shuttleâ€Heterodifunktionalisierungen: Elektrochemische Transferâ€Halothiolierung von Alkinen. Angewandte Chemie, 2023, 135, .	1.6	3
178	Ligand enabled none-oxidative decarbonylation of aliphatic aldehydes. Chinese Chemical Letters, 2023, 34, 108027.	4.8	0
179	The Shuttle of Sulfur Dioxide: Iridium/Copperâ€Cocatalyzed Trifluoromethylfluorosulfonylation of Alkenes. Advanced Synthesis and Catalysis, 2023, 365, 301-306.	2.1	3
180	Cationic Rhodium(I) atalyzed Asymmetric Cyclohydroformylation of 1,6â€Enynes with Formaldehyde. Chemistry - an Asian Journal, 2023, 18, .	1.7	2
181	Palladium atalyzed Enantioselective Isodesmic Câ^H Iodination of Phenylacetic Weinreb Amides. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
182	Comprehensive Chirality. , 2022, , .		0
183	Practical and General Alcohol Deoxygenation Protocol. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
184	Practical and General Alcohol Deoxygenation Protocol. Angewandte Chemie, 2023, 135, .	1.6	0
185	Photoinduced radical–ionic dihalogen transfer to carbon–carbon multiple bonds using oxime-based surrogates. , 2023, 2, 439-447.		6
186	Palladium atalyzed Enantioselective Isodesmic Câ^'H Iodination of Phenylacetic Weinreb Amides. Angewandte Chemie, 2023, 135, .	1.6	1
188	Pd/Xu-Phos-catalyzed asymmetric elimination of fully substituted enol triflates into axially chiral trisubstituted allenes. Science Advances, 2023, 9, .	4.7	6

		CITATION REPORT	
#	Article	IF	CITATIONS
189	Controllable carbonyl-assisted C(sp ³)–C(sp ³) bond reduction and reorganization. Organic Chemistry Frontiers, 2023, 10, 2234-2242.	2.3	1
190	Unraveling the electrophilic oxygen-mediated mechanism for alcohol electrooxidation on NiO. National Science Review, 2023, 10, .	4.6	11