Early withdrawal of calcineurin inhibitor from a siroling stabilizes fibrosis and the transforming growth factorae transplant

Nephrology 20, 168-176 DOI: 10.1111/nep.12368

Citation Report

#	Article	IF	CITATIONS
1	Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. The Cochrane Library, 2006, , CD004290.	1.5	58
2	Calcineurin Inhibitor Minimization, Conversion, Withdrawal, and Avoidance Strategies in Renal Transplantation: A Systematic Review and Metaâ€Analysis. American Journal of Transplantation, 2016, 16, 2117-2138.	2.6	83
3	Quantification of Interstitial Fibrosis in Renal Allografts and Clinical Correlates of Long-Term Graft Function. American Journal of Nephrology, 2017, 46, 187-194.	1.4	5
4	Calcineurin inhibitor withdrawal or tapering for kidney transplant recipients. The Cochrane Library, 2017, 2017, CD006750.	1.5	45
5	Influence of tacrolimus metabolism rate on renal function after solid organ transplantation. World Journal of Transplantation, 2017, 7, 26.	0.6	21
6	Hypertension in the Pediatric Kidney Transplant Recipient. Frontiers in Pediatrics, 2017, 5, 86.	0.9	14
7	mTOR Inhibition and Kidney Diseases. Transplantation, 2018, 102, S32-S40.	0.5	42
8	Cardiovascular Disease Risk in Children With Kidney Disease. Seminars in Nephrology, 2018, 38, 298-313.	0.6	25
9	Randomized controlled trial assessing the impact of everolimus and lowâ€exposure tacrolimus on graft outcomes in kidney transplant recipients. Clinical Transplantation, 2019, 33, e13679.	0.8	11
10	Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. The Cochrane Library, 2019, 12, CD004290.	1.5	17
12	Preventive effect of early introduction of everolimus and reduced-exposure tacrolimus on renal interstitial fibrosis in de novo living-donor renal transplant recipients. Clinical and Experimental Nephrology, 2020, 24, 268-276.	0.7	5
13	Pharmacological Treatment of Fibrosis: a Systematic Review of Clinical Trials. SN Comprehensive Clinical Medicine, 2020, 2, 531-550.	0.3	6
14	Conversion to Everolimus was Beneficial and Safe for Fast and Slow Tacrolimus Metabolizers after Renal Transplantation. Journal of Clinical Medicine, 2020, 9, 328.	1.0	5
15	Tacrolimus induces fibroblast-to-myofibroblast transition via a TGF-Î ² -dependent mechanism to contribute to renal fibrosis. American Journal of Physiology - Renal Physiology, 2023, 324, F433-F445.	1.3	2