Multipartite Einstein–Podolsky–Rosen steering an optical networks

Nature Physics 11, 167-172 DOI: 10.1038/nphys3202

Citation Report

#	Article	IF	CITATIONS
1	Certifying single-system steering for quantum-information processing. Physical Review A, 2015, 92, .	1.0	38
2	Hybrid Einstein-Podolsky-Rosen steering in an atom-optomechanical system. Physical Review A, 2015, 92,	1.0	18
3	Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2015, 115, 180502.	2.9	237
4	Hierarchy of Steering Criteria Based on Moments for All Bipartite Quantum Systems. Physical Review Letters, 2015, 115, 210401.	2.9	96
5	Systematic construction of genuine-multipartite-entanglement criteria in continuous-variable systems using uncertainty relations. Physical Review A, 2015, 92, .	1.0	17
6	Efficient Scheme for Perfect Collective Einstein-Podolsky-Rosen Steering. Scientific Reports, 2015, 5, 12346.	1.6	11
7	Optimal randomness certification in the quantum steering and prepare-and-measure scenarios. New Journal of Physics, 2015, 17, 113010.	1.2	78
8	Einstein–Podolsky–Rosen steering measure for two-mode continuous variable states. Journal of the Optical Society of America B: Optical Physics, 2015, 32, A27.	0.9	29
9	Detection of genuine tripartite entanglement and steering in hybrid optomechanics. Optics Express, 2015, 23, 30104.	1.7	14
10	Entanglement dynamics for three nitrogen-vacancy centers coupled to a whispering-gallery-mode microcavity. Optics Express, 2015, 23, 13734.	1.7	12
11	Decoherence of Einstein–Podolsky–Rosen steering. Journal of the Optical Society of America B: Optical Physics, 2015, 32, A82.	0.9	49
12	Entanglement and Einstein-Podolsky-Rosen steering between a nanomechanical resonator and a cavity coupled with two quantum dots. Optics Express, 2015, 23, 21306.	1.7	6
13	Detection of entanglement in asymmetric quantum networks and multipartite quantum steering. Nature Communications, 2015, 6, 7941.	5.8	137
14	Self-testing through EPR-steering. New Journal of Physics, 2016, 18, 075006.	1.2	48
15	Temporal steering in four dimensions with applications to coupled qubits and magnetoreception. Physical Review A, 2016, 94, .	1.0	23
16	Accessible quantification of multiparticle entanglement. Npj Quantum Information, 2016, 2, .	2.8	5
17	Quantum correlations in Gaussian states via Gaussian channels: steering, entanglement, and discord. Quantum Information Processing, 2016, 15, 2441-2453.	1.0	5
18	Quantum correlations and entanglement in a model comprised of a short chain of nonlinear oscillators. Physical Review A, 2016, 94, .	1.0	40

ATION RED

#	Article	IF	CITATIONS
19	Strong subadditivity for log-determinant of covariance matrices and its applications. Journal of Physics A: Mathematical and Theoretical, 2016, 49, 34LT02.	0.7	22
20	Detecting genuine multipartite entanglement in steering scenarios. Physical Review A, 2016, 93, .	1.0	16
21	Experimental Quantification of Asymmetric Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2016, 116, 160404.	2.9	155
22	Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator. Scientific Reports, 2016, 6, 21775.	1.6	17
23	One-way steering of optical fields via dissipation of an atomic reservoir. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 225502.	0.6	9
24	Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution. Optica, 2016, 3, 634.	4.8	136
25	Unconditional security of entanglement-based continuous-variable quantum secret sharing. Physical Review A, 2017, 95, .	1.0	124
26	Multipartite Gaussian steering: Monogamy constraints and quantum cryptography applications. Physical Review A, 2017, 95, .	1.0	119
27	Genuine multipartite nonlocality of permutationally invariant Gaussian states. Physical Review A, 2017, 95, .	1.0	6
28	Einstein-Podolsky-Rosen steering and quantum steering ellipsoids: Optimal two-qubit states and projective measurements. Physical Review A, 2017, 95, .	1.0	22
29	Dynamical Gaussian quantum steering in optomechanics. European Physical Journal D, 2017, 71, 1.	0.6	16
30	Efficient linear criterion for witnessing Einstein-Podolsky-Rosen nonlocality under many-setting local measurements. Physical Review A, 2017, 95, .	1.0	6
31	Quantum steering: a review with focus on semidefinite programming. Reports on Progress in Physics, 2017, 80, 024001.	8.1	293
32	Characterizing nonlocal correlations via universal uncertainty relations. Physical Review A, 2017, 96,	1.0	14
33	Conditional steering under the von Neumann scenario. Physical Review A, 2017, 96, .	1.0	0
34	Monogamy inequalities for certifiers of continuous-variable Einstein-Podolsky-Rosen entanglement without the assumption of Gaussianity. Physical Review A, 2017, 96, .	1.0	4
35	Swapping of Gaussian Einstein-Podolsky-Rosen steering. Physical Review A, 2017, 95, .	1.0	12
36	Preparation of Macroscopic Entangled Coherent States in Nitrogen-Vacancy Centers Ensembles Coupled to a Superconducting Flux Qubit. Communications in Theoretical Physics, 2017, 67, 674.	1.1	2

#	Article	IF	CITATIONS
37	Steady-state light-mechanical quantum steerable correlations in cavity optomechanics. Physical Review A, 2017, 95, .	1.0	24
38	Manipulating the direction of Einstein-Podolsky-Rosen steering. Physical Review A, 2017, 95, .	1.0	47
39	Homodyne detection of short-range Doppler radar using a forced oscillator model. Scientific Reports, 2017, 7, 43680.	1.6	2
40	Einstein-Podolsky-Rosen-steering swapping between two Gaussian multipartite entangled states. Physical Review A, 2017, 96, .	1.0	11
41	Phase-sensitive cascaded four-wave-mixing processes for generating three quantum correlated beams. Physical Review A, 2017, 95, .	1.0	7
42	Einstein-Podolsky-Rosen steering and Bell nonlocality of two macroscopic mechanical oscillators in optomechanical systems. Physical Review A, 2017, 96, .	1.0	11
43	Building mechanical Greenberger-Horne-Zeilinger and cluster states by harnessing optomechanical quantum steerable correlations. Physical Review A, 2017, 96, .	1.0	8
44	Continuous-variable entanglement of two bright coherent states that never interacted. Physical Review A, 2017, 96, .	1.0	18
45	Generation of quadripartite entanglement from cascaded four-wave-mixing processes. Physical Review A, 2017, 96, .	1.0	20
46	Investigating Einstein-Podolsky-Rosen steering of continuous-variable bipartite states by non-Gaussian pseudospin measurements. Physical Review A, 2017, 96, .	1.0	16
47	Spatio-Temporal Steering for Testing Nonclassical Correlations in Quantum Networks. Scientific Reports, 2017, 7, 3728.	1.6	28
48	Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States. Physical Review Letters, 2017, 118, 230501.	2.9	101
49	Quantum steering borders in three-qubit systems. Quantum Information Processing, 2017, 16, 1.	1.0	26
50	Phase control of entanglement and quantum steering in a three-mode optomechanical system. New Journal of Physics, 2017, 19, 123039.	1.2	28
51	One-way Einstein-Podolsky-Rosen steering via atomic coherence. Optics Express, 2017, 25, 11584.	1.7	20
52	Quantum steering in cascaded four-wave mixing processes. Optics Express, 2017, 25, 17457.	1.7	15
53	Einstein–Podolsky–Rosen paradox in a hybrid bipartite system. Optica, 2017, 4, 272.	4.8	26
54	Experimental simulation of a quantum channel without the rotating-wave approximation: testing quantum temporal steering. Optica, 2017, 4, 1065.	4.8	15

IF CITATIONS # ARTICLE Demonstration of Einstein–Podolsky–Rosen steering with enhanced subchannel discrimination. Npj 55 2.8 61 Quantum Information, 2018, 4, . Experimental realization of a feedback optical parametric amplifier with four-wave mixing. Physical Review B, 2018, 97, . 1.1 Quantification of quantum steering in a Gaussian Greenberger–Horne–Zeilinger state. Optics Communications, 2018, 421, 14-18. 57 1.0 9 Einstein-Podolsky-Rosen steering and coherence in the family of entangled three-qubit states. Physical Review A, 2018, 97, . Necessary condition for steerability of arbitrary two-qubit states with loss. Journal of Optics (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

CITATION REPORT

60	Experimental High-Dimensional Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2018, 120, 030401.	2.9	41
61	Continuous-Variable Triple-Photon States Quantum Entanglement. Physical Review Letters, 2018, 120, 043601.	2.9	39
62	Weaving and neural complexity in symmetric quantum states. Optics Communications, 2018, 413, 157-161.	1.0	3
63	Experimental verification of multidimensional quantum steering. Optics Communications, 2018, 410, 956-960.	1.0	8
64	Dissipation induced asymmetric steering of distant atomic ensembles. Optics Communications, 2018, 412, 166-171.	1.0	5
65	One-way Einstein–Podolsky–Rosen steering with the aid of the thermal noise in a correlated emission laser. Laser Physics Letters, 2018, 15, 065204.	0.6	10
66	Generation of quadripartite entanglement from a hybrid scheme with a four-wave mixing process and linear beam splitters. Optics Communications, 2018, 424, 63-69.	1.0	4
67	Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science, 2018, 360, 413-416.	6.0	172
68	Generation of Oneâ€Way Gaussian Steering by Gaussian Channel and Converting Oneâ€Way Gaussian Steering by Beamsplitters. Annalen Der Physik, 2018, 530, 1700328.	0.9	1
69	EPR steering of polar molecules in pendular states and their dynamics under intrinsic decoherence. RSC Advances, 2018, 8, 35928-35935.	1.7	3
70	Complementarity relations between quantum steering criteria. Physical Review A, 2018, 98, .	1.0	23
71	Dynamical behavior of maximal steered coherence and concurrence under decoherence. Laser Physics Letters, 2018, 15, 125201.	0.6	2
72	Demonstration of Einstein-Podolsky-Rosen Steering Using Hybrid Continuous- and Discrete-Variable Entanglement of Light. Physical Review Letters, 2018, 121, 170403.	2.9	42

ARTICLE IF CITATIONS # Controlling stationary one-way steering via thermal effects in optomechanics. Physical Review A, 73 1.0 24 2018, 98, . Characterization of the quantumness of unsteerable tripartite correlations. Annals of Physics, 2018, 74 1.0 <u>398, 55-79.</u> Minimum resources for versatile continuous-variable entanglement in integrated nonlinear 75 1.0 10 waveguides. Physical Review A, 2018, 98, . Applications of EPR steering in quantum teleportation and NOON states. AIP Conference Proceedings, 0.3 2018,,. Creation of quantum steering by interaction with a common bath. Physical Review A, 2018, 97, . 77 1.0 5 Creation of bipartite steering correlations by a fast damped auxiliary mode. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 185501. 0.6 Exploring maximal steered coherence and entanglement via quantum steering ellipsoid framework. 79 1.0 1 Quantum Information Processing, 2019, 18, 1. Random coding for sharing bosonic quantum secrets. Physical Review A, 2019, 100, . 1.0 Orbital-Angular-Momentum Multiplexed Continuous-Variable Entanglement from Four-Wave Mixing in 81 2.9 83 Hot Atomic Vapor. Physical Review Letters, 2019, 123, 070506. Heisenberg-Type Quantum Steering by Continuous Weak Measurement in Circuit QED. Communications 1.1 in Theoretical Physics, 2019, 71, 798. Engineering asymmetric steady-state Einstein-Podolsky-Rosen steering in macroscopic hybrid systems. 83 1.0 7 Physical Review A, 2019, 100, . Gaussian multipartite quantum discord from classical mutual information. Journal of Physics B: 0.6 Atomic, Molecular and Optical Physics, 2019, 52, 245501. Criteria to detect genuine multipartite entanglement using spin measurements. Physical Review A, 2019, 86 1.0 7 100, . Einstein-Podolsky-Rosen steering in Gaussian weighted graph states. Physical Review A, 2019, 100, . 87 1.0 Strong mechanical squeezing and optomechanical steering via continuous monitoring in 88 1.0 9 optomechanical systems. Physical Review A, 2019, 100, . Manipulation of multimode squeezing in a coupled waveguide array. Physical Review A, 2019, 100, . Multipartite Einstein-Podolsky-Rosen steering sharing with separable states. Physical Review A, 2019, 90 1.0 19 99,. The Einstein–Podolsky–Rosen Steering and Its Certification. Entropy, 2019, 21, 422. 1.1

#	Article	IF	CITATIONS
92	Zero supermode-based multipartite entanglement in χ(2) nonlinear waveguide arrays. Physical Review A, 2019, 99, .	1.0	8
93	Directional steering as a sufficient and necessary condition for Gaussian entanglement swapping: Application to distant optomechanical oscillators. Physical Review A, 2019, 99, .	1.0	6
94	Manipulation and enhancement of asymmetric steering via interference effects induced by closed-loop coupling. Physical Review A, 2019, 99, .	1.0	34
95	Spatial Multiplexing of Squeezed Light by Coherence Diffusion. Physical Review Letters, 2019, 123, 203604.	2.9	10
96	One-way steering of the optical fields with respect to the low-Q cavity via the thermal noise. Laser Physics Letters, 2019, 17, 125201.	0.6	2
97	One-way steering of the optical fields with respect to the low-Q cavity via the thermal noise. Laser Physics Letters, 2019, 16, 125205.	0.6	2
98	Securing quantum networking tasks with multipartite Einstein-Podolsky-Rosen steering. Physical Review A, 2019, 99, .	1.0	21
99	Authentication protocol based on collective quantum steering. Physical Review A, 2019, 99, .	1.0	8
100	Measurement-device-independent and arbitrarily loss-tolerant verification of quantum steering. Physical Review A, 2019, 99, .	1.0	7
101	Large-Scale Quantum Network over 66 Orbital Angular Momentum Optical Modes. Physical Review Letters, 2020, 125, 140501.	2.9	34
102	Quantum state engineering in arrays of nonlinear waveguides. Physical Review A, 2020, 102, .	1.0	8
103	Quantum network based on non-classical light. Science China Information Sciences, 2020, 63, 1.	2.7	27
104	Versatile Photonic Entanglement Synthesizer in the Spatial Domain. Physical Review Applied, 2020, 14, .	1.5	10
105	Dressingâ€Controlled Quantum Steering in Energyâ€Level Cascaded Parametric Amplified Fourâ€Wave Mixing Processes. Advanced Quantum Technologies, 2020, 3, 2000029.	1.8	9
106	Persistency of genuine correlations under particle loss. Physical Review A, 2020, 102, .	1.0	2
107	Genuine quadripartite quantum steering generated by an optical parametric oscillation cascaded with a sum-frequency process. Europhysics Letters, 2020, 131, 10001.	0.7	10
108	Einstein-Podolsky-Rosen steering in spontaneous parametric down-conversion cascaded with a sum-frequency generation. Physical Review A, 2020, 102, .	1.0	9
109	Monogamy relations within quadripartite Einstein-Podolsky-Rosen steering based on cascaded four-wave mixing processes. Physical Review A, 2020, 101, .	1.0	13

	Сіт	CITATION REPORT	
#	Article	IF	Citations
110	Number-phase entanglement and Einstein-Podolsky-Rosen steering. Physical Review A, 2020, 101, .	1.0	10
111	Reconfigurable Hexapartite Entanglement by Spatially Multiplexed Four-Wave Mixing Processes. Physical Review Letters, 2020, 124, 090501.	2.9	65
112	Generation of tripartite Einstein–Podolsky–Rosen steering by cascaded nonlinear process*. Chines Physics B, 2020, 29, 050301.	e 0.7	8
113	Quantum steering. Reviews of Modern Physics, 2020, 92, .	16.4	315
114	Demonstration of monogamy laws for Gaussian steering in optomechanics. European Physical Journal Plus, 2020, 135, 1.	1.2	3
115	Experimental observation of Einstein-Podolsky-Rosen steering via entanglement detection. Physical Review A, 2020, 101, .	1.0	9
116	Switchable bipartite and genuine tripartite entanglement via an optoelectromechanical interface. Physical Review A, 2020, 101, .	1.0	11
117	Enhanced entanglement and asymmetric EPR steering between magnons. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	38
118	Continuous variable tripartite entanglement and steering using a third-order nonlinear optical interaction. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 371.	0.9	8
119	Quantum steering based on cascaded four-wave mixing processes. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 160301.	0.2	1
120	Non-Gaussian nature and entanglement of spontaneous parametric nondegenerate triple-photon generation. Physical Review A, 2021, 103, .	1.0	16
121	Advances in multipartite and high-dimensional Einstein-Podolsky-Rosen steering. Fundamental Research, 2021, 1, 99-101.	1.6	9
122	Scalable multimode entanglement based on efficient squeezing of propagation eigenmodes. Physical Review Research, 2021, 3, .	1.3	5
123	Controlling Stationary One-Way Quantum Steering in Cavity Magnonics. Physical Review Applied, 2021 15, .	l, 1.5	34
124	Genuine Einstein-Podolsky-Rosen steering of three-qubit states by multiple sequential observers. Physical Review A, 2021, 103, .	1.0	24
125	Verification of complementarity relations between quantum steering criteria using an optical system. Physical Review A, 2021, 103, .	1.0	8
126	The different behaviors of thermal noise in collective quantum steering and genuinely tripartite steering induced by atomic coherence. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 065401.	0.6	1
127	Engineering multipartite coupling in doubly pumped parametric down-conversion processes. Physical Review A, 2021, 103, .	1.0	1

#	Article	IF	CITATIONS
128	Sudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels. Npj Quantum Information, 2021, 7, .	2.8	31
129	Steering paradox for Einstein–Podolsky–Rosen argument and its extended inequality. Photonics Research, 2021, 9, 992.	3.4	2
130	Exposure of subtle multipartite quantum nonlocality. Npj Quantum Information, 2021, 7, .	2.8	2
131	Perfect transfer of enhanced entanglement and asymmetric steering in a cavity-magnomechanical system. Physical Review A, 2021, 103, .	1.0	32
132	Precise control of squeezing angle to generate 11 dB entangled state. Optics Express, 2021, 29, 24315.	1.7	14
133	Distillation of genuine tripartite Einstein-Podolsky-Rosen steering. Physical Review A, 2021, 104, .	1.0	8
134	Sharing quantum steering among multiple Alices and Bobs via a two-qubit Werner state. Quantum Information Processing, 2021, 20, 1.	1.0	3
135	Collective multipartite Einstein-Podolsky-Rosen steering via cascaded four-wave mixing of rubidium atoms. Physical Review A, 2021, 104, .	1.0	9
136	One-way Einstein–Podolsky–Rosen steering of macroscopic magnons with squeezed light. Optics Communications, 2021, 497, 127138.	1.0	9
137	Quasi-fine-grained uncertainty relations. New Journal of Physics, 2020, 22, 073063.	1.2	7
138	Deterministic Distribution of Multipartite Entanglement and Steering in a Quantum Network by Separable States. Physical Review Letters, 2020, 125, 260506.	2.9	31
139	Genuine photon-magnon-phonon Einstein-Podolsky-Rosen steerable nonlocality in a continuously-monitored cavity magnomechanical system. Physical Review Research, 2019, 1, .	1.3	34
140	Versatile multipartite Einstein-Podolsky-Rosen steering via a quantum frequency comb. Physical Review Research, 2020, 2, .	1.3	27
141	Bipartite Gaussian quantum steering, entanglement, and discord and their interconnection via a parametric down-converter. Applied Optics, 2020, 59, 2701.	0.9	5
142	Quantum steering of a two-mode Gaussian state using a quantum beat laser. Applied Optics, 2019, 58, 7014.	0.9	9
143	Dynamical quantum steering in a pulsed hybrid opto-electro-mechanical system. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 168.	0.9	13
144	Tunable asymmetric Einstein–Podolsky–Rosen steering of microwave photons in superconducting circuits. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 337.	0.9	4
145	Experimental violation of Mermin steering inequality by three-photon entangled states with nontrivial GHZ-fidelity. Optics Express, 2019, 27, 13559.	1.7	11

#	Article	IF	Citations
146	Tripartite Einstein-Podolsky-Rosen steering with linear and nonlinear beamsplitters in four-wave mixing of Rubidium atoms. Optics Express, 2019, 27, 33070.	1.7	16
147	Genuine tripartite Einstein-Podolsky-Rosen steering in the cascaded nonlinear processes of third-harmonic generation. Optics Express, 2020, 28, 2722.	1.7	18
148	From Einstein-Podolsky-Rosen paradox to quantum nonlocality: experimental investigation of quantum correlations. Proceedings of SPIE, 2016, , .	0.8	0
149	Time-delayed Einstein-Podolsky-Rosen Entanglement between Single Photon and Collective Atomic Excitation. , 2017, , .		0
150	Quantifying Asymmetric Einstein-Podolsky-Rosen Steering. , 2017, , .		0
151	Gaussian Einstein-Podolsky-Rosen steering in noisy environments. , 2017, , .		0
152	A Semi-Harmonic Frequency Pattern Organizes Local and Non-Local States by Quantum Entanglement in both EPR-Studies and Life Systems. Journal of Modern Physics, 2018, 09, 898-924.	0.3	8
153	Experimental Test of a Classical Causal Model for Quantum Correlations. Springer Theses, 2019, , 109-123.	0.0	0
154	Generating Tripartite Entanglement Using Four-Wave Mixing in Warm Atomic Vapor. , 2019, , .		0
155	Generation of quadripartite entanglement based on four-wave mixing process and linear beam splitter. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 090303.	0.2	2
156	Asymmetric Einstein–Podolsky–Rosen steering manipulating among multipartite entangled states. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2920.	0.9	2
157	Measurement-device-independent verification of channel steering. Physical Review A, 2020, 101, .	1.0	1
158	Quantum entanglement in coherent feedback system based on the cascaded four wave mixing processes. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 130301.	0.2	1
159	Vector optomechanical entanglement. Nanophotonics, 2021, 11, 67-77.	2.9	9
160	Vortex–photon–spin tripartite entanglement in a hybrid quantum system. Quantum Information Processing, 2021, 20, 1.	1.0	2
161	Quantum-feedback-controlled macroscopic quantum nonlocality in cavity optomechanics. Quantum Science and Technology, 2020, 5, 045023.	2.6	2
162	Multipartite spatial entanglement generated by concurrent nonlinear processes. Physical Review A, 2021, 104, .	1.0	2
163	Dynamical bipartite and tripartite entanglement of mechanical oscillators in an optomechanical array. Physical Review A, 2021, 104, .	1.0	4

#	Article	IF	CITATIONS
164	Sharing Classical Secrets with Continuous-Variable Entanglement: Composable Security and Network Coding Advantage. PRX Quantum, 2021, 2, .	3.5	10
166	Full multipartite steering inseparability, genuine multipartite steering, and monogamy for continuous-variable systems. Physical Review A, 2022, 105, .	1.0	10
167	Deterministic distribution of orbital angular momentum multiplexed continuous-variable entanglement and quantum steering. Photonics Research, 2022, 10, 777.	3.4	5
168	Simulating complex networks in phase space: Gaussian boson sampling. Physical Review A, 2022, 105, .	1.0	14
169	Remote asymmetric Einstein-Podolsky-Rosen steering of magnons via a single pathway of Bogoliubov dissipation. Physical Review Research, 2022, 4, .	1.3	21
170	Generation of octapartite entanglement by connecting two symmetric cascaded four-wave mixing processes with one linear beam splitter. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 619.	0.9	2
171	Magnon-magnon entanglement and its quantification via a microwave cavity. Physical Review B, 2021, 104, .	1.1	19
172	Entanglement of Local Hidden States. Quantum - the Open Journal for Quantum Science, 0, 6, 651.	0.0	3
173	Demonstrating Shareability of Multipartite Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2022, 128, 120402.	2.9	17
174	Distribution and quantification of remotely generated Wigner negativity. Npj Quantum Information, 2022, 8, .	2.8	7
175	Conditions for experimental detection of one-way quantum steering in a three-mode optomechanical system. AEJ - Alexandria Engineering Journal, 2022, 61, 9297-9304.	3.4	2
176	Distillation of Gaussian Einstein-Podolsky-Rosen steering with noiseless linear amplification. Npj Quantum Information, 2022, 8, .	2.8	13
177	Unidirectional Gaussian Oneâ€Way Steering. Annalen Der Physik, 2022, 534, .	0.9	4
178	Multipartite quantum steering of symmetric and asymmetric structures based on four-wave mixing processes. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 1528.	0.9	0
179	Experimental generation of multimode quantum correlations between a conical probe and a conical conical conjugate based on a four-wave mixing process. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
180	Coherence and Anticoherence Induced by Thermal Fields. Entropy, 2022, 24, 692.	1.1	1
181	Generation of twelve-partite entanglement from two symmetric four-wave mixing processes. Optics Communications, 2022, , 128470.	1.0	2
182	Probing Genuine Multipartite Einstein–Podolsky–Rosen Steering and Entanglement Under an Open Tripartite System. Frontiers in Physics, 0, 10,	1.0	2

#	Article	IF	CITATIONS
183	Semi-quantum digital signature protocol based on Einstein–Podolsky–Rosen steering. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 325302.	0.7	5
184	Remotely preparing optical SchrĶdinger cat states via homodyne detection in nondegenerate triple-photon spontaneous downconversion. Quantum Science and Technology, 2022, 7, 045021.	2.6	0
185	Characterizing Multipartite non-Gaussian Entanglement for a Three-Mode Spontaneous Parametric Down-Conversion Process. Physical Review Applied, 2022, 18, .	1.5	4
186	Quantum Steering: Practical Challenges and Future Directions. PRX Quantum, 2022, 3, .	3.5	24
187	Noise-Tolerant Optomechanical Entanglement via Synthetic Magnetism. Physical Review Letters, 2022, 129, .	2.9	36
188	Self-Testing of Quantum States Using Symmetric Local Hidden State Model. SSRN Electronic Journal, 0,	0.4	0
189	Revival and distribution of Einstein–Podolsky–Rosen steering of a four-mode cluster state in noisy channels. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 2779.	0.9	0
190	Detecting Tripartite Steering via Quantum Entanglement. Entropy, 2022, 24, 1297.	1.1	1
191	Cooperative-effect-induced one-way steering in open cavity magnonics. Npj Quantum Information, 2022, 8, .	2.8	15
192	Optimal Bright Multimode Quantum Squeezing via Multi-seeding Energy-level Cascaded Four-wave mixing. Optics Express, 0, , .	1.7	1
193	Einstein-Podolsky-Rosen steering in symmetrical Gaussian states. Physical Review A, 2022, 106, .	1.0	0
194	Steering-based randomness certification with squeezed states and homodyne measurements. Physical Review A, 2022, 106, .	1.0	4
195	Atomic-coherence-assisted multipartite entanglement generation with dressing-energy-level-cascaded four-wave mixing. Physical Review A, 2022, 106, .	1.0	6
196	Continuous Variable Quantum Teleportation Network. Laser and Photonics Reviews, 2023, 17, .	4.4	4
197	Controllable magnon–magnon entanglement and one-way EPR steering with two cascaded cavities. Quantum Information Processing, 2022, 21, .	1.0	0
198	Self-healing of Einstein-Rosen-Podolsky steering after an obstruction. Optics Letters, 0, , .	1.7	0
199	Compact source for quadripartite deterministically entangled optical fields. Fundamental Research, 2022, , .	1.6	0
200	Certifying emergent genuine multipartite entanglement with a partially blind witness. Physical Review A, 2022, 106, .	1.0	0

#	Article	IF	CITATIONS
201	Genuine Einstein-Podolsky-Rosen steering of generalized three-qubit states via unsharp measurements. Chinese Physics B, 0, , .	0.7	0
202	Enhancement of mechanical entanglement and asymmetric steering with coherent feedback. Physical Review A, 2023, 107, .	1.0	4
203	Genuine three qubit Einstein–Podolsky–Rosen steering under decoherence: revealing hidden genuine steerability via pre-processing. Quantum Information Processing, 2023, 22, .	1.0	0
204	Quantum feedback induced genuine magnon–photon–magnon entanglement and steering in a cavity magnonical system. Results in Physics, 2023, 48, 106422.	2.0	4
205	Manipulation and enhancement of Einstein-Podolsky-Rosen steering between two mechanical modes generated by two Bogoliubov dissipation pathways. Physical Review Research, 2023, 5, .	1.3	6
206	Experimental measurement of quadrature squeezing in quadripartite entanglement. Optics Letters, 2023, 48, 1375.	1.7	3
207	Deterministic manipulation of steering between distant quantum network nodes. Optics Express, 2023, 31, 8257.	1.7	2
208	Dynamics of multipartite quantum steering for different types of decoherence channels. Scientific Reports, 2023, 13, .	1.6	2
209	Genuine magnon–photon–magnon tripartite entanglement in a cavity electromagnonical system based on squeezed-reservoir engineering. Quantum Information Processing, 2023, 22, .	1.0	6
210	Hexapartite steering based on a four-wave-mixing process with a spatially structured pump. Optics Express, 2023, 31, 11775.	1.7	4