Android Security: A Survey of Issues, Malware Penetrat

IEEE Communications Surveys and Tutorials 17, 998-1022 DOI: 10.1109/comst.2014.2386139

Citation Report

#	Article	IF	CITATIONS
1	Behavioral and dynamic security functions chaining for Android devices. , 2015, , .		6
2	GroddDroid: a gorilla for triggering malicious behaviors. , 2015, , .		17
3	Proactive restart as cyber maneuver for Android. , 2015, , .		3
4	Accurate mobile malware detection and classification in the cloud. SpringerPlus, 2015, 4, 583.	1.2	27
5	Detection and Visualization of Android Malware Behavior. Journal of Electrical and Computer Engineering, 2016, 2016, 1-17.	0.6	25
6	Reviving Android Malware with DroidRide: And How Not To. , 2016, , .		Ο
7	XDroid: An Android permission control using Hidden Markov chain and online learning. , 2016, , .		8
8	Native malware detection in smartphones with android OS using static analysis, feature selection and ensemble classifiers. , 2016, , .		17
9	On the effectiveness of application characteristics in the automatic classification of malware on smartphones. , 2016, , .		2
10	DySign: dynamic fingerprinting for the automatic detection of android malware. , 2016, , .		16
11	Towards ad-hoc cloud based approach for mobile intrusion detection. , 2016, , .		6
12	Slowing the spread of Bluetooth-based malware in mobile tactical networks. , 2016, , .		2
13	Exploring the Usage of Topic Modeling for Android Malware Static Analysis. , 2016, , .		9
14	Spotting the Malicious Moment: Characterizing Malware Behavior Using Dynamic Features. , 2016, , .		24
15	A Host and Network Based Intrusion Detection for Android Smartphones. , 2016, , .		5
16	Design and Smartphone-Based Implementation of a Chaotic Video Communication Scheme via WAN Remote Transmission. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650158.	0.7	21
17	Cooperative network behaviour analysis model for mobile Botnet detection. , 2016, , .		9
18	Safe use of mobile devices in the cyberspace. , 2016, , .		3

TATION PEDO

#	Article	IF	CITATIONS
19	Detection of Android malware: Combined with static analysis and dynamic analysis. , 2016, , .		5
20	Android applications and security breach. , 2016, , .		6
21	Malware Development on Mobile Environments. , 2016, , .		1
22	DroidChain: A novel Android malware detection method based on behavior chains. Pervasive and Mobile Computing, 2016, 32, 3-14.	2.1	21
23	MimeoDroid: Large Scale Dynamic App Analysis on Cloned Devices via Machine Learning Classifiers. , 2016, , .		5
24	Intersection Automata Based Model for Android Application Collusion. , 2016, , .		11
25	Signing key leak detection in Google Play Store. , 2016, , .		1
26	DroidScreening: a practical framework for realâ€world Android malware analysis. Security and Communication Networks, 2016, 9, 1435-1449.	1.0	8
27	Android vs. SEAndroid: An empirical assessment. Pervasive and Mobile Computing, 2016, 30, 113-131.	2.1	6
28	Improve Dynamic Sandbox on the Cloud with Non-QEMU Based OS Through Hooks and Mocks Techniques. Lecture Notes in Electrical Engineering, 2016, , 523-531.	0.3	0
29	DroidAnalyst: Synergic App Framework for Static and Dynamic App Analysis. Studies in Computational Intelligence, 2016, , 519-552.	0.7	10
30	The Evolution of Android Malware and Android Analysis Techniques. ACM Computing Surveys, 2017, 49, 1-41.	16.1	251
31	Dynamic Permissions based Android Malware Detection using Machine Learning Techniques. , 2017, , .		65
32	Static analysis of android apps: A systematic literature review. Information and Software Technology, 2017, 88, 67-95.	3.0	208
33	Detection of Information Leaks via Reflection in Android Apps. , 2017, , .		4
34	Vulnerability detection in recent Android apps: An empirical study. , 2017, , .		14
35	PIndroid: A novel Android malware detection system using ensemble learning methods. Computers and Security, 2017, 68, 36-46.	4.0	157
36	Android resource usage risk assessment using hidden Markov model and online learning. Computers and Security, 2017, 65, 90-107.	4.0	31

# 37	ARTICLE DroidNative: Automating and optimizing detection of Android native code malware variants. Computers and Security, 2017, 65, 230-246.	IF 4.0	CITATIONS
38	A Survey of Stealth Malware Attacks, Mitigation Measures, and Steps Toward Autonomous Open World Solutions. IEEE Communications Surveys and Tutorials, 2017, 19, 1145-1172.	24.8	96
39	PPAndroid-Benchmarker. , 2017, , .		0
40	A methodology for the security evaluation within third-party Android Marketplaces. Digital Investigation, 2017, 23, 88-98.	3.2	12
41	Trapped by the UI: The Android Case. Lecture Notes in Computer Science, 2017, , 334-354.	1.0	14
42	Data security evaluation for mobile android devices. , 2017, , .		16
43	Automated verification of security chains in software-defined networks with synaptic. , 2017, , .		13
44	Mobile Device Management System Based on AOSP and SELinux. , 2017, , .		3
45	SneakLeak: Detecting Multipartite Leakage Paths in Android Apps. , 2017, , .		4
46	Who Added That Permission to My App? An Analysis of Developer Permission Changes in Open Source Android Apps. , 2017, , .		8
47	Forensics Analysis of Android Mobile VoIP Apps. , 2017, , 7-20.		14
48	Breaking into the vault: Privacy, security and forensic analysis of Android vault applications. Computers and Security, 2017, 70, 516-531.	4.0	24
49	A Middleware Enforcing Location Privacy in Mobile Platform. Lecture Notes in Computer Science, 2017, , 32-45.	1.0	1
50	Understanding Android Application Programming and Security: A Dynamic Study. , 2017, , .		18
51	From Smashed Screens to Smashed Stacks: Attacking Mobile Phones Using Malicious Aftermarket Parts. , 2017, , .		5
52	Anomaly detection for smartphone data streams. Pervasive and Mobile Computing, 2017, 35, 83-107.	2.1	14
54	A Taxonomy and Qualitative Comparison of Program Analysis Techniques for Security Assessment of Android Software. IEEE Transactions on Software Engineering, 2017, 43, 492-530.	4.3	91
55	Monkey Says, Monkey Does: Security and Privacy on Voice Assistants. IEEE Access, 2017, 5, 17841-17851.	2.6	117

#	Article	IF	CITATIONS
56	A survey on rise of mobile malware and detection methods. , 2017, , .		2
57	A behavior-based mobile malware detection model in software-defined networking. , 2017, , .		1
58	Interactive visualization toolbox to detect sophisticated android malware. , 2017, , .		7
59	Overview and an approach for QR-code based messaging and file sharing on android platform in view of security. , 2017, , .		2
60	AndroPIn: Correlating Android permissions and intents for malware detection. , 2017, , .		4
61	GPFinder: Tracking the invisible in Android malware. , 2017, , .		3
62	A survey on security issues, vulnerabilities and attacks in Android based smartphone. , 2017, , .		14
63	A image texture and BP neural network basec malicious files detection technique for cloud storage systems. , 2017, , .		3
64	Whitelist for Analyzing Android Malware. , 2017, , .		1
65	Quantifying the impact of adversarial evasion attacks on machine learning based android malware classifiers. , 2017, , .		22
66	Proof of Concept of Home IoT Connected Vehicles. Sensors, 2017, 17, 1289.	2.1	20
67	An Android Malicious Code Detection Method Based on Improved DCA Algorithm. Entropy, 2017, 19, 65.	1.1	3
68	Mobile Security and Privacy. , 2017, , 1-4.		3
69	DroidFax: A Toolkit for Systematic Characterization of Android Applications. , 2017, , .		16
70	Intrusion Detection in Contemporary Environments. , 2017, , 109-130.		9
71	Detecting Android Malware Leveraging Text Semantics of Network Flows. IEEE Transactions on Information Forensics and Security, 2018, 13, 1096-1109.	4.5	106
72	DELTA: Data Extraction and Logging Tool for Android. IEEE Transactions on Mobile Computing, 2018, 17, 1289-1302.	3.9	13
73	Systematic Classification of Side-Channel Attacks: A Case Study for Mobile Devices. IEEE Communications Surveys and Tutorials, 2018, 20, 465-488.	24.8	147

#	Article	IF	CITATIONS
74	Resiliency of mobile OS security for secure personal ubiquitous computing. Personal and Ubiquitous Computing, 2018, 22, 23-34.	1.9	4
75	Identify and Inspect Libraries in Android Applications. Wireless Personal Communications, 2018, 103, 491-503.	1.8	5
76	Talos: no more ransomware victims with formal methods. International Journal of Information Security, 2018, 17, 719-738.	2.3	48
77	DDefender: Android application threat detection using static and dynamic analysis. , 2018, , .		26
78	A survey of Android exploits in the wild. Computers and Security, 2018, 76, 71-91.	4.0	25
79	A novel pattern recognition system for detecting Android malware by analyzing suspicious boot sequences. Knowledge-Based Systems, 2018, 150, 198-217.	4.0	30
80	A survey on dynamic mobile malware detection. Software Quality Journal, 2018, 26, 891-919.	1.4	94
81	Intelligent OS X malware threat detection with code inspection. Journal of Computer Virology and Hacking Techniques, 2018, 14, 213-223.	1.6	49
82	Detecting crypto-ransomware in IoT networks based on energy consumption footprint. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 1141-1152.	3.3	190
83	Supporting users to take informed decisions on privacy settings of personal devices. Personal and Ubiquitous Computing, 2018, 22, 345-364.	1.9	15
84	An agent-based modeling framework for cybersecurity in mobile tactical networks. Journal of Defense Modeling and Simulation, 2018, 15, 205-218.	1.2	8
85	Machine-Learning-Based Android Malware Detection Techniques—A Comparative Analysis. Lecture Notes in Networks and Systems, 2018, , 181-190.	0.5	5
86	Chatting Application Monitoring on Android System and its Detection based on the Correlation Test. , 2018, , .		1
87	Deep and Broad Learning Based Detection of Android Malware via Network Traffic. , 2018, , .		16
88	CrashSafe: a formal model for proving crash-safety of Android applications. Human-centric Computing and Information Sciences, 2018, 8, .	6.1	9
89	MONITROID: A Runtime Smart Alert Malware Detection System. , 2018, , .		0
90	Android Malware Detection Using Feature Fusion and Artificial Data. , 2018, , .		3
91	Detecting Stubborn Permission Requests in Android Applications. , 2018, , .		1

# 92	ARTICLE A SVM-Based Malware Detection Mechanism for Android Devices. , 2018, , .	IF	Citations 9
93	Android Malware Permission-Based Multi-Class Classification Using Extremely Randomized Trees. IEEE Access, 2018, 6, 76217-76227.	2.6	35
94	Towards Accuracy in Similarity Analysis of Android Applications. Lecture Notes in Computer Science, 2018, , 146-167.	1.0	0
95	Malware Collusion Attack against SVM: Issues and Countermeasures. Applied Sciences (Switzerland), 2018, 8, 1718.	1.3	8
96	MRDroid: A Multi-act Classification Model for Android Malware Risk Assessment. , 2018, , .		3
97	The Android Malware Static Analysis: Techniques, Limitations, and Open Challenges. , 2018, , .		9
98	A Family of Droids-Android Malware Detection via Behavioral Modeling: Static vs Dynamic Analysis. , 2018, , .		25
99	An Automatic UI Interaction Script Generator for Android Applications Using Activity Call Graph Analysis. Eurasia Journal of Mathematics, Science and Technology Education, 2018, 14, .	0.7	2
100	Using G Features to Improve the Efficiency of Function Call Graph Based Android Malware Detection. Wireless Personal Communications, 2018, 103, 2947-2955.	1.8	10
102	An Active Android Application Repacking Detection Approach. , 2018, , .		2
103	AndroClass: An Effective Method to Classify Android Applications by Applying Deep Neural Networks to Comprehensive Features. Wireless Communications and Mobile Computing, 2018, 2018, 1-21.	0.8	6
104	Detecting Android Malware According to Observations on User Activities. , 2018, , .		3
105	Identifying Superfluous Network Transmissions in Android Applications. , 2018, , .		0
106	An Empirical Analysis of Android Permission System Based on User Activities. Journal of Computer Science, 2018, 14, 324-333.	0.5	27
107	Understanding Android Financial MalwareAttacks:Taxonomy, Characterization,and Challenges. Journal of Cyber Security and Mobility, 2018, 7, 1-52.	0.7	8
108	Android Malware Detection Using Feature Selections and Random Forest. , 2018, , .		1
109	TrafficPSSF: A Fast and An Effective Malware Detection Under Online and Offline. , 2018, , .		0
110	An Insight into Android Side-Channel Attacks. , 2018, , .		1

#	Article	IF	CITATIONS
111	Security Source Code Analysis of Applications in Android OS. International Journal of Engineering and Technology(UAE), 2018, 7, 30.	0.2	5
112	Detecting Android Malwares with High-Efficient Hybrid Analyzing Methods. Mobile Information Systems, 2018, 2018, 1-12.	0.4	12
113	AppFA: A Novel Approach to Detect Malicious Android Applications on the Network. Security and Communication Networks, 2018, 2018, 1-15.	1.0	7
114	The Dangers of Rooting: Data Leakage Detection in Android Applications. Mobile Information Systems, 2018, 2018, 1-9.	0.4	8
115	CANDYMAN: Classifying Android malware families by modelling dynamic traces with Markov chains. Engineering Applications of Artificial Intelligence, 2018, 74, 121-133.	4.3	67
116	Combat mobile malware via N-gram based deep learning. , 2018, , .		1
117	Generation of SDN policies for protecting android environments based on automata learning. , 2018, , .		2
118	Permission based android malware detection with multilayer perceptron. , 2018, , .		5
119	Protecting contacts against privacy leaks in smartphones. PLoS ONE, 2018, 13, e0191502.	1.1	6
120	Static and Dynamic Analysis for Android Malware Detection. Advances in Intelligent Systems and Computing, 2018, , 147-155.	0.5	18
121	Tuning Deep Learning Performance for Android Malware Detection. , 2018, , .		17
122	Leveraging ontologies and machine-learning techniques for malware analysis into Android permissions ecosystems. Computers and Security, 2018, 78, 429-453.	4.0	23
123	QRFence: A flexible and scalable QR link security detection framework for Android devices. Future Generation Computer Systems, 2018, 88, 663-674.	4.9	1
124	A Detailed Investigation and Analysis of Using Machine Learning Techniques for Intrusion Detection. IEEE Communications Surveys and Tutorials, 2019, 21, 686-728.	24.8	386
125	Analysis on Mobile Payment Security and Its Defense Strategy. Advances in Intelligent Systems and Computing, 2019, , 941-946.	0.5	1
126	NDroid: Toward Tracking Information Flows Across Multiple Android Contexts. IEEE Transactions on Information Forensics and Security, 2019, 14, 814-828.	4.5	31
127	SensDroid: Analysis for Malicious Activity Risk of Android Application. Multimedia Tools and Applications, 2019, 78, 35713-35731.	2.6	20
128	Proposed security by IDS-AM in Android system. , 2019, , .		4

		EPORT	
#	Article	IF	CITATIONS
129	Android Fragmentation in Malware Detection. Computers and Security, 2019, 87, 101573.	4.0	18
130	Exploiting Model Checking for Mobile Botnet Detection. Procedia Computer Science, 2019, 159, 963-972.	1.2	6
131	RmvDroid: Towards A Reliable Android Malware Dataset with App Metadata. , 2019, , .		39
132	AndrEnsemble. , 2019, , .		17
133	Catering to Your Concerns. ACM Transactions on Cyber-Physical Systems, 2019, 3, 1-21.	1.9	2
134	LD Based Framework to Mitigate Threats in Mobile Based Payment System. International Journal of Innovation in the Digital Economy, 2019, 10, 1-17.	0.2	0
135	Android Malware Detection using Deep Learning. , 2019, , .		17
136	A Survey on Detection Techniques for Cryptographic Ransomware. IEEE Access, 2019, 7, 144925-144944.	2.6	58
137	Software-defined forensic framework for malware disaster management in Internet of Thing devices for extreme surveillance. Computer Communications, 2019, 147, 14-20.	3.1	8
138	Overview of machine learning methods for Android malware identification. , 2019, , .		11
139	Overprivileged Permission Detection for Android Applications. , 2019, , .		14
140	A Novel Ad-Hoc Mobile Edge Cloud Offering Security Services Through Intelligent Resource-Aware Offloading. IEEE Transactions on Network and Service Management, 2019, 16, 1665-1680.	3.2	60
141	The Android malware detection systems between hope and reality. SN Applied Sciences, 2019, 1, 1.	1.5	20
142	Detection of Anomalous Behavior in Wireless Devices Using Changepoint Analysis. , 2019, , .		2
143	An Empirical History of Permission Requests and Mistakes in Open Source Android Apps. , 2019, , .		4
144	SimAndro: an effective method to compute similarity of Android applications. Soft Computing, 2019, 23, 7569-7590.	2.1	2
145	Network Intrusion Detection for IoT Security Based on Learning Techniques. IEEE Communications Surveys and Tutorials, 2019, 21, 2671-2701.	24.8	511
146	Unravelling Security Issues of Runtime Permissions in Android. Journal of Hardware and Systems Security, 2019, 3, 45-63.	0.8	17

#	Article	IF	CITATIONS
147	A Survey on the Detection of Android Malicious Apps. Advances in Intelligent Systems and Computing, 2019, , 437-446.	0.5	7
148	AC-Net: Assessing the Consistency of Description and Permission in Android Apps. IEEE Access, 2019, 7, 57829-57842.	2.6	20
150	Exploiting Binary-Level Code Virtualization to Protect Android Applications Against App Repackaging. IEEE Access, 2019, 7, 115062-115074.	2.6	6
151	Constructing Features for Detecting Android Malicious Applications: Issues, Taxonomy and Directions. IEEE Access, 2019, 7, 67602-67631.	2.6	69
152	DroidDivesDeep: Android Malware Classification via Low Level Monitorable Features with Deep Neural Networks. Communications in Computer and Information Science, 2019, , 125-139.	0.4	5
153	Bloom Filter Based Privacy Preserving Deduplication System. Communications in Computer and Information Science, 2019, , 17-34.	0.4	2
154	Identification of Android malware using refined system calls. Concurrency Computation Practice and Experience, 2019, 31, e5311.	1.4	7
155	ASSCA: API sequence and statistics features combined architecture for malware detection. Computer Networks, 2019, 157, 99-111.	3.2	30
156	Towards Privacy Risk Analysis in Android Applications Using Machine Learning Approaches. International Journal of E-Services and Mobile Applications, 2019, 11, 1-21.	0.6	25
157	Application of deep learning to cybersecurity: A survey. Neurocomputing, 2019, 347, 149-176.	3.5	191
158	An Empirical Study of Cross-Platform Mobile Development in Industry. Wireless Communications and Mobile Computing, 2019, 2019, 1-12.	0.8	22
159	Analysis and classification of context-based malware behavior. Computer Communications, 2019, 136, 76-90.	3.1	44
160	A Survey on Various Threats and Current State of Security in Android Platform. ACM Computing Surveys, 2020, 52, 1-35.	16.1	48
161	An Intelligent Behavior-Based Ransomware Detection System For Android Platform. , 2019, , .		11
162	Permission Issues in Open-Source Android Apps: An Exploratory Study. , 2019, , .		7
163	Android Malware Detection Scheme Based on Level of SSL Server Certificate. , 2019, , .		1
164	An improved user authentication scheme on smartphone using dominating attribute of touch data. Journal of Discrete Mathematical Sciences and Cryptography, 2019, 22, 1549-1561.	0.5	3
165	KerTSDroid: Detecting Android Malware at Scale through Kernel Task Structures. , 2019, , .		4

#	Article	IF	CITATIONS
166	Vulnerability Evaluation Method through Correlation Analysis of Android Applications. Sustainability, 2019, 11, 6637.	1.6	1
167	Android Application Security Scanning Process. , 2019, , .		6
168	Android Malware Similarity Clustering using Method based Opcode Sequence and Jaccard Index. , 2019, , .		3
169	MURITE-Detector: Identifying User-Role in Information Theft Events of Mobile Network. , 2019, , .		0
170	Towards Deep Learning-Based Approach for Detecting Android Malware. International Journal of Software Innovation, 2019, 7, 1-24.	0.3	4
171	Permission Weighting Approaches in Permission Based Android Malware Detection. , 2019, , .		2
172	Resilient User-Side Android Application Repackaging and Tampering Detection Using Cryptographically Obfuscated Logic Bombs. IEEE Transactions on Dependable and Secure Computing, 2021, 18, 2582-2600.	3.7	8
173	Security Analysis of Mobile Device-to-Device Network Applications. IEEE Internet of Things Journal, 2019, 6, 2922-2932.	5.5	17
174	Smartphone addiction: psychosocial correlates, risky attitudes, and smartphone harm. Journal of Risk Research, 2019, 22, 81-92.	1.4	25
175	Robust Malware Detection for Internet of (Battlefield) Things Devices Using Deep Eigenspace Learning. IEEE Transactions on Sustainable Computing, 2019, 4, 88-95.	2.2	252
176	Iterative Classifier Fusion System for the Detection of Android Malware. IEEE Transactions on Big Data, 2019, 5, 282-292.	4.4	21
177	Permission-Based Android Malware Application Detection Using Multi-Layer Perceptron. Advances in Intelligent Systems and Computing, 2020, , 362-371.	0.5	0
178	A collaborative policy-based security scheme to enforce resource access controlling mechanism. Wireless Networks, 2020, 26, 2537-2547.	2.0	3
179	SneakLeak+: Large-scale klepto apps analysis. Future Generation Computer Systems, 2020, 109, 593-603.	4.9	5
180	Android data storage security: A review. Journal of King Saud University - Computer and Information Sciences, 2020, 32, 543-552.	2.7	21
181	Android HIV: A Study of Repackaging Malware for Evading Machine-Learning Detection. IEEE Transactions on Information Forensics and Security, 2020, 15, 987-1001.	4.5	182
182	Malicious Adware Detection on Android Platform using Dynamic Random Forest. Advances in Intelligent Systems and Computing, 2020, , 609-617.	0.5	3
183	Authentication schemes for smart mobile devices: threat models, countermeasures, and open research issues. Telecommunication Systems, 2020, 73, 317-348.	1.6	44

#	Article	lF	CITATIONS
184	SieveDroid: Intercepting Undesirable Private-Data Transmissions in Android Applications. IEEE Systems Journal, 2020, 14, 375-386.	2.9	6
185	New Security Risk Value Estimate Method for Android Applications. Computer Journal, 2020, 63, 593-603.	1.5	4
186	Deep and broad URL feature mining for android malware detection. Information Sciences, 2020, 513, 600-613.	4.0	40
187	Model checking and machine learning techniques for HummingBad mobile malware detection and mitigation. Simulation Modelling Practice and Theory, 2020, 105, 102169.	2.2	14
188	Understanding negotiated anti-malware interruption effects on user decision quality in endpoint security. Behaviour and Information Technology, 2021, 40, 903-932.	2.5	10
189	A Review of Android Malware Detection Approaches Based on Machine Learning. IEEE Access, 2020, 8, 124579-124607.	2.6	169
190	Robust Android Malware Detection System Against Adversarial Attacks Using Q-Learning. Information Systems Frontiers, 2021, 23, 867-882.	4.1	37
191	SOMDROID: android malware detection by artificial neural network trained using unsupervised learning. Evolutionary Intelligence, 2022, 15, 407-437.	2.3	17
192	A Review of Intrusion Detection Systems Using Machine and Deep Learning in Internet of Things: Challenges, Solutions and Future Directions. Electronics (Switzerland), 2020, 9, 1177.	1.8	125
193	Opcode n-gram based Malware Classification in Android. , 2020, , .		4
193 194		0.4	4
	Opcode n-gram based Malware Classification in Android. , 2020, , . Secure Proof of Ownership Using Merkle Tree for Deduplicated Storage. Automatic Control and	0.4	
194	Opcode n-gram based Malware Classification in Android. , 2020, , . Secure Proof of Ownership Using Merkle Tree for Deduplicated Storage. Automatic Control and Computer Sciences, 2020, 54, 358-370. A detection method for android application security based on TF-IDF and machine learning. PLoS ONE,		3
194 195	Opcode n-gram based Malware Classification in Android. , 2020, , . Secure Proof of Ownership Using Merkle Tree for Deduplicated Storage. Automatic Control and Computer Sciences, 2020, 54, 358-370. A detection method for android application security based on TF-IDF and machine learning. PLoS ONE, 2020, 15, e0238694.		3 22
194 195 196	 Opcode n-gram based Malware Classification in Android. , 2020, , . Secure Proof of Ownership Using Merkle Tree for Deduplicated Storage. Automatic Control and Computer Sciences, 2020, 54, 358-370. A detection method for android application security based on TF-IDF and machine learning. PLoS ONE, 2020, 15, e0238694. A self-configuring and adaptive privacy-aware permission system for Android apps. , 2020, , . Research on Artificial Intelligence Enhancing Internet of Things Security: A Survey. IEEE Access, 2020, 	1.1	3 22 2
194 195 196 197	Opcode n-gram based Malware Classification in Android. , 2020, , . Secure Proof of Ownership Using Merkle Tree for Deduplicated Storage. Automatic Control and Computer Sciences, 2020, 54, 358-370. A detection method for android application security based on TF-IDF and machine learning. PLoS ONE, 2020, 15, e0238694. A self-configuring and adaptive privacy-aware permission system for Android apps. , 2020, , . Research on Artificial Intelligence Enhancing Internet of Things Security: A Survey. IEEE Access, 2020, 8, 153826-153848. A-Pot: A Comprehensive Android Analysis Platform Based on Container Technology. IEEE Access, 2020,	1.1 2.6	3 22 2 89
194 195 196 197 198	Opcode n-gram based Malware Classification in Android. , 2020, , . Secure Proof of Ownership Using Merkle Tree for Deduplicated Storage. Automatic Control and Computer Sciences, 2020, 54, 358-370. A detection method for android application security based on TF-IDF and machine learning. PLoS ONE, 2020, 15, e0238694. A self-configuring and adaptive privacy-aware permission system for Android apps. , 2020, , . Research on Artificial Intelligence Enhancing Internet of Things Security: A Survey. IEEE Access, 2020, 8, 153826-153848. A-Pot: A Comprehensive Android Analysis Platform Based on Container Technology. IEEE Access, 2020, 8, 199638-199645.	1.1 2.6	3 22 2 89 3

		CITATION REPORT		
#	Article		IF	CITATIONS
202	Deep Feature Extraction and Classification of Android Malware Images. Sensors, 2020,	, 20, 7013.	2.1	51
203	On the Feasibility of Adversarial Sample Creation Using the Android System API. Inform (Switzerland), 2020, 11, 433.	hation	1.7	12
204	A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security. Communications Surveys and Tutorials, 2020, 22, 1646-1685.	IEEE	24.8	576
205	Covert Device Association Among Colluding Apps via Edge Processor Workload. IEEE In Things Journal, 2020, 7, 10763-10772.	nternet of	5.5	2
206	A Systematic Literature Review of Android Malware Detection Using Static Analysis. IE 8, 116363-116379.	EE Access, 2020,	2.6	80
207	Code analysis for intelligent cyber systems: A data-driven approach. Information Science 46-58.	ces, 2020, 524,	4.0	25
208	FloVasion: Towards Detection of non-sensitive Variable Based Evasive Information-Flov Apps. IETE Journal of Research, 2022, 68, 2580-2594.	v in Android	1.8	2
209	A Longitudinal Study of Application Structure and Behaviors in Android. IEEE Transactic Software Engineering, 2021, 47, 2934-2955.	ons on	4.3	28
210	A study of run-time behavioral evolution of benign versus malicious apps in android. In Software Technology, 2020, 122, 106291.	formation and	3.0	37
211	Intelligent mobile malware detection using permission requests and API calls. Future G Computer Systems, 2020, 107, 509-521.	eneration	4.9	146
212	HIDROID: Prototyping a Behavioral Host-Based Intrusion Detection and Prevention Sys IEEE Access, 2020, 8, 23154-23168.	tem for Android.	2.6	35
213	Machine learning based solutions for security of Internet of Things (IoT): A survey. Jour Network and Computer Applications, 2020, 161, 102630.	nal of	5.8	266
214	Android Malware Detection Scheme Based on Level of SSL Server Certificate. IEICE Tra Information and Systems, 2020, E103.D, 379-389.	nsactions on	0.4	2
215	LimonDroid: a system coupling three signature-based schemes for profiling Android ma Journal of Computer Science, 2021, 4, 95-114.	alware. Iran	1.8	11
216	Effective detection of mobile malware behavior based on explainable deep neural netw Neurocomputing, 2021, 453, 482-492.	vork.	3.5	17
217	Understanding the asymmetric perceptions of smartphone security from security feature A comparative study. Telematics and Informatics, 2021, 58, 101535.	ure perspective:	3.5	10
218	Android security assessment: A review, taxonomy and research gap study. Computers 2021, 100, 102087.	and Security,	4.0	13
219	Understanding the Evolution of Android App Vulnerabilities. IEEE Transactions on Relia 212-230.	bility, 2021, 70,	3.5	23

#	Article	IF	CITATIONS
220	Research on Third-Party Libraries in Android Apps: A Taxonomy and Systematic Literature Review. IEEE Transactions on Software Engineering, 2022, 48, 4181-4213.	4.3	11
221	Towards Privacy Risk Analysis in Android Applications Using Machine Learning Approaches. , 2021, , 645-666.		0
222	Background and Related Work. Advances in Information Security, 2021, , 7-39.	0.9	0
223	Study of Transparent File Encryption Technology on Android Platform. Lecture Notes in Computer Science, 2021, , 137-145.	1.0	0
224	A Modified FlowDroid Based on Chi-Square Test of Permissions. Entropy, 2021, 23, 174.	1.1	3
225	Identification of Significant Permissions for Efficient Android Malware Detection. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 33-52.	0.2	15
226	LD Based Framework to Mitigate Threats in Mobile Based Payment System. , 2021, , 800-820.		0
227	Towards Deep Learning-Based Approach for Detecting Android Malware. , 2021, , 2193-2219.		0
228	ARANAC: A Bring-Your-Own-Permissions Network Access Control Methodology for Android Devices. IEEE Access, 2021, 9, 101321-101334.	2.6	5
229	Flaws in the Android Permission Protocol with Limited Verification. Voprosy Kiberbezopasnosti, 2021, , 2-17.	0.1	0
230	Backdoor Attack on Machine Learning Based Android Malware Detectors. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 3357-3370.	3.7	13
231	Understanding Research Trends in Android Malware Research Using Information Modelling Techniques. Computers, Materials and Continua, 2021, 66, 2655-2670.	1.5	9
232	FSDroid:- A feature selection technique to detect malware from Android using Machine Learning Techniques. Multimedia Tools and Applications, 2021, 80, 13271-13323.	2.6	43
233	E-Health Threat Intelligence Within Cyber-Defence Framework for E-Health Organizations. Advanced Information and Knowledge Processing, 2021, , 161-179.	0.2	0
234	A Survey of Android Malware Detection with Deep Neural Models. ACM Computing Surveys, 2021, 53, 1-36.	16.1	156
235	Towards a systematic description of the field using bibliometric analysis: malware evolution. Scientometrics, 2021, 126, 2013-2055.	1.6	15
236	A Review on Android Malware: Attacks, Countermeasures and Challenges Ahead. Journal of Cyber Security and Mobility, 0, , .	0.7	9
237	A novel permission-based Android malware detection system using feature selection based on linear regression. Neural Computing and Applications, 2023, 35, 4903-4918.	3.2	23

#	Article	IF	CITATIONS
239	A survey on analysis and detection of Android ransomware. Concurrency Computation Practice and Experience, 2021, 33, e6272.	1.4	21
240	Demystifying Illegal Mobile Gambling Apps. , 2021, , .		8
241	Detection of malicious Android applications using Ontology-based intelligent model in mobile cloud environment. Journal of Information Security and Applications, 2021, 58, 102751.	1.8	6
242	Android malware detection through machine learning on kernel task structures. Neurocomputing, 2021, 435, 126-150.	3.5	34
243	Detection of Android Malware using Machine Learning. , 2021, , .		10
244	AndroCT: Ten Years of App Call Traces in Android. , 2021, , .		12
245	Malicious application detection in android — A systematic literature review. Computer Science Review, 2021, 40, 100373.	10.2	31
246	Permission-Based Approach for Android Malware Analysis Through Ensemble-Based Voting Model. , 2021, , .		10
247	On the Interplay Between Static and Dynamic Analysis for Mining Sandboxes. , 2021, , .		0
248	AMon: A Monitoring Multidimensional Feature Application to Secure Android Environments. , 2021, , .		0
249	SonicEvasion: a stealthy ultrasound based invasion using covert communication in smart phones and its security. International Journal of Information Technology (Singapore), 2021, 13, 1589-1599.	1.8	2
250	RansomDroid: Forensic analysis and detection of Android Ransomware using unsupervised machine learning technique. Forensic Science International: Digital Investigation, 2021, 37, 301168.	1.2	14
251	Towards an interpretable deep learning model for mobile malware detection and family identification. Computers and Security, 2021, 105, 102198.	4.0	50
252	Behavioral Host-Based Intrusion Detection and Prevention System for Android. International Journal for Research in Applied Science and Engineering Technology, 2021, 9, 5268-5274.	0.1	0
253	Android Mobile Malware Detection Using Machine Learning: A Systematic Review. Electronics (Switzerland), 2021, 10, 1606.	1.8	45
254	A Semi-Automated Explainability-Driven Approach for Malware Analysis through Deep Learning. , 2021, , ·		5
255	A novel Android malware detection system: adaption of filter-based feature selection methods. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 1243-1257.	3.3	8
256	Intelligent Data Security Threat Discovery Model Based on Grid Data. , 2021, , .		1

		EPUKI	
#	Article	IF	CITATIONS
257	The Android Platform Security Model. ACM Transactions on Privacy and Security, 2021, 24, 1-35.	2.2	17
258	Exploring the use of static and dynamic analysis to improve the performance of the mining sandbox approach for android malware identification. Journal of Systems and Software, 2022, 183, 111092.	3.3	5
259	Identifying Major Research Areas and Minor Research Themes of Android Malware Analysis and Detection Field Using LSA. Complexity, 2021, 2021, 1-28.	0.9	11
261	RTPDroid: Detecting Implicitly Malicious Behaviors Under Runtime Permission Model. IEEE Transactions on Reliability, 2021, 70, 1295-1308.	3.5	5
262	Android Malware Detection Techniques in Traditional and Cloud Computing Platforms. International Journal of Cloud Applications and Computing, 2021, 11, 113-135.	1.1	3
263	Information security breaches due to ransomware attacks - a systematic literature review. International Journal of Information Management Data Insights, 2021, 1, 100013.	6.5	45
264	On Android's activity hijacking prevention. Computers and Security, 2021, 111, 102468.	4.0	0
265	Security Measures in Internet of Things (IoT) Systems Using Machine and Deep Learning Techniques. Internet of Things, 2021, , 195-209.	1.3	0
266	Penetration Frameworks and Development Issues in Secure Mobile Application Development: A Systematic Literature Review. IEEE Access, 2021, 9, 87806-87825.	2.6	8
267	Healthcare Security: Usage of Generative Models for Malware Adversarial Attacks and Defense. Lecture Notes in Networks and Systems, 2021, , 885-897.	0.5	1
268	Position Paper on Recent Cybersecurity Trends: Legal Issues, AI and IoT. Lecture Notes in Computer Science, 2018, , 484-490.	1.0	1
269	Ensemble Machine Learning Approach for Android Malware Classification Using Hybrid Features. Advances in Intelligent Systems and Computing, 2018, , 191-200.	0.5	8
270	Hey Doc, Is This Normal?: Exploring Android Permissions in the Post Marshmallow Era. Lecture Notes in Computer Science, 2017, , 53-73.	1.0	13
271	Android Malware Detector Based on Sequences of System Calls and Bidirectional Recurrent Networks. Communications in Computer and Information Science, 2020, , 309-321.	0.4	1
272	Effectiveness of state-of-the-art dynamic analysis techniques in identifying diverse Android malware and future enhancements. Advances in Computers, 2020, , 73-120.	1.2	10
273	A TAN based hybrid model for android malware detection. Journal of Information Security and Applications, 2020, 54, 102483.	1.8	43
274	Android Ransomware Detection using Machine Learning Techniques: A Comparative Analysis on GPU and CPU. , 2020, , .		9
275	Trusted Application Using Biometrics for Android Environment. , 2020, , .		5

#	ARTICLE	IF	CITATIONS
276	On the User Awareness of Mobile Security Recommendations. , 2017, , .		9
277	Detecting malicious applications using system services request behavior. , 2019, , .		4
278	Assessing and Improving Malware Detection Sustainability through App Evolution Studies. ACM Transactions on Software Engineering and Methodology, 2020, 29, 1-28.	4.8	72
279	Android and iOS Security – An Analysis and Comparison Report. International Journal of Information Security and Cybercrime, 2016, 5, 32-44.	0.3	1
280	Client-Focused Security Assessment of mHealth Apps and Recommended Practices to Prevent or Mitigate Transport Security Issues. JMIR MHealth and UHealth, 2017, 5, e147.	1.8	28
281	Android Security: A Review. Academic Journal of Nawroz University, 2017, 6, 135-140.	0.1	5
282	Detecting Applications with Malicious Behavior in Android Device Based on GA and SVM. , 2018, , .		1
283	Anomaly-Based Intrusion Detection. Advances in Information Security, Privacy, and Ethics Book Series, 2020, , 195-218.	0.4	3
284	Risks behind Device Information Permissions in Android OS. Communications and Network, 2017, 09, 219-234.	0.6	6
285	Botnet attack detection in Internet of Things devices over cloud environment via machine learning. Concurrency Computation Practice and Experience, 2022, 34, e6662.	1.4	40
286	Detection and Prevention of Malware in Android Operating System. Mehran University Research Journal of Engineering and Technology, 2021, 40, 847-859.	0.3	1
287	A Hybrid Modeling of Mobile App Dynamics on Serial Causality for Malware Detection. Security and Communication Networks, 2021, 2021, 1-10.	1.0	1
288	The Impact of Hierarchy on Bluetooth-Based Malware Spread in Mobile Tactical Networks. , 2016, , .		1
289	DroidSecure: A Technique to Mitigate Privilege Escalation in Android Application. Journal of the Korea Institute of Information Security and Cryptology, 2016, 26, 169-176.	0.1	0
290	Mobile Security. Advances in Wireless Technologies and Telecommunication Book Series, 2017, , 43-59.	0.3	0
291	DroidData: Tracking and Monitoring Data Transmission in the Android Operating System. Communications and Network, 2017, 09, 192-206.	0.6	0
292	Android Malware Detection Using Category-Based Permission Vectors. Lecture Notes in Computer Science, 2018, , 399-414.	1.0	0
293	Improved Digital Password Authentication Method for Android System. Lecture Notes in Computer Science, 2018, , 780-791.	1.0	0

#	Article	IF	CITATIONS
294	Enhancing Security of Android-Based Smart Devices: Preventive Approach. Smart Innovation, Systems and Technologies, 2019, , 589-597.	0.5	0
295	Software Development for Mobile Computing, the Internet of Things and Wearable Devices: Inspecting the Past to Understand the Future. , 2019, , .		4
296	Smart Cities and Open WiFis: When Android OS Permissions Cease to Protect Privacy. Lecture Notes in Computer Science, 2019, , 457-467.	1.0	0
297	Assessment of Digital Implementation in India and Challenges. International Journal of Digital Literacy and Digital Competence, 2019, 10, 37-53.	0.1	1
298	Reducing the Forensic Footprint with Android Accessibility Attacks. Lecture Notes in Computer Science, 2020, , 22-38.	1.0	6
300	This is Just Metadata: From No Communication Content to User Profiling, Surveillance and Exploitation. Learning and Analytics in Intelligent Systems, 2021, , 277-302.	0.5	1
301	Host-Server-Based Malware Detection System for Android Platforms Using Machine Learning. Advances in Intelligent Systems and Computing, 2021, , 195-205.	0.5	6
302	An Effective Feature Extraction Mechanism for Intrusion Detection System. IEICE Transactions on Information and Systems, 2021, E104.D, 1814-1827.	0.4	0
303	A Framework for Detection of Android Malware using Static Features. , 2020, , .		10
304	Recent Advances in Android Mobile Malware Detection: A Systematic Literature Review. IEEE Access, 2021, 9, 146318-146349.	2.6	9
305	Adversary Models for Mobile Device Authentication. ACM Computing Surveys, 2022, 54, 1-35.	16.1	3
306	TCN-ATT: A Non-recurrent Model for Sequence-Based Malware Detection. Lecture Notes in Computer Science, 2020, , 178-190.	1.0	5
307	Design of a Low-Cost Ball and Plate Prototype for Control Education. Lecture Notes in Networks and Systems, 2020, , 258-265.	0.5	1
308	CAVAEva: An Engineering Platform forÂEvaluating Commercial Anti-malware Applications on Smartphones. Lecture Notes in Computer Science, 2020, , 208-224.	1.0	0
309	GroDDViewer: Dynamic Dual View of Android Malware. Lecture Notes in Computer Science, 2020, , 127-139.	1.0	2
310	ESCAPADE: Encryption-Type-Ransomware: System Call Based Pattern Detection. Lecture Notes in Computer Science, 2020, , 388-407.	1.0	6
312	Embracing mobile app evolution via continuous ecosystem mining and characterization. , 2020, , .		17
314	Implementation of Motorcycle Monitoring Using Bluetooth with an Android-Based Microcontroller Using Arduino. Lecture Notes in Networks and Systems, 2021, , 155-164.	0.5	Ο

		CITATION R	EPORT	
#	Article		IF	CITATIONS
315	A Survey on Andro-Financial Malware Attacks, Detection Methods and Current Issues. , 202	21,,.		3
316	EPMDroid: Efficient and privacy-preserving malware detection based on SGX through data Information Fusion, 2022, 82, 43-57.	fusion.	11.7	14
317	An Active Android Application Repacking Detection Approach. , 2018, , .			0
318	Comparison of Regression Methods in Permission Based Android Malware Detection. , 202	0, , .		1
319	An Evolutionary Perspective: A Study of Anubis Android Banking Trojan. , 2020, , .			1
320	Android Malware Detection Using Hybrid-Based Analysis & Deep Neural Network. , 20	20, , .		2
321	Analysis of Machine Learning Classifier in Android Malware Detection Through Opcode. , 24	020, , .		5
322	Smart Grid System Security Protection by Deep Neural Network. , 2021, , .			1
323	A stealthy evasive information invasion using covert channel in mobile phones. , 2021, , .			1
324	An Efficient implementation of Network Malicious Traffic Screening based on Big Data Ana 2021, , .	lytics. ,		0
326	Survey on Reverse-Engineering Tools for Android Mobile Devices. Mathematical Problems in Engineering, 2022, 2022, 1-7.	١	0.6	9
327	A Survey on Mobile Malware Detection Methods using Machine Learning. , 2022, , .			24
328	The rise of obfuscated Android malware and impacts on detection methods. PeerJ Comput 2022, 8, e907.	er Science,	2.7	9
329	Formal model for inter-component communication and its security in android. Computing (Vienna/New York), 2022, 104, 1839-1865.		3.2	3
330	Robust deep learning early alarm prediction model based on the behavioural smell for andr malware. Computers and Security, 2022, 116, 102670.	oid	4.0	27
331	You Are (not) Who Your Peers Are: Identification of Potentially Excessive Permission Requee Android Apps. , 2021, , .	sts in		1
332	AndroCreme: Unseen Android Malware Detection Based on Inductive Conformal Learning.	,2021,,.		1
333	Internet of Things Security Requirements, Threats, Attacks, and Countermeasures. Studies Computational Intelligence, 2022, , 67-112.	in	0.7	1

#	Article	IF	CITATIONS
334	Malware Detection in Android via Neural Network using Entropy Features. , 2021, , .		2
335	MemDroid - LSTM Based Malware Detection Framework for Android Devices. , 2021, , .		1
336	Efficacy of Android security mechanisms on ransomware analysis and detection. AIP Conference Proceedings, 2022, , .	0.3	2
337	A Two-Layered Machine Learning Approach for Anti-Malware Sustainability. , 2022, , .		0
338	TSDroid: A Novel Android Malware Detection Framework Based on Temporal & Spatial Metrics in IoMT. ACM Transactions on Sensor Networks, 2023, 19, 1-23.	2.3	3
339	Malware Attacks: Dimensions, Impact, and Defenses. EAI/Springer Innovations in Communication and Computing, 2022, , 157-179.	0.9	2
340	A survey on deep learning for cybersecurity: Progress, challenges, and opportunities. Computer Networks, 2022, 212, 109032.	3.2	35
341	Op2Vec: An Opcode Embedding Technique and Dataset Design for End-to-End Detection of Android Malware. Security and Communication Networks, 2022, 2022, 1-15.	1.0	2
342	A Modified ResNeXt for Android Malware Identification and Classification. Computational Intelligence and Neuroscience, 2022, 2022, 1-20.	1.1	12
343	Deep Learning for Android Malware Defenses: A Systematic Literature Review. ACM Computing Surveys, 2023, 55, 1-36.	16.1	24
344	A Low Computational Cost Method for Mobile Malware Detection Using Transfer Learning and Familial Classification Using Topic Modelling. Applied Computational Intelligence and Soft Computing, 2022, 2022, 1-22.	1.6	3
346	Information System for Cyber Threat Detection Using K-NN Classification Model. Advances in Digital Crime, Forensics, and Cyber Terrorism, 2022, , 20-32.	0.4	0
347	Rotten apples spoil the bunch. , 2022, , .		2
348	Data-Driven Android Malware Analysis Intelligence. Advances in Information Security, Privacy, and Ethics Book Series, 2022, , 181-200.	0.4	0
349	A Comprehensive Review of Android Security: Threats, Vulnerabilities, Malware Detection, and Analysis. Security and Communication Networks, 2022, 2022, 1-34.	1.0	7
350	An in-depth review of machine learning based Android malware detection. Computers and Security, 2022, 121, 102833.	4.0	25
351	Highly distributed and privacy-preserving queries on personal data management systems. VLDB Journal, 0, , .	2.7	0
352	Toward Improving the Security of IoT and CPS Devices: An Al Approach. Digital Threats Research and Practice, 2023, 4, 1-30.	1.7	1

#	Article	IF	CITATIONS
353	A Study on Two-Phase Monitoring Server for Ransomware Evaluation and Detection in IoT Environment. Journal of Trends in Computer Science and Smart Technology, 2022, 4, 72-82.	2.2	0
354	FSAFlow: Lightweight and Fast Dynamic Path Tracking and Control for Privacy Protection on Android Using Hybrid Analysis with State-Reduction Strategy. , 2022, , .		1
355	Category-Aware App Permission Recommendation based on Sparse Linear Model. , 2022, , .		1
356	Safety, Security and Privacy in Machine Learning Based Internet of Things. Journal of Sensor and Actuator Networks, 2022, 11, 38.	2.3	29
357	Cyber-Threat Detection System Using a Hybrid Approach of Transfer Learning and Multi-Model Image Representation. Sensors, 2022, 22, 5883.	2.1	13
358	On building machine learning pipelines for Android malware detection: a procedural survey of practices, challenges and opportunities. Cybersecurity, 2022, 5, .	3.1	6
359	Self-Supervised Vision Transformers for Malware Detection. IEEE Access, 2022, 10, 103121-103135.	2.6	14
360	An Enhanced Deep Learning Neural Network for the Detection and Identification of Android Malware. IEEE Internet of Things Journal, 2023, 10, 8560-8577.	5.5	15
361	Graph Neural Network-based Android Malware Classification with Jumping Knowledge. , 2022, , .		9
362	Detecting Malware by Analyzing App Permissions on Android Platform: A Systematic Literature Review. Sensors, 2022, 22, 7928.	2.1	3
363	Android Malware Detection Using ResNet-50 Stacking. Computers, Materials and Continua, 2023, 74, 3997-4014.	1.5	2
364	Towards a fair comparison and realistic evaluation framework of android malware detectors based on static analysis and machine learning. Computers and Security, 2023, 124, 102996.	4.0	10
365	Android Malware Application Detection using Multi-layer Perceptron. , 2022, , 95-99.		0
366	Android Malwares with Their Characteristics and Threats. Lecture Notes in Networks and Systems, 2023, , 1-12.	0.5	2
367	Android-IoT Malware Classification and Detection Approach Using Deep URL Features Analysis. Journal of Database Management, 2023, 34, 1-26.	1.0	3
368	Android malware detection based on sensitive patterns. Telecommunication Systems, 2023, 82, 435-449.	1.6	3
369	An Energy Efficient, Robust, Sustainable, and Low Computational Cost Method for Mobile Malware Detection. Applied Computational Intelligence and Soft Computing, 2023, 2023, 1-12.	1.6	3
371	A Comprehensive Study on Mobile Malwares: Mobile Covert Channels—Threats and Security. Springer Proceedings in Mathematics and Statistics, 2022, , 91-102.	0.1	Ο

#	Article	IF	Citations
372	A Glimpse of the Whole: Detecting Few-shot Android Malware Encrypted Network Traffic. , 2022, , .		0
373	Mitigating Malware Attacks using Machine Learning: A Review. , 2023, , .		0
374	The Age of Ransomware: A Survey on the Evolution, Taxonomy, and Research Directions. IEEE Access, 2023, 11, 40698-40723.	2.6	9
377	MCES: Multi-classifier Ensemble System for Malware Detection and Identification. , 2022, , .		0
378	Inspecting Binder Transactions to Detect Anomalies in Android. , 2023, , .		0
379	A Study of Different Approaches for Malware Detection in Smartphones. , 2023, , .		0
384	Comparative Analysis of Various Machine Learning Algorithms for Detection of Malware and Benign. Communications in Computer and Information Science, 2023, , 212-218.	0.4	0
387	Permission-Based Android Malware Identification. , 2023, , .		0
388	Mobile User Interface Element Detection Via Adaptively Prompt Tuning. , 2023, , .		1
389	Three-Layered Hybrid Analysis Technique for Android Malware Detection. Lecture Notes in Electrical Engineering, 2023, , 303-312.	0.3	1
392	Hybrid Feature Selection Model for Detection of Android Malware and Family Classification. Advances in Information Security, Privacy, and Ethics Book Series, 2023, , 241-264.	0.4	0
393	Review of malware detection methods in android. AIP Conference Proceedings, 2023, , .	0.3	Ο
394	A Review of IoT Security Solutions Using Machine Learning and Deep Learning. Lecture Notes in Networks and Systems, 2023, , 115-132.	0.5	0
395	Text preprocessing for optimal accuracy in Indonesian sentiment analysis using a deep learning model with word embedding. AIP Conference Proceedings, 2023, , .	0.3	0
396	Using Phone Sensors to Augment Vehicle Reliability. , 2023, , .		0
399	Android Operating System. Progress in IS, 2024, , 25-42.	0.5	0