A new antibiotic kills pathogens without detectable resi

Nature 517, 455-459

DOI: 10.1038/nature14098

Citation Report

#	Article	IF	CITATIONS
3	Policy: An intergovernmental panel on antimicrobial resistance. Nature, 2014, 509, 555-557.	13.7	130
4	Antimicrobial resistance, equine practitioners and human health: A true One Health issue or political interference?. Equine Veterinary Journal, 2015, 47, 750-752.	0.9	9
5	Antibiotic resistance in veterinary practice: a veterinary nurse's perspective. The Veterinary Nurse, 2015, 6, 242-245.	0.0	0
6	Antibiotics: Initial Concepts and Considerations. , 0, , 4-15.		O
7	Antibiotic Resistance: Modification or Destruction of the Antibiotic., 0,, 198-218.		0
8	Antibiotic Resistance via Membrane Efflux Pumps. , 0, , 220-229.		O
9	Resistance via Target Modification. , 0, , 230-251.		0
10	Tuberculosis: A Formidable Challenge for Antibiotic Therapy. , 0, , 252-271.		0
11	Antibiotic Biosynthesis: Principles., 2015,, 276-287.		0
12	Biosynthesis of Peptide Antibiotics. , 2015, , 288-318.		O
13	Biosynthesis of Polyketide Antibiotics. , 0, , 320-342.		0
14	Biosynthesis of Oligosaccharide, Isoprenoid, and C-P Antibiotic Classes. , 0, , 344-362.		O
15	Underexploited Pathways and Targets for Antibiotics. , 0, , 366-397.		0
16	Prospects for New Molecules and New Targets. , 0, , 398-419.		O
17	Major Classes of Antibiotics and Their Modes of Action. , 0, , 16-32.		0
18	Assembly of the Peptidoglycan Layer of Bacterial Cell Walls. , 2015, , 36-67.		1
19	Antibiotics That Block Peptidoglycan Assembly and Integrity. , 0, , 68-100.		0
20	Antibiotics That Disrupt Membrane Integrity. , 2015, , 102-113.		O

#	Article	IF	Citations
21	Antibiotics That Block Protein Synthesis. , 2015, , 114-146.		O
22	Antibiotics That Target DNA and RNA Information Transfer. , 0, , 148-162.		0
23	Antibiotics That Block Biosynthesis of the DNA Building Block Deoxythymidylate., 0,, 164-176.		0
24	Bacterial Antibiotic Resistance: Overview. , 0, , 180-196.		o
25	Challenges of Antibiotic Discovery. Microbe Magazine, 2015, 10, 363-369.	0.4	6
26	Selective in vivo and in vitro activities of 3,3′-4-nitrobenzylidene-bis-4-hydroxycoumarin against methicillin-resistant Staphylococcus aureus by inhibition of DNA polymerase III. Scientific Reports, 2015, 5, 13637.	1.6	14
27	New Devices for Cultivation. , 2015, , 2.1.3-1-2.1.3-8.		0
28	In vitro and in vivo screening for novel essential cell-envelope proteins in Pseudomonas aeruginosa. Scientific Reports, 2015, 5, 17593.	1.6	29
31	Metabolomics investigation of recombinant mTNF \hat{l}_{\pm} production in Streptomyces lividans. Microbial Cell Factories, 2015, 14, 157.	1.9	18
32	Membraneâ€Active Small Molecules: Designs Inspired by Antimicrobial Peptides. ChemMedChem, 2015, 10, 1606-1624.	1.6	128
34	Membrane Disruption and Enhanced Inhibition of Cellâ€Wall Biosynthesis: A Synergistic Approach to Tackle Vancomycinâ€Resistant Bacteria. Angewandte Chemie - International Edition, 2015, 54, 13644-13649.	7.2	63
36	Synergy Potential of Indole Alkaloids and Its Derivative against Drugâ€resistant <i>Escherichia coli</i> Chemical Biology and Drug Design, 2015, 86, 1471-1481.	1.5	25
38	ãªãœåŸ¹é Š ã§ããããããã,ã®ã∢? å^†é›¢åŸ¹éŠæ‱‹æ³∙ã®é©æ−°. Kagaku To Seibutsu, 2015, 53, 429-431.	0.0	0
39	Title is missing!. Kagaku To Seibutsu, 2015, 54, 43-47.	0.0	0
40	Nannocystinâ€A: an Elongation Factor 1 Inhibitor from Myxobacteria with Differential Antiâ€Cancer Properties. Angewandte Chemie - International Edition, 2015, 54, 10149-10154.	7.2	91
41	A Luminogen with Aggregationâ€Induced Emission Characteristics for Washâ€Free Bacterial Imaging, Highâ€Throughput Antibiotics Screening and Bacterial Susceptibility Evaluation. Advanced Materials, 2015, 27, 4931-4937.	11.1	111
44	Glyconanomaterials for Combating Bacterial Infections. Chemistry - A European Journal, 2015, 21, 16310-16317.	1.7	23
45	Bioactive natural products from novel microbial sources. Annals of the New York Academy of Sciences, 2015, 1354, 82-97.	1.8	155

#	Article	IF	Citations
46	Multiple Attack on Bacteria by the New Antibiotic Teixobactin. Angewandte Chemie - International Edition, 2015, 54, 6684-6686.	7.2	43
50	New Generation Antibiotics/Antibacterials: Deadly Arsenal for Disposal of Antibiotic Resistant Bacteria. Journal of Microbial & Biochemical Technology, 2015, 07, .	0.2	3
51	Recent highlights in biosynthesis research using stable isotopes. Beilstein Journal of Organic Chemistry, 2015, 11, 2493-2508.	1.3	55
56	Allies and Adversaries: Roles of the Microbiome in Infectious Disease. Microbe Magazine, 2015, 10, 370-374.	0.4	4
59	The bactericidal activity of \hat{l}^2 -lactam antibiotics is increased by metabolizable sugar species. Microbiology (United Kingdom), 2015, 161, 1999-2007.	0.7	12
61	Cold and Hot Extremozymes: Industrial Relevance and Current Trends. Frontiers in Bioengineering and Biotechnology, 2015, 3, 148.	2.0	273
62	Core Steps of Membrane-Bound Peptidoglycan Biosynthesis: Recent Advances, Insight and Opportunities. Antibiotics, 2015, 4, 495-520.	1.5	35
63	Antitumor and Antimicrobial Activity of Some Cyclic Tetrapeptides and Tripeptides Derived from Marine Bacteria. Marine Drugs, 2015, 13, 3029-3045.	2.2	11
64	Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics. Frontiers in Microbiology, 2015, 6, 358.	1.5	88
65	Discovery of new protein families and functions: new challenges in functional metagenomics for biotechnologies and microbial ecology. Frontiers in Microbiology, 2015, 6, 563.	1.5	52
66	New OprM structure highlighting the nature of the N-terminal anchor. Frontiers in Microbiology, 2015, 6, 667.	1.5	15
67	Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Frontiers in Microbiology, 2015, 6, 672.	1.5	83
68	Culturable diversity and antimicrobial activity of Actinobacteria from marine sediments in ValparaÃso bay, Chile. Frontiers in Microbiology, 2015, 6, 737.	1.5	61
69	The application of tetracyclineregulated gene expression systems in the validation of novel drug targets in Mycobacterium tuberculosis. Frontiers in Microbiology, 2015, 6, 812.	1.5	33
70	Applying the emergency risk management process to tackle the crisis of antibiotic resistance. Frontiers in Microbiology, 2015, 6, 927.	1.5	13
71	Discovery of novel small molecule modulators of Clavibacter michiganensis subsp. michiganensis. Frontiers in Microbiology, 2015, 6, 1127.	1.5	18
72	On-Demand Isolation of Bacteriophages Against Drug-Resistant Bacteria for Personalized Phage Therapy. Frontiers in Microbiology, 2015, 6, 1271.	1.5	118
73	Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance. PLoS Biology, 2015, 13, e1002299.	2.6	105

#	ARTICLE	IF	CITATIONS
74	New Delhi Metallo- \hat{l}^2 -Lactamase 1 (NDM-1), the Dominant Carbapenemase Detected in Carbapenem-Resistant Enterobacter cloacae from Henan Province, China. PLoS ONE, 2015, 10, e0135044.	1.1	43
75	Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms. PLoS ONE, 2015, 10, e0140355.	1.1	79
76	LipidII: Just Another Brick in the Wall?. PLoS Pathogens, 2015, 11, e1005213.	2.1	30
77	Application of iChip to Grow "Uncultivable―Microorganisms and its Impact on Antibiotic Discovery. Journal of Pharmacy and Pharmaceutical Sciences, 2015, 18, 303.	0.9	34
78	Digging for New Solutions. Canadian Journal of Infectious Diseases and Medical Microbiology, 2015, 26, 289-290.	0.7	1
79	Commentary: Drugs From Bugs. Current Protein and Peptide Science, 2015, 16, 476-477.	0.7	0
81	Helping Chemists Discover New Antibiotics. ACS Infectious Diseases, 2015, 1, 285-287.	1.8	176
82	Synthesis and evaluation of cationic norbornanes as peptidomimetic antibacterial agents. Organic and Biomolecular Chemistry, 2015, 13, 6225-6241.	1.5	14
83	Engineering a nanostructured "super surface―with superhydrophobic and superkilling properties. RSC Advances, 2015, 5, 44953-44959.	1.7	128
84	Targets for Combating the Evolution of Acquired Antibiotic Resistance. Biochemistry, 2015, 54, 3573-3582.	1.2	101
85	Nontoxic antimicrobials that evade drug resistance. Nature Chemical Biology, 2015, 11, 481-487.	3.9	74
86	Improving predictions of the risk of resistance development against new and old antibiotics. Clinical Microbiology and Infection, 2015, 21, 894-898.	2.8	38
87	Designing drugs that overcome antibacterial resistance: where do we stand and what should we do?. Expert Opinion on Drug Discovery, 2015, 10, 631-650.	2.5	60
88	The Importance and Benefits of Species. Current Biology, 2015, 25, R431-R438.	1.8	92
89	Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome. Applied and Environmental Microbiology, 2015, 81, 5064-5072.	1.4	29
90	An update on new methods to synthesize cyclotetrapeptides. Organic and Biomolecular Chemistry, 2015, 13, 6906-6921.	1.5	26
92	Tackling the threat of antimicrobial resistance: from policy to sustainable action. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140082.	1.8	134
93	Antiinfectives targeting enzymes and the proton motive force. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7073-82.	3.3	138

#	Article	IF	CITATIONS
94	Synthesis and Biological Evaluation of a Teixobactin Analogue. Organic Letters, 2015, 17, 6182-6185.	2.4	77
95	A New Golden Age of Natural Products Drug Discovery. Cell, 2015, 163, 1297-1300.	13.5	507
96	Thinking Globally, Acting Locally: Harnessing the Immune System to Deal with Recalcitrant Pathogens. MBio, 2015, 6, e00382-15.	1.8	4
97	<i>Streptomyces wadayamensis</i> MppP Is a Pyridoxal 5′-Phosphate-Dependent <scp>I</scp> -Arginine α-Deaminase, γ-Hydroxylase in the Enduracididine Biosynthetic Pathway. Biochemistry, 2015, 54, 7029-7040.	1.2	35
98	Envelope Structures of Gram-Positive Bacteria. Current Topics in Microbiology and Immunology, 2015, 404, 1-44.	0.7	152
99	Structure and Function of Surface Polysaccharides of Staphylococcus aureus. Current Topics in Microbiology and Immunology, 2015, 409, 57-93.	0.7	35
100	Exploration of Microbial Cells: The Storehouse of Bio-wealth Through Metagenomics and Metatranscriptomics., 2015,, 7-27.		2
101	Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health, 2015, 109, 309-318.	1.0	1,621
102	An irresistible newcomer. Nature, 2015, 517, 442-444.	13.7	50
103	Early antibiotic from a cranberry bog. Nature, 2015, 518, 303-303.	13.7	1
104	A new drug for resistant bugs. Nature Reviews Drug Discovery, 2015, 14, 94-94.	21.5	3
105	The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery, 2015, 14, 111-129.	21.5	1,891
106	Solving the Antibiotic Crisis. ACS Infectious Diseases, 2015, 1, 80-84.	1.8	119
107	A new drug for resistant bugs. Nature Reviews Microbiology, 2015, 13, 126-127.	13.6	7
108	Assessing resistance to new antibiotics. Nature, 2015, 519, 158-158.	13.7	7
109	A sustainable model for antibiotics. Science, 2015, 347, 1062-1064.	6.0	44
110	New technologies take root in the search for antibiotics from soil. Nature Medicine, 2015, 21, 201-201.	15.2	2
111	Teixobactin, the first of a new class of antibiotics discovered by iChip technology?. Journal of Antimicrobial Chemotherapy, 2015, 70, 2679-2680.	1.3	95

#	Article	IF	CITATIONS
112	Borrelia burgdorferi, the Causative Agent of Lyme Disease, Forms Drug-Tolerant Persister Cells. Antimicrobial Agents and Chemotherapy, 2015, 59, 4616-4624.	1.4	149
113	Liposomes as novel anti-infectives targeting bacterial virulence factors?. Expert Review of Anti-Infective Therapy, 2015, 13, 531-533.	2.0	17
114	Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11054-11059.	3.3	198
116	High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU. Tuberculosis, 2015, 95, 664-677.	0.8	22
117	N-terminal aromatic tag induced self assembly of tryptophan–arginine rich ultra short sequences and their potent antibacterial activity. RSC Advances, 2015, 5, 68610-68620.	1.7	19
118	Tuning the Production of Variable Length, Fluorescent Polyisoprenoids Using Surfactant-Controlled Enzymatic Synthesis. Biochemistry, 2015, 54, 2817-2827.	1.2	10
119	Effective Antibiofilm Polyketides against Staphylococcus aureus from the Pyranonaphthoquinone Biosynthetic Pathways of Streptomyces Species. Antimicrobial Agents and Chemotherapy, 2015, 59, 6046-6052.	1.4	35
120	Metabolic interactions in microbial communities: untangling the Gordian knot. Current Opinion in Microbiology, 2015, 27, 37-44.	2.3	213
121	Rapid synthesis and antimicrobial activity of novel 4-oxazolidinone heterocycles. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4887-4889.	1.0	17
122	The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiology Reviews, 2015, 39, 567-591.	3.9	362
123	What was old is new again: using the host response to diagnose infectious disease. Expert Review of Molecular Diagnostics, 2015, 15, 1143-1158.	1.5	32
124	Semisynthetic Lipopeptides Derived from Nisin Display Antibacterial Activity and Lipid II Binding on Par with That of the Parent Compound. Journal of the American Chemical Society, 2015, 137, 9382-9389.	6.6	70
125	Supramolecular Cationic Assemblies against Multidrug-Resistant Microorganisms: Activity and Mechanism of Action. International Journal of Molecular Sciences, 2015, 16, 6337-6352.	1.8	30
126	Research highlights: antibiotic resistance genes: from wastewater into the environment. Environmental Science: Water Research and Technology, 2015, 1, 264-267.	1.2	15
127	Chemically Induced Changes to Membrane Permeability in Living Cells Probed with Nonlinear Light Scattering. Biochemistry, 2015, 54, 4427-4430.	1.2	33
128	Carbohydrate scaffolds as glycosyltransferase inhibitors with in vivo antibacterial activity. Nature Communications, 2015, 6, 7719.	5.8	34
129	Cyanobacteria and eukaryotic microalgae as potential sources of antibiotics. Phycologia, 2015, 54, 271-282.	0.6	43
130	Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation. Scientific Reports, 2015, 5, 10868.	1.6	74

#	Article	IF	CITATIONS
131	The Discovery Channel: microfluidics and microengineered systems in drug screening. Integrative Biology (United Kingdom), 2015, 7, 285-288.	0.6	5
132	The direct anti-MRSA effect of emodin via damaging cell membrane. Applied Microbiology and Biotechnology, 2015, 99, 7699-7709.	1.7	33
133	The potential impact of coinfection on antimicrobial chemotherapy and drug resistance. Trends in Microbiology, 2015, 23, 537-544.	3.5	36
135	ESKAPEing the labyrinth of antibacterial discovery. Nature Reviews Drug Discovery, 2015, 14, 529-542.	21.5	498
136	Teixobactin: A Novel Antibiotic in Treatment of Gram Positive Bacterial Infections. Journal of Clinical and Diagnostic Research JCDR, 2015, 9, DL01.	0.8	4
137	The global challenge of new classes of antibacterial agents: an industry perspective. Current Opinion in Pharmacology, 2015, 24, 7-11.	1.7	35
139	Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature Reviews Microbiology, 2015, 13, 509-523.	13.6	762
140	Antibiotic discovery goes underground. EMBO Reports, 2015, 16, 563-565.	2.0	32
141	Treatment of pulmonary disease caused by non-tuberculous mycobacteria. Lancet Respiratory Medicine, the, 2015, 3, 179-180.	5.2	9
142	Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities. Molecules, 2015, 20, 5286-5298.	1.7	276
143	Tropicihabitans flavus gen. nov., sp. nov., a new member of the family Cellulomonadaceae. Antonie Van Leeuwenhoek, 2015, 107, 1299-1306.	0.7	9
144	A review on anthropogenic soils from a worldwide perspective. Journal of Soils and Sediments, 2015, 15, 1602-1618.	1.5	54
145	Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria. BMC Genomics, 2015, 16, 158.	1.2	96
146	Binaphthyl-1,2,3-triazole peptidomimetics with activity against Clostridium difficile and other pathogenic bacteria. Organic and Biomolecular Chemistry, 2015, 13, 5743-5756.	1.5	29
147	Supramolecular amphipathicity for probing antimicrobial propensity of host defence peptides. Physical Chemistry Chemical Physics, 2015, 17, 15608-15614.	1.3	19
148	Studies on tridecaptin B $<$ sub $>$ 1 $<$ /sub $>$, a lipopeptide with activity against multidrug resistant Gram-negative bacteria. Organic and Biomolecular Chemistry, 2015, 13, 6073-6081.	1.5	50
149	A novel d-amino acid oxidase from a contaminated agricultural soil metagenome and its characterization. Antonie Van Leeuwenhoek, 2015, 107, 1615-1623.	0.7	8
150	Changing the narrative on antibiotics. Gut, 2015, 64, 1674-1675.	6.1	5

#	Article	IF	Citations
151	Mass spectrometry tools and workflows for revealing microbial chemistry. Analyst, The, 2015, 140, 4949-4966.	1.7	39
152	Combinatorial Libraries As a Tool for the Discovery of Novel, Broad-Spectrum Antibacterial Agents Targeting the ESKAPE Pathogens. Journal of Medicinal Chemistry, 2015, 58, 3340-3355.	2.9	74
153	Toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Frontiers in Microbiology, 2015, 6, 461.	1.5	54
154	A New Antibiotic and the Evolution of Resistance. New England Journal of Medicine, 2015, 372, 1168-1170.	13.9	92
155	Antimicrobial stewardship: the role of scientists?. Journal of Antimicrobial Chemotherapy, 2015, 70, 1925-7.	1.3	6
156	Sources for Leads: Natural Products and Libraries. Handbook of Experimental Pharmacology, 2015, 232, 91-123.	0.9	7
157	In Vitro Culture of Previously Uncultured Oral Bacterial Phylotypes. Applied and Environmental Microbiology, 2015, 81, 8307-8314.	1.4	27
158	Contemporary molecular tools in microbial ecology and their application to advancing biotechnology. Biotechnology Advances, 2015, 33, 1755-1773.	6.0	31
160	Identification of an antibacterial protein by functional screening of a human oral metagenomic library. FEMS Microbiology Letters, 2015, 362, fnv142.	0.7	5
161	Natural products as a source of drug leads to overcome drug resistance. Future Microbiology, 2015, 10, 1711-1718.	1.0	32
162	The systematic analysis of protein–lipid interactions comes of age. Nature Reviews Molecular Cell Biology, 2015, 16, 753-761.	16.1	148
163	A unified initiative to harness Earth's microbiomes. Science, 2015, 350, 507-508.	6.0	195
165	Halocyclization of Unsaturated Guanidines Mediated by Koser's Reagent and Lithium Halides. Journal of Organic Chemistry, 2015, 80, 10624-10633.	1.7	27
166	Biscationic Tartaric Acid-Based Amphiphiles: Charge Location Impacts Antimicrobial Activity. Langmuir, 2015, 31, 11875-11885.	1.6	16
167	Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health. Evolutionary Applications, 2015, 8, 211-222.	1.5	34
168	Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes. Applied and Environmental Microbiology, 2015, 81, 7290-7304.	1.4	72
169	Quantification of Fluoroquinolone Uptake through the Outer Membrane Channel OmpF of <i>Escherichia coli</i>). Journal of the American Chemical Society, 2015, 137, 13836-13843.	6.6	70
170	Antimicrobial peptides: has their time arrived?. Future Microbiology, 2015, 10, 1103-1106.	1.0	22

#	Article	IF	CITATIONS
171	<i>Pseudomonas aeruginosa</i> : arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiology, 2015, 10, 1683-1706.	1.0	125
172	Harnessing the landscape of microbial culture media to predict new organism–media pairings. Nature Communications, 2015, 6, 8493.	5.8	119
173	Elucidation of DnaE as the Antibacterial Target of the Natural Product, Nargenicin. Chemistry and Biology, 2015, 22, 1362-1373.	6.2	29
174	Antibacterial Coatings: Challenges, Perspectives, and Opportunities. Trends in Biotechnology, 2015, 33, 637-652.	4.9	599
175	13-Deoxytetrodecamycin, a new tetronate ring-containing antibiotic that is active against multidrug-resistant Staphylococcus aureus. Journal of Antibiotics, 2015, 68, 698-702.	1.0	7
176	A chemocentric view of the natural product inventory. Nature Chemical Biology, 2015, 11, 620-624.	3.9	57
177	From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. Cellular and Molecular Life Sciences, 2015, 72, 4287-4308.	2.4	114
178	Antibacterial potential of a small peptide from Bacillus sp. RPT-0001 and its capping for green synthesis of silver nanoparticles. Journal of Microbiology, 2015, 53, 643-652.	1.3	11
179	Previously Uncultured Marine Bacteria Linked to Novel Alkaloid Production. Chemistry and Biology, 2015, 22, 1270-1279.	6.2	36
180	Synthesis and antimicrobial activity of binaphthyl-based, functionalized oxazole and thiazole peptidomimetics. Organic and Biomolecular Chemistry, 2015, 13, 10813-10824.	1.5	30
181	A Highly Stereoselective and Scalable Synthesis of l-allo-Enduracididine. Organic Letters, 2015, 17, 4620-4623.	2.4	36
182	Biosynthesis of the Novel Macrolide Antibiotic Anthracimycin. ACS Chemical Biology, 2015, 10, 2468-2479.	1.6	38
183	Plant derived inhibitors of bacterial efflux pumps: an update. Phytochemistry Reviews, 2015, 14, 961-974.	3.1	59
184	Next-generation antimicrobials: from chemical biology to first-in-class drugs. Archives of Pharmacal Research, 2015, 38, 1702-1717.	2.7	8
185	Predicting the Minimal Inhibitory Concentration for Antimicrobial Peptides with Rana-Box Domain. Journal of Chemical Information and Modeling, 2015, 55, 2275-2287.	2.5	17
186	New chemical tools to probe cell wall biosynthesis in bacteria. Current Opinion in Microbiology, 2015, 27, 69-77.	2.3	9
187	Recent advances in engineering topography mediated antibacterial surfaces. Nanoscale, 2015, 7, 15568-15575.	2.8	143
188	High-throughput bacterial functional genomics in the sequencing era. Current Opinion in Microbiology, 2015, 27, 86-95.	2.3	35

#	Article	IF	CITATIONS
189	Genomic insights into the distribution, genetic diversity and evolution of polyketide synthases and nonribosomal peptide synthetases. Current Opinion in Genetics and Development, 2015, 35, 79-85.	1.5	33
190	Self-assembling lipopeptides with a potent activity against Gram-positive bacteria, including multidrug resistant strains. Nanomedicine, 2015, 10, 3359-3371.	1.7	9
191	Soil biodiversity and human health. Nature, 2015, 528, 69-76.	13.7	532
192	Extinction risk of soil biota. Nature Communications, 2015, 6, 8862.	5.8	158
193	The Role of Biotin in Bacterial Physiology and Virulence: a Novel Antibiotic Target for Mycobacterium tuberculosis., 2016,, 797-822.		4
194	9. Use of tetracyclines and \hat{l}^2 -lactams in agriculture: Fate in the environment and occurrence of antibiotic-resistance determinants. , 2016, , 197-212.		0
196	Linking Biosynthetic Gene Clusters to their Metabolites via Pathway-Targeted Molecular Networking. Current Topics in Medicinal Chemistry, 2016, 16, 1705-1716.	1.0	35
197	Benefits and Challenges of Antivirulence Antimicrobials at the Dawn of the Post-Antibiotic Era. Drug Delivery Letters, 2016, 6, 30-37.	0.2	46
198	Natural bioactive compounds: antibiotics. Journal of Fundamental and Applied Sciences, 2016, 8, 674.	0.2	4
199	Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides. Molecules, 2016, 21, 305.	1.7	88
200	Enduracididine, a rare amino acid component of peptide antibiotics: Natural products and synthesis. Beilstein Journal of Organic Chemistry, 2016, 12, 2325-2342.	1.3	38
201	Bacterial Resistance to Biocides. , 2016, , 603-616.		4
202	The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2016, 2, 111-128.	2.2	1,077
203	The arsenal of pathogens and antivirulence therapeutic strategies for disarming them. Drug Design, Development and Therapy, 2016, 10, 1795.	2.0	31
205	Signaling Pathways Sustaining Antibiotic Resistance., 2016,, 37-61.		1
206	Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds. Marine Drugs, 2016, 14, 87.	2.2	157
207	Increasing Metagenomic Resolution of Microbiome Interactions Through Functional Phylogenomics and Bacterial Sub-Communities. Frontiers in Genetics, 2016, 7, 4.	1.1	8
208	A Dormant Microbial Component in the Development of Preeclampsia. Frontiers in Medicine, 2016, 3, 60.	1.2	64

#	Article	IF	CITATIONS
209	Novel Anti-Campylobacter Compounds Identified Using High Throughput Screening of a Pre-selected Enriched Small Molecules Library. Frontiers in Microbiology, 2016, 7, 405.	1.5	24
210	Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores. Frontiers in Microbiology, 2016, 7, 510.	1.5	21
211	Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones?. Frontiers in Microbiology, 2016, 7, 788.	1.5	248
212	Bacterial Communities: Interactions to Scale. Frontiers in Microbiology, 2016, 7, 1234.	1.5	465
213	Molecular Events for Promotion of Vancomycin Resistance in Vancomycin Intermediate Staphylococcus aureus. Frontiers in Microbiology, 2016, 7, 1601.	1.5	112
214	Blad-Containing Oligomer Fungicidal Activity on Human Pathogenic Yeasts. From the Outside to the Inside of the Target Cell. Frontiers in Microbiology, 2016, 7, 1803.	1.5	8
215	Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins: Valuable Targets for New Antibacterials. Antibiotics, 2016, 5, 12.	1.5	89
216	New Is Old, and Old Is New: Recent Advances in Antibiotic-Based, Antibiotic-Free and Ethnomedical Treatments against Methicillin-Resistant Staphylococcus aureus Wound Infections. International Journal of Molecular Sciences, 2016, 17, 617.	1.8	19
217	Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes. Marine Drugs, 2016, 14, 80.	2.2	59
218	Bioprospecting Red Sea Coastal Ecosystems for Culturable Microorganisms and Their Antimicrobial Potential. Marine Drugs, 2016, 14, 165.	2.2	30
219	Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus aureus and Pseudomonas aeruginosa. PLoS ONE, 2016, 11, e0155139.	1.1	30
220	Cryptic prophages as targets for drug development. Drug Resistance Updates, 2016, 27, 30-38.	6.5	58
221	Metagenome-wide association studies: fine-mining the microbiome. Nature Reviews Microbiology, 2016, 14, 508-522.	13.6	356
222	Recent advances in the rational design and optimization of antibacterial agents. MedChemComm, 2016, 7, 1694-1715.	3.5	19
223	A Perspective on the Trends and Challenges Facing Porphyrinâ€Based Antiâ€Microbial Materials. Small, 2016, 12, 3609-3644.	5.2	117
224	Engineering Gram Selectivity of Mixedâ€Charge Gold Nanoparticles by Tuning the Balance of Surface Charges. Angewandte Chemie - International Edition, 2016, 55, 8610-8614.	7.2	88
225	Toolbox for Antibiotics Discovery from Microorganisms. Archiv Der Pharmazie, 2016, 349, 683-691.	2.1	10
226	Supramolecular Antibiotic Switches: A Potential Strategy for Combating Drug Resistance. Chemistry - A European Journal, 2016, 22, 11114-11121.	1.7	61

#	Article	IF	CITATIONS
227	The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environmental Microbiology, 2016, 18, 1338-1351.	1.8	149
228	Chemical philanthropy: a path forward for antibiotic discovery?. Future Medicinal Chemistry, 2016, 8, 925-929.	1.1	23
229	Total Synthesis and Structural Reassignment of Aspergillomarasmineâ€A. Angewandte Chemie, 2016, 128, 4363-4367.	1.6	6
230	A Vancomycin Derivative with a Pyrophosphateâ€Binding Group: A Strategy to Combat Vancomycinâ€Resistant Bacteria. Angewandte Chemie, 2016, 128, 7967-7971.	1.6	12
231	Total Synthesis and Structural Reassignment of Aspergillomarasmineâ€A. Angewandte Chemie - International Edition, 2016, 55, 4291-4295.	7.2	40
232	Antibiotics/antimicrobials: systemic and local administration in the therapy of mild to moderately advanced periodontitis. Periodontology 2000, 2016, 71, 82-112.	6.3	204
233	Proteogenomics of rare taxonomic phyla: A prospective treasure trove of protein coding genes. Proteomics, 2016, 16, 226-240.	1.3	12
234	Natur hÃ ¤ fig Vorbild. Nachrichten Aus Der Chemie, 2016, 64, 605-609.	0.0	0
235	In Vivo Probe of Lipidâ€llâ€Interacting Proteins. Angewandte Chemie, 2016, 128, 8541-8544.	1.6	6
236	A Vancomycin Derivative with a Pyrophosphateâ€Binding Group: A Strategy to Combat Vancomycinâ€Resistant Bacteria. Angewandte Chemie - International Edition, 2016, 55, 7836-7840.	7.2	84
237	Antibacterial activities of fluorescent nano assembled triphenylamine phosphonium ionic liquids. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3770-3773.	1.0	24
238	Engineering Gram Selectivity of Mixedâ€Charge Gold Nanoparticles by Tuning the Balance of Surface Charges. Angewandte Chemie, 2016, 128, 8752-8756.	1.6	17
239	Colorâ€Coded Superâ€Resolution Smallâ€Molecule Imaging. ChemBioChem, 2016, 17, 999-1003.	1.3	5
240	Novel Sources of Antimicrobials from Pristine and Poorly Explored Environments. The Patagonia Microbiota Case., 2016,, 127-146.		3
241	Bioremediation of Hydrocarbons and Chlorinated Solvents in Groundwater: Characterisation, Design and Performance Assessment. Springer Protocols, 2016, , 11-64.	0.1	4
242	Investigation of the complex antibiotic INA-5812. Russian Journal of Bioorganic Chemistry, 2016, 42, 664-671.	0.3	14
243	A diketopiperazine factor from Rheinheimera aquimaris QSI02 exhibits anti-quorum sensing activity. Scientific Reports, 2016, 6, 39637.	1.6	51
244	Soil Microbial Metabolomics. , 2016, , 147-198.		7

#	Article	IF	CITATIONS
245	The Role of Biotin in Bacterial Physiology and Virulence: a Novel Antibiotic Target for <i>Mycobacterium tuberculosis</i> . Microbiology Spectrum, 2016, 4, .	1.2	50
246	Feeding 11 billion on 0.5 billion hectare of area under cereal crops. Food and Energy Security, 2016, 5, 239-251.	2.0	90
247	Lysine Scanning of Arg ₁₀ –Teixobactin: Deciphering the Role of Hydrophobic and Hydrophilic Residues. ACS Omega, 2016, 1, 1262-1265.	1.6	51
249	An in vitro investigation into the efficacies of chlorhexidine gluconate, povidone iodine and green tea (Camellia sinensis) to prevent surgical site infection in animals. The Veterinary Nurse, 2016, 7, 485-492.	0.0	1
250	Antimicrobial Resistance Prediction in PATRIC and RAST. Scientific Reports, 2016, 6, 27930.	1.6	179
251	Assessment of free fatty acids and cholesteryl esters delivered in liposomes as novel class of antibiotic. BMC Research Notes, 2016, 9, 337.	0.6	25
252	Let microorganisms do the talking, let us talk more about microorganisms. Fungal Biology and Biotechnology, 2016, 3, 5.	2.5	4
253	Natural Products from Photorhabdus and Other Entomopathogenic Bacteria. Current Topics in Microbiology and Immunology, 2016, 402, 55-79.	0.7	15
254	Reusable nanoengineered surfaces for bacterial recruitment and decontamination. Biointerphases, 2016, 11, 019003.	0.6	20
255	Biomedical applications of nisin. Journal of Applied Microbiology, 2016, 120, 1449-1465.	1.4	390
256	Keeping it simple: lessons from the golden era of antibiotic discovery. FEMS Microbiology Letters, 2016, 363, fnw084.	0.7	36
257	Harnessing the power of microbial metabolism. Current Opinion in Microbiology, 2016, 31, 63-69.	2.3	11
258	Recent progress on the development of antibiotics from the genus Micromonospora. Biotechnology and Bioprocess Engineering, 2016, 21, 199-223.	1.4	45
259	The Future of Antibiotics: Emerging Technologies and Stewardship. Trends in Microbiology, 2016, 24, 515-517.	3.5	13
260	Total Synthesis of Teixobactin. Organic Letters, 2016, 18, 2788-2791.	2.4	84
261	Antibacterial activity of the novel semisynthetic lantibiotic NVB333 in vitro and in experimental infection models. Journal of Antibiotics, 2016, 69, 850-857.	1.0	25
262	Molecular Dynamics Simulations Reveal the Conformational Flexibility of Lipid II and Its Loose Association with the Defensin Plectasin in the <i>Staphylococcus aureus</i> Membrane. Biochemistry, 2016, 55, 3303-3314.	1.2	18
263	Efficacy of ampicillin against methicillin-resistant Staphylococcus aureus restored through synergy with branched poly(ethylenimine). Journal of Antibiotics, 2016, 69, 871-878.	1.0	39

#	ARTICLE	IF	CITATIONS
264	Rapid Inhibition Profiling in <i>Bacillus subtilis</i> to Identify the Mechanism of Action of New Antimicrobials. ACS Chemical Biology, 2016, 11, 2222-2231.	1.6	53
265	Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens. Antimicrobial Agents and Chemotherapy, 2016, 60, 4183-4196.	1.4	10
266	Different Approaches for Searching New Microbial Compounds with Anti-infective Activity. , 2016, , 395-431.		1
267	Antibacterial Activity of DNA-Stabilized Silver Nanoclusters Tuned by Oligonucleotide Sequence. ACS Applied Materials & DNA-Stabilized Silver Nanoclusters Tuned by Oligonucleotide Sequence. ACS Applied Materials & DNA-Stabilized Silver Nanoclusters Tuned by Oligonucleotide Sequence. ACS	4.0	98
268	A concise approach to the synthesis of the unique $<$ b>N-mannosyl <scp>d</scp> - $^{\hat{1}^2}$ -hydroxyenduracididine moiety in the mannopeptimycin series of natural products. Organic and Biomolecular Chemistry, 2016, 14, 4054-4060.	1. 5	6
269	Antibiotikaresistenzen gezielt ý berwinden. Angewandte Chemie, 2016, 128, 6710-6738.	1.6	34
270	Targeting Antibiotic Resistance. Angewandte Chemie - International Edition, 2016, 55, 6600-6626.	7.2	351
271	IR and Vibrational Circular Dichroism Spectroscopy of Matrine- and Artemisinin-Type Herbal Products: Stereochemical Characterization and Solvent Effects. Journal of Natural Products, 2016, 79, 1012-1023.	1.5	31
272	Physics 3 – 0 Chemistry. Nature Chemistry, 2016, 8, 399-400.	6.6	0
273	Singleâ€point mutationâ€mediated local amphipathic adjustment dramatically enhances antibacterial activity of a fungal defensin. FASEB Journal, 2016, 30, 2602-2614.	0.2	15
274	Chitosan Microparticles Exert Broad-Spectrum Antimicrobial Activity against Antibiotic-Resistant Micro-organisms without Increasing Resistance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10700-10709.	4.0	56
275	The viable but non-culturable state and its relevance in food safety. Current Opinion in Food Science, 2016, 8, 127-133.	4.1	101
276	Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiological Research, 2016, 191, 51-80.	2.5	202
277	Hydraphiles enhance antimicrobial potency against Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Bioorganic and Medicinal Chemistry, 2016, 24, 2864-2870.	1.4	4
278	Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of \hat{l}^2 -Hairpin Peptides. ACS Infectious Diseases, 2016, 2, 442-450.	1.8	191
279	Biosynthesis of silver nanoparticles by Variovorax guangxiensis THG-SQL3 and their antimicrobial potential. Materials Letters, 2016, 178, 75-78.	1.3	20
280	Benzothiazole Derivative as a Novel <i>Mycobacterium tuberculosis</i> Shikimate Kinase Inhibitor: Identification and Elucidation of Its Allosteric Mode of Inhibition. Journal of Chemical Information and Modeling, 2016, 56, 930-940.	2.5	27
281	Evolving medicinal chemistry strategies in antibiotic discovery. Current Opinion in Biotechnology, 2016, 42, 108-117.	3.3	39

#	Article	IF	CITATIONS
282	Use of bacteriophage to target bacterial surface structures required for virulence: a systematic search for antibiotic alternatives. Current Genetics, 2016, 62, 753-757.	0.8	16
283	Perspectives on the evolutionary ecology of arthropod antimicrobial peptides. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150297.	1.8	42
284	Nucleoside Derived Antibiotics to Fight Microbial Drug Resistance: New Utilities for an Established Class of Drugs?. Journal of Medicinal Chemistry, 2016, 59, 10343-10382.	2.9	98
285	Spreading Disease – It's Contagious! Using a Model & Discount of Understand How Antibiotics Work. American Biology Teacher, 2016, 78, 568-574.	0.1	1
286	Discovery of a Mosaicâ€Like Biosynthetic Assembly Line with a Decarboxylative Offâ€Loading Mechanism through a Combination of Genome Mining and Imaging. Angewandte Chemie - International Edition, 2016, 55, 13611-13614.	7.2	10
287	Raf-kinase inhibitor GW5074 shows antibacterial activity against methicillin-resistant <i>Staphylococcus aureus</i> and potentiates the activity of gentamicin. Future Medicinal Chemistry, 2016, 8, 1941-1952.	1.1	9
288	Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 958-968.	1.8	62
289	What if there were no new antibiotics? A look at alternatives. Expert Review of Clinical Pharmacology, 2016, 9, 1547-1555.	1.3	19
290	Design and Synthesis of Orthogonally Protected d- and l- \hat{l}^2 -Hydroxyenduracididines from d-lyxono-1,4-Lactone. Organic Letters, 2016, 18, 5216-5219.	2.4	1
291	Antimicrobial lipopeptide tridecaptin A $<$ sub $>$ 1 $<$ /sub $>$ selectively binds to Gram-negative lipid II. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11561-11566.	3.3	127
292	Entdeckung einer Mosaikâ€Ã¤nlichen Biosynthesemaschinerie mit einem decarboxylierenden Entladungsmechanismus durch die Kombination von Genomâ€Mining und bildgebenden Verfahren. Angewandte Chemie, 2016, 128, 13809-13813.	1.6	1
293	New Structural Templates for Clinically Validated and Novel Targets in Antimicrobial Drug Research and Development. Current Topics in Microbiology and Immunology, 2016, 398, 365-417.	0.7	10
294	Synthesis of complex head-to-side-chain cyclodepsipeptides. Nature Protocols, 2016, 11, 1924-1947.	5.5	22
295	Antibiotic drug discovery. Microbial Biotechnology, 2016, 9, 541-548.	2.0	111
297	Solutionâ€Phase Synthesis of the Macrocyclic Core of Teixobactin. European Journal of Organic Chemistry, 2016, 2016, 4289-4293.	1.2	23
298	Polymyxin: Alternative Mechanisms of Action and Resistance. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a025288.	2.9	273
299	Re-evaluation of the N-terminal substitution and the D-residues of teixobactin. RSC Advances, 2016, 6, 73827-73829.	1.7	34
300	Comparison of myxobacterial diversity and evaluation of isolation success in two niches: Kiritimati Island and German compost. MicrobiologyOpen, 2016, 5, 268-278.	1.2	38

#	Article	IF	Citations
301	Biosynthetic engineering of nonribosomal peptide synthetases. Journal of Peptide Science, 2016, 22, 564-570.	0.8	43
302	Dual Targeting of Cell Wall Precursors by Teixobactin Leads to Cell Lysis. Antimicrobial Agents and Chemotherapy, 2016, 60, 6510-6517.	1.4	74
303	Partial fusion of a cytochrome P450 system by carboxy-terminal attachment of putidaredoxin reductase to P450cam (CYP101A1). Catalysis Science and Technology, 2016, 6, 7549-7560.	2.1	9
304	Introduction to Antibiotics. , 2016, , 1-25.		2
305	Antibiotics That Inhibit Cell Wall Synthesis. , 2016, , 49-94.		3
306	Targeting bactoprenol-coupled cell envelope precursors. Applied Microbiology and Biotechnology, 2016, 100, 7815-7825.	1.7	7
307	Spatioâ€Design of Multidimensional Prickly Znâ€Doped CuO Nanoparticle for Efficient Bacterial Killing. Advanced Materials Interfaces, 2016, 3, 1600472.	1.9	29
308	Review – Lichen-Associated Bacteria as a Hot Spot of Chemodiversity: Focus on Uncialamycin, a Promising Compound for Future Medicinal Applications. Planta Medica, 2016, 82, 1143-1152.	0.7	28
309	Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiology Ecology, 2016, 92, fiw179.	1.3	191
310	CoaTx-II, a new dimeric Lys49 phospholipase A2 from Crotalus oreganus abyssus snake venom with bactericidal potential: Insights into its structure and biological roles. Toxicon, 2016, 120, 147-158.	0.8	32
311	Novel fluorinated pyrrolomycins as potent anti-staphylococcal biofilmÂagents: Design, synthesis, pharmacokinetics and antibacterialÂactivities. European Journal of Medicinal Chemistry, 2016, 124, 129-137.	2.6	20
312	Dithiazole thione derivative as competitive NorA efflux pump inhibitor to curtail multi drug resistant clinical isolate of MRSA in a zebrafish infection model. Applied Microbiology and Biotechnology, 2016, 100, 9265-9281.	1.7	26
313	Diastereomeric bactericidal effect of Ru(phenanthroline) ₂ dipyridophenazine. Chirality, 2016, 28, 713-720.	1.3	11
314	Bionano Interaction Study on Antimicrobial Star-Shaped Peptide Polymer Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33446-33456.	4.0	65
315	Fungal Applications in Sustainable Environmental Biotechnology. Fungal Biology, 2016, , .	0.3	16
316	Unraveling the Chemical Interactions of Fungal Endophytes for Exploitation as Microbial Factories. Fungal Biology, 2016, , 353-370.	0.3	4
317	New antibiotics from Nature's chemical inventory. Bioorganic and Medicinal Chemistry, 2016, 24, 6227-6252.	1.4	62
318	Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis. Applied and Environmental Microbiology, 2016, 82, 5698-5708.	1.4	53

#	Article	IF	CITATIONS
319	Muscarine, imidazole, oxazole and thiazole alkaloids. Natural Product Reports, 2016, 33, 1268-1317.	5.2	143
320	Human commensals producing a novel antibiotic impair pathogen colonization. Nature, 2016, 535, 511-516.	13.7	667
321	A microbiological method for determining serum levels of broad spectrum \hat{l}^2 -lactam antibiotics in critically ill patients. Journal of Microbiological Methods, 2016, 129, 23-27.	0.7	14
322	New Found Hope for Antibiotic Discovery: Lipid II Inhibitors. Chemistry - A European Journal, 2016, 22, 12606-12616.	1.7	38
323	Antibiotic Resistance: The Need For a Global Strategy. Journal of Pharmaceutical Sciences, 2016, 105, 2278-2287.	1.6	21
324	Cell wall distracting anti-Methicillin-resistant Staphylococcus aureus compound PVI331 from a marine sponge associated Streptomyces. Journal of Applied Biomedicine, 2016, 14, 273-283.	0.6	17
325	Design, challenge, and promise of stimuli-responsive nanoantibiotics. Nano Convergence, 2016, 3, 26.	6.3	25
326	Goodbye to brute force in antibiotic discovery?. Nature Microbiology, 2016, 1, 15020.	5.9	55
328	Characterization and Synthesis of Eudistidine C, a Bioactive Marine Alkaloid with an Intriguing Molecular Scaffold. Journal of Organic Chemistry, 2016, 81, 10631-10640.	1.7	30
329	Isothiocyanates as effective agents against enterohemorrhagic Escherichia coli: insight to the mode of action. Scientific Reports, 2016, 6, 22263.	1.6	52
331	Conjugation of Polyphosphoester and Antimicrobial Peptide for Enhanced Bactericidal Activity and Biocompatibility. Biomacromolecules, 2016, 17, 4037-4044.	2.6	43
332	Novel Culturing Techniques Select for Heterotrophs and Hydrocarbon Degraders in a Subantarctic Soil. Scientific Reports, 2016, 6, 36724.	1.6	31
333	Antimicrobial Resistance in Bacteria: An Overview of Mechanisms and Role of Drug Efflux Pumps. , 2016, , 131-163.		4
334	Total synthesis of teixobactin. Nature Communications, 2016, 7, 12394.	5.8	97
335	Are multi-omics enough?. Nature Microbiology, 2016, 1, 16101.	5.9	64
336	Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens. Scientific Reports, 2016, 6, 26085.	1.6	36
337	Structural basis of lantibiotic recognition by the nisin resistance protein from Streptococcus agalactiae. Scientific Reports, 2016, 6, 18679.	1.6	42
338	Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Scientific Reports, 2016, 6, 22571.	1.6	142

#	ARTICLE	IF	CITATIONS
339	Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens. BMC Microbiology, 2016, 16, 287.	1.3	28
340	Antimicrobial agents – optimising the ecological balance. BMC Medicine, 2016, 14, 114.	2.3	24
341	Screening Microorganisms for Bioactive Compounds. , 2016, , 345-376.		1
342	Natural Products as a Source for Novel Antibiotics. Trends in Pharmacological Sciences, 2016, 37, 689-701.	4.0	217
343	New Approaches for Bringing the Uncultured into Culture. , 2016, , 401-434.		2
344	The evolution of genome mining in microbes – a review. Natural Product Reports, 2016, 33, 988-1005.	5.2	538
345	<i>Streptomyces</i> as a plant's best friend?. FEMS Microbiology Ecology, 2016, 92, fiw119.	1.3	228
346	<i>Pseudomonas aeruginosa /i>: targeting cell-wall metabolism for new antibacterial discovery and development. Future Medicinal Chemistry, 2016, 8, 975-992.</i>	1.1	12
347	The analysis of the antibiotic resistome offers new opportunities for therapeutic intervention. Future Medicinal Chemistry, 2016, 8, 1133-1151.	1.1	17
348	Elucidation of the Teixobactin Pharmacophore. ACS Chemical Biology, 2016, 11, 1823-1826.	1.6	83
349	2,5-Disubstituted 1,3,4-oxadiazole derivatives of chromeno[4,3- <i>b</i>) pyridine: synthesis and study of antimicrobial potency. Heterocyclic Communications, 2016, 22, 123-130.	0.6	22
350	Multifaceted Interfaces of Bacterial Competition. Journal of Bacteriology, 2016, 198, 2145-2155.	1.0	208
351	Informatic analysis reveals Legionella as a source of novel natural products. Synthetic and Systems Biotechnology, 2016, 1, 130-136.	1.8	9
352	Medicinal significance of naturally occurring cyclotetrapeptides. Journal of Natural Medicines, 2016, 70, 708-720.	1.1	29
353	In Vivo Probe of Lipidâ€llâ€Interacting Proteins. Angewandte Chemie - International Edition, 2016, 55, 8401-8404.	7.2	38
354	Strategies for target identification of antimicrobial natural products. Natural Product Reports, 2016, 33, 668-680.	5.2	90
355	Evolutionary Rationale for Phages as Complements of Antibiotics. Trends in Microbiology, 2016, 24, 249-256.	3.5	232
356	Antibacterial drug discovery in the resistance era. Nature, 2016, 529, 336-343.	13.7	1,628

#	Article	IF	CITATIONS
357	Antibacterial low molecular weight cationic polymers: dissecting the contribution of hydrophobicity, chain length and charge to activity. RSC Advances, 2016, 6, 15469-15477.	1.7	58
358	Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature, 2016, 529, 239-242.	13.7	132
359	The Mechanism of Action of Lysobactin. Journal of the American Chemical Society, 2016, 138, 100-103.	6.6	58
360	Why is antibiotic resistance a deadly emerging disease?. Clinical Microbiology and Infection, 2016, 22, 405-407.	2.8	60
361	Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Research International, 2016, 82, 71-85.	2.9	251
362	Targeting the Bacterial Division Protein FtsZ. Journal of Medicinal Chemistry, 2016, 59, 6975-6998.	2.9	93
363	Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli. Applied Microbiology and Biotechnology, 2016, 100, 2311-2325.	1.7	27
364	Advancing cell wall inhibitors towards clinical applications. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 177-184.	1.4	15
365	Understanding the mechanisms and drivers of antimicrobial resistance. Lancet, The, 2016, 387, 176-187.	6.3	1,633
366	Synthesis and bioactivity of antitubercular peptides and peptidomimetics: an update. Organic and Biomolecular Chemistry, 2016, 14, 1177-1187.	1.5	19
367	metaModules identifies key functional subnetworks in microbiome-related disease. Bioinformatics, 2016, 32, 1678-1685.	1.8	21
368	Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14966-14974.	4.0	262
369	Modulating Antimicrobial Activity and Mammalian Cell Biocompatibility with Glucosamine-Functionalized Star Polymers. Biomacromolecules, 2016, 17, 1170-1178.	2.6	82
370	Antimicrobial resistance: a growing crisis. Primary Health Care, 2016, 26, 18-24.	0.0	2
371	Research and development of antibiotics: insights from patents and citation network. Expert Opinion on Therapeutic Patents, 2016, 26, 617-627.	2.4	6
372	Diabetic foot infections: Current treatment and delaying the â€~postâ€antibiotic era'. Diabetes/Metabolism Research and Reviews, 2016, 32, 246-253.	1.7	62
373	Asymmetric transfer hydrogenation of seven membered tricyclic ketones: N-substituted dibenzo[b,e]azepine-6,11-dione driven by nonclassical CH/O interactions. Organic Chemistry Frontiers, 2016, 3, 614-619.	2.3	20
374	Sunlight-Triggered Nanoparticle Synergy: Teamwork of Reactive Oxygen Species and Nitric Oxide Released from Mesoporous Organosilica with Advanced Antibacterial Activity. Journal of the American Chemical Society, 2016, 138, 3076-3084.	6.6	160

#	Article	IF	CITATIONS
375	Screening of antitubercular compound library identifies novel shikimate kinase inhibitors of Mycobacterium tuberculosis. Applied Microbiology and Biotechnology, 2016, 100, 5415-5426.	1.7	22
376	Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. BMJ, The, 2016, 352, h6420.	3.0	236
377	C ₃ and 2D C ₃ Marfey's Methods for Amino Acid Analysis in Natural Products. Journal of Natural Products, 2016, 79, 421-427.	1.5	81
378	Assembly and clustering of natural antibiotics guides target identification. Nature Chemical Biology, 2016, 12, 233-239.	3.9	86
379	High-Throughput Single-Cell Cultivation on Microfluidic Streak Plates. Applied and Environmental Microbiology, 2016, 82, 2210-2218.	1.4	136
380	Cell-penetrating peptide and antibiotic combination therapy: a potential alternative to combat drug resistance in methicillin-resistant Staphylococcus aureus. Applied Microbiology and Biotechnology, 2016, 100, 4073-4083.	1.7	21
381	Interaction between antimicrobial peptides and mycobacteria. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1034-1043.	1.4	47
382	A systematic review of the public's knowledge and beliefs about antibiotic resistance. Journal of Antimicrobial Chemotherapy, 2016, 71, 27-33.	1.3	181
383	Antibiotic resistance genes as an emerging environmental contaminant. Environmental Reviews, 2016, 24, 205-218.	2.1	138
384	Efficient total syntheses and biological activities of two teixobactin analogues. Chemical Communications, 2016, 52, 6060-6063.	2.2	68
385	Mechanisms of resistance to membrane-disrupting antibiotics in Gram-positive and Gram-negative bacteria. MedChemComm, 2016, 7, 86-102.	3.5	49
386	Using adjuvants and environmental factors to modulate the activity of antimicrobial peptides. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 926-935.	1.4	54
387	Lipid Requirements for the Enzymatic Activity of MraY Translocases and in Vitro Reconstitution of the Lipid II Synthesis Pathway. Journal of Biological Chemistry, 2016, 291, 2535-2546.	1.6	57
388	Tools for the Microbiome: Nano and Beyond. ACS Nano, 2016, 10, 6-37.	7.3	137
389	Genome-Guided Discovery of Natural Products and Biosynthetic Pathways from Australia's Untapped Microbial Megadiversity. Australian Journal of Chemistry, 2016, 69, 129.	0.5	5
390	Urinary catheter capable of repeated on-demand removal of infectious biofilms via active deformation. Biomaterials, 2016, 77, 77-86.	5 .7	28
391	Glycopeptide Antibiotic To Overcome the Intrinsic Resistance of Gram-Negative Bacteria. ACS Infectious Diseases, 2016, 2, 132-139.	1.8	70
392	Endless resistance. Endless antibiotics?. MedChemComm, 2016, 7, 37-49.	3.5	39

#	Article	IF	CITATIONS
393	Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development. Molecular Cell, 2016, 61, 3-14.	4.5	60
394	David and Goliath: chemical perturbation of eukaryotes by bacteria. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 233-248.	1.4	5
395	Soil-on-a-Chip: microfluidic platforms for environmental organismal studies. Lab on A Chip, 2016, 16, 228-241.	3.1	115
396	Metabolic profiling as a tool for prioritizing antimicrobial compounds. Journal of Industrial Microbiology and Biotechnology, 2016, 43, 299-312.	1.4	34
397	Zincmethylphyrins and coproporphyrins, novel growth factors released by Sphingopyxis sp., enable laboratory cultivation of previously uncultured Leucobacter sp. through interspecies mutualism. Journal of Antibiotics, 2016, 69, 97-103.	1.0	19
398	Hit 'em where it hurts: The growing and structurally diverse family of peptides that target lipid-II. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 947-957.	1.4	62
399	Prospecting for new bacterial metabolites: a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products. Natural Product Reports, 2016, 33, 54-72.	5.2	109
400	Exploiting the genome sequence of Streptomyces nodosus for enhanced antibiotic production. Applied Microbiology and Biotechnology, 2016, 100, 1285-1295.	1.7	20
401	Nanoporous microscale microbial incubators. Lab on A Chip, 2016, 16, 480-488.	3.1	29
402	Dereplication, sequencing and identification of peptidic natural products: from genome mining to peptidogenomics to spectral networks. Natural Product Reports, 2016, 33, 73-86.	5. 2	59
403	Nanofabricated structures and microfluidic devices for bacteria: from techniques to biology. Chemical Society Reviews, 2016, 45, 268-280.	18.7	71
404	A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics. Journal of Antibiotics, 2016, 69, 73-88.	1.0	152
405	Targeted treatment for bacterial infections: prospects for pathogen-specific antibiotics coupled with rapid diagnostics. Tetrahedron, 2016, 72, 3609-3624.	1.0	76
406	The Molecular Epidemiology and Genetic Environment of Carbapenemases Detected in Africa. Microbial Drug Resistance, 2016, 22, 59-68.	0.9	44
407	Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Natural Product Reports, 2016, 33, 127-135.	5.2	141
408	Biosynthesis of silver nanoparticles by <i>Novosphingobium</i> sp. THG-C3 and their antimicrobial potential. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 211-217.	1.9	44
409	Allocyclinones, hyperchlorinated angucyclinones from Actinoallomurus. Journal of Antibiotics, 2017, 70, 73-78.	1.0	11
410	The Rise of Altmetrics. JAMA - Journal of the American Medical Association, 2017, 317, 131.	3.8	130

#	Article	IF	Citations
411	Synthesis, antimicrobial activity and cytotoxic investigation of novel trifluoromethylated tetrazolo [1,5-a] pyrimidines. Medicinal Chemistry Research, 2017, 26, 640-649.	1.1	13
412	Wall teichoic acids mediate increased virulence in Staphylococcus aureus. Nature Microbiology, 2017, 2, 16257.	5. 9	81
413	Supramolecular Conjugated Polymer Systems with Controlled Antibacterial Activity. Langmuir, 2017, 33, 1116-1120.	1.6	45
414	Nature knows best: employing whole microbial strategies to tackle antibiotic resistant pathogens. Environmental Microbiology Reports, 2017, 9, 47-49.	1.0	8
415	New tuberculosis drug leads from naturally occurring compounds. International Journal of Infectious Diseases, 2017, 56, 212-220.	1.5	72
416	The ecology and evolution of social behavior in microbes. Journal of Experimental Biology, 2017, 220, 18-24.	0.8	68
417	A Biosurfactantâ€Inspired Heptapeptide with Improved Specificity to Kill MRSA. Angewandte Chemie - International Edition, 2017, 56, 1486-1490.	7.2	89
418	An Engineered Allele of <i>afsQ1</i> Facilitates the Discovery and Investigation of Cryptic Natural Products. ACS Chemical Biology, 2017, 12, 628-634.	1.6	37
419	A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. MedChemComm, 2017, 8, 516-533.	3.5	118
420	Acinetodin and Klebsidin, RNA Polymerase Targeting Lasso Peptides Produced by Human Isolates of <i>Acinetobacter gyllenbergii</i> and <i>Klebsiella pneumoniae</i> ACS Chemical Biology, 2017, 12, 814-824.	1.6	54
421	Rational Design of Single-Chain Polymeric Nanoparticles That Kill Planktonic and Biofilm Bacteria. ACS Infectious Diseases, 2017, 3, 237-248.	1.8	134
422	A Biosurfactantâ€Inspired Heptapeptide with Improved Specificity to Kill MRSA. Angewandte Chemie, 2017, 129, 1508-1512.	1.6	67
423	Synthesis of piplartine analogs and preliminary findings on structure–antimicrobial activity relationship. Medicinal Chemistry Research, 2017, 26, 603-614.	1.1	4
424	Defining the molecular structure of teixobactin analogues and understanding their role in antibacterial activities. Chemical Communications, 2017, 53, 2016-2019.	2.2	43
425	Synthesis and structure–activity relationship studies of teixobactin analogues. RSC Advances, 2017, 7, 1923-1926.	1.7	41
426	Symmetrically Substituted Xanthone Amphiphiles Combat Gram-Positive Bacterial Resistance with Enhanced Membrane Selectivity. Journal of Medicinal Chemistry, 2017, 60, 1362-1378.	2.9	68
427	High-throughput automated microfluidic sample preparation for accurate microbial genomics. Nature Communications, 2017, 8, 13919.	5.8	81
428	Tetrabromobisphenol A (TBBPA) exhibits specific antimicrobial activity against Gram-positive bacteria without detectable resistance. Chemical Communications, 2017, 53, 3512-3515.	2.2	9

#	Article	IF	CITATIONS
429	Surveillance of Omadacycline Activity against Clinical Isolates from a Global Collection (North) Tj ETQq0 0 0 rgBT Chemotherapy, 2017, 61, .	/Overlock 1.4	10 Tf 50 747 56
431	X-ray crystallographic structure of a teixobactin analogue reveals key interactions of the teixobactin pharmacophore. Chemical Communications, 2017, 53, 2772-2775.	2.2	53
432	Does nanobiotechnology create new tools to combat microorganisms?. Nanotechnology Reviews, 2017, 6, 171-189.	2.6	10
433	New approaches to antibiotic discovery. Biotechnology Letters, 2017, 39, 805-817.	1.1	51
434	Advances of Basic Science for Second Generation Bioethanol from Sugarcane., 2017,,.		7
435	Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nature Chemistry, 2017, 9, 698-707.	6.6	88
436	Structure and specificity of a permissive bacterial C-prenyltransferase. Nature Chemical Biology, 2017, 13, 366-368.	3.9	50
437	Using Diphenylphosphoryl Azide (DPPA) for the Facile Synthesis of Biodegradable Antiseptic Random Copolypeptides. Macromolecular Rapid Communications, 2017, 38, 1600601.	2.0	6
438	Antibacterial New Target Discovery: Sentinel Examples, Strategies, and Surveying Success. Topics in Medicinal Chemistry, 2017, , 1-29.	0.4	8
439	Synthesis and antimicrobial activity of newly synthesized 4-substituted-pyrazolo[3,4-d]pyrimidine derivatives. Medicinal Chemistry Research, 2017, 26, 1107-1116.	1.1	4
440	Using natural products for drug discovery: the impact of the genomics era. Expert Opinion on Drug Discovery, 2017, 12, 475-487.	2.5	74
441	Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium. International Journal of Antimicrobial Agents, 2017, 49, 355-363.	1.1	21
443	Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies?. Trends in Microbiology, 2017, 25, 467-479.	3.5	98
444	Protein-Adsorbed Magnetic-Nanoparticle-Mediated Assay for Rapid Detection of Bacterial Antibiotic Resistance. Bioconjugate Chemistry, 2017, 28, 890-896.	1.8	14
445	New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resistance Updates, 2017, 31, 1-14.	6.5	77
446	Host defense antimicrobial peptides as antibiotics: design and application strategies. Current Opinion in Chemical Biology, 2017, 38, 87-96.	2.8	249
447	Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews, 2017, 41, 430-449.	3.9	516
448	Bringing Culture to Bacteria. Cell, 2017, 169, 373.	13.5	1

#	Article	IF	CITATIONS
449	Life in earth – the root microbiome to the rescue?. Current Opinion in Microbiology, 2017, 37, 23-28.	2.3	61
450	Bacterial thiol oxidoreductases â€" from basic research to new antibacterial strategies. Applied Microbiology and Biotechnology, 2017, 101, 3977-3989.	1.7	25
451	Amphiphilic Tobramycin–Lysine Conjugates Sensitize Multidrug Resistant Gram-Negative Bacteria to Rifampicin and Minocycline. Journal of Medicinal Chemistry, 2017, 60, 3684-3702.	2.9	71
452	A Tobramycin Vector Enhances Synergy and Efficacy of Efflux Pump Inhibitors against Multidrug-Resistant Gram-Negative Bacteria. Journal of Medicinal Chemistry, 2017, 60, 3913-3932.	2.9	57
453	The Cyclic Lipopeptide Antibiotics. Topics in Medicinal Chemistry, 2017, , 27-53.	0.4	7
454	Diamide Inhibitors of the <i>Bacillus subtilisN</i> -Acetylglucosaminidase LytG That Exhibit Antibacterial Activity. ACS Infectious Diseases, 2017, 3, 421-427.	1.8	13
455	IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes. Nucleic Acids Research, 2017, 45, D560-D565.	6.5	78
456	New drugs for the treatment of Mycobacterium tuberculosis infection. Biomedicine and Pharmacotherapy, 2017, 91, 546-558.	2.5	37
457	Synthesis and structure-activity relationship of teixobactin analogues via convergent Ser ligation. Bioorganic and Medicinal Chemistry, 2017, 25, 4990-4995.	1.4	35
458	Reducing the Bottleneck in Discovery of Novel Antibiotics. Microbial Ecology, 2017, 73, 658-667.	1.4	24
459	Glycopeptide resistance: Links with inorganic phosphate metabolism and cell envelope stress. Biochemical Pharmacology, 2017, 133, 74-85.	2.0	10
460	Recent developments in natural product-based drug discovery for tuberculosis. Drug Discovery Today, 2017, 22, 585-591.	3.2	31
461	Syntheses of potent teixobactin analogues against methicillin-resistant Staphylococcus aureus (MRSA) through the replacement of <scp>l</scp> -allo-enduracididine with its isosteres. Chemical Communications, 2017, 53, 7788-7791.	2.2	32
462	Are highly morphed peptide frameworks lurking silently in microbial genomes valuable as next generation antibiotic scaffolds?. Natural Product Reports, 2017, 34, 687-693.	5.2	8
463	Evidence for a peptidoglycanâ€like structure in <i>Orientia tsutsugamushi</i> . Molecular Microbiology, 2017, 105, 440-452.	1,2	32
464	Synthesis of the Marine Myxobacterial Antibiotic Enhygrolide A. Journal of Natural Products, 2017, 80, 2166-2169.	1.5	20
465	Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis. Scientific Reports, 2017, 7, 3392.	1.6	53
466	Bioprospecting challenges in unusual environments. Microbial Biotechnology, 2017, 10, 671-673.	2.0	11

#	Article	IF	Citations
467	Production of macrolide antibiotics from a cytotoxic soil Streptomyces sp. strain ZDB. World Journal of Microbiology and Biotechnology, 2017, 33, 139.	1.7	4
468	The role of reactive oxygen species in the antimicrobial activity of pyochelin. Journal of Advanced Research, 2017, 8, 393-398.	4.4	90
469	Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Archives of Microbiology, 2017, 199, 811-825.	1.0	212
470	An Overview of the Industrial Aspects of Antibiotic Discovery. , 2017, , 149-168.		7
471	Kisameet Glacial Clay: an Unexpected Source of Bacterial Diversity. MBio, 2017, 8, .	1.8	18
472	Novel compounds targeting the enterohemorrhagic <i>Escherichia coli</i> type three secretion system reveal insights into mechanisms of secretion inhibition. Molecular Microbiology, 2017, 105, 606-619.	1.2	20
473	Opportunities for natural products in $21 < \sup > st < sup > st < s$	5.2	246
474	Bacterial Resistance Against Antibiotics. , 2017, , 171-192.		6
475	Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nature Reviews Drug Discovery, 2017, 16, 457-471.	21.5	570
476	Microfluidic biochip and integrated diffractive optics for bacteria growth control and monitoring. Analytical Methods, 2017, 9, 2392-2396.	1.3	5
477	Fifty important research questions in microbial ecology. FEMS Microbiology Ecology, 2017, 93, .	1.3	138
478	Emerging Culture-Independent Tools to Enhance Our Understanding of Soil Microbial Ecology. , 2017, , 207-225.		0
479	Carvacrol and thymol: strong antimicrobial agents against resistant isolates. Reviews in Medical Microbiology, 2017, 28, 63-68.	0.4	152
480	Extensively Drug-resistant Tuberculosis (XDR-TB): A daunting challenge to the current End TB Strategy and policy recommendations. Indian Journal of Tuberculosis, 2017, 64, 153-160.	0.3	6
481	Actinomycete Metabolome Induction/Suppression with <i>N</i> -Acetylglucosamine. Journal of Natural Products, 2017, 80, 828-836.	1.5	32
482	Applied Metagenomics for Biofuel Development and Environmental Sustainability., 2017,, 107-129.		5
483	Origins of Combination Therapy for Tuberculosis: Lessons for Future Antimicrobial Development and Application. MBio, 2017, 8, .	1.8	125
484	Copper and Antibiotics. Advances in Microbial Physiology, 2017, 70, 193-260.	1.0	96

#	Article	IF	CITATIONS
485	Nonribosomal Peptide Synthesisâ€"Principles and Prospects. Angewandte Chemie - International Edition, 2017, 56, 3770-3821.	7.2	633
486	Bacteriophage and Antimicrobial Resistance. , 2017, , 19-57.		3
487	Nichtâ€ribosomale Peptidsynthese – Prinzipien und Perspektiven. Angewandte Chemie, 2017, 129, 3824-3878.	1.6	91
488	A Common Platform for Antibiotic Dereplication and Adjuvant Discovery. Cell Chemical Biology, 2017, 24, 98-109.	2.5	95
489	Antimicrobial Peptides. Methods in Molecular Biology, 2017, , .	0.4	8
490	Macromolecule Biosynthesis Assay and Fluorescence Spectroscopy Methods to Explore Antimicrobial Peptide Mode(s) of Action. Methods in Molecular Biology, 2017, 1548, 181-190.	0.4	5
491	Diaryltriazenes as antibacterial agents against methicillin resistant Staphylococcus aureus (MRSA) and Mycobacterium smegmatis. European Journal of Medicinal Chemistry, 2017, 127, 223-234.	2.6	13
492	Using bacterial genomes and essential genes for the development of new antibiotics. Biochemical Pharmacology, 2017, 134, 74-86.	2.0	69
493	Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E347-E356.	3.3	114
494	Antimicrobials Inspired by Nonribosomal Peptide Synthetase Gene Clusters. Journal of the American Chemical Society, 2017, 139, 1404-1407.	6.6	51
495	The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus. International Journal of Medical Microbiology, 2017, 307, 1-10.	1.5	70
496	Complex peptides made simple. Nature Chemistry, 2017, 9, 9-10.	6.6	2
497	Evidence for microbial local adaptation in nature. Molecular Ecology, 2017, 26, 1860-1876.	2.0	53
499	Bioprospecting Soil Metagenomes for Antibiotics. Topics in Biodiversity and Conservation, 2017, , 113-136.	0.3	2
500	Yeasts in Natural Ecosystems: Ecology. , 2017, , .		12
501	The Academic–Industrial Complexity: Failure to Launch. Trends in Pharmacological Sciences, 2017, 38, 1052-1060.	4.0	10
502	In situ cultivation of previously uncultivable microorganisms using the ichip. Nature Protocols, 2017, 12, 2232-2242.	5.5	162
503	The chemistry and biology of guanidine natural products. Natural Product Reports, 2017, 34, 1264-1301.	5.2	62

#	Article	IF	CITATIONS
504	Synthesis and biological evaluation of novel teixobactin analogues. Organic and Biomolecular Chemistry, 2017, 15, 8755-8760.	1.5	31
505	NMR-based assignment of isoleucine <i>vs</i> . <i>allo</i> i>isoleucine stereochemistry. Organic and Biomolecular Chemistry, 2017, 15, 9372-9378.	1.5	7
507	Teixobactin analogues reveal enduracididine to be non-essential for highly potent antibacterial activity and lipid II binding. Chemical Science, 2017, 8, 8183-8192.	3.7	42
508	<i>De novo</i> identification of lipid II binding lipopeptides with antibacterial activity against vancomycin-resistant bacteria. Chemical Science, 2017, 8, 7991-7997.	3.7	12
510	Novel bis-cyclic guanidines as potent membrane-active antibacterial agents with therapeutic potential. Chemical Communications, 2017, 53, 11948-11951.	2.2	39
511	Mutualism in Yeasts. , 2017, , 155-178.		9
512	Alanine scan reveals modifiable residues in teixobactin. Chemical Communications, 2017, 53, 11357-11359.	2.2	35
513	Bioprospecting Studies: Transforming the Natural Genetic Heritage into Biotechnological Richness. , 2017, , 87-109.		0
514	Antimicrobial resistance and antimicrobial stewardship programmes: benefiting the patient or the population?. Journal of Medical Ethics, 2017, 43, 653-654.	1.0	4
515	Challenges and Opportunities in Discovery of Secondary Metabolites Using a Functional Metagenomic Approach., 2017,, 119-138.		3
516	Microbial communication: A significant approach for new leads. South African Journal of Botany, 2017, 113, 461-470.	1.2	13
517	Phytotherapy as an alternative to conventional antimicrobials: combating microbial resistance. Expert Review of Clinical Pharmacology, 2017, 10, 1203-1214.	1.3	42
518	Highly efficient antibacterial diblock copolypeptides based on lysine and phenylalanine. Biopolymers, 2017, 107, e23041.	1.2	20
519	Modification of Honeybee Silk by the Addition of Antimicrobial Agents. ACS Omega, 2017, 2, 4456-4463.	1.6	6
520	lonophore A23187 shows anti-tuberculosis activity and synergy with tebipenem. Tuberculosis, 2017, 107, 111-118.	0.8	7
521	Pseudouridimycin: The First Nucleoside Analogue That Selectively Inhibits Bacterial RNA Polymerase. Angewandte Chemie - International Edition, 2017, 56, 13184-13186.	7.2	25
522	Pseudouridimycin: das erste Nukleosidâ€Analogon, das bakterielle RNAâ€Polymerase selektiv inhibiert. Angewandte Chemie, 2017, 129, 13364-13366.	1.6	4
523	Supramolecular Germicide Switches through Hostâ€Guest Interactions for Decelerating Emergence of Drugâ€Resistant Pathogens. ChemistrySelect, 2017, 2, 7940-7945.	0.7	16

#	Article	IF	CITATIONS
525	Using Engineered Bacteria to Characterize Infection Dynamics and Antibiotic Effects InÂVivo. Cell Host and Microbe, 2017, 22, 263-268.e4.	5.1	36
526	$$ $$ $$ $$ $$ $$ $$ $$ $$	1.4	20
527	Discovery and Total Synthesis of Natural Cystobactamid Derivatives with Superior Activity against Gramâ€Negative Pathogens. Angewandte Chemie - International Edition, 2017, 56, 12760-12764.	7.2	62
528	Kunkel Lecture: Fundamental immunodeficiency and its correction. Journal of Experimental Medicine, 2017, 214, 2175-2191.	4.2	9
529	The diversity and antibiotic properties of actinobacteria associated with endemic deepwater amphipods of Lake Baikal. Antonie Van Leeuwenhoek, 2017, 110, 1593-1611.	0.7	15
530	Entdeckung und Totalsynthese von natürlichen Cystobactamidâ€Derivaten mit herausragender Aktivitä gegen Gramâ€negative Pathogene. Angewandte Chemie, 2017, 129, 12934-12938.	1.6	13
531	The Antibiotic Future. Topics in Medicinal Chemistry, 2017, , 31-67.	0.4	11
532	Synthesis and biological evaluation of Aspergillomarasmine A derivatives as novel NDM-1 inhibitor to overcome antibiotics resistance. Bioorganic and Medicinal Chemistry, 2017, 25, 5133-5141.	1.4	41
533	Infection therapy: the problem of drug resistance – and possible solutions. Microbial Biotechnology, 2017, 10, 1041-1046.	2.0	18
535	Microbiome and metabolome data integration provides insight into health and disease. Translational Research, 2017, 189, 51-64.	2.2	58
536	Na+-NQR (Na+-translocating NADH:ubiquinone oxidoreductase) as a novel target for antibiotics. FEMS Microbiology Reviews, 2017, 41, 653-671.	3.9	29
537	Converting Teixobactin into a Cationic Antimicrobial Peptide (AMP). Journal of Medicinal Chemistry, 2017, 60, 7476-7482.	2.9	42
538	Actinomycetes: still a source of novel antibiotics. Natural Product Reports, 2017, 34, 1203-1232.	5.2	329
539	Bacteriocins and bacteriophage; a narrow-minded approach to food and gut microbiology. FEMS Microbiology Reviews, 2017, 41, S129-S153.	3.9	74
540	Self-defensive antibiotic-loaded layer-by-layer coatings: Imaging of localized bacterial acidification and pH-triggering of antibiotic release. Acta Biomaterialia, 2017, 61, 66-74.	4.1	106
541	Teixobactin and Its Analogues: A New Hope in Antibiotic Discovery. ACS Infectious Diseases, 2017, 3, 688-690.	1.8	28
542	Small Bioactive Peptides for Biomaterials Design and Therapeutics. Chemical Reviews, 2017, 117, 14015-14041.	23.0	317
543	The rumen microbiome: an underexplored resource for novel antimicrobial discovery. Npj Biofilms and Microbiomes, 2017, 3, 33.	2.9	51

#	Article	IF	Citations
544	Binding Modes of Teixobactin to Lipid II: Molecular Dynamics Study. Scientific Reports, 2017, 7, 17197.	1.6	18
545	Strategies for Biological Control and Antagonisms. , 2017, , 221-244.		0
546	Host–pathogen systems for early drug discovery against tuberculosis. Current Opinion in Microbiology, 2017, 39, 143-151.	2.3	8
547	Large-Scale Bioinformatics Analysis of <i>Bacillus</i> Genomes Uncovers Conserved Roles of Natural Products in Bacterial Physiology. MSystems, 2017, 2, .	1.7	70
548	Insights into the Mechanism of Action of the Two-Peptide Lantibiotic Lacticin 3147. Journal of the American Chemical Society, 2017, 139, 17803-17810.	6.6	38
549	Antibiotics and Antibiotics Resistance Genes in Soils. Soil Biology, 2017, , .	0.6	8
550	Microfluidics for Combating Antimicrobial Resistance. Trends in Biotechnology, 2017, 35, 1129-1139.	4.9	33
551	Antibiotics and Antibiotics Resistance Genes Dissemination in Soils. Soil Biology, 2017, , 151-190.	0.6	4
552	Bioactive Peptide Natural Products as Lead Structures for Medicinal Use. Accounts of Chemical Research, 2017, 50, 1566-1576.	7.6	111
553	Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Natural Product Reports, 2017, 34, 712-783.	5.2	101
555	The microbiome and big data. Current Opinion in Systems Biology, 2017, 4, 92-96.	1.3	11
556	Targeting a cell wall biosynthesis hot spot. Natural Product Reports, 2017, 34, 909-932.	5.2	71
557	The past decade in bench research into pulmonary infectious diseases: <scp>W</scp> hat do clinicians need to know?. Respirology, 2017, 22, 1062-1072.	1.3	9
558	<scp> Lysine based lipidated biphenyls as agents with anti-biofilm and anti-inflammatory properties that also inhibit intracellular bacteria. Chemical Communications, 2017, 53, 8427-8430.</scp>	2.2	27
559	Enabling faster Go/No-Go decisions through secondary screens in anti-mycobacterial drug discovery. Tuberculosis, 2017, 106, 44-52.	0.8	3
560	New approaches to antimicrobial discovery. Biochemical Pharmacology, 2017, 134, 87-98.	2.0	88
561	Emerging drugs and drug targets against tuberculosis. Journal of Drug Targeting, 2017, 25, 296-306.	2.1	9
562	Trends in therapeutic drug conjugates for bacterial diseases: a patent review. Expert Opinion on Therapeutic Patents, 2017, 27, 179-189.	2.4	25

#	Article	IF	CITATIONS
563	High-throughput strategies for the discovery and engineering of enzymes for biocatalysis. Bioprocess and Biosystems Engineering, 2017, 40, 161-180.	1.7	35
564	A novel regulatory circuit to control indole biosynthesis protects <i>Escherichia coli</i> from nitrosative damages during the anaerobic respiration of nitrate. Environmental Microbiology, 2017, 19, 598-610.	1.8	2
565	Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochemical Pharmacology, 2017, 133, 43-62.	2.0	110
566	Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes. Annals of the New York Academy of Sciences, 2017, 1388, 42-58.	1.8	38
567	Dereplication of peptidic natural products through database search of mass spectra. Nature Chemical Biology, 2017, 13, 30-37.	3.9	184
568	Cyclization of Linear Tetrapeptides Containing <i>N</i> â€Methylated Amino Acids by using 1â€Propanephosphonic Acid Anhydride. European Journal of Organic Chemistry, 2017, 2017, 149-158.	1.2	13
569	Enzymatic Biocatalysis in Chemical Transformations. , 2017, , 347-403.		21
570	Employing the promiscuity of lantibiotic biosynthetic machineries to produce novel antimicrobials. FEMS Microbiology Reviews, 2017, 41, 5-18.	3.9	58
571	Marine biotechnology: diving deeper for drugs. Microbial Biotechnology, 2017, 10, 7-8.	2.0	15
572	A perspective on general direction and challenges facing antimicrobial peptides. Chinese Chemical Letters, 2017, 28, 703-708.	4.8	35
573	Functional Metagenomics as a Tool for Identification of New Antibiotic Resistance Genes from Natural Environments. Microbial Ecology, 2017, 73, 479-491.	1.4	36
574	Learning from the past for TB drug discovery in the future. Drug Discovery Today, 2017, 22, 534-545.	3.2	24
575	Antibiotics in late clinical development. Biochemical Pharmacology, 2017, 133, 152-163.	2.0	193
576	The isolation and improvement of industrially important microorganisms., 2017,, 75-211.		3
577	Stress-driven discovery of a cryptic antibiotic produced by Streptomyces sp. WU20 from Kueishantao hydrothermal vent with an integrated metabolomics strategy. Applied Microbiology and Biotechnology, 2017, 101, 1395-1408.	1.7	31
578	Photoantimicrobialsâ€"are we afraid of the light?. Lancet Infectious Diseases, The, 2017, 17, e49-e55.	4.6	498
579	Inhibitory Activity of Avocado Seed Fatty Acid Derivatives (Acetogenins) Against <i>Listeria Monocytogenes</i> . Journal of Food Science, 2017, 82, 134-144.	1.5	31
580	The path to producing pharmaceuticals from natural products uncovered by academiaâ€"from the perspective of a science coordinatorâ€. Bioscience, Biotechnology and Biochemistry, 2017, 81, 38-42.	0.6	2

#	Article	IF	Citations
581	Current challenges in drug discovery for tuberculosis. Expert Opinion on Drug Discovery, 2017, 12, 1-4.	2.5	30
582	Antibiotics: Precious Goods in Changing Times. Methods in Molecular Biology, 2017, 1520, 3-22.	0.4	5
583	Natural products as mediators of disease. Natural Product Reports, 2017, 34, 194-219.	5.2	59
584	Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance. Current Medicinal Chemistry, 2017, 24, 4303-4314.	1.2	84
586	Hazardous Pollutants in Biological Treatment Systems: Fundamentals and a Guide to Experimental Research. Water Intelligence Online, 2017, 16, 9781780407715.	0.3	1
587	Physiological characterization of secondary metabolite producing Penicillium cell factories. Fungal Biology and Biotechnology, 2017, 4, 8.	2.5	26
588	An extended framework for supply chain risk management: incorporating the complexities of emerging industries and large-scale systems. International Journal of Manufacturing Technology and Management, 2017, 31, 217.	0.1	2
589	Diversity and Antimicrobial Potential of Predatory Bacteria from the Peruvian Coastline. Marine Drugs, 2017, 15, 308.	2.2	14
590	A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase. Current Medicinal Chemistry, 2017, 24, 3894-3906.	1.2	36
591	Investigation of the N-Terminus Amino Function of Arg10-Teixobactin. Molecules, 2017, 22, 1632.	1.7	20
592	Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays in Biochemistry, 2017, 61, 49-59.	2.1	143
593	A Droplet Microfluidics Based Platform for Mining Metagenomic Libraries for Natural Compounds. Micromachines, 2017, 8, 230.	1.4	5
594	Antibiotic Resistant Superbugs: Assessment of the Interrelationship of Occurrence in Clinical Settings and Environmental Niches. Molecules, 2017, 22, 29.	1.7	56
595	Sampling Terrestrial Environments for Bacterial Polyketides. Molecules, 2017, 22, 707.	1.7	10
596	Structure-Activity Relationship of Arg10-Teixobactin: A Recently Discovered Antimicrobial Peptide. Proceedings (mdpi), 2017, 1, .	0.2	0
597	Buwchitin: A Ruminal Peptide with Antimicrobial Potential against Enterococcus faecalis. Frontiers in Chemistry, 2017, 5, 51.	1.8	19
598	Molecules to Ecosystems: Actinomycete Natural Products In situ. Frontiers in Microbiology, 2016, 7, 2149.	1.5	71
599	Production of Ramoplanin and Ramoplanin Analogs by Actinomycetes. Frontiers in Microbiology, 2017, 8, 343.	1.5	19

#	Article	IF	CITATIONS
600	Coalition of Biology and Chemistry for Ameliorating Antimicrobial Drug Discovery. Frontiers in Microbiology, 2017, 8, 734.	1.5	18
601	Technological Microbiology: Development and Applications. Frontiers in Microbiology, 2017, 8, 827.	1.5	68
602	The Anticancer Peptide TAT-RasGAP317â^'326 Exerts Broad Antimicrobial Activity. Frontiers in Microbiology, 2017, 8, 994.	1.5	23
603	Antimicrobial Potential of Bacteria Associated with Marine Sea Slugs from North Sulawesi, Indonesia. Frontiers in Microbiology, 2017, 8, 1092.	1.5	46
604	Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Frontiers in Microbiology, 2017, 8, 1106.	1.5	108
605	Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Frontiers in Microbiology, 2017, 8, 1205.	1.5	140
606	Human Gut Microbiota: Toward an Ecology of Disease. Frontiers in Microbiology, 2017, 8, 1265.	1.5	110
607	Isolation of Uncultured Bacteria from Antarctica Using Long Incubation Periods and Low Nutritional Media. Frontiers in Microbiology, 2017, 8, 1346.	1.5	68
608	Curcumin Quantum Dots Mediated Degradation of Bacterial Biofilms. Frontiers in Microbiology, 2017, 8, 1517.	1.5	68
609	Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level. Frontiers in Microbiology, 2017, 8, 1831.	1.5	33
610	In Situ Field Sequencing and Life Detection in Remote (79°26′N) Canadian High Arctic Permafrost Ice Wedge Microbial Communities. Frontiers in Microbiology, 2017, 8, 2594.	1.5	96
611	Industrial Biotechnology (Overview) â~†., 2017, , 665-665.		1
612	Antimicrobial Activity of Quinazolin Derivatives of 1,2-Di(quinazolin-4-yl)diselane against Mycobacteria. BioMed Research International, 2017, 2017, 1-7.	0.9	0
613	Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials—A Review. Plants, 2017, 6, 16.	1.6	209
614	New Drugs and Emerging Leads in Antibacterial Drug Discovery. , 2017, , 682-702.		1
615	Evaluation of robenidine analog NCL195 as a novel broad-spectrum antibacterial agent. PLoS ONE, 2017, 12, e0183457.	1.1	40
616	Quinones are growth factors for the human gut microbiota. Microbiome, 2017, 5, 161.	4.9	73
617	A strategy for the identification of patterns in the biosynthesis of nonribosomal peptides by Betaproteobacteria species. Scientific Reports, 2017, 7, 10400.	1.6	0

#	Article	IF	CITATIONS
618	Isolation of antibiotic-producing <i>Pseudomonas</i> species with low-temperature cultivation of temperate soil. Drug Discoveries and Therapeutics, 2017, 11, 267-275.	0.6	2
619	Interpreting Microbial Biosynthesis in the Genomic Age: Biological and Practical Considerations. Marine Drugs, 2017, 15, 165.	2.2	21
620	Future directions for the discovery of antibiotics from actinomycete bacteria. Emerging Topics in Life Sciences, 2017, 1, 1-12.	1.1	20
621	The soil microbiome â€" from metagenomics to metaphenomics. Current Opinion in Microbiology, 2018, 43, 162-168.	2.3	330
622	A Versatile Approach to Noncanonical, Dynamic Covalent Single- and Multi-Loop Peptide Macrocycles for Enhancing Antimicrobial Activity. Journal of the American Chemical Society, 2018, 140, 3768-3774.	6.6	22
623	The secreted metabolome of <i>Streptomyces chartreusis</i> and implications for bacterial chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2490-2495.	3.3	69
624	Gut bacteria of cockroaches are a potential source of antibacterial compound(s). Letters in Applied Microbiology, 2018, 66, 416-426.	1.0	44
625	Total synthesis of teixobactin and its stereoisomers. Organic Chemistry Frontiers, 2018, 5, 1431-1435.	2.3	16
626	Gold Nanoclusters for Targeting Methicillinâ€Resistant <i>Staphylococcusâ€aureus</i> Inâ€Vivo. Angewandte Chemie, 2018, 130, 4022-4026.	1.6	15
627	Resistance to nonribosomal peptide antibiotics mediated by d-stereospecific peptidases. Nature Chemical Biology, 2018, 14, 381-387.	3.9	42
628	Lipopeptidomimetics derived from teixobactin have potent antibacterial activity against <i>Staphylococcus aureus</i> . Chemical Communications, 2018, 54, 2767-2770.	2.2	17
629	Rapid acquisition and model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4340-E4349.	3.3	162
630	Design, synthesis, biological activity and structure-activity relationship studies of chalcone derivatives as potential anti-Candida agents. Journal of Antibiotics, 2018, 71, 702-712.	1.0	35
631	Functionalization of \hat{l}^2 -lactam antibiotic on lysozyme capped gold nanoclusters retrogress MRSA and its persisters following awakening. Scientific Reports, 2018, 8, 5778.	1.6	62
632	Expanding antibiotic chemical space around the nidulin pharmacophore. Organic and Biomolecular Chemistry, 2018, 16, 3038-3051.	1.5	15
633	Odilorhabdins, Antibacterial Agents that Cause Miscoding by Binding at a New Ribosomal Site. Molecular Cell, 2018, 70, 83-94.e7.	4.5	96
634	Developing Equipotent Teixobactin Analogues against Drug-Resistant Bacteria and Discovering a Hydrophobic Interaction between Lipid II and Teixobactin. Journal of Medicinal Chemistry, 2018, 61, 3409-3421.	2.9	35
635	Polyethylenimine-Modified Graphene Oxide as a Novel Antibacterial Agent and Its Synergistic Effect with Daptomycin for Methicillin-Resistant <i>Staphylococcus aureus</i> . ACS Applied Nano Materials, 2018, 1, 1811-1818.	2.4	45

#	Article	IF	CITATIONS
636	An improved synthesis of pyrido $[2,3-\langle i\rangle d\langle i\rangle]$ pyrimidin- $4(1\langle i\rangle H\langle i\rangle)$ -ones and their antimicrobial activity. Organic and Biomolecular Chemistry, 2018, 16, 3389-3395.	1.5	20
637	Possibilities for rationally exploiting co-evolution in addressing resistance to insecticides, and beyond. Pesticide Biochemistry and Physiology, 2018, 151, 18-24.	1.6	7
638	Supramolecular Strategy Based on Conjugated Polymers for Discrimination of Virus and Pathogens. Biomacromolecules, 2018, 19, 2117-2122.	2.6	34
639	A novel tool against multiresistant bacterial pathogens: lipopeptide modification of the natural antimicrobial peptide ranalexin for enhanced antimicrobial activity and improved pharmacokinetics. International Journal of Antimicrobial Agents, 2018, 52, 52-62.	1.1	24
640	Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Current Opinion in Microbiology, 2018, 45, 109-116.	2.3	101
641	Exploration and exploitation of the environment for novel specialized metabolites. Current Opinion in Biotechnology, 2018, 50, 206-213.	3.3	32
642	(Some) current concepts in antibacterial drug discovery. Applied Microbiology and Biotechnology, 2018, 102, 2949-2963.	1.7	15
643	Total Synthesis of Plusbacin A ₃ and Its Dideoxy Derivative Using a Solvent-Dependent Diastereodivergent Joullié–Ugi Three-Component Reaction. Journal of Organic Chemistry, 2018, 83, 7085-7101.	1.7	21
644	Synthesis and antibacterial studies of teixobactin analogues with non-isostere substitution of enduracididine. Bioorganic and Medicinal Chemistry, 2018, 26, 1062-1068.	1.4	29
645	Surveillance of tigecycline activity tested against clinical isolates from a global (North America,) Tj ETQq1 1 0.784 Agents, 2018, 51, 848-853.	4314 rgBT 1.1	/Overlock I 32
646	Infection-targeted bactericidal nanoparticles. Nature Biomedical Engineering, 2018, 2, 56-57.	11.6	10
647	Antibiotic killing through oxidized nucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1967-1969.	3.3	9
648	Microbial Dark Matter Investigations: How Microbial Studies Transform Biological Knowledge and Empirically Sketch a Logic of Scientific Discovery. Genome Biology and Evolution, 2018, 10, 707-715.	1.1	82
649	Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells. Journal of Antimicrobial Chemotherapy, 2018, 73, 414-424.	1.3	30
650	Bismuth antimicrobial drugs serve as broad-spectrum metallo- \hat{l}^2 -lactamase inhibitors. Nature Communications, 2018, 9, 439.	5.8	169
651	Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Applied Microbiology and Biotechnology, 2018, 102, 2063-2073.	1.7	101
652	Total Synthesis and Conformational Study of Callyaerinâ€A: Antiâ€Tubercular Cyclic Peptide Bearing a Rare Rigidifying (<i>>Z</i>)â€2,3â€Diaminoacrylamide Moiety. Angewandte Chemie - International Edition, 2018, 57, 3631-3635.	7.2	24
653	Total Synthesis and Conformational Study of Callyaerinâ€A: Antiâ€Tubercular Cyclic Peptide Bearing a Rare Rigidifying (<i>Z</i>)â€2,3―Diaminoacrylamide Moiety. Angewandte Chemie, 2018, 130, 3693-3697.	1.6	9

#	Article	IF	CITATIONS
654	Gold Nanoclusters for Targeting Methicillinâ€Resistant <i>Staphylococcusâ€aureus</i> Inâ€Vivo. Angewandte Chemie - International Edition, 2018, 57, 3958-3962.	7.2	190
655	Discovery and development of new antibacterial drugs: learning from experience?. Journal of Antimicrobial Chemotherapy, 2018, 73, 1452-1459.	1.3	171
656	Increased diversity of peptidic natural products revealed by modification-tolerant database search of mass spectra. Nature Microbiology, 2018, 3, 319-327.	5.9	71
657	Thioesterase-Mediated Synthesis of Teixobactin Analogues: Mechanism and Substrate Specificity. Journal of Organic Chemistry, 2018, 83, 7271-7275.	1.7	25
658	Asperphenamate biosynthesis reveals a novel two-module NRPS system to synthesize amino acid esters in fungi. Chemical Science, 2018, 9, 2589-2594.	3.7	27
659	Design and Syntheses of Highly Potent Teixobactin Analogues against <i>Staphylococcus aureus</i> , Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA), and Vancomycin-Resistant Enterococci (VRE) <i>in Vitro</i> and <i>in Vivo</i> . Journal of Medicinal Chemistry, 2018, 61, 2009-2017.	2.9	67
660	Design and synthesis of cell selective $\hat{l}\pm\hat{l}^2$ -diastereomeric peptidomimetic with potent in vivo antibacterial activity against methicillin resistant S. Aureus. Bioorganic Chemistry, 2018, 76, 538-547.	2.0	16
661	Axenic cultures for microalgal biotechnology: Establishment, assessment, maintenance, and applications. Biotechnology Advances, 2018, 36, 380-396.	6.0	64
662	The race for antimicrobials in the multidrug resistance era. Microbial Biotechnology, 2018, 11, 976-978.	2.0	3
663	In Situ Disinfection through Photoinspired Radical Oxygen Species Storage and Thermalâ€Triggered Release from Black Phosphorous with Strengthened Chemical Stability. Small, 2018, 14, 1703197.	5.2	127
664	The human skin microbiome. Nature Reviews Microbiology, 2018, 16, 143-155.	13.6	1,576
665	Antimicrobial activity of ceftobiprole and comparator agents when tested against contemporary Gram-positive and -negative organisms collected from Europe (2015). Diagnostic Microbiology and Infectious Disease, 2018, 91, 77-84.	0.8	35
666	Novel inhibitors of the rRNA ErmC' methyltransferase to block resistance to macrolides, lincosamides, streptogramine B antibiotics. European Journal of Medicinal Chemistry, 2018, 146, 60-67.	2.6	12
667	Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochemical Pharmacology, 2018, 153, 24-34.	2.0	64
668	Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ. Nature Chemistry, 2018, 10, 363-371.	6.6	65
669	Discovery of Next-Generation Antimicrobials through Bacterial Self-Screening of Surface-Displayed Peptide Libraries. Cell, 2018, 172, 618-628.e13.	13.5	122
670	Propyl-5-hydroxy-3-methyl-1-phenyl-1H-pyrazole-4-carbodithioate (HMPC): a new bacteriostatic agent against methicillinâ€"resistant Staphylococcus aureus. Scientific Reports, 2018, 8, 7062.	1.6	6
671	Discovery of natural berberine-derived nitroimidazoles as potentially multi-targeting agents against drug-resistant Escherichia coli. Science China Chemistry, 2018, 61, 557-568.	4.2	58

#	Article	IF	CITATIONS
672	Biodegradable Nanocomposite Antimicrobials for the Eradication of Multidrug-Resistant Bacterial Biofilms without Accumulated Resistance. Journal of the American Chemical Society, 2018, 140, 6176-6182.	6.6	92
673	Microbial interactions trigger the production of antibiotics. Current Opinion in Microbiology, 2018, 45, 117-123.	2.3	76
674	Omics based approach for biodiscovery of microbial natural products in antibiotic resistance era. Journal of Genetic Engineering and Biotechnology, 2018, 16, 1-8.	1.5	41
675	The transpeptidase PbpA and noncanonical transglycosylase RodA of Mycobacterium tuberculosis play important roles in regulating bacterial cell lengths. Journal of Biological Chemistry, 2018, 293, 6497-6516.	1.6	40
676	Antibacterial effects of 18 medicinal plants used by the Khyang tribe in Bangladesh. Pharmaceutical Biology, 2018, 56, 201-208.	1.3	42
677	Specific detection and effective inhibition of a single bacterial species in situ using peptide mineralized Au cluster probes. Science China Chemistry, 2018, 61, 627-634.	4.2	12
678	Discovering antibiotics from the global microbiome. Nature Microbiology, 2018, 3, 392-393.	5.9	14
679	Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnology Advances, 2018, 36, 1657-1698.	6.0	93
680	Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens?. Clinical Microbiology Reviews, 2018, 31, .	5.7	218
681	The Threat and Response to Infectious Diseases (Revised). Microbial Ecology, 2018, 76, 19-36.	1.4	10
682	Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic and Medicinal Chemistry, 2018, 26, 2700-2707.	1.4	1,298
683	A brief history of antibiotics and select advances in their synthesis. Journal of Antibiotics, 2018, 71, 153-184.	1.0	121
684	The Current State of Peptide Drug Discovery: Back to the Future?. Journal of Medicinal Chemistry, 2018, 61, 1382-1414.	2.9	767
685	The effect of soil on human health: an overview. European Journal of Soil Science, 2018, 69, 159-171.	1.8	201
686	Strategies to diversify natural products for drug discovery. Medicinal Research Reviews, 2018, 38, 1255-1294.	5.0	187
687	Secondary metabolism in the lichen symbiosis. Chemical Society Reviews, 2018, 47, 1730-1760.	18.7	145
688	Screening of antitubercular compound library identifies novel ATP synthase inhibitors of Mycobacterium tuberculosis. Tuberculosis, 2018, 108, 56-63.	0.8	46
689	Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. Bioorganic and Medicinal Chemistry, 2018, 26, 2788-2796.	1.4	40

#	Article	IF	CITATIONS
690	Chemistry and Biology of Teixobactin. Chemistry - A European Journal, 2018, 24, 5406-5422.	1.7	35
691	Novel insights into the microbiology of fermented dairy foods. Current Opinion in Biotechnology, 2018, 49, 172-178.	3.3	115
692	Advances in macrocyclic peptide-based antibiotics. Bioorganic and Medicinal Chemistry, 2018, 26, 2850-2858.	1.4	36
693	Concentration and characterization of groundwater colloids from the northwest edge of Sichuan basin, China. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 85-91.	2.3	10
694	The challenge of soil science meeting society's demands in a "post-truthâ€, "fact free―world. Geoderma, 2018, 310, 22-28.	2.3	26
695	Antibiotics and antibiotic resistance from animal manures to soil: a review. European Journal of Soil Science, 2018, 69, 181-195.	1.8	291
696	From Axenic to Mixed Cultures: Technological Advances Accelerating a Paradigm Shift in Microbiology, Trends in Microbiology, 2018, 26, 538-554.	3.5	86
697	The Search for â€~Evolution-Proof' Antibiotics. Trends in Microbiology, 2018, 26, 471-483.	3.5	68
698	New Approaches and Therapeutic Options for Mycobacterium tuberculosis in a Dormant State. Clinical Microbiology Reviews, 2018, 31, .	5.7	55
699	Invasive fungi-derived defensins kill drug-resistant bacterial pathogens. Peptides, 2018, 99, 82-91.	1.2	15
700	Anti-Virulence Factor Therapeutics. , 2018, , 439-461.		0
701	Promising Antibacterial Effects of Silver Nanoparticle-Loaded Tea Tree Oil Nanoemulsion: a Synergistic Combination Against Resistance Threat. AAPS PharmSciTech, 2018, 19, 1133-1140.	1.5	20
702	Mussel-Inspired Synthesis of NIR-Responsive and Biocompatible Ag–Graphene 2D Nanoagents for Versatile Bacterial Disinfections. ACS Applied Materials & Interfaces, 2018, 10, 296-307.	4.0	91
703	Antibiotics potentiating potential of catharanthine against superbug <i>Pseudomonas aeruginosa</i> Journal of Biomolecular Structure and Dynamics, 2018, 36, 4270-4284.	2.0	39
704	NOTA analogue: A first dithiocarbamate inhibitor of metallo- \hat{l}^2 -lactamases. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 214-221.	1.0	36
705	Synthesis, biological evaluation, and metabolic stability of phenazine derivatives as antibacterial agents. European Journal of Medicinal Chemistry, 2018, 143, 936-947.	2.6	36
706	Lactoferrin, chitosan and Melaleuca alternifolia â€"natural products that show promise in candidiasis treatment. Brazilian Journal of Microbiology, 2018, 49, 212-219.	0.8	19
707	The effects of polymer topology and chain length on the antimicrobial activity and hemocompatibility of amphiphilic ternary copolymers. Polymer Chemistry, 2018, 9, 1735-1744.	1.9	64

#	ARTICLE	IF	CITATIONS
708	Antibacterial activities of endophytic fungi isolated from six Sri Lankan plants of the family Cyperaceae. Bangladesh Journal of Pharmacology, 2018, 13, 264.	0.1	11
709	Lipid II as a Target for Novel Antibiotics: Structural and Molecular Dynamics Studies. Russian Journal of Bioorganic Chemistry, 2018, 44, 653-664.	0.3	1
710	Über bisherige Denkweisen hinaus – neue Wirkstoffe zur Überwindung der Antibiotikaâ€Krise. Angewandte Chemie, 2018, 130, 14642-14682.	1.6	18
711	Antimicrobial, antiparasitic and antiproliferative effects of the extract of Bacillus safensis SG-32 isolated from a Brazilian oil reservoir. African Journal of Microbiology Research, 2018, 12, 897-907.	0.4	2
712	Systematic mutagenesis of oncocin reveals enhanced activity and insights into the mechanisms of antimicrobial activity. Molecular Systems Design and Engineering, 2018, 3, 930-941.	1.7	12
714	The EcoChip: A Wireless Multi-Sensor Platform for Comprehensive Environmental Monitoring. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 1289-1300.	2.7	9
715	Phenotypic Tolerance and Bacterial Persistence. , 2018, , 409-429.		0
716	Bacterial Signal Transduction Systems in Antimicrobial Resistance. , 2018, , 461-505.		0
717	Natural Products in Antibiotic Discovery. , 2018, , 533-562.		6
718	The New Versus Old Target Debate for Drug Discovery. , 2018, , 563-592.		0
719	Advancement of the 5-Amino-1-(Carbamoylmethyl)-1H-1,2,3-Triazole-4-Carboxamide Scaffold to Disarm the Bacterial SOS Response. Frontiers in Microbiology, 2018, 9, 2961.	1.5	22
720	Discovery of Antiamebic Compounds That Inhibit Cysteine Synthase From the Enteric Parasitic Protist Entamoeba histolytica by Screening of Microbial Secondary Metabolites. Frontiers in Cellular and Infection Microbiology, 2018, 8, 409.	1.8	15
721	Laser microsampling of soil microbial community. Journal of Biological Engineering, 2018, 12, 27.	2.0	28
722	Macromolecular-clustered facial amphiphilic antimicrobials. Nature Communications, 2018, 9, 5231.	5.8	115
723	<i>N</i> -Acylated amino acid methyl esters from marine <i>Roseobacter</i> group bacteria. Beilstein Journal of Organic Chemistry, 2018, 14, 2964-2973.	1.3	6
724	A practical introduction to microbial molecular ecology through the use of isolation chips. Ecology and Evolution, 2018, 8, 12286-12298.	0.8	5
725	Probing the evolutionary robustness of two repurposed drugs targeting iron uptake in Pseudomonas aeruginosa. Evolution, Medicine and Public Health, 2018, 2018, 246-259.	1.1	28
726	X-ray Crystallographic Structure of a Teixobactin Derivative Reveals Amyloid-like Assembly. Journal of the American Chemical Society, 2018, 140, 14028-14032.	6.6	30

#	Article	IF	Citations
727	Bacteriophages: A Therapy Concept against Multi-Drug–Resistant Bacteria. Surgical Infections, 2018, 19, 737-744.	0.7	76
728	High-resolution NMR studies of antibiotics in cellular membranes. Nature Communications, 2018, 9, 3963.	5.8	100
729	Recent Developments in the Quest for Novel Microbial Natural Products. Studies in Natural Products Chemistry, 2018, 59, 109-152.	0.8	3
730	Dereplication of microbial metabolites through database search of mass spectra. Nature Communications, 2018, 9, 4035.	5.8	220
731	Efficacious Analogs of the Lantibiotic Mutacin 1140 against a Systemic Methicillin-Resistant Staphylococcus aureus Infection. Antimicrobial Agents and Chemotherapy, $2018, 62, .$	1.4	17
732	Effective Soil Extraction Method for Cultivating Previously Uncultured Soil Bacteria. Applied and Environmental Microbiology, 2018, 84, .	1.4	41
733	The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerging Microbes and Infections, 2018, 7, 1-12.	3.0	114
734	Bacteria Hunt Bacteria through an Intriguing Cyclic Peptide. ChemMedChem, 2018, 14, 24-51.	1.6	7
735	Stress response of Escherichia coli to essential oil components – insights on low-molecular-weight proteins from MALDI-TOF. Scientific Reports, 2018, 8, 13042.	1.6	11
736	Thinking Outside the Boxâ€"Novel Antibacterials To Tackle the Resistance Crisis. Angewandte Chemie - International Edition, 2018, 57, 14440-14475.	7.2	129
737	2038 – When microbes rule the Earth. Environmental Microbiology, 2018, 20, 4213-4220.	1.8	4
738	Hidden antibiotics: Where to uncover?. Biotechnology Advances, 2018, 36, 2201-2218.	6.0	13
739	Combating a Master Manipulator: <i>Staphylococcus aureus</i> Immunomodulatory Molecules as Targets for Combinatorial Drug Discovery. ACS Combinatorial Science, 2018, 20, 681-693.	3.8	54
740	Soil Bacteria Isolated From Tunisian Arid Areas Show Promising Antimicrobial Activities Against Gram-Negatives. Frontiers in Microbiology, 2018, 9, 2742.	1.5	12
741	Functional Genomics. Advances in Experimental Medicine and Biology, 2018, 1102, 11-30.	0.8	3
742	Cysteines and Disulfide-Bridged Macrocyclic Mimics of Teixobactin Analogues and Their Antibacterial Activity Evaluation against Methicillin-Resistant Staphylococcus Aureus (MRSA). Pharmaceutics, 2018, 10, 183.	2.0	10
743	Novel small molecules affecting cell membrane as potential therapeutics for avian pathogenic Escherichia coli. Scientific Reports, 2018, 8, 15329.	1.6	24
744	Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides. Scientific Reports, 2018, 8, 15359.	1.6	39

#	ARTICLE	IF	CITATIONS
745	G3 PhyloChip Analysis Confirms the Promise of Plant-Based Culture Media for Unlocking the Composition and Diversity of the Maize Root Microbiome and for Recovering Unculturable Candidate Divisions/Phyla. Microbes and Environments, 2018, 33, 317-325.	0.7	21
746	Isolation by Miniaturized Culture Chip of an Antarctic bacterium Aequorivita sp. with antimicrobial and anthelmintic activity. Biotechnology Reports (Amsterdam, Netherlands), 2018, 20, e00281.	2.1	11
747	What bacteria want. Environmental Microbiology, 2018, 20, 4221-4229.	1.8	73
748	Activation of microbial secondary metabolic pathways: Avenues and challenges. Synthetic and Systems Biotechnology, 2018, 3, 163-178.	1.8	157
749	The Use of Liquids Ionic Fluids as Pharmaceutically Active Substances Helpful in Combating Nosocomial Infections Induced by Klebsiella Pneumoniae New Delhi Strain, Acinetobacter Baumannii and Enterococcus Species. International Journal of Molecular Sciences, 2018, 19, 2779.	1.8	33
750	Peptidoglycan in Mycobacteria: chemistry, biology and intervention. Glycoconjugate Journal, 2018, 35, 421-432.	1.4	10
751	Antimicrobial peptides from C-terminal amphipathic region of E. coli FtsA. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2506-2514.	1.4	10
752	Structural studies suggest aggregation as one of the modes of action for teixobactin. Chemical Science, 2018, 9, 8850-8859.	3.7	24
753	Nanosystems and antibacterial applications. , 2018, , 75-90.		2
7 54	Pushing the limits of de novo genome assembly for complex prokaryotic genomes harboring very long, near identical repeats. Nucleic Acids Research, 2018, 46, 8953-8965.	6.5	104
755	Diversity and antimicrobial potential in sea anemone and holothurian microbiomes. PLoS ONE, 2018, 13, e0196178.	1.1	30
756	Antibacterial activity of Lamiaceae plant extracts in clinical isolates of multidrug-resistant bacteria. Anais Da Academia Brasileira De Ciencias, 2018, 90, 1665-1670.	0.3	14
757	Ultrahigh-throughput functional profiling of microbiota communities. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9551-9556.	3.3	79
758	Bioinspired Designs, Molecular Premise and Tools for Evaluating the Ecological Importance of Antimicrobial Peptides. Pharmaceuticals, 2018, 11, 68.	1.7	25
759	Engineered Polymer Nanoparticles with Unprecedented Antimicrobial Efficacy and Therapeutic Indices against Multidrug-Resistant Bacteria and Biofilms. Journal of the American Chemical Society, 2018, 140, 12137-12143.	6.6	128
760	Detection of antibiotics synthetized in microfluidic picolitre-droplets by various actinobacteria. Scientific Reports, 2018, 8, 13087.	1.6	52
761	Control of Specialized Metabolism by Signaling and Transcriptional Regulation: Opportunities for New Platforms for Drug Discovery?. Annual Review of Microbiology, 2018, 72, 25-48.	2.9	32
762	Peptidoglycan and Teichoic Acid Levels and Alterations in <i>Staphylococcus aureus</i> by Cell-Wall and Whole-Cell Nuclear Magnetic Resonance. Biochemistry, 2018, 57, 3966-3975.	1.2	33

#	Article	IF	Citations
763	Hydrogel Effects Rapid Biofilm Debridement with ex situ Contact-Kill to Eliminate Multidrug Resistant Bacteria in vivo. ACS Applied Materials & Interfaces, 2018, 10, 20356-20367.	4.0	51
764	Synthesis and Biological Evaluation of the Antimicrobial Natural Product Lipoxazolidinoneâ€A. Angewandte Chemie - International Edition, 2018, 57, 8682-8686.	7.2	19
765	Action of antimicrobial peptides and their prodrugs on model and biological membranes. Journal of Peptide Science, 2018, 24, e3086.	0.8	11
766	Antimicrobial and anti-biofilm activity of hexadentated macrocyclic complex of copper (II) derived from thiosemicarbazide against Staphylococcus aureus. Scientific Reports, 2018, 8, 8050.	1.6	42
767	Bisâ€Cyclic Guanidines as a Novel Class of Compounds Potent against Clostridium difficile. ChemMedChem, 2018, 13, 1414-1420.	1.6	11
768	Facilely accessible quinoline derivatives as potent antibacterial agents. Bioorganic and Medicinal Chemistry, 2018, 26, 3573-3579.	1.4	50
769	Measuring Drug-Induced Changes in Metabolite Populations of Live Bacteria: Real Time Analysis by Raman Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 6377-6385.	1.2	7
770	Two structurally diverse Zn-based coordination polymers with excellent antibacterial activity. CrystEngComm, 2018, 20, 3353-3362.	1.3	49
771	New Modalities, Technologies, and Partnerships in Probe and Lead Generation: Enabling a Mode-of-Action Centric Paradigm. Journal of Medicinal Chemistry, 2018, 61, 9004-9029.	2.9	39
772	Local delivery of deep marine fungus-derived equisetin from polyvinylpyrrolidone (PVP) nanofibers for anti-MRSA activity. Chemical Engineering Journal, 2018, 350, 157-163.	6.6	18
773	Intramolecular Imino-ene Reaction of 2H-azirines with Alkenes: Rapid Construction of Spiro NH Aziridines from Vinyl Azides. Organic Letters, 2018, 20, 3156-3160.	2.4	16
774	Antibiotic discovery: combining isolation chip (iChip) technology and co-culture technique. Applied Microbiology and Biotechnology, 2018, 102, 7333-7341.	1.7	35
775	Evaluation of topologically distinct constrained antimicrobial peptides with broad-spectrum antimicrobial activity. Organic and Biomolecular Chemistry, 2018, 16, 5764-5770.	1.5	6
776	Bioprospecting freshwater microalgae for antibacterial activity from water bodies associated with abandoned mine sites. Phycologia, 2018, 57, 432-439.	0.6	16
777	Metabolic engineering of a carbapenem antibiotic synthesis pathway in Escherichia coli. Nature Chemical Biology, 2018, 14, 794-800.	3.9	23
778	Biocatalysis. , 2018, , 471-512.		3
779	Assessing the Efficiency of Cultivation Techniques To Recover Natural Product Biosynthetic Gene Populations from Sediment. ACS Chemical Biology, 2018, 13, 2074-2081.	1.6	15
780	A Novel Microbial Culture Chamber Co-cultivation System to Study Algal-Bacteria Interactions Using Emiliania huxleyi and Phaeobacter inhibens as Model Organisms. Frontiers in Microbiology, 2018, 9, 1705.	1.5	13

#	Article	IF	CITATIONS
781	A novel synthesis of 2-arylbenzimidazoles in molecular sieves-MeOH system and their antitubercular activity. Bioorganic and Medicinal Chemistry, 2018, 26, 4551-4559.	1.4	12
782	Microbial-derived products as potential new antimicrobials. Veterinary Research, 2018, 49, 66.	1.1	53
783	Infection and metabolism $\hat{a}\in$ Streptococcus pneumoniae metabolism facing the host environment. Cytokine, 2018, 112, 75-86.	1.4	25
784	Learning from bacterial competition in the host to develop antimicrobials. Nature Medicine, 2018, 24, 1097-1103.	15.2	70
785	The Sesamum indicum Rhizosphere Associated Bacterium: A Source of Antifungal Compound. Current Topics in Medicinal Chemistry, 2018, 18, 88-97.	1.0	2
786	Comparison of Strategies to Overcome Drug Resistance: Learning from Various Kingdoms. Molecules, 2018, 23, 1476.	1.7	5
787	In Vitro Antibacterial Activity of Teixobactin Derivatives on Clinically Relevant Bacterial Isolates. Frontiers in Microbiology, 2018, 9, 1535.	1.5	25
788	Gentisaldehyde and Its Derivative 2,3-Dihydroxybenzaldehyde Show Antimicrobial Activities Against Bovine Mastitis Staphylococcus aureus. Frontiers in Veterinary Science, 2018, 5, 148.	0.9	9
789	Synergistic bacterial inactivation by combining antibiotics with nanosecond electric pulses. Applied Microbiology and Biotechnology, 2018, 102, 7589-7596.	1.7	20
790	Synergistic antibacterial activity of silver with antibiotics correlating with the upregulation of the ROS production. Scientific Reports, 2018, 8, 11131.	1.6	65
791	Binding Site and Potency Prediction of Teixobactin and other Lipid II Ligands by Statistical Base Scoring of Conformational Space Maps. Current Computer-Aided Drug Design, 2018, 14, 29-34.	0.8	9
792	In Vitro Characterization of a Biaryl Amide Anti-virulence Compound Targeting Candida albicans Filamentation and Biofilm Formation. Frontiers in Cellular and Infection Microbiology, 2018, 8, 227.	1.8	17
793	Light as a Broad-Spectrum Antimicrobial. Frontiers in Microbiology, 2018, 9, 119.	1.5	67
794	1-((2,4-Dichlorophenethyl)Amino)-3-Phenoxypropan-2-ol Kills Pseudomonas aeruginosa through Extensive Membrane Damage. Frontiers in Microbiology, 2018, 9, 129.	1.5	9
795	Diversity, Novelty, and Antimicrobial Activity of Endophytic Actinobacteria From Mangrove Plants in Beilun Estuary National Nature Reserve of Guangxi, China. Frontiers in Microbiology, 2018, 9, 868.	1.5	65
796	Functional Mechanism of the Efflux Pumps Transcription Regulators From Pseudomonas aeruginosa Based on 3D Structures. Frontiers in Molecular Biosciences, 2018, 5, 57.	1.6	51
797	Structural Diversity and Biological Activities of Novel Secondary Metabolites from Endophytes. Molecules, 2018, 23, 646.	1.7	75
798	The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery. Antibiotics, 2018, 7, 23.	1.5	22

#	Article	IF	Citations
799	Concepts and Methods to Access Novel Antibiotics from Actinomycetes. Antibiotics, 2018, 7, 44.	1.5	119
800	Microbial Diversity: The Gap between the Estimated and the Known. Diversity, 2018, 10, 46.	0.7	41
801	Synthesis and evaluation of analogues of the glycinocin family of calcium-dependent antibiotics. Organic and Biomolecular Chemistry, 2018, 16, 5310-5320.	1.5	13
802	Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Applied Microbiology and Biotechnology, 2018, 102, 7465-7473.	1.7	31
803	An Artificial Yeast Genetic Circuit Enables Deep Mutational Scanning of an Antimicrobial Resistance Protein. ACS Synthetic Biology, 2018, 7, 1907-1917.	1.9	10
804	Synthesis of Antibiotics and Related Molecules. Journal of Organic Chemistry, 2018, 83, 6826-6828.	1.7	9
805	Linear Aminolipids with Moderate Antimicrobial Activity from the Antarctic Gram-Negative Bacterium Aequorivita sp Marine Drugs, 2018, 16, 187.	2.2	17
806	Further applications of classical amide coupling reagents: Microwaveâ€assisted esterification on solid phase. Journal of Peptide Science, 2018, 24, e3111.	0.8	9
807	Membrane adaptation limitations in <i>Enterococcus faecalis</i> li>underlie sensitivity and the inability to develop significant resistance to conjugated oligoelectrolytes. RSC Advances, 2018, 8, 10284-10293.	1.7	15
808	Interkingdom microbial consortia mechanisms to guide biotechnological applications. Microbial Biotechnology, 2018, 11, 833-847.	2.0	56
809	The "Three Cs―of Novel Antibiotic Discovery and Production through Synthetic Biology: Biosynthetic Gene Clusters, Heterologous Chassis, and Synthetic Microbial Consortia. Advanced Biology, 2018, 2, 1800064.	3.0	4
810	Nature Builds Macrocycles and Heterocycles into Its Antimicrobial Frameworks: Deciphering Biosynthetic Strategy. ACS Infectious Diseases, 2018, 4, 1283-1299.	1.8	19
811	Controlled-temperature photothermal and oxidative bacteria killing and acceleration of wound healing by polydopamine-assisted Au-hydroxyapatite nanorods. Acta Biomaterialia, 2018, 77, 352-364.	4.1	180
812	Probing key elements of teixobactin–lipid II interactions in membranes. Chemical Science, 2018, 9, 6997-7008.	3.7	21
813	Isolation of Previously Uncultured Slow-Growing Bacteria by Using a Simple Modification in the Preparation of Agar Media. Applied and Environmental Microbiology, 2018, 84, .	1.4	68
814	Natural biocide cocktails: Combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS ONE, 2018, 13, e0200940.	1.1	41
816	Total Synthesis of Teixobactin. Springer Theses, 2018, , 33-69.	0.0	2
817	Paenialvin A–D, four peptide antibiotics produced by Paenibacillus alvei DSM 29. Journal of Antibiotics, 2018, 71, 769-777.	1.0	11

#	Article	IF	CITATIONS
818	Niche partition of phenanthrene-degrading bacteria along a Phragmites australis rhizosphere gradient. Biology and Fertility of Soils, 2018, 54, 607-616.	2.3	6
820	Rational Design and Synthesis of Modified Teixobactin Analogues: In Vitro Antibacterial Activity against <i>Staphylococcus aureus</i> , <i>Propionibacterium acnes</i> and <i>Pseudomonas aeruginosa</i> . Chemistry - A European Journal, 2018, 24, 9136-9147.	1.7	31
821	Mechanistic and phenotypic studies of bicarinalin, BP100 and colistin action on Acinetobacter baumannii. Research in Microbiology, 2018, 169, 296-302.	1.0	13
823	Soil Microorganisms., 2018,, 457-482.		2
825	Tackling the Antibiotic Resistance Caused by Class A β-Lactamases through the Use of β-Lactamase Inhibitory Protein. International Journal of Molecular Sciences, 2018, 19, 2222.	1.8	50
826	An amphipathic cyclic tetrapeptide scaffold containing halogenated β ^{2,2} â€amino acids with activity against multiresistant bacteria. Journal of Peptide Science, 2018, 24, e3117.	0.8	8
827	Design and evaluation of biological activities of 1,3â€oxazolidinone derivatives bearing amide, sulfonamide, and thiourea moieties. Archiv Der Pharmazie, 2018, 351, e1800057.	2.1	6
828	Total Synthesis and Structure–Activity Relationships Study of Odilorhabdins, a New Class of Peptides Showing Potent Antibacterial Activity. Journal of Medicinal Chemistry, 2018, 61, 7814-7826.	2.9	20
829	Epigenetic Modifiers Induce Bioactive Phenolic Metabolites in the Marine-Derived Fungus Penicillium brevicompactum. Marine Drugs, 2018, 16, 253.	2.2	59
830	Synthesis and Biological Evaluation of the Antimicrobial Natural Product Lipoxazolidinoneâ€A. Angewandte Chemie, 2018, 130, 8818-8822.	1.6	10
832	Current strategies to induce secondary metabolites from microbial biosynthetic cryptic gene clusters. Annals of Microbiology, 2018, 68, 419-432.	1.1	19
833	Go with the flow or solitary confinement: a look inside the single-cell toolbox for isolation of rare and uncultured microbes. Current Opinion in Microbiology, 2018, 44, 1-8.	2.3	34
834	Detection and Expression of Biosynthetic Gene Clusters in Actinobacteria., 2018, , 245-255.		0
835	Anticipating the Unanticipated-Unintended Consequences of Scientific and Technological Purposive Actions. World Future Review: A Journal of Strategic Foresight, 2019, 11, 19-50.	0.4	6
836	Dietary fat and gut microbiota: mechanisms involved in obesity control. Critical Reviews in Food Science and Nutrition, 2019, 59, 3045-3053.	5.4	59
837	Expression, Purification and Characterization of a Novel Antimicrobial Peptide: Gloverin A2 from Bombyx mori. International Journal of Peptide Research and Therapeutics, 2019, 25, 827-833.	0.9	9
838	Out of the Soil. , 2019, , 138-174.		6
839	Membrane-Disrupting Nanofibrous Peptide Hydrogels. ACS Biomaterials Science and Engineering, 2019, 5, 4657-4670.	2.6	38

#	Article	IF	CITATIONS
840	The impact of backbone N â€methylation on the structureâ€activity relationship of Leu 10 â€ŧeixobactin. Journal of Peptide Science, 2019, 25, e3206.	0.8	6
841	Advanced Detection of Endotoxin and Other PAMPs. , 2019, , 547-594.		0
842	Establishing the structure-activity relationship of teixobactin. Chinese Chemical Letters, 2019, 30, 1468-1480.	4.8	10
843	Antimicrobial properties of the novel bacterial isolate Paenibacilllus sp. SMB1 from a halo-alkaline lake in India. Scientific Reports, 2019, 9, 11561.	1.6	21
844	Pseudomonas koreensis Recovered From Raw Yak Milk Synthesizes a \hat{l}^2 -Carboline Derivative With Antimicrobial Properties. Frontiers in Microbiology, 2019, 10, 1728.	1.5	13
845	A Comprehensive Antimicrobial Activity Evaluation of the Recombinant Microcin J25 Against the Foodborne Pathogens Salmonella and E. coli O157:H7 by Using a Matrix of Conditions. Frontiers in Microbiology, 2019, 10, 1954.	1.5	32
846	Ligation Technologies for the Synthesis of Cyclic Peptides. Chemical Reviews, 2019, 119, 9971-10001.	23.0	140
847	Antibiotic resistance in Pseudomonas aeruginosa – Mechanisms, epidemiology and evolution. Drug Resistance Updates, 2019, 44, 100640.	6.5	269
848	Crossroads of Antibiotic Resistance and Biosynthesis. Journal of Molecular Biology, 2019, 431, 3370-3399.	2.0	100
849	Fluorescent Imidazolium-Type Poly(ionic liquid)s for Bacterial Imaging and Biofilm Inhibition. Biomacromolecules, 2019, 20, 3161-3170.	2.6	44
850	Translational control of antibiotic resistance. Open Biology, 2019, 9, 190051.	1.5	22
851	NPS: scoring and evaluating the statistical significance of peptidic natural product–spectrum matches. Bioinformatics, 2019, 35, i315-i323.	1.8	5
852	Nitrogen-Doped Carbon Quantum Dots for Preventing Biofilm Formation and Eradicating Drug-Resistant Bacteria Infection. ACS Biomaterials Science and Engineering, 2019, 5, 4739-4749.	2.6	58
853	Oâ€Mannosylation Affords a Glycopeptide Hydrogel with Inherent Antibacterial Activities against E. coli via Multivalent Interactions between Lectins and Supramolecular Assemblies. Macromolecular Bioscience, 2019, 19, 1900124.	2.1	10
855	Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@Bi2WO6 coating for rapid bacterial killing. Journal of Hazardous Materials, 2019, 380, 120818.	6.5	85
856	Gaming the Apocalypse in the Time of Antibiotic Resistance. Osiris, 2019, 34, 316-337.	0.3	9
857	Antibiotic discovery through microbial interactions. Current Opinion in Microbiology, 2019, 51, 64-71.	2.3	32
858	Gram-scale total synthesis of teixobactin promoting binding mode study and discovery of more potent antibiotics. Nature Communications, 2019, 10, 3268.	5.8	32

#	Article	IF	CITATIONS
859	Tyrosol from marine Fungi, a novel Quorum sensing inhibitor against Chromobacterium violaceum and Pseudomonas aeruginosa. Bioorganic Chemistry, 2019, 91, 103140.	2.0	45
860	Minimizing Taxonomic and Natural Product Redundancy in Microbial Libraries Using MALDI-TOF MS and the Bioinformatics Pipeline IDBac. Journal of Natural Products, 2019, 82, 2167-2173.	1.5	16
861	Co-cultivation of the marine sponge Halichondria panicea and its associated microorganisms. Scientific Reports, 2019, 9, 10403.	1.6	19
862	Modern molecular and omics tools for understanding the plant growth-promoting rhizobacteria., 2019, , 39-53.		4
863	Methicillin-Resistant <i>Staphylococcus aureus</i> in Diabetic Foot Infection in India: A Growing Menace. International Journal of Lower Extremity Wounds, 2019, 18, 236-246.	0.6	22
864	Peptidoglycan Structure, Biosynthesis, and Dynamics During Bacterial Growth. Biologically-inspired Systems, 2019, , 237-299.	0.4	11
865	Development of Staphylococcus aureus tolerance to antimicrobial photodynamic inactivation and antimicrobial blue light upon sub-lethal treatment. Scientific Reports, 2019, 9, 9423.	1.6	56
866	Gram-Scale Solution-Phase Synthesis of Heptapeptide Side Chain of Teixobactin. Synlett, 2019, 30, 2268-2272.	1.0	4
867	Characterization of a Citrulline 4â∈Hydroxylase from Nonribosomal Peptide GE81112 Biosynthesis and Engineering of Its Substrate Specificity for the Chemoenzymatic Synthesis of Enduracididine. Angewandte Chemie - International Edition, 2019, 58, 18854-18858.	7.2	31
868	A review on antiâ€tuberculosis peptides: Impact of peptide structure on antiâ€tuberculosis activity. Journal of Peptide Science, 2019, 25, e3213.	0.8	12
869	Characterization of Biological Resistance and Successful Drug Resistance Control in Medicine. Pathogens, 2019, 8, 73.	1.2	0
870	<p>Therapeutic compounds targeting Lipid II for antibacterial purposes</p> . Infection and Drug Resistance, 2019, Volume 12, 2613-2625.	1.1	28
871	Microbe-Derived Indole Metabolite Demonstrates Potent Multidrug Efflux Pump Inhibition in Staphylococcus aureus. Frontiers in Microbiology, 2019, 10, 2153.	1.5	24
872	Isolation of fungi using the diffusion chamber device FIND technology. Beilstein Journal of Organic Chemistry, 2019, 15, 2191-2203.	1.3	5
873	MetaMiner: A Scalable Peptidogenomics Approach for Discovery of Ribosomal Peptide Natural Products with Blind Modifications from Microbial Communities. Cell Systems, 2019, 9, 600-608.e4.	2.9	46
874	An Extract Produced by Bacillus sp. BR3 Influences the Function of the GacS/GacA Two-Component System in Pseudomonas syringae pv. tomato DC3000. Frontiers in Microbiology, 2019, 10, 2005.	1.5	2
875	Challenges and Opportunities for Soil Biodiversity in the Anthropocene. Current Biology, 2019, 29, R1036-R1044.	1.8	136
876	Superbugs but no drugs: steps in averting a post-antibiotic era. Drug Discovery Today, 2019, 24, 2225-2228.	3.2	25

#	Article	IF	CITATIONS
877	Enzymatic Cascade To Evaluate the Tricyclization of Glycopeptide Antibiotic Precursor Peptides as a Prequel to Biosynthetic Redesign. Organic Letters, 2019, 21, 8635-8640.	2.4	20
878	Current Status and Potential Applications of Underexplored Prokaryotes. Microorganisms, 2019, 7, 468.	1.6	17
880	A coarse-grained model for mechanical behavior of phosphorene sheets. Physical Chemistry Chemical Physics, 2019, 21, 1884-1894.	1.3	10
881	Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Natural Product Reports, 2019, 36, 573-592.	5.2	103
882	Antibacterial properties and in vivo efficacy of a novel nitrofuran, IITR06144, against MDR pathogens. Journal of Antimicrobial Chemotherapy, 2020, 75, 418-428.	1.3	5
883	Antibiotic effects on gut microbiota, metabolism, and beyond. Applied Microbiology and Biotechnology, 2019, 103, 9277-9285.	1.7	50
884	Naturally occurring antitubercular cyclic peptides. Tetrahedron Letters, 2019, 60, 151339.	0.7	6
886	Identification of novel scaffolds targeting Mycobacterium tuberculosis. Journal of Molecular Medicine, 2019, 97, 1601-1613.	1.7	18
887	AntiBac-Pred: A Web Application for Predicting Antibacterial Activity of Chemical Compounds. Journal of Chemical Information and Modeling, 2019, 59, 4513-4518.	2.5	24
888	IMG-ABC v.5.0: an update to the IMG/Atlas of Biosynthetic Gene Clusters Knowledgebase. Nucleic Acids Research, 2020, 48, D422-D430.	6.5	64
889	Balsacone C, a New Antibiotic Targeting Bacterial Cell Membranes, Inhibits Clinical Isolates of Methicillin-Resistant Staphylococcus aureus (MRSA) Without Inducing Resistance. Frontiers in Microbiology, 2019, 10, 2341.	1.5	20
890	Albumin Broadens the Antibacterial Capabilities of Nonantibiotic Small Molecule-Capped Gold Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45381-45389.	4.0	39
891	Characterization of a Citrulline 4â€Hydroxylase from Nonribosomal Peptide GE81112 Biosynthesis and Engineering of Its Substrate Specificity for the Chemoenzymatic Synthesis of Enduracididine. Angewandte Chemie, 2019, 131, 19030-19034.	1.6	3
892	A Point of Inflection and Reflection on Systems Chemical Biology. ACS Chemical Biology, 2019, 14, 2497-2511.	1.6	8
893	Polarization property of high harmonics generated from nitrogen molecule by bichromatic counter-rotating circularly polarized laser fields. Laser Physics, 2019, 29, 105301.	0.6	3
894	Fluopsin C for Treating Multidrug-Resistant Infections: In vitro Activity Against Clinically Important Strains and in vivo Efficacy Against Carbapenemase-Producing Klebsiella pneumoniae. Frontiers in Microbiology, 2019, 10, 2431.	1.5	12
895	A case of spontaneous hepatic hemangioma rupture: Successful management with transarterial chemoembolization alone. Journal of Interventional Medicine, 2019, 2, 131-133.	0.2	2
896	A Chemical-Intervention Strategy To Circumvent Peptide Hydrolysis by <scp>d</scp> -Stereoselective Peptidases. Journal of Medicinal Chemistry, 2019, 62, 10466-10472.	2.9	13

#	Article	IF	CITATIONS
897	Design, synthesis and biological evaluation of some novel diastereoselective \hat{l}^2 -lactams bearing 2-mercaptobenzothiazole and benzoquinoline. Medicinal Chemistry Research, 2019, 28, 329-339.	1.1	20
898	Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters. Nature Communications, 2019, 10, 4792.	5.8	88
899	Advantageous Fungi against Parasites Transmitted through Soil. , 0, , .		0
900	Pyrrolomycins Are Potent Natural Protonophores. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	29
901	Culture-Dependent Bioprospecting of Bacterial Isolates From the Canadian High Arctic Displaying Antibacterial Activity. Frontiers in Microbiology, 2019, 10, 1836.	1.5	22
902	Hybrid isoquinolines from <i>Thalictrum foetidum</i> : a new type of aporphine inhibiting <i>Staphylococcus aureus</i> by combined mechanisms. Organic Chemistry Frontiers, 2019, 6, 3428-3434.	2.3	11
903	Molecular Recognition of Lipid II by Lantibiotics: Synthesis and Conformational Studies of Analogues of Nisin and Mutacin Rings A and B. Journal of Organic Chemistry, 2019, 84, 11493-11512.	1.7	26
904	Vancomycin–Arginine Conjugate Inhibits Growth of Carbapenem-Resistant <i>E. coli</i> and Targets Cell-Wall Synthesis. ACS Chemical Biology, 2019, 14, 2065-2070.	1.6	67
905	Turning a Collagenesis-Inducing Peptide Into a Potent Antibacterial and Antibiofilm Agent Against Multidrug-Resistant Gram-Negative Bacteria. Frontiers in Microbiology, 2019, 10, 1915.	1.5	12
906	Development of a nebramine-cyclam conjugate as an antibacterial adjuvant to potentiate \hat{l}^2 -lactam antibiotics against multidrug-resistant P. aeruginosa. Journal of Antibiotics, 2019, 72, 816-826.	1.0	15
907	Genome mining- and synthetic biology-enabled production of hypermodified peptides. Nature Chemistry, 2019, 11, 931-939.	6.6	53
908	Hierarchically oriented organization inÂsupramolecular peptide crystals. Nature Reviews Chemistry, 2019, 3, 567-588.	13.8	326
909	Lighting Up the Gold Nanoclusters via Host–Guest Recognition for High-Efficiency Antibacterial Performance and Imaging. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36831-36838.	4.0	44
910	Development of a Robust and Quantitative High-Throughput Screening Method for Antibiotic Production in Bacterial Libraries. ACS Omega, 2019, 4, 15414-15420.	1.6	11
911	Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 2019, 183, 111686.	2.6	35
912	Toll-Like Receptor 7 Activation Enhances CD8+ T Cell Effector Functions by Promoting Cellular Glycolysis. Frontiers in Immunology, 2019, 10, 2191.	2.2	42
913	An Ichip-Domesticated Sponge Bacterium Produces an $\langle i \rangle N \langle i \rangle$ -Acyltyrosine Bearing an α-Methyl Substituent. Organic Letters, 2019, 21, 7768-7771.	2.4	15
914	Antimicrobial Resistance in Methicillin-Resistant <i>Staphylococcus aureus</i> to Newer Antimicrobial Agents. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	80

#	Article	IF	Citations
915	Homodimeric Tobramycin Adjuvant Repurposes Novobiocin as an Effective Antibacterial Agent against Gram-Negative Bacteria. Journal of Medicinal Chemistry, 2019, 62, 9103-9115.	2.9	24
916	Actinomycete-Derived Polyketides as a Source of Antibiotics and Lead Structures for the Development of New Antimicrobial Drugs. Antibiotics, 2019, 8, 157.	1.5	41
917	Engineered Graphene Oxide Nanocomposite Capable of Preventing the Evolution of Antimicrobial Resistance. ACS Nano, 2019, 13, 11488-11499.	7.3	84
918	Subscription model for antibiotic development. BMJ: British Medical Journal, 2019, 366, l5364.	2.4	13
919	Solution-phase total synthesis of teixobactin. Organic and Biomolecular Chemistry, 2019, 17, 1141-1153.	1.5	18
920	Triggering the expression of a silent gene cluster from genetically intractable bacteria results in scleric acid discovery. Chemical Science, 2019, 10, 453-463.	3.7	41
921	Enhanced design and formulation of nanoparticles for anti-biofilm drug delivery. Nanoscale, 2019, 11, 219-236.	2.8	67
922	A selective genome-guided method for environmental Burkholderia isolation. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 345-362.	1.4	7
923	Recent advances in musculoskeletal local drug delivery. Acta Biomaterialia, 2019, 93, 135-151.	4.1	22
924	The Quest for Novel Antimicrobial Compounds: Emerging Trends in Research, Development, and Technologies. Antibiotics, 2019, 8, 8.	1.5	67
925	Harnessing undomesticated life. Nature Microbiology, 2019, 4, 212-213.	5.9	8
926	Ameliorating the antimicrobial resistance crisis: phage therapy. IUBMB Life, 2019, 71, 781-790.	1.5	28
927	A crash course in sequencing for a microbiologist. Journal of Applied Genetics, 2019, 60, 103-111.	1.0	23
928	The antimicrobial potential of Streptomyces from insect microbiomes. Nature Communications, 2019, 10, 516.	5.8	222
929	Using chemical synthesis to optimise antimicrobial peptides in the fight against antimicrobial resistance. Pure and Applied Chemistry, 2019, 91, 181-198.	0.9	17
930	Natural Bioactive Cyclic Peptides and Peptidomimetics. Studies in Natural Products Chemistry, 2019, 62, 343-376.	0.8	15
931	Investigation of the selective catalytic reduction of NO with NH ₃ over the WO ₃ /Ce _{0.68} Zr _{0.32} O ₂ catalyst: the role of H ₂ O in SO ₂ inhibition. New Journal of Chemistry, 2019, 43, 2258-2268.	1.4	12
932	A Universally Primed-Polymerase Chain Reaction (UP-PCR) Marker to Discriminate Clonostachys rosea ACM941 from Related Strains. Journal of Fungi (Basel, Switzerland), 2019, 5, 39.	1.5	4

#	Article	IF	Citations
933	Microbial community drivers of PK/NRP gene diversity in selected global soils. Microbiome, 2019, 7, 78.	4.9	30
934	Metagenomics. , 2019, , 453-468.		4
935	Technologies for the Selection, Culture and Metabolic Profiling of Unique Rhizosphere Microorganisms for Natural Product Discovery. Molecules, 2019, 24, 1955.	1.7	14
936	Detecting the structural assembly pathway of human antimicrobial peptide pores at single-channel level. Biomaterials Science, 2019, 7, 3226-3237.	2.6	9
937	Strategies for discovery of new molecular targets for anti-infective drugs. Current Opinion in Pharmacology, 2019, 48, 57-68.	1.7	12
938	The race between drug introduction and appearance of microbial resistance. Current balance and alternative approaches. Current Opinion in Pharmacology, 2019, 48, 48-56.	1.7	22
939	Nucleoside Analogues as Antibacterial Agents. Frontiers in Microbiology, 2019, 10, 952.	1.5	107
940	Genomics-inspired discovery of massiliachelin, an agrochelin epimer from Massilia sp. NR 4-1. Beilstein Journal of Organic Chemistry, 2019, 15, 1298-1303.	1.3	10
941	Total synthesis of Met10-teixobactin. Tetrahedron Letters, 2019, 60, 1909-1912.	0.7	6
942	A novel molecular scaffold resensitizes multidrug-resistant <i>S. aureus</i> to fluoroquinolones. Chemical Communications, 2019, 55, 8599-8602.	2.2	7
943	Bacterial metabolism-inspired molecules to modulate antibiotic efficacy. Journal of Antimicrobial Chemotherapy, 2019, 74, 3409-3417.	1.3	22
944	Endophytes as a Source of High-Value, Bioactive Metabolites. Reference Series in Phytochemistry, 2019, , 427-458.	0.2	2
945	Next-Generation Drug Discovery to Combat Antimicrobial Resistance. Trends in Biochemical Sciences, 2019, 44, 961-972.	3.7	44
946	Noursamycins, Chlorinated Cyclohexapeptides Identified from Molecular Networking of <i>Streptomyces noursei</i> NTR-SR4. Journal of Natural Products, 2019, 82, 1478-1486.	1.5	25
947	Antimicrobial peptides under clinical investigation. Peptide Science, 2019, 111, e24122.	1.0	240
948	Antibiotic Application and Resistance in Swine Production in China: Current Situation and Future Perspectives. Frontiers in Veterinary Science, 2019, 6, 136.	0.9	80
949	After the Taxonomic Identification Phase: Addressing the Functions of Symbiotic Communities Within Marine Invertebrates., 2019,, 105-144.		2
950	Proanthocyanidin Interferes with Intrinsic Antibiotic Resistance Mechanisms of Gramâ€Negative Bacteria. Advanced Science, 2019, 6, 1802333.	5. 6	45

#	Article	IF	CITATIONS
951	Identification of novel genes that promote persister formation by repressing transcription and cell division in Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 2019, 74, 2575-2587.	1.3	19
952	Docking on Lipid II—A Widespread Mechanism for Potent Bactericidal Activities of Antibiotic Peptides. Journal of Molecular Biology, 2019, 431, 3520-3530.	2.0	41
953	Genomewide Profiling of the Enterococcus faecalis Transcriptional Response to Teixobactin Reveals CroRS as an Essential Regulator of Antimicrobial Tolerance. MSphere, 2019, 4, .	1.3	8
954	Teixobactins: a new class of 21st century antibiotics to combat multidrug-resistant bacterial pathogens. Future Microbiology, 2019, 14, 457-460.	1.0	8
955	Mitochondrial F-ATP Synthase and Its Transition into an Energy-Dissipating Molecular Machine. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-10.	1.9	25
956	Targeting extracellular glycans: tuning multimeric boronic acids for pathogen-selective killing of <i>Mycobacterium tuberculosis</i> . Chemical Science, 2019, 10, 5935-5942.	3.7	16
957	Drug delivery systems designed to overcome antimicrobial resistance. Medicinal Research Reviews, 2019, 39, 2343-2396.	5.0	64
958	High throughput gene expression profiling of yeast colonies with microgel-culture Drop-seq. Lab on A Chip, 2019, 19, 1838-1849.	3.1	25
959	Antibiotic Discovery: Where Have We Come from, Where Do We Go?. Antibiotics, 2019, 8, 45.	1.5	184
960	The Lasso Peptide Siamycin-I Targets Lipid II at the Gram-Positive Cell Surface. ACS Chemical Biology, 2019, 14, 966-974.	1.6	33
961	Future Antibacterial Strategies: From Basic Concepts to Clinical Challenges. Journal of Infectious Diseases, 2019, 220, 350-360.	1.9	87
962	Assessing evolutionary risks of resistance for new antimicrobial therapies. Nature Ecology and Evolution, 2019, 3, 515-517.	3.4	37
963	Drug Repurposing in Search of Anti-Infectives: Need of the Hour in the Multidrug Resistance Era!., 2019,, 399-426.		3
964	What an Escherichia coli Mutant Can Teach Us About the Antibacterial Effect of Chlorophyllin. Microorganisms, 2019, 7, 59.	1.6	27
965	Synthetic ionophores as non-resistant antibiotic adjuvants. RSC Advances, 2019, 9, 2217-2230.	1.7	17
966	Characterization, mechanism of action and optimization of activity of a novel peptide-peptoid hybrid against bacterial pathogens involved in canine skin infections. Scientific Reports, 2019, 9, 3679.	1.6	17
967	Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe: Results from the SENTRY Antimicrobial Surveillance Programme, 2017. Journal of Global Antimicrobial Resistance, 2019, 19, 56-63.	0.9	33
968	Lassomycin and lariatin lasso peptides as suitable antibiotics for combating mycobacterial infections: current state of biosynthesis and perspectives for production. Applied Microbiology and Biotechnology, 2019, 103, 3931-3940.	1.7	12

#	Article	IF	CITATIONS
969	Reversing resistance to counter antimicrobial resistance in the World Health Organisation's critical priority of most dangerous pathogens. Bioscience Reports, 2019, 39, .	1.1	57
970	Structure–Activity Study, Characterization, and Mechanism of Action of an Antimicrobial Peptoid D2 and Its d- and I-Peptide Analogues. Molecules, 2019, 24, 1121.	1.7	9
971	A Chemical Inhibitor of Cell Growth Reduces Cell Size in <i>Bacillus subtilis</i> ACS Chemical Biology, 2019, 14, 688-695.	1.6	7
972	Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering. Microbial Biotechnology, 2019, 12, 828-844.	2.0	95
973	New Approaches to Detect Biosynthetic Gene Clusters in the Environment. Medicines (Basel,) Tj ETQq0 0 0 rgBT	/Oyerlock	2 10 Tf 50 582
974	The Necessity of <scp>d</scp> -Thr in the New Antibiotic Teixobactin: A Molecular Dynamics Study. Journal of Chemical Information and Modeling, 2019, 59, 1575-1583.	2.5	2
975	Microbial Population Changes in Decaying Ascophyllum nodosum Result in Macroalgal-Polysaccharide-Degrading Bacteria with Potential Applicability in Enzyme-Assisted Extraction Technologies. Marine Drugs, 2019, 17, 200.	2,2	19
976	Discovery and Biosynthesis of Atrovimycin, an Antitubercular and Antifungal Cyclodepsipeptide Featuring Vicinal-dihydroxylated Cinnamic Acyl Chain. Organic Letters, 2019, 21, 2634-2638.	2.4	39
977	Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bacteria. Critical Reviews in Microbiology, 2019, 45, 301-314.	2.7	118
978	Lipid Intermediates in Bacterial Peptidoglycan Biosynthesis. , 2019, , 217-235.		0
979	Analysis of modular bioengineered antimicrobial lanthipeptides at nanoliter scale. Nature Chemical Biology, 2019, 15, 437-443.	3.9	99
980	Tridecaptin M, a New Variant Discovered in Mud Bacterium, Shows Activity against Colistin- and Extremely Drug-Resistant <i>Enterobacteriaceae</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	27
981	Gut bacteria of animals/pests living in polluted environments are a potential source of antibacterials. Applied Microbiology and Biotechnology, 2019, 103, 3955-3964.	1.7	21
982	Designing an Amino-Fullerene Derivative C ₇₀ –(EDA) ₈ to Fight Superbacteria. ACS Applied Materials & Designing an Amino-Fullerene Derivative C ₇₀ 89.01	4.0	38
983	Recent Progress in Natural-Product-Inspired Programs Aimed To Address Antibiotic Resistance and Tolerance. Journal of Medicinal Chemistry, 2019, 62, 7618-7642.	2.9	73
984	Microbial bioremediation of oil contaminated seawater: A survey of patent deposits and the characterization of the top genera applied. Science of the Total Environment, 2019, 666, 743-758.	3.9	37
985	H2depda: An acyclic adjuvant potentiates meropenem activity inÂvitro against metallo-Î ² -lactamase-producing enterobacterales. European Journal of Medicinal Chemistry, 2019, 167, 367-376.	2.6	14
986	Detection of Natural Products and Their Producers in Ocean Sediments. Applied and Environmental Microbiology, 2019, 85, .	1.4	33

#	Article	IF	CITATIONS
987	In vitro testing of a first-in-class tri-alkylnorspermidine-biaryl antibiotic in an anti-biofilm silicone coating. Acta Biomaterialia, 2019, 93, 25-35.	4.1	22
988	Nucleobase Soft Metallogel Composites with Antifouling Activities against ESKAPE Pathogens. ChemistrySelect, 2019, 4, 1834-1839.	0.7	2
989	Small molecule reaction networks that model the ROS dynamics of the rhizosphere. Chemical Communications, 2019, 55, 3602-3605.	2.2	11
990	Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host and Microbe, 2019, 25, 219-232.	5.1	657
991	Revisiting Anti-tuberculosis Therapeutic Strategies That Target the Peptidoglycan Structure and Synthesis. Frontiers in Microbiology, 2019, 10, 190.	1.5	31
992	Eradication of persister cells of Acinetobacter baumannii through combination of colistin and amikacin antibiotics. Journal of Antimicrobial Chemotherapy, 2019, 74, 1277-1283.	1.3	38
994	Evolving Antibiotics against Resistance: a Potential Platform for Natural Product Development?. MBio, 2019, 10, .	1.8	2
996	Profiling the microbial community of a Triassic halite deposit in Northern Ireland: an environment with significant potential for biodiscovery. FEMS Microbiology Letters, 2019, 366, .	0.7	9
997	Enlisting plants in the battle for new antibacterial compounds. Microbiology Australia, 2019, , .	0.1	0
998	Engineering enzymatic assembly lines to produce new antibiotics. Current Opinion in Microbiology, 2019, 51, 88-96.	2.3	59
999	Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 2019, 200, e93-e142.	2.5	282
1000	Antibiotics: past, present and future. Current Opinion in Microbiology, 2019, 51, 72-80.	2.3	1,012
1001	Gut bacteria of Cuora amboinensis (turtle) produce broad-spectrum antibacterial molecules. Scientific Reports, 2019, 9, 17012.	1.6	30
1002	From Worms to Drug Candidate: The Story of Odilorhabdins, a New Class of Antimicrobial Agents. Frontiers in Microbiology, 2019, 10, 2893.	1.5	22
1003	Natural products discovery and potential for new antibiotics. Current Opinion in Microbiology, 2019, 51, 81-87.	2.3	48
1004	Single-Walled Carbon Nanotube-Assisted Antibiotic Delivery and Imaging in S. epidermidis Strains Addressing Antibiotic Resistance. Nanomaterials, 2019, 9, 1685.	1.9	18
1005	Induction of Phage-Specific Antibodies by Two Therapeutic Staphylococcal Bacteriophages Administered per os. Frontiers in Immunology, 2019, 10, 2607.	2.2	48
1006	The Microbiome and Its Potential for Pharmacology. Handbook of Experimental Pharmacology, 2019, 260, 301-326.	0.9	14

#	Article	IF	Citations
1007	Modified Antibiotic Adjuvant Ratios Can Slow and Steer the Evolution of Resistance: Co-amoxiclav as a Case Study. MBio, $2019, 10, .$	1.8	11
1008	A new antibiotic selectively kills Gram-negative pathogens. Nature, 2019, 576, 459-464.	13.7	456
1009	Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Natural Product Reports, 2019, 36, 430-457.	5.2	75
1010	Molecules that Inhibit Bacterial Resistance Enzymes. Molecules, 2019, 24, 43.	1.7	25
1011	Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. Journal of Medicinal Chemistry, 2019, 62, 3184-3205.	2.9	79
1012	Antimicrobial Resistant Genes and Organisms as Environmental Contaminants of Emerging Concern: Addressing Global Public Health Risks., 2019, , 147-187.		9
1013	Antibiotic discovery: history, methods and perspectives. International Journal of Antimicrobial Agents, 2019, 53, 371-382.	1.1	223
1014	Steps to address anti-microbial drug resistance in today's drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 91-94.	2.5	22
1015	Teixobactin: a novel anti-infective agent. Expert Review of Anti-Infective Therapy, 2019, 17, 1-3.	2.0	15
1016	A diversity-oriented rhodamine library for wide-spectrum bactericidal agents with low inducible resistance against resistant pathogens. Nature Communications, 2019, 10, 258.	5.8	41
1017	New voyages to explore the natural product galaxy. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 273-279.	1.4	21
1018	The Polycyclic Polyprenylated Acylphloroglucinol Antibiotic PPAP 23 Targets the Membrane and Iron Metabolism in Staphylococcus aureus. Frontiers in Microbiology, 2019, 10, 14.	1.5	22
1019	Antibacterial Aromatic Polyketides Incorporating the Unusual Amino Acid Enduracididine. Journal of Natural Products, 2019, 82, 35-44.	1.5	8
1020	Isolation and identification of new microalgae strains with antibacterial activity on food-borne pathogens. Engineering approach to optimize synthesis of desired metabolites. Biochemical Engineering Journal, 2019, 144, 28-39.	1.8	27
1021	Controlled Release of Silver Nanoparticles Contained in Photoresponsive Nanogels. ACS Applied Bio Materials, 2019, 2, 644-653.	2.3	23
1022	The Neglected Marine Fungi, Sensu stricto, and Their Isolation for Natural Products' Discovery. Marine Drugs, 2019, 17, 42.	2.2	53
1023	Discovery of Linear Low-Cationic Peptides to Target Methicillin-Resistant <i>Staphylococcus aureus</i> in Vivo. ACS Infectious Diseases, 2019, 5, 123-130.	1.8	22
1024	Marine bacteria and fungi as promising source for new antibiotics. Drug Development Research, 2019, 80, 24-27.	1.4	45

#	ARTICLE	IF	CITATIONS
1025	Endophytes as a Source of High-Value, Bioactive Metabolites. Reference Series in Phytochemistry, 2019, , 1-32.	0.2	O
1026	Addressing Antimicrobial Resistance through New Medicinal and Synthetic Chemistry Strategies. SLAS Discovery, 2019, 24, 419-439.	1.4	10
1027	Determination of cefixime using a novel electrochemical sensor produced with gold nanowires/graphene oxide/electropolymerized molecular imprinted polymer. Materials Science and Engineering C, 2019, 96, 654-660.	3.8	69
1028	Metabolomic Investigation of Staphylococcus aureus Antibiotic Susceptibility by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Methods in Molecular Biology, 2019, 1871, 279-293.	0.4	12
1029	Biocompatible graphene-based nanoagent with NIR and magnetism dual-responses for effective bacterial killing and removal. Colloids and Surfaces B: Biointerfaces, 2019, 173, 266-275.	2.5	35
1030	Selfâ€derived structureâ€disrupting peptides targeting methionine aminopeptidase in pathogenic bacteria: a new strategy to generate antimicrobial peptides. FASEB Journal, 2019, 33, 2095-2104.	0.2	7
1031	Emerging evolutionary paradigms in antibiotic discovery. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 257-271.	1.4	76
1032	Profiling antimicrobial peptides from the medical maggot <i>Lucilia sericata</i> as potential antibiotics for MDR Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 2019, 74, 96-107.	1.3	36
1033	Synergy of clavine alkaloid â€~chanoclavine' with tetracycline against multi-drug-resistant <i>E. coli</i> . Journal of Biomolecular Structure and Dynamics, 2019, 37, 1307-1325.	2.0	42
1034	Screening of rare actinomycetes isolated from natural wetland ecosystem (Fetzara Lake,) Tj ETQq1 1 0.784314 University - Science, 2019, 31, 706-712.	rgBT /Ovei	rlock 10 Tf 50 39
1035	Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. Journal of Environmental Chemical Engineering, 2020, 8, 102245.	3.3	209
1036	Can artificial intelligency revolutionize drug discovery?. Al and Society, 2020, 35, 501-504.	3.1	4
1037	Antibacterial lectin from Moringa oleifera seeds (WSMoL) has differential action on growth, membrane permeability and protease secretory ability of Gram-positive and Gram-negative pathogens. South African Journal of Botany, 2020, 129, 198-205.	1.2	17
1038	Novel targets of pentacyclic triterpenoids in Staphylococcus aureus: A systematic review. Phytomedicine, 2020, 73, 152933.	2.3	37
1039	New approaches for metagenome assembly with short reads. Briefings in Bioinformatics, 2020, 21, 584-594.	3.2	140
1040	Learning and augmenting natural processes: potential means of combating antimicrobial resistance from a drug R&D perspective. Drug Discovery Today, 2020, 25, 1-3.	3.2	10
1041	Whole genome mining reveals a diverse repertoire of lanthionine synthetases and lanthipeptides among the genus <i>Paenibacillus</i>). Journal of Applied Microbiology, 2020, 128, 473-490.	1.4	19
1042	Synthesis and characterization of silver nanoparticles-doped hydroxyapatite/alginate microparticles with promising cytocompatibility and antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124081.	2.3	56

#	Article	IF	CITATIONS
1043	Pharmacologic potential of new nitro-compounds as antimicrobial agents against nosocomial pathogens: design, synthesis, and in vitro effectiveness. Folia Microbiologica, 2020, 65, 393-405.	1.1	6
1044	Targeting virulence factors as an antimicrobial approach: Pigment inhibitors. Medicinal Research Reviews, 2020, 40, 293-338.	5.0	18
1045	C1-CBP-vancomycin: Impact of a Vancomycin C-Terminus Trimethylammonium Cation on Pharmacological Properties and Insights into Its Newly Introduced Mechanism of Action. Journal of Organic Chemistry, 2020, 85, 1365-1375.	1.7	21
1046	Black phosphorous-based nanostructures in environmental remediation: Current status and future perspectives. Chemical Engineering Journal, 2020, 389, 123460.	6.6	14
1047	AcrB: a mean, keen, drug efflux machine. Annals of the New York Academy of Sciences, 2020, 1459, 38-68.	1.8	99
1048	A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Medicinal Research Reviews, 2020, 40, 753-810.	5.0	106
1049	Dissecting the Binding Interactions of Teixobactin with the Bacterial Cellâ€Wall Precursor Lipidâ€ll. ChemBioChem, 2020, 21, 789-792.	1.3	20
1050	Think before you prescribe: how dentistry contributes to antibiotic resistance. Australian Dental Journal, 2020, 65, 21-29.	0.6	25
1051	Heritable nanosilver resistance in priority pathogen: a unique genetic adaptation and comparison with ionic silver and antibiotics. Nanoscale, 2020, 12, 2384-2392.	2.8	29
1052	De Novo Peptide Sequencing Reveals Many Cyclopeptides in the Human Gut and Other Environments. Cell Systems, 2020, 10, 99-108.e5.	2.9	28
1053	Synthesis, crystal structure and antibacterial activity of a homonuclear nickel(II) metal-organic nano supramolecular architecture. Polyhedron, 2020, 176, 114301.	1.0	15
1054	The effect of spatiotemporal antibiotic inhomogeneities on the evolution of resistance. Journal of Theoretical Biology, 2020, 486, 110077.	0.8	3
1055	Synergistic Activity of Fluoroquinolones Combining with Artesunate Against Multidrug-Resistant <i>Escherichia coli</i> Microbial Drug Resistance, 2020, 26, 81-88.	0.9	10
1056	Cultivation of Diverse Microorganisms from Hypersaline Lake and Impact of Delay in Sample Processing on Cell Viability. Current Microbiology, 2020, 77, 716-721.	1.0	12
1057	Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms. Nature Chemistry, 2020, 12, 145-158.	6.6	78
1058	Design, synthesis and antimicrobial studies of some polymyxin analogues. Journal of Antibiotics, 2020, 73, 158-166.	1.0	7
1059	Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics, 2020, 10, 757-781.	4.6	152
1060	Synthesis and structureâ activity relationships of teixobactin. Annals of the New York Academy of Sciences, 2020, 1459, 86-105.	1.8	26

#	ARTICLE	IF	CITATIONS
1061	Ethylenic conjugated coumarin thiazolidinediones as new efficient antimicrobial modulators against clinical methicillin-resistant Staphylococcus aureus. Bioorganic Chemistry, 2020, 94, 103434.	2.0	63
1062	Ethylâ€ <i>N</i> àêdodecanoylâ€ <scp>l</scp> â€arginate hydrochloride combats pathogens with lowâ€resistance generation by membrane attack and modifies gut microbiota structure. Microbial Biotechnology, 2020, 13, 722-737.	2.0	4
1063	Thermochemolysis–GC-MS as a tool for chemotaxonomy and predation monitoring of a predatory actinobacteria against a multidrug resistant bacteria. Journal of Analytical and Applied Pyrolysis, 2020, 145, 104740.	2.6	9
1064	Stereoselective Synthesis of Protected I-allo-Enduracididine and I-Enduracididine via Asymmetric Nitroaldol Reaction. Synthesis, 2020, 52, 942-948.	1.2	1
1065	Design, Synthesis, and Study of Lactam and Ring-Expanded Analogues of Teixobactin. Journal of Organic Chemistry, 2020, 85, 1331-1339.	1.7	10
1066	Black Phosphorus Nanosheets Counteract Bacteria without Causing Antibiotic Resistance. Chemistry - A European Journal, 2020, 26, 2478-2485.	1.7	45
1067	Therapeutic administration of the recombinant antimicrobial peptide microcin J25 effectively enhances host defenses against gut inflammation and epithelial barrier injury induced by enterotoxigenic <i>Escherichia coli</i>	0.2	45
1068	Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. Advanced Science, 2020, 7, 1901872.	5.6	173
1069	Antibiotics: From the Beginning to the Future: Part 2. Indian Journal of Pediatrics, 2020, 87, 43-47.	0.3	12
1070	Cell Membrane-Interrupting Antimicrobial Peptides from Isatis indigotica Fortune Isolated by a Bacillus subtilis Expression System. Biomolecules, 2020, 10, 30.	1.8	21
1071	Rational design of balanced dual-targeting antibiotics with limited resistance. PLoS Biology, 2020, 18, e3000819.	2.6	20
1072	Developing cyclic peptide-based drug candidates: an overview. Future Medicinal Chemistry, 2020, 12, 1687-1690.	1,1	13
1073	New approaches for antituberculosis leads from Actinobacteria. Drug Discovery Today, 2020, 25, 2335-2342.	3.2	7
1074	Exploring the Specificity of Extracellular Wastewater Peptidases to Improve the Design of Sustainable Peptide-Based Antibiotics. Environmental Science & Environmental Science	4.6	5
1075	$\mbox{\sc i}$ De Novo Resistance to Arg $\mbox{\sc sub}$ 10 -Teixobactin Occurs Slowly and Is Costly. Antimicrobial Agents and Chemotherapy, 2020, 65, .	1.4	8
1076	Pulse Dosing of Antibiotic Enhances Killing of a Staphylococcus aureus Biofilm. Frontiers in Microbiology, 2020, 11, 596227.	1.5	10
1077	Antimicrobial peptide-modified silver nanoparticles for enhancing the antibacterial efficacy. RSC Advances, 2020, 10, 38746-38754.	1.7	26
1078	Teixobactin Provides Protection against Inhalation Anthrax in the Rabbit Model. Pathogens, 2020, 9, 773.	1.2	5

#	Article	IF	CITATIONS
1079	Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Cell Surface, 2020, 6, 100044.	1.5	27
1080	Naphthoquinone-derivative as a synthetic compound to overcome the antibiotic resistance of methicillin-resistant S. aureus. Communications Biology, 2020, 3, 529.	2.0	39
1081	Comparison of Proteomic Responses as Global Approach to Antibiotic Mechanism of Action Elucidation. Antimicrobial Agents and Chemotherapy, 2020, 65, .	1.4	23
1082	Isopedopeptins A–H: Cationic Cyclic Lipodepsipeptides from Pedobacter cryoconitis UP508 Targeting WHO Top-Priority Carbapenem-Resistant Bacteria. ACS Chemical Biology, 2020, 15, 2937-2944.	1.6	8
1083	Antimicrobial natural products. Annual Reports in Medicinal Chemistry, 2020, 55, 77-113.	0.5	10
1084	metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods, 2020, 17, 1103-1110.	9.0	430
1085	Phosphonium-ammonium-based di-cationic ionic liquids as antibacterial over the ESKAPE group. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127389.	1.0	15
1086	Identification and characterization of novel small molecule inhibitors to control Mycoplasma gallisepticum infection in chickens. Veterinary Microbiology, 2020, 247, 108799.	0.8	17
1087	Synergistic action of substituted indole derivatives and clinically used antibiotics against drug-resistant bacteria. Future Microbiology, 2020, 15, 579-590.	1.0	5
1088	Potential Inhibitory Effect of Apis mellifera's Venom and of Its Two Main Components—Melittin and PLA2—on Escherichia coli F1F0-ATPase. Antibiotics, 2020, 9, 824.	1.5	7
1089	Synergistic effect of chlorogenic acid and levofloxacin against Klebsiella pneumonia infection in vitro and in vivo. Scientific Reports, 2020, 10, 20013.	1.6	24
1090	Automatic Annotation and Dereplication of Tandem Mass Spectra of Peptidic Natural Products. Analytical Chemistry, 2020, 92, 15862-15871.	3.2	18
1091	Nanoparticle-Based Devices in the Control of Antibiotic Resistant Bacteria. Frontiers in Microbiology, 2020, 11, 563821.	1.5	19
1092	Antimicrobial innovation: a current update and perspective on the antibiotic drug development pipeline. Future Medicinal Chemistry, 2020, 12, 2035-2065.	1.1	17
1093	The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices. Frontiers in Bioengineering and Biotechnology, 2020, 8, 910.	2.0	92
1094	Recent developments of tools for genome and metabolome studies in basidiomycete fungi and their application to natural product research. Biology Open, 2020, 9, .	0.6	16
1095	Discovery of an Inhibitor for Bacterial 3-Mercaptopyruvate Sulfurtransferase that Synergistically Controls Bacterial Survival. Cell Chemical Biology, 2020, 27, 1483-1499.e9.	2.5	15
1096	Amino [13]-macrodilactones: Synthesis, derivatization, and structural motifs. Tetrahedron Letters, 2020, 61, 152579.	0.7	O

#	Article	IF	Citations
1097	Benzoisothiazolone (BIT): A Fast, Efficient, and Recyclable Redox Reagent for Solid Phase Peptide Synthesis. European Journal of Organic Chemistry, 2020, 2020, 5358-5362.	1.2	6
1098	Exploring the physicochemical and antiproliferative properties of biaryl-linked [13]-macrodilactones. Bioorganic and Medicinal Chemistry, 2020, 28, 115671.	1.4	0
1099	Antimicrobial peptides as therapeutic agents: opportunities and challenges. Critical Reviews in Biotechnology, 2020, 40, 978-992.	5.1	220
1100	Soil and Human Health: Current Status and Future Needs. Air, Soil and Water Research, 2020, 13, 117862212093444.	1.2	131
1101	Multi-Omics Technologies Applied to Tuberculosis Drug Discovery. Applied Sciences (Switzerland), 2020, 10, 4629.	1.3	22
1102	Two distinct amphipathic peptide antibiotics with systemic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19446-19454.	3.3	61
1103	Total Synthesis of Malacidin A by βâ€Hydroxyaspartic Acid Ligationâ€Mediated Cyclization and Absolute Structure Establishment. Angewandte Chemie - International Edition, 2020, 59, 19868-19872.	7.2	22
1104	Mononuclear ruthenium(<scp>ii</scp>) theranostic complexes that function as broad-spectrum antimicrobials in therapeutically resistant pathogens through interaction with DNA. Chemical Science, 2020, 11, 8828-8838.	3.7	26
1105	Novel Antimicrobials from Uncultured Bacteria Acting against Mycobacterium tuberculosis. MBio, 2020, 11, .	1.8	16
1106	Harnessing the Microbiomes of Suppressive Composts for Plant Protection: From Metagenomes to Beneficial Microorganisms and Reliable Diagnostics. Frontiers in Microbiology, 2020, 11, 1810.	1.5	34
1107	Total Synthesis of Malacidin A by βâ€Hydroxyaspartic Acid Ligationâ€Mediated Cyclization and Absolute Structure Establishment. Angewandte Chemie, 2020, 132, 20040-20044.	1.6	2
1108	Effects of Antibiotic Treatment on Gut Microbiota and How to Overcome Its Negative Impacts on Human Health. ACS Infectious Diseases, 2020, 6, 2544-2559.	1.8	57
1109	Emerging nanobiomaterials against bacterial infections in postantibiotic era. View, 2020, 1, 20200014.	2.7	37
1110	<p>Cysteine Potentiates Bactericidal Antibiotics Activity Against Gram-Negative Bacterial Persisters</p> . Infection and Drug Resistance, 2020, Volume 13, 2593-2599.	1.1	17
1111	Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines, 2020, 8, 405.	1.4	86
1112	New Functional Criterion for Evaluation of Homologous MDR Pumps. Frontiers in Microbiology, 2020, 11, 592283.	1.5	8
1113	The concept and future prospects of soil health. Nature Reviews Earth & Environment, 2020, 1, 544-553.	12.2	486
1114	Antibiotic Resistance: Moving From Individual Health Norms to Social Norms in One Health and Global Health. Frontiers in Microbiology, 2020, 11, 1914.	1.5	64

#	Article	IF	CITATIONS
1115	Pentagalloyl glucose from Schinus terebinthifolia inhibits growth of carbapenem-resistant Acinetobacter baumannii. Scientific Reports, 2020, 10, 15340.	1.6	9
1116	Natural Products: A Potential Source of Malaria Transmission Blocking Drugs?. Pharmaceuticals, 2020, 13, 251.	1.7	17
1117	"Clicking―an Ionic Liquid to a Potent Antimicrobial Peptide: On the Route towards Improved Stability. International Journal of Molecular Sciences, 2020, 21, 6174.	1.8	13
1118	Highly Sensitive Labeling Reagents for Scarce Natural Products. ACS Chemical Biology, 2020, 15, 2499-2506.	1.6	14
1119	A Novel Peptide Antibiotic Produced by Streptomyces roseoflavus Strain INA-Ac-5812 With Directed Activity Against Gram-Positive Bacteria. Frontiers in Microbiology, 2020, 11, 556063.	1.5	18
1120	Mechanisms of action of ionic liquids on living cells: the state of the art. Biophysical Reviews, 2020, 12, 1187-1215.	1.5	71
1121	Using the Kaban Lakes Integrated Assessment Model for Investigating Potential Levels of Antibiotic Pollution of the Nizhniy Kaban and Sredniy Kaban Lakes. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	2
1122	Rapid Antibacterial Activity of Cannabichromenic Acid against Methicillin-Resistant Staphylococcus aureus. Antibiotics, 2020, 9, 523.	1.5	12
1123	A Review on Antistaphylococcal Secondary Metabolites from Basidiomycetes. Molecules, 2020, 25, 5848.	1.7	14
1124	Selection of sponge-associated bacteria with high potential for the production of antibacterial compounds. Scientific Reports, 2020, 10, 19614.	1.6	12
1125	Na <code>⁺</code> -NQR Confers Aminoglycoside Resistance via the Regulation of <code><scp>l-</scp></code> Alanine Metabolism. MBio, 2020, 11, .	1.8	36
1126	Sustainable Low-Volume Analysis of Environmental Samples by Semi-Automated Prioritization of Extracts for Natural Product Research (SeaPEPR). Marine Drugs, 2020, 18, 649.	2.2	7
1127	Discovery of Novel Biosynthetic Gene Cluster Diversity From a Soil Metagenomic Library. Frontiers in Microbiology, 2020, 11, 585398.	1.5	16
1128	Understanding tolerance to cell wall–active antibiotics. Annals of the New York Academy of Sciences, 2021, 1496, 35-58.	1.8	22
1129	Chemical Ecology of Streptomyces albidoflavus Strain A10 Associated with Carpenter Ant Camponotus vagus. Microorganisms, 2020, 8, 1948.	1.6	6
1130	A How-To Guide for Mode of Action Analysis of Antimicrobial Peptides. Frontiers in Cellular and Infection Microbiology, 2020, 10, 540898.	1.8	29
1131	Advances in antibiotic drug discovery: reducing the barriers for antibiotic development. Future Medicinal Chemistry, 2020, 12, 2067-2087.	1.1	3
1132	High-Throughput Cultivation for the Selective Isolation of Acidobacteria From Termite Nests. Frontiers in Microbiology, 2020, 11, 597628.	1.5	13

#	Article	IF	CITATIONS
1133	Antibacterial Discovery: 21st Century Challenges. Antibiotics, 2020, 9, 213.	1.5	54
1134	State-of-the-art methodologies to identify antimicrobial secondary metabolites in soil bacterial communities-A review. Soil Biology and Biochemistry, 2020, 147, 107838.	4.2	28
1135	Conjugated Polymer and Triphenylamine Derivative Codoped Nanoparticles for Photothermal and Photodynamic Antimicrobial Therapy. ACS Applied Bio Materials, 2020, 3, 3494-3499.	2.3	20
1136	Antimicrobial Resistance in ESKAPE Pathogens. Clinical Microbiology Reviews, 2020, 33, .	5.7	898
1137	Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nature Reviews Microbiology, 2020, 18, 546-558.	13.6	188
1138	New strategies and targets for antibacterial discovery. , 2020, , 249-272.		2
1139	Convergent Synthesis of Calcium-Dependent Antibiotic CDA3a and Analogues with Improved Antibacterial Activity via Late-Stage Serine Ligation. Organic Letters, 2020, 22, 4749-4753.	2.4	18
1140	New approaches to antibacterial drug discovery. , 2020, , 223-248.		1
1141	A Dual-Mechanism Antibiotic Kills Gram-Negative Bacteria and Avoids Drug Resistance. Cell, 2020, 181, 1518-1532.e14.	13.5	202
1142	Novel pyranopyrazole derivatives comprising a benzoxazole core as antimicrobial inhibitors: Design, synthesis, microbial resistance and machine aided results. Bioorganic Chemistry, 2020, 100, 103908.	2.0	24
1143	Metformin Restores Tetracyclines Susceptibility against Multidrug Resistant Bacteria. Advanced Science, 2020, 7, 1902227.	5 . 6	104
1144	Dimeric Stilbene Antibiotics Target the Bacterial Cell Wall in Drug-Resistant Gram-Positive Pathogens. Biochemistry, 2020, 59, 1966-1971.	1.2	7
1145	Antibiotics: A Bibliometric Analysis of Top 100 Classics. Antibiotics, 2020, 9, 219.	1.5	27
1146	Antibiotic drug discovery: Challenges and perspectives in the light of emerging antibiotic resistance. Advances in Genetics, 2020, 105, 229-292.	0.8	8
1147	Synthesis of the Cyanobacterial Antibiotics Anaephenes A and B. Journal of Natural Products, 2020, 83, 2036-2040.	1.5	8
1148	Anti-MRSA agent discovery using Caenorhabditis elegans-based high-throughput screening. Journal of Microbiology, 2020, 58, 431-444.	1.3	10
1149	Total Synthesis of Seongsanamide B. Organic Letters, 2020, 22, 4557-4561.	2.4	13
1150	Applications of weighted association networks applied to compositional data in biology. Environmental Microbiology, 2020, 22, 3020-3038.	1.8	11

#	Article	IF	CITATIONS
1151	The Killing Mechanism of Teixobactin against Methicillin-Resistant Staphylococcus aureus: an Untargeted Metabolomics Study. MSystems, 2020, 5, .	1.7	33
1152	Identification and validation of the mode of action of the chalcone anti-mycobacterial compounds. Cell Surface, 2020, 6, 100041.	1.5	10
1153	Teixobactin: A Paving Stone toward a New Class of Antibiotics?. Journal of Medicinal Chemistry, 2020, 63, 12171-12195.	2.9	22
1154	The Diverse Search for Synthetic, Semisynthetic and Natural Product Antibiotics From the 1940s and Up to 1960 Exemplified by a Small Pharmaceutical Player. Frontiers in Microbiology, 2020, 11, 976.	1.5	14
1155	Recent development of antibacterial agents to combat drug-resistant Gram-positive bacteria. , 2020, , 71-104.		6
1156	The Role of Single-Cell Technology in the Study and Control of Infectious Diseases. Cells, 2020, 9, 1440.	1.8	15
1157	A concise and scalable synthesis of a novel l-allo-enduracididine derivative. Tetrahedron Letters, 2020, 61, 152148.	0.7	0
1158	How to Stimulate and Facilitate Early Stage Antibiotic Discovery. ACS Infectious Diseases, 2020, 6, 1302-1304.	1.8	18
1159	Streptomyces sp SM01 isolated from Indian soil produces a novel antibiotic picolinamycin effective against multi drug resistant bacterial strains. Scientific Reports, 2020, 10, 10092.	1.6	32
1160	Expanding the Diversity of Bacterioplankton Isolates and Modeling Isolation Efficacy with Large-Scale Dilution-to-Extinction Cultivation. Applied and Environmental Microbiology, 2020, 86, .	1.4	34
1161	The implication of an advanced bioprocess for the acquisition of valuable microbial resources toward a sustainable and low-environmental burden society. Clean Technologies and Environmental Policy, 2020, 22, 993-994.	2.1	0
1162	Mode of action of teixobactins in cellular membranes. Nature Communications, 2020, 11, 2848.	5. 8	57
1163	Metallo- \hat{l}^2 -Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism. Biomolecules, 2020, 10, 854.	1.8	50
1164	Multiple ways to kill bacteria via inhibiting novel cell wall or membrane targets. Future Medicinal Chemistry, 2020, 12, 1253-1279.	1.1	26
1165	An Enhanced Variant Designed From DLP4 Cationic Peptide Against Staphylococcus aureus CVCC 546. Frontiers in Microbiology, 2020, 11, 1057.	1.5	19
1166	New approaches for targeting drug resistance through drug combination. , 2020, , 221-246.		1
1167	Hyaluronic acid and antimicrobial peptide-modified gold/silver hybrid nanocages to combat bacterial multidrug resistance. International Journal of Pharmaceutics, 2020, 586, 119505.	2.6	16
1168	Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance. Nature Communications, 2020, 11, 3105.	5.8	44

#	Article	IF	CITATIONS
1169	Mycobacterium tuberculosis Shikimate Pathway Enzymes as Targets for the Rational Design of Anti-Tuberculosis Drugs. Molecules, 2020, 25, 1259.	1.7	40
1170	New perspectives on the treatment of mycobacterial infections using antibiotics. Applied Microbiology and Biotechnology, 2020, 104, 4197-4209.	1.7	8
1171	Soil as a complex ecological system for meeting food and nutritional security., 2020,, 229-269.		16
1172	The Science of Antibiotic Discovery. Cell, 2020, 181, 29-45.	13.5	402
1173	Microbial biotechnology. , 2020, , 182-221.		2
1174	Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, 2020, 83, 770-803.	1.5	3,162
1175	Emergence of oxygen―and pyridoxal phosphateâ€dependent reactions. FEBS Journal, 2020, 287, 1403-1428.	2.2	29
1176	Recent Highlights in Antiâ€infective Medicinal Chemistry from South Africa. ChemMedChem, 2020, 15, 809-826.	1.6	3
1177	Highâ€throughput screening reveals small molecule modulators inhibitory to ⟨i⟩Acidovorax citrulli⟨/i⟩. Plant Pathology, 2020, 69, 818-826.	1,2	7
1178	Ca2+-Daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids. Nature Communications, 2020, 11, 1455.	5.8	130
1179	Light-Excited Antibiotics for Potentiating Bacterial Killing via Reactive Oxygen Species Generation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16150-16158.	4.0	42
1180	Exploring metabolic adaptation of Streptococcus pneumoniae to antibiotics. Journal of Antibiotics, 2020, 73, 441-454.	1.0	5
1181	Inducible Antibacterial Activity in the Bacillales by Triphenyl Tetrazolium Chloride. Scientific Reports, 2020, 10, 5563.	1.6	3
1182	Soil Biodiversity Integrates Solutions for a Sustainable Future. Sustainability, 2020, 12, 2662.	1.6	84
1183	5 challenges in understanding the role of the virome in health and disease. PLoS Pathogens, 2020, 16, e1008318.	2.1	30
1184	Overcoming Multidrugâ€Resistant MRSA Using Conventional Aminoglycoside Antibiotics. Advanced Science, 2020, 7, 1902070.	5.6	49
1185	Remodeling of Cross-bridges Controls Peptidoglycan Cross-linking Levels in Bacterial Cell Walls. ACS Chemical Biology, 2020, 15, 1261-1267.	1.6	32
1186	In Vitro Synergy of Pongamia pinnata Extract in Combination with Antibiotics for Inhibiting and Killing Methicillin-Resistant Staphylococcus aureus. Antibiotics, 2020, 9, 103.	1.5	2

#	Article	IF	CITATIONS
1187	Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry, 2020, 144, 107766.	4.2	88
1188	Combined Efficacy of an Antimicrobial Cationic Peptide Polymer with Conventional Antibiotics to Combat Multidrug-Resistant Pathogens. ACS Infectious Diseases, 2020, 6, 1228-1237.	1.8	41
1189	Lead molecules from natural products: Insight into tubercular targets. Studies in Natural Products Chemistry, 2020, , 41-84.	0.8	2
1190	Fluorescent Materials With Aggregation-Induced Emission Characteristics for Array-Based Sensing Assay. Frontiers in Chemistry, 2020, 8, 288.	1.8	13
1191	Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides—A Review. Pathogens, 2020, 9, 522.	1,2	39
1192	Nanoparticle-Based Therapeutic Approach for Diabetic Wound Healing. Nanomaterials, 2020, 10, 1234.	1.9	83
1193	Heterometrus spinifer: An Untapped Source of Anti-Tumor Molecules. Biology, 2020, 9, 150.	1.3	1
1194	The value of antimicrobial peptides in the age of resistance. Lancet Infectious Diseases, The, 2020, 20, e216-e230.	4.6	573
1195	Metal–Peptide Complexes as Promising Antibiotics to Fight Emerging Drug Resistance: New Perspectives in Tuberculosis. Antibiotics, 2020, 9, 337.	1.5	28
1196	Thiol-ene Enabled Chemical Synthesis of Truncated S-Lipidated Teixobactin Analogs. Frontiers in Chemistry, 2020, 8, 568.	1.8	8
1197	Resistance of Gram-Positive Bacteria to Current Antibacterial Agents and Overcoming Approaches. Molecules, 2020, 25, 2888.	1.7	138
1198	CPF-C1 analog with effective antimicrobial and antibiofilm activities against Staphylococcus aureus including MRSA. Biochimie, 2020, 176, 1-11.	1.3	6
1199	Tackling antimicrobial resistance by exploring new mechanisms of antibiotic action. Future Microbiology, 2020, 15, 703-708.	1.0	30
1200	Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–7. Molecules, 2020, 25, 2968.	1.7	5
1201	Ecological and biotechnological importance of secondary metabolites produced by coralâ€associated bacteria. Journal of Applied Microbiology, 2020, 129, 1441-1457.	1.4	38
1202	Methylation of Daptomycin Leading to the Discovery of Kynomycin, a Cyclic Lipodepsipeptide Active against Resistant Pathogens. Journal of Medicinal Chemistry, 2020, 63, 3161-3171.	2.9	25
1203	Synthetic biohybrid peptidoglycan oligomers enable pan-bacteria-specific labeling and imaging: $\langle i \rangle$ in vitro $\langle i \rangle$ and $\langle i \rangle$ in vivo $\langle i \rangle$. Chemical Science, 2020, 11, 3171-3179.	3.7	7
1204	Coevolution of Resistance Against Antimicrobial Peptides. Microbial Drug Resistance, 2020, 26, 880-899.	0.9	13

#	Article	IF	CITATIONS
1205	A Fluorescent Teixobactin Analogue. ACS Chemical Biology, 2020, 15, 1222-1231.	1.6	12
1206	Structures of teixobactin-producing nonribosomal peptide synthetase condensation and adenylation domains. Current Research in Structural Biology, 2020, 2, 14-24.	1.1	18
1207	Identification of Cisplatin and Palladium(II) Complexes as Potent Metallo-β-lactamase Inhibitors for Targeting Carbapenem-Resistant <i>Enterobacteriaceae</i> . ACS Infectious Diseases, 2020, 6, 975-985.	1.8	28
1208	Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics, 2020, 12, 142.	2.0	188
1209	Facial Amphiphilicity-Induced Polymer Nanostructures for Antimicrobial Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 21221-21230.	4.0	45
1210	Small Molecules with Membrane-Active Antibacterial Activity. ACS Applied Materials & Distribution (2020, 12, 21292-21299).	4.0	43
1211	Incentivising antibiotic research and development: is the UK's subscription payment model part of the solution?. Lancet Infectious Diseases, The, 2020, 20, 162-163.	4. 6	5
1212	Microorganisms and microbiome. , 2020, , 177-203.		1
1213	Emerging Treatment Options for Infections by Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms, 2020, 8, 191.	1.6	29
1214	Three New Diketopiperazines from the Previously Uncultivable Marine Bacterium <i>Gallaecimonas mangrovi</i> HKâ€28 Cultivated by iChip. Chemistry and Biodiversity, 2020, 17, e2000221.	1.0	15
1215	Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules, 2020, 25, 1716.	1.7	51
1216	Synthesis, crystal structure, magnetic, photoluminescence and antibacterial properties of dinuclear Copper(II) complex. Journal of Molecular Structure, 2020, 1214, 128233.	1.8	10
1217	Strategic Moves of "Superbugs―Against Available Chemical Scaffolds: Signaling, Regulation, and Challenges. ACS Pharmacology and Translational Science, 2020, 3, 373-400.	2.5	22
1218	Anti-HIV agent azidothymidine decreases Tet(X)-mediated bacterial resistance to tigecycline in Escherichia coli. Communications Biology, 2020, 3, 162.	2.0	41
1219	Antibacterial Activities of Selected Pure Compounds Isolated from Gut Bacteria of Animals Living in Polluted Environments. Antibiotics, 2020, 9, 190.	1.5	28
1220	Monasone Naphthoquinone Biosynthesis and Resistance in <i>Monascus</i> Fungi. MBio, 2020, 11, .	1.8	24
1221	Applying microbial ecology to antimicrobial discovery. Current Opinion in Microbiology, 2020, 57, 7-12.	2.3	4
1222	Genome mining as a biotechnological tool for the discovery of novel marine natural products. Critical Reviews in Biotechnology, 2020, 40, 571-589.	5.1	26

#	Article	IF	CITATIONS
1223	Using a System Dynamics Model for Investigating Potential Levels of Antibiotics Pollution in the Volga River. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	5
1224	Genetic Determinants Enabling Medium-Dependent Adaptation to Nafcillin in Methicillin-Resistant Staphylococcus aureus. MSystems, 2020, 5, .	1.7	8
1225	Anwendungen von Einzelzellmethoden in der mikrobiellen Naturstoffforschung. Angewandte Chemie, 2021, 133, 18560-18577.	1.6	0
1226	Opening up the Singleâ€Cell Toolbox for Microbial Natural Products Research. Angewandte Chemie - International Edition, 2021, 60, 18412-18428.	7.2	16
1227	Design, synthesis and drug resistance reversal potential of novel curcumin mimics Van D. Bioorganic Chemistry, 2021, 106, 104454.	2.0	3
1228	The need to innovate sample collection and library generation in microbial drug discovery: a focus on academia. Natural Product Reports, 2021, 38, 292-300.	5.2	16
1229	The chemistry and biology of guanidine secondary metabolites. Natural Product Reports, 2021, 38, 586-667.	5.2	30
1230	In-depth characterization of antibacterial activity of melittin against Staphylococcus aureus and use in a model of non-surgical MRSA-infected skin wounds. European Journal of Pharmaceutical Sciences, 2021, 156, 105592.	1.9	36
1231	Double Orthogonal Click Reactions for the Development of Antimicrobial Peptide Nanotubes. Chemistry - A European Journal, 2021, 27, 3029-3038.	1.7	10
1232	Innovations to culturing the uncultured microbial majority. Nature Reviews Microbiology, 2021, 19, 225-240.	13.6	254
1233	Development of a microbe domestication pod (MD Pod) for in situ cultivation of microâ€encapsulated marine bacteria. Biotechnology and Bioengineering, 2021, 118, 1166-1176.	1.7	12
1234	The revitalization of antimicrobial peptides in the resistance era. Pharmacological Research, 2021, 163, 105276.	3.1	47
1235	Microfluidic Technology for Antibacterial Resistance Study and Antibiotic Susceptibility Testing: Review and Perspective. ACS Sensors, 2021, 6, 3-21.	4.0	47
1236	<i>De Novo</i> Design of Flavonoid-Based Mimetics of Cationic Antimicrobial Peptides: Discovery, Development, and Applications. Accounts of Chemical Research, 2021, 54, 104-119.	7.6	38
1237	Design and Application of Conjugated Polymer Nanomaterials for Detection and Inactivation of Pathogenic Microbes. ACS Applied Bio Materials, 2021, 4, 370-386.	2.3	38
1238	Novel High-Throughput Strategy for the Aqueous Solubility Assessment of Peptides and Proteins Exhibiting a Propensity for Gelation: Application to the Discovery of Novel Antibacterial Teixobactin Analogues. Molecular Pharmaceutics, 2021, 18, 469-474.	2.3	4
1239	Design, synthesis, and biodistribution studies of new analogues of marine alkaloids: Potent inÂvitro and inÂvivo fungicidal agents against Candida spp European Journal of Medicinal Chemistry, 2021, 210, 113048.	2.6	11
1240	Design, synthesis, antibacterial and quorum quenching studies of 1,2,5-trisubstituted 1,2,4-triazoles. Journal of the Iranian Chemical Society, 2021, 18, 1051-1066.	1.2	4

#	Article	IF	CITATIONS
1241	Composite Film with Antibacterial Gold Nanoparticles and Silk Fibroin for Treating Multidrug-Resistant <i>E. coli</i> -Infected Wounds. ACS Biomaterials Science and Engineering, 2021, 7, 1827-1835.	2.6	27
1242	A novel nanohybrid antimicrobial based on chitosan nanoparticles and antimicrobial peptide microcin J25 with low toxicity. Carbohydrate Polymers, 2021, 253, 117309.	5.1	38
1243	Application of in situ cultivation in marine microbial resource mining. Marine Life Science and Technology, 2021, 3, 148-161.	1.8	14
1244	Targeting the Achilles' Heel of Bacteria: Different Mechanisms To Break Down the Peptidoglycan Cell Wall during Bacterial Warfare. Journal of Bacteriology, 2021, 203, .	1.0	24
1245	<scp>d</scp> -Amino acids in antimicrobial peptides: a potential approach to treat and combat antimicrobial resistance. Canadian Journal of Microbiology, 2021, 67, 119-137.	0.8	32
1246	Cysteineâ€rich antimicrobial peptides from plants: The future of antimicrobial therapy. Phytotherapy Research, 2021, 35, 256-277.	2.8	40
1247	Endophytic Microflora of Sri Lankan Plants: An Overview of the Therapeutic and Agricultural Applications of the Secondary Metabolites., 2021,, 153-175.		0
1248	Catalytic Synthesis of Cyclic Guanidines via Hydrogen Atom Transfer and Radical-Polar Crossover. ACS Catalysis, 2021, 11, 900-906.	5.5	27
1249	Methacrylamide based antibiotic polymers with no detectable bacterial resistance. Soft Matter, 2021, 17, 3404-3416.	1.2	4
1250	Laser-Induced MoO <i>_x</i> /Sulfur-Doped Graphene Hybrid Frameworks as Efficient Antibacterial Agents. Langmuir, 2021, 37, 1596-1604.	1.6	8
1251	Pipelines for Characterization of Microbial-Producing Drugs., 2021,,.		0
1252	A biofoundry workflow for the identification of genetic determinants of microbial growth inhibition. Synthetic Biology, 2021, 6, ysab004.	1.2	6
1253	SANDBOXES AS A POTENTIAL SOURCE OF DANGEROUS DRUG-RESISTANT ESCHERICHIA COLI AND STAPHYLOCOCCUS AUREUS STRAINS. Postepy Mikrobiologii, 2021, 60, 77-89.	0.1	0
1254	Induction of antibiotic specialized metabolism by coâ€culturing in a collection of phyllosphere bacteria. Environmental Microbiology, 2021, 23, 2132-2151.	1.8	12
1255	Targeting the bacterial SOS response for new antimicrobial agents: drug targets, molecular mechanisms and inhibitors. Future Medicinal Chemistry, 2021, 13, 143-155.	1.1	16
1256	Depsipeptide synthesis using a late-stage Ag(<scp>i</scp>)-promoted macrolactonisation of peptide thioamides. Chemical Communications, 2021, 57, 2081-2084.	2.2	14
1257	Photo-induced radical thiol–ene chemistry: a versatile toolbox for peptide-based drug design. Chemical Society Reviews, 2021, 50, 898-944.	18.7	36
1258	Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation. Virology Journal, 2021, 18, 9.	1.4	46

#	Article	IF	CITATIONS
1259	Rhizosphere Fingerprints: Novel Biomolecules Via Meta-Omics Technology. Rhizosphere Biology, 2021, , 171-188.	0.4	1
1260	Raw Soils. World Soils Book Series, 2021, , 199-214.	0.1	0
1261	Unbiased Identification of Angiogenin as an Endogenous Antimicrobial Protein With Activity Against Virulent Mycobacterium tuberculosis. Frontiers in Microbiology, 2020, 11, 618278.	1.5	10
1262	Semisynthesis and biological evaluation of a focused library of unguinol derivatives as next-generation antibiotics. Organic and Biomolecular Chemistry, 2021, 19, 1022-1036.	1.5	11
1263	Unconventional Antibacterials and Adjuvants. Accounts of Chemical Research, 2021, 54, 917-929.	7.6	20
1264	Peptidoglycan: Structure, Synthesis, and Regulation. EcoSal Plus, 2021, 9, .	2.1	47
1265	The sponges <i>Hymeniacidon perlevis</i> and <i>Halichondria panicea</i> are reservoirs of antibioticâ€producing bacteria against multiâ€drug resistant <i>Staphylococcus aureus</i> Journal of Applied Microbiology, 2021, 131, 706-718.	1.4	12
1266	Latent extinction risk of soil fauna in Beijing: a 4-year study from 2013 to 2016. Ecosystem Health and Sustainability, 2021, 7, .	1.5	2
1268	Single Molecule Non-cleavable Multiply Active Antibacterials., 2021,, 51-119.		0
1269	Natural products and derivatives as human drugs. , 2021, , 59-74.		0
1270	Anti-mycobacterial natural products and mechanisms of action. Natural Product Reports, 2022, 39, 77-89.	5.2	13
1271	Brief survey on organometalated antibacterial drugs and metal-based materials with antibacterial activity. RSC Chemical Biology, 2021, 2, 368-386.	2.0	30
1273	Burkholderia gladioli C101 metabolites protect tomato plants against Xanthomonas perforans infection. Journal of Plant Diseases and Protection, 2021, 128, 379-390.	1.6	5
1274	mSphere of Influence: Turning to Soil for Medicines. MSphere, 2021, 6, .	1.3	0
1275	Accessing previously uncultured marine microbial resources by a combination of alternative cultivation methods. Microbial Biotechnology, 2021, 14, 1148-1158.	2.0	12
1276	Novel Schiff base-bridged multi-component sulfonamide imidazole hybrids as potentially highly selective DNA-targeting membrane active repressors against methicillin-resistant Staphylococcus aureus. Bioorganic Chemistry, 2021, 107, 104575.	2.0	11
1277	Reversing Bacterial Resistance to Gold Nanoparticles by Size Modulation. Nano Letters, 2021, 21, 1992-2000.	4.5	46
1278	Trends in peptide drug discovery. Nature Reviews Drug Discovery, 2021, 20, 309-325.	21.5	792

#	Article	IF	CITATIONS
1279	Isopropoxy Benzene Guanidine Kills Staphylococcus aureus Without Detectable Resistance. Frontiers in Microbiology, 2021, 12, 633467.	1.5	7
1280	Selective Isolation of Multidrug-Resistant Pedobacter spp., Producers of Novel Antibacterial Peptides. Frontiers in Microbiology, 2021, 12, 642829.	1.5	10
1281	ROSEMARY VOLATILE OIL AS A PRESERVATIVE AGENT IN SOME CANNED MEAT FOODS. Iraqi Journal of Agricultural Sciences, 2021, 52, 155-162.	0.1	2
1282	The Microbiome of the Lebanese Wild Apple, Malus trilobata, is a Rich Source of Potential Biocontrol Agents for Fungal Post-harvest Pathogens of Apples. Current Microbiology, 2021, 78, 1388-1398.	1.0	4
1283	Paeoniflorin Derivative in Paeoniae Radix Aqueous Extract Suppresses Alpha-Toxin of Staphylococcus aureus. Frontiers in Microbiology, 2021, 12, 649390.	1.5	2
1284	Beneficial Impacts of Incorporating the Non-Natural Amino Acid Azulenyl-Alanine into the Trp-Rich Antimicrobial Peptide buCATHL4B. Biomolecules, 2021, 11, 421.	1.8	9
1285	Plant-Associated Microorganisms as a Potent Bio-Factory of Active Molecules against Multiresistant Pathogens. , 0, , .		1
1286	Predicting antimicrobial mechanism-of-action from transcriptomes: A generalizable explainable artificial intelligence approach. PLoS Computational Biology, 2021, 17, e1008857.	1.5	16
1287	Antibiotic resistance: Global health crisis and metagenomics. Biotechnology Reports (Amsterdam,) Tj ETQq0 0 0	rgBT/Ovei	·logৡ 10 Tf 50
1288	A Marine Antibiotic Kills Multidrug-Resistant Bacteria without Detectable High-Level Resistance. ACS Infectious Diseases, 2021, 7, 884-893.	1.8	20
1289	Graphene Matrices as Carriers for Metal Ions against Antibiotic Susceptible and Resistant Bacterial Pathogens. Coatings, 2021, 11, 352.	1.2	7
1290	Discovery, Synthesis, and Optimization of Peptide-Based Antibiotics. Accounts of Chemical Research, 2021, 54, 1878-1890.	7.6	23
1291	Disease-Suppressive Soilsâ€"Beyond Food Production: a Critical Review. Journal of Soil Science and Plant Nutrition, 2021, 21, 1437-1465.	1.7	64
1292	Light and Phages on Tackle of Infectious Diseases. , 0, , .		0
1293	Current Insights into the Chemistry and Antitubercular Potential of Benzimidazole and Imidazole Derivatives. Mini-Reviews in Medicinal Chemistry, 2021, 21, 643-657.	1.1	16
1294	Highly Sensitive Determination of Amino Acids by LC-MS under Neutral Conditions. Chemical and Pharmaceutical Bulletin, 2021, 69, 265-270.	0.6	6
1295	Synergistic Quinolone Sensitization by Targeting the <i>recA</i> SOS Response Gene and Oxidative Stress. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	8
1296	Emerging peptide antibiotics with therapeutic potential. Medicine in Drug Discovery, 2021, 9, 100078.	2.3	54

#	Article	IF	CITATIONS
1298	Biosynthetic Cyclization Catalysts for the Assembly of Peptide and Polyketide Natural Products. ChemCatChem, 2021, 13, 2095-2116.	1.8	20
1300	Anaerobic gut fungi are an untapped reservoir of natural products. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
1301	Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection. Materials Science and Engineering C, 2021, 123, 111971.	3.8	73
1303	Resistanceâ€guided isolation and characterization of antibioticâ€producing bacteria from river sediments. BMC Microbiology, 2021, 21, 116.	1.3	5
1304	Pseudomonas aeruginosa Growth Inhibitor, PAGI264: A Natural Product from a Newly Isolated Marine Bacterium, Bacillus sp. Strain REB264. Iranian Journal of Science and Technology, Transaction A: Science, 2021, 45, 1165-1175.	0.7	3
1305	Comparison of Strategies for Isolating Anaerobic Bacteria from the Porcine Intestine. Applied and Environmental Microbiology, 2021, 87, .	1.4	1
1306	Phage Digestion of a Bacterial Capsule Imparts Resistance to Two Antibiotic Agents. Microorganisms, 2021, 9, 794.	1.6	3
1307	Modular Design of Membrane-Active Antibiotics: From Macromolecular Antimicrobials to Small Scorpionlike Peptidomimetics. Journal of Medicinal Chemistry, 2021, 64, 9894-9905.	2.9	36
1309	Grazing and Climate Effects on Soil Chemical Properties and Bacterial Community in a Semiarid Area, Iran. Eurasian Soil Science, 2021, 54, 541-550.	0.5	0
1310	Recent Advances in Discovery of Lead Structures from Microbial Natural Products: Genomics- and Metabolomics-Guided Acceleration. Molecules, 2021, 26, 2542.	1.7	9
1311	The rumen eukaryotome is a source of novel antimicrobial peptides with therapeutic potential. BMC Microbiology, 2021, 21, 105.	1.3	11
1312	A Modular Synthetic Route Involving $\langle i \rangle N \langle i \rangle$ -Aryl-2-nitrosoaniline Intermediates Leads to a New Series of 3-Substituted Halogenated Phenazine Antibacterial Agents. Journal of Medicinal Chemistry, 2021, 64, 7275-7295.	2.9	21
1313	Developing Synergistic Drug Combinations To Restore Antibiotic Sensitivity in Drug-Resistant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	16
1314	Antibacterial properties of phenothiazine derivatives against multidrugâ€resistant Acinetobacter baumannii strains. Journal of Applied Microbiology, 2021, 131, 2235-2243.	1.4	6
1315	Potent Antimicrobial and Antibiofilm Activities of Feleucin-K3 Analogs Modified by α-(4-Pentenyl)-Ala against Multidrug-Resistant Bacteria. Biomolecules, 2021, 11, 761.	1.8	7
1316	Unveiling the Impact of Antibiotics and Alternative Methods for Animal Husbandry: A Review. Antibiotics, 2021, 10, 578.	1.5	50
1317	Molecular chirality of Macrolide antibiotics. Chemical Physics, 2021, 545, 111120.	0.9	0
1318	Biosynthesis and Mechanism of Action of the Cell Wall Targeting Antibiotic Hypeptin. Angewandte Chemie, 2021, 133, 13691-13698.	1.6	3

#	Article	IF	CITATIONS
1319	Labeling and Characterization of Phenolâ€Containing Glycopeptides Using Chemoselective Probes with Isotope Tags. ChemBioChem, 2021, 22, 2415-2419.	1.3	3
1320	Triggering Growth via Growth Initiation Factors in Nature: A Putative Mechanism for in situ Cultivation of Previously Uncultivated Microorganisms. Frontiers in Microbiology, 2021, 12, 537194.	1.5	8
1321	Brief Overview of Approaches and Challenges in New Antibiotic Development: A Focus On Drug Repurposing. Frontiers in Cellular and Infection Microbiology, 2021, 11, 684515.	1.8	56
1322	Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery. Nature Communications, 2021, 12, 3225.	5.8	31
1323	Plant Natural Flavonoids Against Multidrug Resistant Pathogens. Advanced Science, 2021, 8, e2100749.	5.6	148
1324	Strategies for Natural Products Discovery from Uncultured Microorganisms. Molecules, 2021, 26, 2977.	1.7	8
1325	Biosynthesis and Mechanism of Action of the Cell Wall Targeting Antibiotic Hypeptin. Angewandte Chemie - International Edition, 2021, 60, 13579-13586.	7.2	19
1326	Synergistic bactericidal activities of tobramycin with ciprofloxacin and azithromycin against Klebsiella pneumoniae. Journal of Antibiotics, 2021, 74, 528-537.	1.0	3
1327	A trimethoprim derivative impedes antibiotic resistance evolution. Nature Communications, 2021, 12, 2949.	5.8	41
1328	Targeted Therapeutic Strategies in the Battle Against Pathogenic Bacteria. Frontiers in Pharmacology, 2021, 12, 673239.	1.6	19
1329	Gausemycinsâ€A,B: Cyclic Lipoglycopeptides from Streptomyces sp.**. Angewandte Chemie, 2021, 133, 18842-18851.	1.6	1
1330	Brevibacillin 2V, a Novel Antimicrobial Lipopeptide With an Exceptionally Low Hemolytic Activity. Frontiers in Microbiology, 2021, 12, 693725.	1.5	13
1331	inPhocus: Perspectives of the Application of Bacteriophages in Poultry and Aquaculture Industries Based on Varms in China. Phage, 2021, 2, 69-74.	0.8	0
1332	Scalable Synthesis of I-allo-Enduracididine: The Unusual Amino Acid Present in Teixobactin. Synlett, 2021, 32, 1465-1468.	1.0	1
1333	Gausemycinsâ€A,B: Cyclic Lipoglycopeptides from <i>Streptomyces</i> sp.**. Angewandte Chemie - International Edition, 2021, 60, 18694-18703.	7.2	14
1334	Synthetic Peptides Derived From Lycosa Erythrognatha Venom: Interaction With Phospholipid Membranes and Activity Against Resistant Bacteria. Frontiers in Molecular Biosciences, 2021, 8, 680940.	1.6	4
1335	Antibacterial activity of thymol/carvacrol and clinoptilolite composites prepared by supercritical solvent impregnation. Journal of Porous Materials, 2021, 28, 1577-1584.	1.3	8
1336	Bacterial Protein Homeostasis Disruption as a Therapeutic Intervention. Frontiers in Molecular Biosciences, 2021, 8, 681855.	1.6	5

#	Article	IF	CITATIONS
1337	Fabrication of novel bioceramic α-Fe2O3/MnO nanocomposites: Study of their structural, magnetic, biocompatibility and antibacterial properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 268, 115119.	1.7	13
1338	Gut microbiota, body weight and histopathological examinations in experimental infection by methicillin-resistant Staphylococcus aureus: antibiotic versus bacteriocin. Beneficial Microbes, 2021, 12, 295-305.	1.0	7
1339	Natural products that target the cell envelope. Current Opinion in Microbiology, 2021, 61, 16-24.	2.3	10
1341	Nisin- and Ripcin-Derived Hybrid Lanthipeptides Display Selective Antimicrobial Activity against <i>Staphylococcus aureus</i> . ACS Synthetic Biology, 2021, 10, 1703-1714.	1.9	15
1342	Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: A critical review. Journal of Hazardous Materials, 2021, 411, 125148.	6.5	134
1343	In silico molecular docking studies of oxadiazole and pyrimidine bearing heterocyclic compounds as potential antimicrobial agents. Archiv Der Pharmazie, 2021, 354, e2100134.	2.1	15
1344	Combination of highâ€throughput microfluidics and FACS technologies to leverage the numbers game in natural product discovery. Microbial Biotechnology, 2022, 15, 415-430.	2.0	8
1345	Exploring the Potential of Micrococcus luteus Culture Supernatant With Resuscitation-Promoting Factor for Enhancing the Culturability of Soil Bacteria. Frontiers in Microbiology, 2021, 12, 685263.	1.5	12
1346	Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nature Communications, 2021, 12, 3331.	5.8	80
1347	A Natural Product Chemist's Guide to Unlocking Silent Biosynthetic Gene Clusters. Annual Review of Biochemistry, 2021, 90, 763-788.	5.0	50
1348	Sustainable futures over the next decade are rooted in soil science. European Journal of Soil Science, 2022, 73, .	1.8	19
1349	Novel Small Molecule Growth Inhibitors of (i) Xanthomonas (l) spp. Causing Bacterial Spot of Tomato. Phytopathology, 2021, 111, 940-953.	1.1	9
1350	Identification of simple arylfluorosulfates as potent agents against resistant bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
1352	Identification of a New Antimicrobial, Desertomycin H, Utilizing a Modified Crowded Plate Technique. Marine Drugs, 2021, 19, 424.	2.2	3
1353	Zinc oxide nanoparticles conjugated with clinically-approved medicines as potential antibacterial molecules. AMB Express, 2021, 11, 104.	1.4	45
1354	Mining and Biosynthesis of Bioactive Lanthipeptides From Microorganisms. Frontiers in Bioengineering and Biotechnology, 2021, 9, 692466.	2.0	10
1355	Cyclofaulknamycin with the Rare Amino Acid D-capreomycidine Isolated from a Well-Characterized Streptomyces albus Strain. Microorganisms, 2021, 9, 1609.	1.6	3
1356	Daptomycin exerts bactericidal effect through induction of excessive ROS production and blocking the function of stress response protein Usp2. Natural Sciences, 2021, 1, e10023.	1.0	8

#	Article	IF	CITATIONS
1357	An optimized analog of antimicrobial peptide Jelleine-1 shows enhanced antimicrobial activity against multidrug resistant P.Âaeruginosa and negligible toxicity inÂvitro and inÂvivo. European Journal of Medicinal Chemistry, 2021, 219, 113433.	2.6	30
1358	Bacterial Natural Product Drug Discovery for New Antibiotics: Strategies for Tackling the Problem of Antibiotic Resistance by Efficient Bioprospecting. Antibiotics, 2021, 10, 842.	1.5	31
1359	Renewed interests in the discovery of bioactive actinomycete metabolites driven by emerging technologies. Journal of Applied Microbiology, 2022, 132, 59-77.	1.4	17
1360	PEP27-2, a Potent Antimicrobial Cell-Penetrating Peptide, Reduces Skin Abscess Formation during <i>Staphylococcus aureus</i> Infections in Mouse When Used in Combination with Antibiotics. ACS Infectious Diseases, 2021, 7, 2620-2636.	1.8	15
1362	Rational Design of Dipicolylamine-Containing Carbazole Amphiphiles Combined with Zn ²⁺ as Potent Broad-Spectrum Antibacterial Agents with a Membrane-Disruptive Mechanism. Journal of Medicinal Chemistry, 2021, 64, 10429-10444.	2.9	24
1363	Brevibacillin 2V Exerts Its Bactericidal Activity via Binding to Lipid II and Permeabilizing Cellular Membranes. Frontiers in Microbiology, 2021, 12, 694847.	1.5	2
1364	The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays in Biochemistry, 2021, 65, 261-275.	2.1	17
1365	Semisynthetic Macrocyclic Lipo-lanthipeptides Display Antimicrobial Activity Against Bacterial Pathogens. ACS Synthetic Biology, 2021, 10, 1980-1991.	1.9	12
1366	Peptides Affecting the Outer Membrane Lipid Asymmetry System (MlaA-OmpC/F) Reduce Avian Pathogenic Escherichia coli (APEC) Colonization in Chickens. Applied and Environmental Microbiology, 2021, 87, e0056721.	1.4	12
1367	Fungal Guttation, a Source of Bioactive Compounds, and Its Ecological Role—A Review. Biomolecules, 2021, 11, 1270.	1.8	16
1368	Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomedicine and Pharmacotherapy, 2021, 140, 111756.	2.5	11
1369	Bioprospecting marine actinomycetes for antileishmanial drugs: current perspectives and future prospects. Heliyon, 2021, 7, e07710.	1.4	14
1370	Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.	13.8	439
1371	The Total Chemical Synthesis and Biological Evaluation of the Cationic Antimicrobial Peptides, Laterocidine and Brevicidine. Journal of Natural Products, 2021, 84, 2165-2174.	1.5	9
1372	Shaping the Future of Probiotics and Prebiotics. Trends in Microbiology, 2021, 29, 667-685.	3.5	270
1373	A cultural ecosystem service perspective on the interactions between humans and soils in gardens. People and Nature, 2021, 3, 1025-1035.	1.7	3
1375	Identification of the scorpion venom-derived antimicrobial peptide Hp1404 as a new antimicrobial agent against carbapenem-resistant Acinetobacter baumannii. Microbial Pathogenesis, 2021, 157, 104960.	1.3	9
1376	Total Synthesis of Mannopeptimycin \hat{l}^2 via \hat{l}^2 -Hydroxyenduracididine Ligation. Journal of the American Chemical Society, 2021, 143, 12784-12790.	6.6	12

#	Article	IF	CITATIONS
1377	Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes. IScience, 2021, 24, 102975.	1.9	19
1378	The evolution of the antimicrobial peptide database over 18 years: Milestones and new features. Protein Science, 2022, 31, 92-106.	3.1	34
1379	Gut Microbiota is an Important Source of Bacteriocins and Their In Situ Expression Can Be Explored for Treatment of Bacterial Infections. Probiotics and Antimicrobial Proteins, 2021, 13, 1759-1765.	1.9	16
1380	Identification, Isolation, and Characterization of Medipeptins, Antimicrobial Peptides From Pseudomonas mediterranea EDOX. Frontiers in Microbiology, 2021, 12, 732771.	1.5	3
1381	An efficient method to screen for the soil bacteria producing therapeutically effective antibiotics. Journal of Antibiotics, 2021, 74, 850-855.	1.0	3
1382	Improving Fungal Cultivability for Natural Products Discovery. Frontiers in Microbiology, 2021, 12, 706044.	1.5	15
1383	Nanomaterials in the Management of Gram-Negative Bacterial Infections. Nanomaterials, 2021, 11, 2535.	1.9	23
1384	Berkchaetoazaphilone B has antimicrobial activity and affects energy metabolism. Scientific Reports, 2021, 11, 18774.	1.6	3
1385	Development of Amphiphilic Coumarin Derivatives as Membrane-Active Antimicrobial Agents with Potent <i>In Vivo</i> Efficacy against Gram-Positive Pathogenic Bacteria. ACS Infectious Diseases, 2021, 7, 2864-2875.	1.8	10
1386	From the soil to the clinic: the impact of microbial secondary metabolites on antibiotic tolerance and resistance. Nature Reviews Microbiology, 2022, 20, 129-142.	13.6	43
1387	Repurposing Candesartan Cilexetil as Antibacterial Agent for MRSA Infection. Frontiers in Microbiology, 2021, 12, 688772.	1.5	3
1388	Potential antibacterial ethanol-bridged purine azole hybrids as dual-targeting inhibitors of MRSA. Bioorganic Chemistry, 2021, 114, 105096.	2.0	5
1389	Antimicrobial peptides: mechanism of action, activity and clinical potential. Military Medical Research, 2021, 8, 48.	1.9	226
1390	PepVAE: Variational Autoencoder Framework for Antimicrobial Peptide Generation and Activity Prediction. Frontiers in Microbiology, 2021, 12, 725727.	1.5	37
1391	Drug resistance reversal potential of multifunctional thieno[3,2-c]pyran via potentiation of antibiotics in MDR P. aeruginosa. Biomedicine and Pharmacotherapy, 2021, 142, 112084.	2.5	8
1392	Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 2021, 222, 113628.	2.6	24
1393	Synthesis of silver-nisin nanoparticles with low cytotoxicity as antimicrobials against biofilm-forming pathogens. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111965.	2.5	16
1394	Identification of antibiotic pairs that evade concurrent resistance via a retrospective analysis of antimicrobial susceptibility test results. Lancet Microbe, The, 2021, 2, e545-e554.	3.4	26

#	Article	IF	CITATIONS
1395	Mining for novel antibiotics. Current Opinion in Microbiology, 2021, 63, 66-69.	2.3	7
1396	Primary discovery of 1-aryl-5-substituted-1H-1,2,3-triazole-4-carboxamides as promising antimicrobial agents. Journal of Molecular Structure, 2021, 1246, 131146.	1.8	14
1398	<i>Staphylococcus aureus</i> entanglement in self-assembling \hat{l}^2 -peptide nanofibres decorated with vancomycin. Nanoscale Advances, 2021, 3, 2607-2616.	2.2	6
1399	The role and mechanism of polydopamine and cuttlefish ink melanin carrying copper ion nanoparticles in antibacterial properties and promoting wound healing. Biomaterials Science, 2021, 9, 5951-5964.	2.6	19
1400	Metagenomics for Improving Soil Fertility. Soil Biology, 2021, , 267-282.	0.6	2
1401	Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 2021, 20, 200-216.	21.5	1,990
1402	Soil Microbiome for Plant Growth and Bioremediation. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 158-180.	0.3	1
1403	Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials. Biochemical Society Transactions, 2021, 49, 203-215.	1.6	17
1404	The search for novel treatment strategies for <i>Streptococcus pneumoniae </i> infections. FEMS Microbiology Reviews, 2021, 45, .	3.9	8
1405	Highly efficient nanomedicine from cationic antimicrobial peptide-protected Ag nanoclusters. Journal of Materials Chemistry B, 2021, 9, 307-313.	2.9	11
1406	Cationic Glycosylated Block Co- \hat{l}^2 -peptide Acts on the Cell Wall of Gram-Positive Bacteria as Anti-biofilm Agents. ACS Applied Bio Materials, 2021, 4, 3749-3761.	2.3	8
1407	Interactions Between 2D Materials and Living Matter: A Review on Graphene and Hexagonal Boron Nitride Coatings. Frontiers in Bioengineering and Biotechnology, 2021, 9, 612669.	2.0	21
1408	Medical Geology of Soil Ecology. , 2021, , 343-401.		1
1409	Assessment of the biological potential of diaryltriazene-derived triazene compounds. Scientific Reports, 2021, 11, 2541.	1.6	7
1410	Pathogenesis of Biomaterial-Associated Infection. , 2020, , 109-169.		3
1411	Cytotoxic Effects and Biocompatibility of Antimicrobial Materials. , 2015, , 113-147.		1
1412	Bacteria in Indoor and Occupational Settings. , 2017, , 35-55.		2
1413	Antimicrobials from Microbes. , 2017, , 291-326.		6

#	Article	IF	CITATIONS
1414	Role of Soil Microbiome and Enzyme Activities in Plant Growth Nutrition and Ecological Restoration of Soil Health. Microorganisms for Sustainability, 2019, , 99-132.	0.4	13
1415	Bioactive Phytocompounds to Fight Against Antimicrobial Resistance. , 2020, , 335-381.		2
1416	Design of antibacterial peptide-like conjugated molecule with broad spectrum antimicrobial ability. Science China Chemistry, 2018, 61, 113-117.	4.2	21
1417	Specialized Metabolites for Bacterial Communication. , 2020, , 66-96.		1
1418	Medicinal plants used in the treatment of tuberculosis - Ethnobotanical and ethnopharmacological approaches. Biotechnology Advances, 2020, 44, 107629.	6.0	24
1419	Conventional and emerging technologies for removal of antibiotics from wastewater. Journal of Hazardous Materials, 2020, 400, 122961.	6.5	358
1420	\hat{l}^2 -Lactams against the Fortress of the Gram-Positive <i>Staphylococcus aureus</i> Bacterium. Chemical Reviews, 2021, 121, 3412-3463.	23.0	52
1422	Mining the microbial dark matter. Nature, 2015, 522, 270-273.	13.7	136
1423	Promising antibiotic discovered in microbial â€~dark matter'. Nature, 0, , .	13.7	3
1424	Spread of antibiotic-resistance gene does not spell bacterial apocalypse — yet. Nature, 0, , .	13.7	8
1425	Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature, 2020, 578, 582-587.	13.7	177
1426	Novel therapeutics for bacterial infections. Emerging Topics in Life Sciences, 2017, 1, 85-92.	1.1	2
1427	The diminished antimicrobial pipeline. Microbiology Australia, 2019, 40, 92.	0.1	4
1428	Designer broad-spectrum polyimidazolium antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31376-31385.	3.3	31
1429	Longimicrobium terrae gen. nov., sp. nov., an oligotrophic bacterium of the under-represented phylum Gemmatimonadetes isolated through a system of miniaturized diffusion chambers. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1976-1985.	0.8	53
1430	Luteolibacter gellanilyticus sp. nov., a gellan-gum-degrading bacterium of the phylum Verrucomicrobia isolated from miniaturized diffusion chambers. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 3951-3959.	0.8	25
1441	Norfloxacin salts of carboxylic acids curtail planktonic and biofilm mode of growth in ESKAPE pathogens. Journal of Applied Microbiology, 2018, 124, 408-422.	1.4	9
1442	An Engineered Double Lipid II Binding Motifs-Containing Lantibiotic Displays Potent and Selective Antimicrobial Activity against Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	31

#	Article	IF	CITATIONS
1443	At the Crossroads of Bioenergetics and Antibiotic Discovery. Biochemistry (Moscow), 2020, 85, 1469-1483.	0.7	3
1444	Using Fragment-Based Approaches to Discover New Antibiotics. SLAS Discovery, 2018, 23, 495-510.	1.4	20
1445	Individuality, phenotypic differentiation, dormancy and †persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Research, 2015, 4, 179.	0.8	46
1446	Individuality, phenotypic differentiation, dormancy and †persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Research, 2015, 4, 179.	0.8	49
1447	Antibiotic Discovery. Materials and Methods, 0, 8, .	0.0	7
1448	History of antibiotic adaptation influences microbial evolutionary dynamics during subsequent treatment. PLoS Biology, 2017, 15, e2001586.	2.6	90
1449	Castanea sativa (European Chestnut) Leaf Extracts Rich in Ursene and Oleanene Derivatives Block Staphylococcus aureus Virulence and Pathogenesis without Detectable Resistance. PLoS ONE, 2015, 10, e0136486.	1.1	92
1450	Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters. PLoS ONE, 2017, 12, e0173765.	1.1	15
1451	Convergence of Staphylococcus aureus Persister and Biofilm Research: Can Biofilms Be Defined as Communities of Adherent Persister Cells?. PLoS Pathogens, 2016, 12, e1006012.	2.1	121
1452	New FDA approved antibacterial drugs: 2015-2017. Discoveries, 2018, 6, e81.	1.5	32
1453	Novel Approaches to Developing New Antibiotics. Journal of Bacteriology & Mycology Open Access, 2017, 4, .	0.2	1
1455	Synthesis, characterization and antimicrobial activity of Cr (III), Co (II) and Ni (II) complexes with 2-thiazoline-2-tiol derivative ligands against bacteria and yeasts of clinical importance. Anais Da Academia Brasileira De Ciencias, 2019, 91, .	0.3	2
1456	Resistência aos antimicrobianos: uma revisão dos desafios na busca por novas alternativas de tratamento. Revista De Epidemiologia E Controle De Infecção, 2018, 8, 472-482.	0.0	14
1458	New microorganism isolation techniques with emphasis on laser printing. International Journal of Bioprinting, 2018, 5, 165.	1.7	26
1459	New antimicrobial peptide kills drug-resistant pathogens without detectable resistance. Oncotarget, 2018, 9, 15616-15634.	0.8	26
1460	The Medicinal Chemistry of Therapeutic Peptides: Recent Developments in Synthesis and Design Optimizations. Current Medicinal Chemistry, 2019, 26, 2330-2355.	1.2	12
1461	Insight into Structure-Function Relationships of \hat{I}^2 -Lactamase and BLIPs Interface Plasticity using Protein-Protein Interactions. Current Pharmaceutical Design, 2019, 25, 3378-3389.	0.9	2
1462	Bacterial Resistance: Antibiotics of Last Generation used in Clinical Practice and the Arise of Natural Products as New Therapeutic Alternatives. Current Pharmaceutical Design, 2020, 26, 815-837.	0.9	21

#	Article	IF	CITATIONS
1463	Substituted Furanocoumarins as Novel Class of Antibacterial Translation Inhibitors. Combinatorial Chemistry and High Throughput Screening, 2019, 22, 400-410.	0.6	1
1464	Antifungal Proteins with Antiproliferative Activity on Cancer Cells and HIV-1 Enzyme Inhibitory Activity from Medicinal Plants and Medicinal Fungi. Current Protein and Peptide Science, 2019, 20, 265-276.	0.7	9
1465	Importance and Implications of the Production of Phenolic Secondary Metabolites by Endophytic Fungi: A Mini-Review. Mini-Reviews in Medicinal Chemistry, 2016, 16, 259-271.	1.1	56
1466	New antibiotics against bacterial resistance. Infectio, 2019, 23, 382.	0.4	5
1467	The global threat of antibiotic resistance: what can be done?. Journal of Global Health Reports, 0, 1, .	1.0	4
1468	BrevicidineB, a New Member of the Brevicidine Family, Displays an Extended Target Specificity. Frontiers in Microbiology, 2021, 12, 693117.	1.5	22
1469	Identification and Characterization of pantocin wh-1, a Novel Cyclic Polypeptide Produced by Pantoea dispersa W18. Molecules, 2020, 25, 485.	1.7	4
1470	The Strategies of Pathogen-Oriented Therapy on Circumventing Antimicrobial Resistance. Research, 2020, 2020, 2016201.	2.8	14
1471	A new group of compounds derived from 4-, 5-, 6- and 7-aminoindoles with antimicrobial activity. Research Results in Pharmacology, 2018, 4, 17-26.	0.3	6
1472	Antibiotic-Resistant Bacteria and the Use of Novel Antibiotics in Children. Pediatric Annals, 2018, 47, e354-e358.	0.3	1
1473	Combating tuberculosis infection: A forbidding challenge. Indian Journal of Pharmaceutical Sciences, 2016, 78, 8.	1.0	18
1474	Modes of Action of Some Recently and Previously Discovered and Used Antimicrobial Agents/Drugs and Molecules: An Overview. Journal of Pharmacogenomics & Pharmacoproteomics, 2017, 08, .	0.2	2
1475	Bioprospecting of Uncultured Microorganisms: The Dawning of Antibiotic Discovery. Clinical Microbiology (Los Angeles, Calif), 2016, 05, .	0.2	2
1476	Inhibitory effect of hop fractions against Gram-positive multi-resistant bacteria. A pilot study. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2018, 162, 276-283.	0.2	11
1478	A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. ELife, 2017, 6, .	2.8	132
1479	Comparison of the diversity of cultured and total bacterial communities in marine sediment using culture-dependent and sequencing methods. PeerJ, 2020, 8, e10060.	0.9	7
1480	Nanotechnology-based therapeutic applications: <i>in vitro and in vivo</i> clinical studies for diabetic wound healing. Biomaterials Science, 2021, 9, 7705-7747.	2.6	29
1481	Needles in haystacks: reevaluating old paradigms for the discovery of bacterial secondary metabolites. Natural Product Reports, 2021, 38, 2083-2099.	5.2	14

#	Article	IF	CITATIONS
1482	Novel and Conventional Isolation Techniques to Obtain Planctomycetes from Marine Environments. Microorganisms, 2021, 9, 2078.	1.6	12
1483	Functional Diversity within Gut Microbiomes: Implications for Conserving Biodiversity. Conservation, 2021, 1, 311-326.	0.8	1
1484	Antibiotic resistance genes in bacteria: Occurrence, spread, and control. Journal of Basic Microbiology, 2021, 61, 1049-1070.	1.8	70
1485	A selective antibiotic for Lyme disease. Cell, 2021, 184, 5405-5418.e16.	13.5	33
1486	Discovery, Optimization, and Clinical Application of Natural Antimicrobial Peptides. Biomedicines, 2021, 9, 1381.	1.4	24
1487	The Long-Term Effect of a Nine Amino-Acid Antimicrobial Peptide AS-hepc3(48-56) Against Pseudomonas aeruginosa With No Detectable Resistance. Frontiers in Cellular and Infection Microbiology, 2021, 11, 752637.	1.8	8
1488	16S rRNA Gene Amplicon Sequencing Data of the Iron Quadrangle Ferruginous Caves (Brazil) Shows the Importance of Conserving This Singular and Threatened Geosystem. Diversity, 2021, 13, 494.	0.7	2
1489	Visualizing Teixobactin Supramolecular Assemblies and Cell Wall Damage in <i>B. Subtilis</i> Using CryoEM. ACS Omega, 2021, 6, 27412-27417.	1.6	2
1491	Accelerating large scale <i>de novo</i> metagenome assembly using GPUs., 2021,,.		2
1492	Approaches to abate antibiotic resistance. Journal of Gastrointestinal Infections, 2015, 5, 57-57.	0.1	0
1493	Teixobactin: A New Class of Antibiotic. SOJ Microbiology & Infectious Diseases, 2015, 3, .	0.7	3
1494	Bioprospecting of Uncultured Marine Microorganisms Needs More New Cultivation Techniques for Natural Products Discovery. Journal of Marine Biology and Aquaculture, 2015, 1, 1-2.	0.1	1
1495	Antimicrobial Activity and Identification of Actinomycete Strains from a Folk Medicinal Soil in China. Applied Microbiology Open Access, 2015, 1 , .	0.2	0
1496	Surface Functionalization of Gold Nanoparticles for Physical Antibiotics Coping with Antibiotic-Resistant Bacteria. Journal of Basic & Applied Sciences, 0, 11, 286-290.	0.8	1
1497	Identification of Inhibitors of Fatty Acid Synthesis Enzymes in Mycobacterium Smegmatis. Journal of Computational Science Education, 2015, 6, 25-31.	0.3	0
1498	Antibiotics for Gram-negative infections. Einstein (Sao Paulo, Brazil), 2015, 13, 7-8.	0.3	2
1500	HNO – allgemeine Aspekte. , 2016, , 85-134.		0
1501	Lipid Intermediates in Bacterial Peptidoglycan Biosynthesis. , 2016, , 1-19.		1

#	Article	IF	CITATIONS
1502	A Systems Biology View of the Development of New Antimicrobial Therapies. Journal of Bacteriology $\&$ Mycology Open Access, 2016, 1, .	0.2	0
1504	Biochemical Composition, Antioxidant and Antibacterial Activities of Commonly Used Culinary Indian Spices. American Journal of Biochemistry and Molecular Biology, 2016, 6, 113-120.	0.6	0
1506	The effect of composite Actinomycete fertilizer for disease prevention and control of panax notoginseng., 2016, 3, 80-85.		0
1507	New antibiotics in the clinical practise and in the clinical trials. Klinicka Farmakologie A Farmacie, 2016, 30, 23-28.	0.1	1
1508	Bluegenics: Bioactive Natural Products of Medicinal Relevance and Approaches to Their Diversification. Progress in Molecular and Subcellular Biology, 2017, 55, 159-186.	0.9	0
1509	Novel Sources of Antimicrobials. , 2017, , 327-349.		0
1510	Texiobactin, a Potent Killer of Antibiotic Resistant Pathogens. Journal of Bacteriology and Virology, 2017, 47, 102.	0.0	0
1511	A REVIEW ON COMBATING ANTIBIOTIC RESISTANCE. International Journal of Medical and Biomedical Studies, 2017, 1, .	0.0	1
1513	Present and future etiological treatment of bacterial pneumonia 3. The antibacterial drugs under development. Zdorovʹe Rebenka, 2017, 12, 590-603.	0.0	0
1514	Efficacy and Safety of Aerosolized Colistin in the Treatment of Ventilator-Associated Pneumonia: A Systematic Review and Meta-analysis. Korean Journal of Clinical Pharmacy, 2017, 27, 207-213.	0.0	0
1516	The Effect of Pollutants on the Emergence of Rifampicin Resistance in Bacteria of the Pseudomonas Genus. Izvestiya of Saratov University New Series Series: Chemistry Biology Ecology, 2018, 18, 439-445.	0.0	0
1517	Searching for New Antibiotics Right Under our Feet. Journal of Public Health Issues and Practices, 2018, 2, .	0.2	0
1519	ANTIMICROBIAL-RESISTANT MICROORGANISMS IN FOOD AS A HYGIENIC PROBLEM. Gigiena I Sanitariia, 2018, 97, 342-354.	0.1	2
1521	High-Throughput Screening of Biodiversity for Antibiotic Discovery. Acta Naturae, 2018, 10, 23-29.	1.7	4
1523	Impediments to Discovery of New Antimicrobials with New Modes of Action., 2019, , 145-162.		0
1526	Eliminating Mycobacterial Persistence: Novel Targets for Anti-TB Therapy. , 2019, , 57-79.		2
1527	Antimicrobial activity of Basidiomycetes fungi isolated from a Kenyan tropical forest. African Journal of Biotechnology, 2019, 18, 112-123.	0.3	1
1528	Exploration of Soil Resistome Through a Metagenomic Approach. , 2019, , 313-325.		0

#	ARTICLE	IF	CITATIONS
1529	Resurgence of the Interest in Microorganisms and Plants as Sources of Secondary Metabolites for Treating Staphylococcal Infections. Natural Products Journal, 2019, 9, 14-25.	0.1	1
1530	難培éðæ"³¼ç·šèŒ <i>Leucobacter</i> sp. ASN212æªãŒè¦æ±,ã™ã,‹å¢—æ®–å›åã®æŽ¢ç´¢. Kagaku To Seibutsu,	201 9, 57	, 0 43-145
1533	The Challenge for Antibacterial Drugs Against Multidrug-Resistant Bacteria: Antibacterial Drugs without Causing Resistance. Kagaku To Seibutsu, 2019, 57, 416-427.	0.0	0
1537	The comparative study among the MRSAcin, Nisin A and vancomycin, on biofilm formation by Methicillin resistance Staphylococcus aureus isolated from food sources International Journal of Drug Delivery Technology, 2019, 9, .	0.0	1
1539	MALACIDINAS: UMA NOVA CLASSE DE ANTIBIÓTICOS E SEU POTENCIAL TERAPÊUTICO. Ensaios USF, 2019, 3, 14-22.	0.1	1
1540	Microbes as Natural Products for Drug Discovery. , 2020, , 317-331.		1
1541	<i>Alchornea floribunda</i> (MýII. Arg.) - A review of its phytochemistry and biological activities. Tropical Journal of Pharmaceutical Research, 2020, 19, 1113-1120.	0.2	4
1542	Antibacterial Agents Targeting the Bacterial Cell Wall. Current Medicinal Chemistry, 2020, 27, 2902-2926.	1.2	11
1544	Complex cyclic peptide synthesis via serine/threonine ligation chemistry. Bioorganic and Medicinal Chemistry Letters, 2021, 54, 128430.	1.0	4
1545	Spotlight on the Selected New Antimicrobial Innate Immune Peptides Discovered During 2015-2019. Current Topics in Medicinal Chemistry, 2020, 20, 2984-2998.	1.0	7
1546	Đа Đ¿ĐμÑ€ĐμÑĐμчĐμĐ½Đ¸Đ¸ Đ±Đ¸Đ¾ÑĐ½ĐμÑ€Đ³ĐμÑ,иаи и Đ¾Ñ,Đ°Ñ€Ñ‹Ñ,Đ¸Ñ•Đ°Đ½Ñ,Đ¸Đ±Đ¸Đ¾Ñ,£)₅D::D 3/4Đ2	. B iochemis
1547	Microbial Co-Cultures as Source of Novel Drugs for Infections. , 2020, , 142-160.		O
1548	å¦è¡"éf½å"ãfœã,¹ãf^ãf³ã«ãŠã•ã,‹å§å¦ã®ç"ç©¶ã•æ•™è,². Kagaku To Seibutsu, 2020, 58, 59-63.	0.0	0
1549	Impacts of Soil Pollution on Human Health with Special Reference to Human Physiognomy and Physiology. , 2020, , 163-177.		O
1553	Serum apolipoprotein A-I potentiates the therapeutic efficacy of lysocin E against Staphylococcus aureus. Nature Communications, 2021, 12, 6364.	5.8	12
1554	Mining for encrypted peptide antibiotics in the human proteome. Nature Biomedical Engineering, 2022, 6, 67-75.	11.6	64
1555	In Silico/In Vitro Strategies Leading to the Discovery of New Nonribosomal Peptide and Polyketide Antibiotics Active against Human Pathogens. Microorganisms, 2021, 9, 2297.	1.6	10
1557	How researchers are revamping antimicrobial drugs. Nature, 2020, 586, S55-S56.	13.7	4

#	Article	IF	CITATIONS
1558	Sequence Permutation Generates Peptides with Different Antimicrobial and Antibiofilm Activities. Pharmaceuticals, 2020, 13, 271.	1.7	8
1559	The antibiotic resistance crisis: part 2: management strategies and new agents. P and T, 2015, 40, 344-52.	1.0	146
1561	The Microbiome, Antibiotics, and Health of the Pediatric Population. , 2016, 3, 388-390.		1
1562	High-Throughput Screening of Biodiversity for Antibiotic Discovery. Acta Naturae, 2018, 10, 23-29.	1.7	O
1563	Recent applications of solid-phase strategy in total synthesis of antibiotics. RSC Advances, 2021, 11, 37942-37951.	1.7	1
1564	In silico genome mining of potential novel biosynthetic gene clusters for drug discovery from Burkholderia bacteria. Computers in Biology and Medicine, 2022, 140, 105046.	3.9	6
1565	Harnessing intercellular signals to engineer the soil microbiome. Natural Product Reports, 2021, , .	5.2	2
1566	Bis(Tryptophan) Amphiphiles Form Ion Conducting Pores and Enhance Antimicrobial Activity against Resistant Bacteria. Antibiotics, 2021, 10, 1391.	1.5	0
1567	Antibacterial, remineralising and matrix metalloproteinase inhibiting scandium-doped phosphate glasses for treatment of dental caries. Dental Materials, 2022, 38, 94-107.	1.6	4
1568	THCz: Small molecules with antimicrobial activity that block cell wall lipid intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
1569	Antibacterial Discovery via Phenotypic DNA-Encoded Library Screening. ACS Chemical Biology, 2021, 16, 2752-2756.	1.6	12
1570	Collateral Sensitivity Interactions between Antibiotics Depend on Local Abiotic Conditions. MSystems, 2021, 6, e0105521.	1.7	7
1571	Role of membrane proteins in bacterial resistance to antimicrobial peptides. Medicinal Research Reviews, 2021, , .	5.0	5
1572	Prospects for Antibacterial Discovery and Development. Journal of the American Chemical Society, 2021, 143, 21127-21142.	6.6	51
1573	Antifungal activity of a novel 3-Alkylpyridine analog derived from Marine sponge alkaloids. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20200944.	0.3	0
1574	Layer-by-layer coated hybrid nanoparticles with pH-sensitivity for drug delivery to treat acute lung infection. Drug Delivery, 2021, 28, 2460-2468.	2.5	10
1575	Antimicrobial carbon-dot–stabilized silver nanoparticles. New Journal of Chemistry, 2022, 46, 2546-2552.	1.4	8
1576	Harnessing the toxicity of dysregulated iron uptake for killing <i>Staphylococcus aureus</i> : reality or mirage?. Biomaterials Science, 2022, 10, 474-484.	2.6	7

#	Article	IF	CITATIONS
1577	Room-Temperature Harvesting Oxidase-Mimicking Enzymes with Exogenous ROS Generation in One Step. Inorganic Chemistry, 2022, 61, 1169-1177.	1.9	9
1579	An Overview of the Synthesis of Biologically Active Cyclodepsipeptides. ChemistrySelect, 2022, 7, .	0.7	3
1580	Novel Schiff Baseâ€conjugated <i>para</i> â€Aminobenzenesulfonamide Indole Hybrids as Potentially Mutiâ€targeting Blockers against <i>Staphylococcus aureus</i> Asian Journal of Organic Chemistry, 2022, 11, e202100737.	1.3	3
1581	A three-dimensional (3D) printing approach to fabricate an isolation chip for high throughput <i>in situ</i> cultivation of environmental microbes. Lab on A Chip, 2022, 22, 387-402.	3.1	3
1582	Synthetic antibacterial discovery of symbah-1, a macrocyclic Î ² -hairpin peptide antibiotic. IScience, 2022, 25, 103611.	1.9	8
1584	Bacterial developmental checkpoint that directly monitors cell surface morphogenesis. Developmental Cell, 2022, 57, 344-360.e6.	3.1	10
1586	Metabolite discovery: Biochemistry's scientific driver. Cell Metabolism, 2022, 34, 21-34.	7.2	36
1587	The Future Is Bright for Polyoxometalates. Biochem, 2022, 2, 8-26.	0.5	27
1588	Air Ambulance: Antimicrobial Power of Bacterial Volatiles. Antibiotics, 2022, 11, 109.	1.5	12
1589	Micro-Technologies for Assessing Microbial Dynamics in Controlled Environments. Frontiers in Microbiology, 2021, 12, 745835.	1.5	3
1590	Synthesis and application of fluorescent teixobactin analogs. Methods in Enzymology, 2022, 665, 233-258.	0.4	0
1591	Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review. Environmental Science & E	4.6	29
1592	Realistic and critical review of the state of systemic antimicrobial peptides. ADMET and DMPK, 2022, 10, 91-105.	1.1	0
1593	Single-Cell-Based Screening and Engineering of <scp>d</scp> -Amino Acid Amidohydrolases Using Artificial Amidophenol Substrates and Microbial Biosensors. Journal of Agricultural and Food Chemistry, 2022, 70, 1203-1211.	2.4	4
1594	Isolation and characterization of Streptomyces bacteriophages and Streptomyces strains encoding biosynthetic arsenals. PLoS ONE, 2022, 17, e0262354.	1.1	5
1595	Bacteria-targeting liposomes for enhanced delivery of cinnamaldehyde and infection management. International Journal of Pharmaceutics, 2022, 612, 121356.	2.6	9
1597	The natural product biosynthesis potential of the microbiomes of Earth $\hat{a}\in$ Bioprospecting for novel anti-microbial agents in the meta-omics era. Computational and Structural Biotechnology Journal, 2022, 20, 343-352.	1.9	8
1598	Multiple Metabolic Phenotypes as Screening Criteria Are Correlated With the Plant Growth-Promoting Ability of Rhizobacterial Isolates. Frontiers in Microbiology, 2021, 12, 747982.	1.5	5

#	Article	IF	CITATIONS
1599	Engineered Bdellovibrio bacteriovorus: A countermeasure for biofilm-induced periodontitis. Materials Today, 2022, 53, 71-83.	8.3	25
1600	Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics, 2022, 11, 195.	1.5	5
1601	The menaquinone pathway is important for susceptibility of Staphylococcus aureus to the antibiotic adjuvant, cannabidiol. Microbiological Research, 2022, 257, 126974.	2.5	13
1602	Surface-displayed glycopolymers of Clostridioides difficile. Current Opinion in Microbiology, 2022, 66, 86-91.	2.3	3
1603	Progress for the development of antibacterial surface based on surface modification technology., 2022, 1, 100008.		2
1604	Selective strategies for antibacterial regulation of nanomaterials. RSC Advances, 2022, 12, 4852-4864.	1.7	13
1605	Evaluation of endogenous peptide stereochemistry using liquid chromatography-mass spectrometry-based spiking experiments. Methods in Enzymology, 2022, 663, 205-234.	0.4	2
1606	Bioprospecting of extremophiles for industrial enzymes. , 2022, , 471-482.		0
1607	Natural-Product-Directed Catalytic Stereoselective Synthesis of Functionalized Fused Borane Cluster–Oxazoles for the Discovery of Bactericidal Agents. ACS Central Science, 2022, 8, 322-331.	5.3	18
1608	Bactericidal, anti-biofilm, and anti-virulence activity of vitamin C against carbapenem-resistant hypervirulent Klebsiella pneumoniae. IScience, 2022, 25, 103894.	1.9	17
1609	Synthesis and biological evaluation of tetrahydroisoquinoline-derived antibacterial compounds. Bioorganic and Medicinal Chemistry, 2022, 57, 116648.	1.4	8
1610	Multifunctional MIL-101 nanoparticles with Fenton-like reactions to Co-deliver LL-37 peptide and Vancomycin for targeted NIR imaging and Drug-resistant bacteria treatment. Chemical Engineering Journal, 2022, 435, 135084.	6.6	22
1611	Development and application of highly sensitive labeling reagents for amino acids. Methods in Enzymology, 2022, 665, 105-133.	0.4	3
1612	Emerging natural product based alternative therapeutics for tuberculosis. , 2022, , 453-471.		0
1613	Reactivity-based screening for natural product discovery. Methods in Enzymology, 2022, 665, 177-208.	0.4	1
1614	Emerging nanotechnologies for targeting antimicrobial resistance. Nanoscale, 2022, 14, 4018-4041.	2.8	20
1615	Antibacterial Activity of Small Molecules Which Eradicate Methicillin-Resistant Staphylococcus aureus Persisters. Frontiers in Microbiology, 2022, 13, 823394.	1.5	12
1616	Biosynthesis, bioactivity, biotoxicity and applications of antimicrobial peptides for human health. Biosafety and Health, 2022, 4, 118-134.	1.2	38

#	Article	IF	CITATIONS
1617	Mechanosensitive Channels Mediate Hypoionic Shock-Induced Aminoglycoside Potentiation against Bacterial Persisters by Enhancing Antibiotic Uptake. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0112521.	1.4	6
1618	Total synthesis of himastatin. Science, 2022, 375, 894-899.	6.0	16
1621	Human defensin-inspired discovery of peptidomimetic antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117283119.	3.3	16
1622	Antibiotics and Antimicrobials Resistance: Mechanisms and New Strategies to Fight Resistant Bacteria. Antibiotics, 2022, 11, 400.	1.5	5
1623	Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. Nature Reviews Drug Discovery, 2022, 21, 359-378.	21.5	45
1624	Type S Nonâ€Ribosomal Peptide Synthetases for the Rapid Generation of Tailormade Peptide Libraries**. Chemistry - A European Journal, 2022, 28, .	1.7	11
1625	Characterizing chemical signaling between engineered "microbial sentinels―in porous microplates. Molecular Systems Biology, 2022, 18, e10785.	3.2	7
1626	Microfluidic hotspots in bacteria research: A review of soil and related advances. Soil Ecology Letters, 2023, 5, 21-37.	2.4	2
1627	A Câ^§S-Cyclometallated Gold(III) Complex as a Novel Antibacterial Candidate Against Drug-Resistant Bacteria. Frontiers in Microbiology, 2022, 13, 815622.	1.5	8
1628	Exploration of Chemical Biology Approaches to Facilitate the Discovery and Development of Novel Antibiotics. Frontiers in Tropical Diseases, 2022, 3, .	0.5	5
1629	Peptidomic Analysis on Mouse Lung Tissue Reveals AGDP as a Potential Bioactive Peptide against Pseudorabies Virus Infection. International Journal of Molecular Sciences, 2022, 23, 3306.	1.8	1
1630	Escaping mechanisms of ESKAPE pathogens from antibiotics and their targeting by natural compounds. Biotechnology Reports (Amsterdam, Netherlands), 2022, 34, e00728.	2.1	17
1631	Antimicrobial polysaccharides obtained from natural sources. Future Microbiology, 2022, 17, 701-716.	1.0	8
1632	Photoâ€triggered polymeric antimicrobial peptide mimics with excellent selectivity and antifouling and antimicrobial hydrogels. Giant, 2022, 10, 100097.	2.5	5
1633	Evaluating Performance and Portability of a core bioinformatics kernel on multiple vendor GPUs., 2021,,.		11
1634	LcpB Is a Pyrophosphatase Responsible for Wall Teichoic Acid Synthesis and Virulence in Staphylococcus aureus Clinical Isolate ST59. Frontiers in Microbiology, 2021, 12, 788500.	1.5	0
1635	Adaptively evolved human oral actinomycesâ€sourced defensins show therapeutic potential. EMBO Molecular Medicine, 2022, 14, e14499.	3.3	8
1636	Impact of growth media and pressure on the diversity and antimicrobial activity of isolates from two species of hexactinellid sponge. Microbiology (United Kingdom), 2021, 167, .	0.7	5

#	Article	IF	CITATIONS
1637	Development and Research Progress of Anti-Drug Resistant Bacteria Drugs. Infection and Drug Resistance, 2021, Volume 14, 5575-5593.	1.1	18
1638	Lipid II Binding and Transmembrane Properties of Various Antimicrobial Lanthipeptides. Journal of Chemical Theory and Computation, 2022, 18, 516-525.	2.3	5
1639	Novel Alkaloids from Marine Actinobacteria: Discovery and Characterization. Marine Drugs, 2022, 20, 6.	2.2	8
1640	Drug Resistance Reversal Potential of Nanoparticles/Nanocomposites via Antibiotic's Potentiation in Multi Drug Resistant P. aeruginosa. Nanomaterials, 2022, 12, 117.	1.9	8
1641	Backbone-Regulated Cationic Conjugated Polymers for Combating and Monitoring Pathogenic Bacteria. ACS Applied Polymer Materials, 2022, 4, 29-35.	2.0	8
1642	Identification and Antimicrobial Activity of Actinobacteria Isolated from Rhizosphere of the Local Endemic Plants. Yuzuncu Yil University Journal of Agricultural Sciences, 0, , 876-885.	0.1	0
1643	Global mapping of research trends on antibacterial activity of green silver nanoparticles. Plant Science Today, 0 , , .	0.4	0
1644	Analysis of cell death in <i>Bacillus subtilis</i> caused by sesquiterpenes from <i>Chrysopogon zizanioides</i> (L.) Roberty <i> </i> . Journal of General and Applied Microbiology, 2022, 68, 62-70.	0.4	0
1645	Elucidating the Mechanisms of Action of Antimicrobial Agents. MBio, 2022, 13, e0224021.	1.8	14
1646	Discovery, Biosynthetic Origin, and Heterologous Production of Massinidine, an Antiplasmodial Alkaloid. Organic Letters, 2022, 24, 2935-2939.	2.4	6
1647	Genomic and Chemical Decryption of the Bacteroidetes Phylum for Its Potential to Biosynthesize Natural Products. Microbiology Spectrum, 2022, 10, e0247921.	1.2	11
1648	A Rigid Nanoplatform for Precise and Responsive Treatment of Intracellular Multidrug-Resistant Bacteria. Engineering, 2022, 15, 57-66.	3.2	7
1649	The global threat of antibiotic resistance: what can be done?. Journal of Global Health Reports, 0, , .	1.0	0
1691	Efficacy of Cathelicidin-Mimetic Antimicrobial Peptoids against Staphylococcus aureus. Microbiology Spectrum, 2022, 10, e0053422.	1.2	8
1692	Synthetic biology: Novel approaches for microbiology. International Microbiology, 2015, 18, 71-84.	1.1	4
1693	Caging Udp Kills Bacteria Without Detectable Resistance. SSRN Electronic Journal, 0, , .	0.4	0
1694	Linearized teixobactin is inactive and after sequence enhancement, kills methicillinâ€resistant <i>Staphylococcus aureus</i> via a different mechanism. Peptide Science, 2022, 114, .	1.0	1
1695	Purification, Characterization, Mode of Action, and Application of Jileicin, a Novel Antimicrobial from <i>Paenibacillus jilinensis</i> YPG26. Journal of Agricultural and Food Chemistry, 2022, 70, 5570-5578.	2.4	5

#	Article	IF	CITATIONS
1696	Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nature Microbiology, 2022, 7, 726-735.	5.9	106
1697	Antibiotic-Like Activity of Atomic Layer Boron Nitride for Combating Resistant Bacteria. ACS Nano, 2022, 16, 7674-7688.	7.3	25
1698	Topical niclosamide (ATx201) reduces <i>Staphylococcus aureus</i> colonization and increases Shannon diversity of the skin microbiome in atopic dermatitis patients in a randomized, doubleâ€blind, placeboâ€controlled Phase 2 trial. Clinical and Translational Medicine, 2022, 12, e790.	1.7	15
1699	Integrated genomics and chemical biology herald an era of sophisticated antibacterial discovery, from defining essential genes to target elucidation. Cell Chemical Biology, 2022, , .	2.5	2
1701	Visualizing the mode of action and supramolecular assembly of teixobactin analogues in <i>Bacillus subtilis</i> Chemical Science, 2022, 13, 7747-7754.	3.7	6
1702	Wastewater Treatment Works: A Last Line of Defense for Preventing Antibiotic Resistance Entry Into the Environment. Frontiers in Water, 2022, 4, .	1.0	2
1703	Antibiotic resistant bacteria: current situation and treatment options to accelerate the development of a new antimicrobial arsenal. Expert Review of Anti-Infective Therapy, 2022, 20, 1095-1108.	2.0	24
1704	A 3-alkylpyridine-bearing alkaloid exhibits potent antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with no detectable resistance. Microbiological Research, 2022, 261, 127073.	2.5	3
1705	A Silent Operon of Photorhabdus luminescens Encodes a Prodrug Mimic of GTP. MBio, 2022, 13, e0070022.	1.8	7
1706	Biosynthesis of Guanitoxin Enables Global Environmental Detection in Freshwater Cyanobacteria. Journal of the American Chemical Society, 2022, 144, 9372-9379.	6.6	25
1707	Regrowth of <i>Escherichia coli</i> in environmental waters after chlorine disinfection: shifts in viability and culturability. Environmental Science: Water Research and Technology, 2022, 8, 1521-1534.	1,2	5
1708	Bioinformatic prospecting and synthesis of a bifunctional lipopeptide antibiotic that evades resistance. Science, 2022, 376, 991-996.	6.0	44
1709	Azobenzene quaternary ammonium salt for photo-controlled and reusable disinfection without drug resistance. Chinese Chemical Letters, 2023, 34, 107543.	4.8	3
1710	LcCCL28-25, Derived from Piscine Chemokine, Exhibits Antimicrobial Activity against Gram-Negative and Gram-Positive Bacteria <i>In Vitro</i> In VivoIn	1.2	5
1711	Discovery, synthesis, and optimization of teixobactin, a novel antibiotic without detectable bacterial resistance. Journal of Peptide Science, 2022, 28, .	0.8	6
1712	Culturing the uncultured microbial majority in activated sludge: A critical review. Critical Reviews in Environmental Science and Technology, 2023, 53, 601-624.	6.6	13
1713	Antibiotics made to order. Science, 2022, 376, 919-920.	6.0	3
1714	Evolved resistance to a novel cationic peptide antibiotic requires high mutation supply. Evolution, Medicine and Public Health, 2022, 10, 266-276.	1.1	5

#	Article	IF	Citations
1715	Harnessing Rare Actinomycete Interactions and Intrinsic Antimicrobial Resistance Enables Discovery of an Unusual Metabolic Inhibitor. MBio, 2022, 13 , .	1.8	4
1716	Antimicrobial Effects of L-Chg10-Teixobactin against Enterococcus faecalis In Vitro. Microorganisms, 2022, 10, 1099.	1.6	3
1717	MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages. Antibiotics, 2022, 11, 734.	1.5	16
1718	Light-activated molecular machines are fast-acting broad-spectrum antibacterials that target the membrane. Science Advances, 2022, 8, .	4.7	28
1723	6-Bromo-2-naphthol from Silene armeria extract sensitizes Acinetobacter baumannii strains to polymyxin. Scientific Reports, 2022, 12, .	1.6	2
1724	Lipid biosynthetic pathways as potential drug targets for emerging mycobacterial pathogens. , 2022, , 27-49.		0
1725	Design strategies and applications of novel functionalized phenazine derivatives: a review. Journal of Materials Chemistry C, 2022, 10, 11119-11174.	2.7	8
1726	Antimicrobial tolerance and its role in the development of resistance: Lessons from enterococci. Advances in Microbial Physiology, 2022, , .	1.0	3
1727	Microbial symbiotic implications in exploring novel antibiotics. , 2022, , 213-226.		1
1728	Targeting fungal membrane homeostasis with imidazopyrazoindoles impairs azole resistance and biofilm formation. Nature Communications, 2022, 13, .	5.8	21
1729	The Spread of Antibiotic Resistance Genes In Vivo Model. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, 2022, 1-11.	0.7	27
1730	StrainXpress: strain aware metagenome assembly from short reads. Nucleic Acids Research, 2022, 50, e101-e101.	6.5	3
1731	Methods and Strategies to Uncover Coral-Associated Microbial Dark Matter. MSystems, 2022, 7, .	1.7	13
1732	In silico identification of two peptides with antibacterial activity against multidrug-resistant Staphylococcus aureus. Npj Biofilms and Microbiomes, 2022, 8, .	2.9	11
1733	Evaluation of the antimicrobial activities and mechanisms of synthetic antimicrobial peptide against food-borne pathogens. Food Bioscience, 2022, 49, 101903.	2.0	11
1734	The microbial RNA metagenome of Aedes albopictus (Diptera: Culicidae) from Germany. Parasitology Research, 2022, 121, 2587-2599.	0.6	5
1735	In vitro and intracellular inhibitory activities of nosiheptide against Mycobacterium abscessus. Frontiers in Microbiology, $0,13,.$	1.5	1
1736	Novel Sources of Bioactive Molecules: Gut Microbiome of Species Routinely Exposed to Microorganisms. Veterinary Sciences, 2022, 9, 380.	0.6	3

#	Article	IF	CITATIONS
1737	Metagenomic binning with assembly graph embeddings. Bioinformatics, 2022, 38, 4481-4487.	1.8	14
1738	Development of Resistance to Eravacycline by Klebsiella pneumoniae and Collateral Sensitivity-Guided Design of Combination Therapies. Microbiology Spectrum, 2022, 10, .	1.2	5
1739	Synthesis and antibacterial activity evaluation of N (7) position-modified balofloxacins. Frontiers in Chemistry, 0, 10 , .	1.8	3
1740	<i>N</i> -Arylimidazoliums as Highly Selective Biomimetic Antimicrobial Agents. Journal of Medicinal Chemistry, 2022, 65, 11309-11321.	2.9	7
1741	Emerging microfluidic technologies for microbiome research. Frontiers in Microbiology, $0,13,.$	1.5	6
1742	Microencapsulation and in situ incubation methodology for the cultivation of marine bacteria. Frontiers in Microbiology, 0, 13 , .	1.5	6
1743	Progress and recent trends in photodynamic therapy with nanoparticles. Journal of Pharmaceutical Investigation, 2022, 52, 587-599.	2.7	12
1744	The past, present, and future of antibiotics. Science Translational Medicine, 2022, 14, .	5.8	124
1745	Roles of <scp>RodZ</scp> and class A <scp>PBP1b</scp> in the assembly and regulation of the peripheral peptidoglycan elongasome in ovoidâ€shaped cells of <i>Streptococcus pneumoniae</i> <scp>D39</scp> . Molecular Microbiology, 2022, 118, 336-368.	1.2	7
1746	Cyclic guanidine containing amino acids that promote glucocerebrosidase. Tetrahedron, 2022, , 132959.	1.0	0
1747	Hemithioindigoâ€Based Visible Lightâ€Activated Molecular Machines Kill Bacteria by Oxidative Damage. Advanced Science, 2022, 9, .	5.6	13
1748	Caging pyrophosphate structure blocks the cell wall synthesis to kill bacteria without detectable resistance. Chemical Engineering Journal, 2022, 450, 138373.	6.6	3
1749	Amoxicillin loaded bentonite, advanced low-cost antibacterial and environmentally friendly materials. Journal of Molecular Structure, 2022, 1270, 133880.	1.8	6
1750	The antimicrobial peptide LI14 combats multidrug-resistant bacterial infections. Communications Biology, 2022, 5, .	2.0	17
1751	Natural products in antibiotic development: is the success story over?. Current Opinion in Biotechnology, 2022, 78, 102783.	3.3	6
1752	Artificial intelligence in microbial natural product drug discovery: current and emerging role. Natural Product Reports, 2022, 39, 2215-2230.	5.2	18
1753	Antibiotics That Inhibit Cell Wall Synthesis. , 2022, , 55-107.		0
1754	Alternative Approaches for Antibiotic Discovery. , 2022, , 227-246.		0

#	Article	IF	Citations
1755	Introduction to Antibiotics. , 2022, , 1-28.		0
1756	Nitroisobenzofuranone, a small molecule inhibitor of multidrug-resistant <i>Staphylococcus aureus</i> , targets peptidoglycan biosynthesis. Chemical Communications, 2022, 58, 11669-11672.	2.2	2
1757	Global Action Plan and Antibiotic Stewardship., 2022,, 247-262.		0
1758	Microfabrication of a micron-scale microbial-domestication pod for <i>in situ</i> cultivation of marine bacteria. RSC Advances, 2022, 12, 28123-28127.	1.7	2
1759	High-resolution NMR Studies of Antibiotics in Membranes. New Developments in NMR, 2022, , 563-582.	0.1	0
1760	Functional characterization of prokaryotic dark matter: the road so far and what lies ahead. Current Research in Microbial Sciences, 2022, 3, 100159.	1.4	2
1761	Therapeutic peptides: historical perspectives and current development trends., 2022,, 3-33.		0
1762	Imitate to illuminate: labeling of bacterial peptidoglycan with fluorescent and bio-orthogonal stem peptide-mimicking probes. RSC Chemical Biology, 2022, 3, 1198-1208.	2.0	3
1763	Microbial Communication: A Significant Approach to Understanding Microbial Activities and Interactions., 2022,, 67-76.		0
1764	Teixobactin kills bacteria by a two-pronged attack on the cell envelope. Nature, 2022, 608, 390-396.	13.7	60
1765	Communication Breakdown: Into the Molecular Mechanism of Biofilm Inhibition by CeO ₂ Nanocrystal Enzyme Mimics and How It Can Be Exploited. ACS Nano, 2022, 16, 16091-16108.	7.3	7
1766	Antimicrobial activity of natural products against MDR bacteria: A scientometric visualization analysis. Frontiers in Pharmacology, $0,13,.$	1.6	1
1767	The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics, 2022, 11, 1215.	1.5	27
1768	Compelling cyclic peptide scaffolds for antitubercular action: An account (2011-21) of the natural source. Current Protein and Peptide Science, 2022, 23, .	0.7	0
1769	Computational identification of a systemic antibiotic for Gram-negative bacteria. Nature Microbiology, 2022, 7, 1661-1672.	5.9	42
1770	Mechanism-Based Approach to New Antibiotic Producers Screening among Actinomycetes in the Course of the Citizen Science Project. Antibiotics, 2022, 11, 1198.	1.5	3
1771	Quantitative microbial ecology: Future challenges and opportunities. Environmental Microbiology, 2023, 25, 91-96.	1.8	0
1773	Polymeric Nanohybrids Engineered by Chitosan Nanoparticles and Antimicrobial Peptides as Novel Antimicrobials in Food Biopreservatives: Risk Assessment and Anti-Foodborne Pathogen <i>Escherichia coli</i> O157:H7 Infection by Immune Regulation. Journal of Agricultural and Food Chemistry, 2022, 70, 12535-12549.	2.4	4

#	Article	IF	CITATIONS
1774	A comprehensive review of microorganismâ€derived cyclic peptides: Bioactive functions and food safety applications. Comprehensive Reviews in Food Science and Food Safety, 0, , .	5.9	3
1775	Emerging Non-Traditional Approaches to Combat Antibiotic Resistance. Current Microbiology, 2022, 79, .	1.0	9
1776	Reprogramming Nonribosomal Peptide Synthetases for Site-Specific Insertion of α-Hydroxy Acids. Journal of the American Chemical Society, 2022, 144, 17567-17575.	6.6	13
1777	Total Synthesis and Antibacterial Investigations of 1â€Hydroxyboivinianin A. ChemMedChem, 0, , .	1.6	1
1779	Expanding the utility of Marfey's analysis by using HPLC-SPE-NMR to determine the Cβ configuration of threonine and isoleucine residues in natural peptides. Analytical and Bioanalytical Chemistry, 2022, 414, 8063-8070.	1.9	2
1780	Evolving antibiotic spectrum. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	1
1781	Isobactins: $\langle i \rangle O \langle i \rangle$ -acyl isopeptide prodrugs of teixobactin and teixobactin derivatives. Chemical Science, $0, , .$	3.7	0
1782	Recent Advances in Pathogenic Bacteria Detection with Antimicrobial Peptide as Recognition Element. KSBB Journal, 2022, 37, 83-92.	0.1	O
1783	Ring-fused 2-pyridones effective against multidrug-resistant Gram-positive pathogens and synergistic with standard-of-care antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
1784	VEBA: a modular end-to-end suite for in silico recovery, clustering, and analysis of prokaryotic, microeukaryotic, and viral genomes from metagenomes. BMC Bioinformatics, 2022, 23, .	1.2	7
1785	Expanding the Landscape of Amino Acid-Rich Antimicrobial Peptides: Definition, Deployment in Nature, Implications for Peptide Design and Therapeutic Potential. International Journal of Molecular Sciences, 2022, 23, 12874.	1.8	9
1786	Bacterial polysaccharidesâ€"A big source for prebiotics and therapeutics. Frontiers in Nutrition, 0, 9, .	1.6	14
1787	C-terminal modification of a de novo designed antimicrobial peptide via capping of macrolactam rings. Bioorganic Chemistry, 2023, 130, 106251.	2.0	0
1788	Extracellular DNAses Facilitate Antagonism and Coexistence in Bacterial Competitor-Sensing Interference Competition. Applied and Environmental Microbiology, 2022, 88, .	1.4	2
1789	Direct Detection of Antibacterial-Producing Soil Isolates Utilizing a Novel High-Throughput Screening Assay. Microorganisms, 2022, 10, 2235.	1.6	3
1790	Characterization of bacterial diversity between two coastal regions with heterogeneous soil texture. Scientific Reports, 2022, 12, .	1.6	0
1791	Silver acetate-catalyzed synthesis of cyclic sulfonyl guanidine with exocyclic double bond. Molecular Diversity, 2023, 27, 2545-2553.	2.1	2
1792	Synergy of outer membrane disruptor SLAP-S25 with hydrophobic antibiotics against Gram-negative pathogens. Journal of Antimicrobial Chemotherapy, 2023, 78, 263-271.	1.3	1

#	Article	IF	CITATIONS
1793	Novel Feleucin-K3-Derived Peptides Modified with Sulfono- \hat{l}^3 -AA Building Blocks Targeting <i>Pseudomonas aeruginosa</i> and Methicillin-Resistant <i>Staphylococcus aureus</i> Infections. Journal of Medicinal Chemistry, 2023, 66, 1254-1272.	2.9	4
1794	Advances in the antimicrobial treatment of osteomyelitis. Composites Part B: Engineering, 2023, 249, 110428.	5.9	13
1795	Current and Future Landscape of the Antimicrobial Resistance of Nosocomial Infections in China. China CDC Weekly, 2022, 4, 1101-1104.	1.0	1
1796	Multiple roles of nanomaterials along with their based nanotechnologies in the elimination and dissemination of antibiotic resistance. Chemical Engineering Journal, 2023, 455, 140927.	6.6	13
1797	Antibiotics: Precious Goods in Changing Times. Methods in Molecular Biology, 2023, , 3-26.	0.4	0
1799	Combating <i>Escherichia coli</i>) O157:H7 with Functionalized Chickpeaâ€Derived Antimicrobial Peptides. Advanced Science, 2023, 10, .	5.6	8
1800	Incorporation of Non-Canonical Amino Acids into Antimicrobial Peptides: Advances, Challenges, and Perspectives. Applied and Environmental Microbiology, 2022, 88, .	1.4	8
1801	Measurement of Small Molecule Accumulation into Diderm Bacteria. ACS Infectious Diseases, 2023, 9, 97-110.	1.8	5
1802	Current developments in antibiotic discovery. EMBO Reports, 2023, 24, .	2.0	15
1804	An "all in one―strategy to boost antibacterial phototherapy via porphyrin and boron dipyrromethenes based covalent organic framework. Chemical Engineering Journal, 2023, 457, 141017.	6.6	17
1805	Fighting antibiotic resistanceâ€"strategies and (pre)clinical developments to find new antibacterials. EMBO Reports, 2023, 24, .	2.0	51
1806	Nonribosomal antibacterial peptides isolated from Streptomyces agglomeratus 5-1-3 in the Qinghai-Tibet Plateau. Microbial Cell Factories, 2023, 22, .	1.9	3
1807	Using chronobiology-based second-generation artificial intelligence digital system for overcoming antimicrobial drug resistance in chronic infections. Annals of Medicine, 2023, 55, 311-318.	1.5	10
1808	Ecosystem Variability along the Estuarine Salinity Gradient: A Case Study of Hooghly River Estuary, West Bengal, India. Journal of Marine Science and Engineering, 2023, 11, 88.	1.2	6
1809	Microbial Genomics: Innovative Targets and Mechanisms. Antibiotics, 2023, 12, 190.	1.5	1
1810	Update on the Discovery of Efflux Pump Inhibitors against Critical Priority Gram-Negative Bacteria. Antibiotics, 2023, 12, 180.	1.5	23
1811	Chemical synthesis and biosynthesis of darobactin. Tetrahedron Letters, 2023, 116, 154337.	0.7	4
1812	Long-read metagenomics paves the way toward a complete microbial tree of life. Nature Methods, 2023, 20, 30-31.	9.0	11

#	Article	IF	CITATIONS
1813	Current Promising Strategies against Antibiotic-Resistant Bacterial Infections. Antibiotics, 2023, 12, 67.	1.5	16
1814	Pathophysiology of Multidrug Resistant Klebseilla pneumoniae Causing UTI Infection in Pregnant Women. Biosciences, Biotechnology Research Asia, 2022, 19, 979-991.	0.2	0
1815	Antimicrobial Proteins: Structure, Molecular Action, and Therapeutic Potential. Pharmaceutics, 2023, 15, 72.	2.0	9
1816	Advances in the field of phage-based therapy with special emphasis on computational resources. Briefings in Bioinformatics, 2023, 24, .	3.2	3
1817	Effects of L-Chg10-Teixobactin on Viability, Proliferation, and Osteo/Odontogenic Differentiation of Stem Cells from Apical Papilla. Journal of Endodontics, 2023, 49, 162-168.	1.4	2
1818	The Microbiologists., 2016,, 44-106.		0
1819	Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angewandte Chemie - International Edition, 2023, 62, .	7.2	53
1820	Synthesis and Stereochemical Determination of the Peptide Antibiotic Novo29. Journal of Organic Chemistry, 0, , .	1.7	1
1821	Sources of Antifungal Drugs. Journal of Fungi (Basel, Switzerland), 2023, 9, 171.	1.5	15
1822	Emergence of microbial resistance against nanoparticles: Mechanisms and strategies. Frontiers in Microbiology, 0, 14 , .	1.5	10
1823	Small Molecule IITR00693 (2-Aminoperimidine) Synergizes Polymyxin B Activity against <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> ACS Infectious Diseases, 0, , .	1.8	4
1824	Charting the Lipopeptidome of Nonpathogenic Pseudomonas. MSystems, 2023, 8, .	1.7	11
1825	Antibiotics, antibiotic-resistant bacteria, and the environment., 2023, , 117-142.		1
1826	Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angewandte Chemie, 2023, 135, .	1.6	2
1827	Waste Adsorbent-Derived Interconnected Hierarchical Attapulgite@Carbon/NiCo Layered Double Hydroxide Nanocomposites for Advanced Supercapacitors. Langmuir, 2023, 39, 2739-2750.	1.6	1
1828	Aroylated phenylenediamine HO53 modulates innate immunity, histone acetylation and metabolism. Molecular Immunology, 2023, 155, 153-164.	1.0	1
1829	What is an ideal antibiotic and what does this mean for future drug discovery and design?. Expert Opinion on Drug Discovery, 2023, 18, 485-490.	2,5	4
1830	Synergetic reinforcing effect of graphene oxide and nanosilver on carboxymethyl cellulose/sodium alginate nanocomposite films: Assessment of physicochemical and antibacterial properties. International Journal of Biological Macromolecules, 2023, 239, 124185.	3.6	9

#	Article	IF	CITATIONS
1831	A historical, economic, and technical-scientific approach to the current crisis in the development of antibacterial drugs: Promising role of antibacterial peptides in this scenario. Microbial Pathogenesis, 2023, 179, 106108.	1.3	1
1832	Using display technologies to identify macrocyclic peptide antibiotics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119473.	1.9	2
1834	Switching from membrane disrupting to membrane crossing, an effective strategy in designing antibacterial polypeptide. Science Advances, 2023, 9, .	4.7	13
1835	Natural Product Isolation and Characterization: Gene-independent Approaches. , 2022, , 705-739.		0
1836	Natural Products Isolation and Characterization: Gene Independent Approaches. , 2017, , 634-689.		0
1837	Frontier studies on natural products: moving toward paradigm shifts. Science China Chemistry, 2023, 66, 928-942.	4.2	6
1838	Small Molecular Mimetics of Antimicrobial Peptides as a Promising Therapy To Combat Bacterial Resistance. Journal of Medicinal Chemistry, 2023, 66, 2211-2234.	2.9	12
1839	2â€Hydroxypropyl Group Linked Derivatives of Indole Azoles as Potential Multifunctional Antibacterial Candidates for Effectively Inhibiting the Activity of MRSA and Responding Inflammatory Factors. Chemistry - an Asian Journal, 2023, 18, .	1.7	2
1840	Bacterial Community Composition and Isolation of Actinobacteria from the Soil of Flaming Mountain in Xinjiang, China. Microorganisms, 2023, 11, 489.	1.6	2
1841	A broad-spectrum synthetic antibiotic that does not evoke bacterial resistance. EBioMedicine, 2023, 89, 104461.	2.7	7
1842	Antimicrobial and the Resistances in the Environment: Ecological and Health Risks, Influencing Factors, and Mitigation Strategies. Toxics, 2023, 11, 185.	1.6	5
1843	Unraveling topoisomerase IA gate dynamics in presence of PPEF and its preclinical evaluation against multidrug-resistant pathogens. Communications Biology, 2023, 6, .	2.0	1
1844	An injectable, natural peptide hydrogel with potent antimicrobial activity and excellent wound healing-promoting effects. Nano Today, 2023, 49, 101801.	6.2	19
1845	Ribosome-targeting antibiotics and resistance <i>via</i> ribosomal RNA methylation. RSC Medicinal Chemistry, 2023, 14, 624-643.	1.7	5
1846	Use of modified ichip for the cultivation of thermo-tolerant microorganisms from the hot spring. BMC Microbiology, 2023, 23, .	1.3	2
1847	Vancomycin and curcumin-loaded zinc oxide functionalized chitosan carrier for the treatment of multi-drug resistant bacterial infection. Journal of Materials Science, 2023, 58, 4922-4936.	1.7	2
1848	New Dual Inhibitors of Bacterial Topoisomerases with Broad-Spectrum Antibacterial Activity and In Vivo Efficacy against Vancomycin-Intermediate <i>Staphylococcus aureus</i> . Journal of Medicinal Chemistry, 2023, 66, 3968-3994.	2.9	4
1849	Antibiotic-induced accumulation of lipid II synergizes with antimicrobial fatty acids to eradicate bacterial populations. ELife, $0,12,.$	2.8	3

#	Article	IF	CITATIONS
1850	Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons. Frontiers in Microbiology, $0,14,.$	1.5	11
1851	Large Ultrathin Polyoxomolybdate-Decorated Boron Nitride Nanosheets with Enhanced Antibacterial Activity for Infection Control. ACS Applied Nano Materials, 2023, 6, 4754-4769.	2.4	0
1852	Elucidating the Mechanism of Action of the Gram-Negative-Pathogen-Selective Cyclic Antimicrobial Lipopeptide Brevicidine. Antimicrobial Agents and Chemotherapy, 2023, 67, .	1.4	5
1854	Isolation and characterization of bioactive metabolites of Bacillus enclensis CARE-V7 strain from southeast coast of India. Biomass Conversion and Biorefinery, 0, , .	2.9	0
1855	PERFIL DE RESISTÊNCIA DE STAPHYLOCOCCUS SPP. ISOLADOS DE NASOFARINGE DE CRIANÇAS COM SINTOMAS GRIPAIS EM UNIDADE DE ATENDIMENTO PEDIöRICO. Revista Foco, 2023, 16, e1438.	0.1	0
1856	Structural Characterization, Cytotoxicity, and the Antifungal Mechanism of a Novel Peptide Extracted from Garlic (Allium sativa L.). Molecules, 2023, 28, 3098.	1.7	4
1858	Shapeshifting bullvalene-linked vancomycin dimers as effective antibiotics against multidrug-resistant gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
1859	Designing New Magic Bullets to Penetrate the Mycobacterial Shield: An Arduous Quest for Promising Therapeutic Candidates. Microbial Drug Resistance, 0, , .	0.9	0
1860	Important Targets and Inhibitors of Mycobacterium tuberculosis. Integrated Science, 2023, , 429-457.	0.1	3
1861	Linearization of the Brevicidine and Laterocidine Lipopeptides Yields Analogues That Retain Full Antibacterial Activity. Journal of Medicinal Chemistry, 2023, 66, 6002-6009.	2.9	2
1862	Biodegradable Polymers and Polymer Composites with Antibacterial Properties. International Journal of Molecular Sciences, 2023, 24, 7473.	1.8	9
1863	Exploring halophilic environments as a source of new antibiotics. Critical Reviews in Microbiology, 0, , 1-30.	2.7	2
1864	Natural products and their analogues acting against <i>Mycobacterium tuberculosis</i> : A recent update. Drug Development Research, 2023, 84, 779-804.	1.4	2
1882	Natural products acting against <i>S. aureus</i> through membrane and cell wall disruption. Natural Product Reports, 2023, 40, 1608-1646.	5.2	3
1883	Total synthesis, structure elucidation and expanded bioactivity of icosalide A: effect of lipophilicity and ester to amide substitution on its bioactivity. Organic and Biomolecular Chemistry, 2023, 21, 5725-5731.	1.5	1
1885	Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Advances in Microbial Physiology, 2023, , 221-307.	1.0	1
1886	Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Natural Product Reports, 2023, 40, 1550-1582.	5.2	9
1890	Unraveling Structural Information of Multi-Domain Nonribosomal Peptide Synthetases by Using Photo-Cross-Linking Analysis with Genetic Code Expansion. Methods in Molecular Biology, 2023, , 165-185.	0.4	0

#	Article	IF	CITATIONS
1901	Bacteriocinogenic Lactic Acid Bacteria and Antibacterial Mechanisms. , 2023, , 39-61.		1
1921	Challenges in the development of novel antibiotics. , 2023, , 65-85.		O
1922	Antimicrobial lipopeptides: Multifaceted designs to curb antimicrobial resistance. , 2023, , 203-232.		0
1927	Polymeric Nanoparticles for Bovine Mastitogens. Springer Series in Biomaterials Science and Engineering, 2023, , 111-133.	0.7	0
1935	A review of current antibiotic resistance and promising antibiotics with novel modes of action to combat antibiotic resistance. Archives of Microbiology, 2023, 205, .	1.0	2
1942	Increasing Prevalence of Antibiotic-Resistant Genes in Wastewater: Impact on Public Health. , 2023, , 95-114.		0
1945	Antibiotic persistence and its impact on the environment. 3 Biotech, 2023, 13, .	1.1	0
1964	Bacterial growth and cultivation. , 2024, , 155-175.		0
1970	Commentary on The antibiotic explosion by H. Boyd Woodruff and Richard W. Burg. , 2024, , 301-306.		0
1973	Bacterial polyynes uncovered: a journey through their bioactive properties, biosynthetic mechanisms, and sustainable production strategies. Natural Product Reports, 0, , .	5. 2	O
1977	Gut Distribution, Impact Factor, and Action Mechanism of Bacteriocin-Producing Beneficial Microbes as Promising Antimicrobial Agents in Gastrointestinal Infection. Probiotics and Antimicrobial Proteins, 0, , .	1.9	0