A new linguistic out-sample approach of fuzzy time ser Malaysian electricity load demand

Applied Soft Computing Journal 28, 422-430

DOI: 10.1016/j.asoc.2014.11.043

Citation Report

#	Article	IF	CITATIONS
1	A reversal model of fuzzy time series in regional load forecasting. International Journal of Energy and Statistics, 2015, 03, 1550003.	0.5	2
2	A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables. Applied Soft Computing Journal, 2015, 35, 151-160.	4.1	53
3	Electric Load Forecasting Based on a Least Squares Support Vector Machine with Fuzzy Time Series and Global Harmony Search Algorithm. Energies, 2016, 9, 70.	1.6	85
4	Application of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting. Energies, 2016, 9, 873.	1.6	20
5	Implementation of Fuzzy Time Series in Forecasting of the Non-Stationary Data. International Journal of Computational Intelligence and Applications, 2016, 15, 1650009.	0.6	9
6	A computational fuzzy time series forecasting model based on GEM-based discretization and hierarchical fuzzy logicalÂrules. Journal of Intelligent and Fuzzy Systems, 2016, 31, 2795-2806.	0.8	6
7	Fuzzy time series forecasting method based on hesitant fuzzy sets. Expert Systems With Applications, 2016, 64, 557-568.	4.4	99
8	Combining ARFIMA models and fuzzy time series for the forecast of long memory time series. Neurocomputing, 2016, 175, 782-796.	3.5	46
9	An overview of energy demand forecasting methods published in 2005–2015. Energy Systems, 2017, 8, 411-447.	1.8	130
11	A review on time series forecasting techniques for building energy consumption. Renewable and Sustainable Energy Reviews, 2017, 74, 902-924.	8.2	585
12	A novel high-order weighted fuzzy time series model and its application in nonlinear time series prediction. Applied Soft Computing Journal, 2017, 55, 44-62.	4.1	37
13	Prediction of Malaysian–Indonesian Oil Production and Consumption Using Fuzzy Time Series Model. Advances in Data Science and Adaptive Analysis, 2017, 09, 1750001.	0.2	2
14	A fast and efficient clustering based fuzzy time series algorithm (FEFTS) for regression and classification. Applied Soft Computing Journal, 2017, 61, 1088-1097.	4.1	10
15	An investigation of the suitability of Artificial Neural Networks for the prediction of core and local skin temperatures when trained with a large and gender-balanced database. Applied Soft Computing Journal, 2017, 50, 327-343.	4.1	10
16	Identification method for fuzzy forecasting models of time series. Applied Soft Computing Journal, 2017, 50, 166-182.	4.1	21
17	Forecasting Based on High-Order Fuzzy-Fluctuation Trends and Particle Swarm Optimization Machine Learning. Symmetry, 2017, 9, 124.	1.1	12
18	Forecasting Model Based on Neutrosophic Logical Relationship and Jaccard Similarity. Symmetry, 2017, 9, 191.	1.1	14
19	A Two-Factor Autoregressive Moving Average Model Based on Fuzzy Fluctuation Logical Relationships. Symmetry, 2017, 9, 207.	1.1	16

#	Article	IF	Citations
20	A new procedure in stock market forecasting based on fuzzy random auto-regression time series model. Information Sciences, 2018, 441, 113-132.	4.0	60
21	A Semiparametric Model for Time Series Based on Fuzzy Data. IEEE Transactions on Fuzzy Systems, 2018, 26, 2953-2966.	6.5	12
22	Electrical load forecasting based on self-adaptive chaotic neural network using Chebyshev map. Neural Computing and Applications, 2018, 29, 603-612.	3.2	8
23	Time Series of Rainfall Model with Markov Switching Autoregressive. , 2018, , .		3
24	Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron. Energies, 2018, 11, 3283.	1.6	104
25	Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model. Applied Energy, 2018, 224, 13-33.	5.1	152
26	Forecasting model based on heuristic learning of high-order fuzzy-trend and jump rules. Journal of Intelligent and Fuzzy Systems, 2018, 35, 257-267.	0.8	4
27	Non-Probabilistic Inverse Fuzzy Model in Time Series Forecasting. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2018, 26, 855-873.	0.9	3
28	More Buildings Make More Generalizable Modelsâ€"Benchmarking Prediction Methods on Open Electrical Meter Data. Machine Learning and Knowledge Extraction, 2019, 1, 974-993.	3.2	26
29	Stock Market Forecasting Model Based on AR(1) with Adjusted Triangular Fuzzy Number Using Standard Deviation Approach for ASEAN Countries. Lecture Notes in Networks and Systems, 2019, , 103-114.	0.5	6
30	Designing fuzzy time series forecasting models: A survey. International Journal of Approximate Reasoning, 2019, 111, 78-99.	1.9	70
31	Non-iterative procedure incorporated into the fuzzy identification on a hybrid method of functional randomization for time series forecasting models. Applied Soft Computing Journal, 2019, 80, 226-242.	4.1	9
32	Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting. Energies, 2019, 12, 1093.	1.6	52
33	Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series. Energy, 2019, 175, 365-377.	4.5	202
34	Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory. Mathematics, 2019, 7, 1188.	1.1	8
35	A state of the art review on the prediction of building energy consumption using data-driven technique and evolutionary algorithms. Building Services Engineering Research and Technology, 2020, 41, 108-127.	0.9	35
36	Short Term Load Forecasting Model Based on Kernel-Support Vector Regression with Social Spider Optimization Algorithm. Journal of Electrical Engineering and Technology, 2020, 15, 393-402.	1,2	17
38	A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score. Entropy, 2020, 22, 1412.	1.1	55

3

#	Article	IF	Citations
39	A Predictive Analysis of Residential Electrical Load Demand in Mauritius., 2020,,.		2
40	Optimal Day-Ahead Scheduling and Operation of the Prosumer by Considering Corrective Actions Based on Very Short-Term Load Forecasting. IEEE Access, 2020, 8, 83561-83582.	2.6	30
41	Forecasting Model for Stock Market Based on Probabilistic Linguistic Logical Relationship and Distance Measurement. Symmetry, 2020, 12, 954.	1.1	5
42	A novel composite electricity demand forecasting framework by data processing and optimized support vector machine. Applied Energy, 2020, 260, 114243.	5.1	82
43	Multi-step least squares support vector machine modeling approach for forecasting short-term electricity demand with application. Neural Computing and Applications, 2021, 33, 301-320.	3.2	17
44	Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands. Mathematical Biosciences and Engineering, 2021, 18, 400-425.	1.0	27
45	Electric Load Forecasting Using Fuzzy Knowledge Base System with Improved Accuracy. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 259-273.	0.5	0
46	A review of machine learning in building load prediction. Applied Energy, 2021, 285, 116452.	5.1	259
47	Fuzzy time-series prediction model based on text features and network features. Neural Computing and Applications, 2023, 35, 3639-3649.	3.2	4
48	Fuzzy Autoregressive Time Series Model Based on Symmetry Triangular Fuzzy Numbers. New Mathematics and Natural Computation, 2021, 17, 387-401.	0.4	3
49	A non-parametric model for fuzzy forecasting time series data. Computational and Applied Mathematics, 2021, 40, 1.	1.0	3
50	Prediction of transportation energy demand: Multivariate Adaptive Regression Splines. Energy, 2021, 224, 120090.	4.5	32
51	Estimation of Confidence-Interval for Yearly Electricity Load Consumption Based on Fuzzy Random Auto-Regression Model. Advances in Intelligent Systems and Computing, 2017, , 15-26.	0.5	4
52	Fuzzy Time Series Forecasting: A Survey. Advances in Intelligent Systems and Computing, 2020, , 641-651.	0.5	5
53	Primary energy sources planning based on demand forecasting: The case of Turkey. Journal of Energy in Southern Africa, 2016, 27, 2.	0.5	13
54	Experiments with Fuzzy Methods for Forecasting Time Series as Alternatives to Classical Methods. Mathematics, 2021, 9, 2517.	1.1	3
55	Electricity Peak Load Demand using De-noising Wavelet Transform integrated with Neural Network Methods. International Journal of Electrical and Computer Engineering, 2016, 6, 12.	0.5	1
56	Fuzzy Time Series. Advances in Business Information Systems and Analytics Book Series, 2017, , 258-290.	0.3	0

#	Article	IF	CITATIONS
57	Intuitionistic Fuzzy Time Series Forecasting Based on Dual Hesitant Fuzzy Set for Stock Market. Advances in Computer and Electrical Engineering Book Series, 2019, , 37-57.	0.2	3
58	Handling Seasonal Pattern and Prediction Using Fuzzy Time Series Model. Studies in Computational Intelligence, 2020, , 57-69.	0.7	0
59	Modeling for Energy Demand Forecasting. , 2020, , 25-44.		0
60	Fuzzy Time Series. , 0, , 157-190.		0
61	Modeling Energy Demand—A Systematic Literature Review. Energies, 2021, 14, 7859.	1.6	26
62	Air quality deterministic and probabilistic forecasting system based on hesitant fuzzy sets and nonlinear robust outlier correction. Knowledge-Based Systems, 2022, 237, 107789.	4.0	7
63	Métodos de previsão de demanda: uma revisão da literatura. Innovar, 2022, 32, 83-99.	0.1	3
64	A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models. Mathematics, 2022, 10, 1329.	1.1	18
65	Multivariable sales prediction for filling stations via GA improved BiLSTM. Petroleum Science, 2022, 19, 2483-2496.	2.4	9
66	Automatic Rule Generation forÂCellular Automata Using Fuzzy Times Series Methods. Lecture Notes in Computer Science, 2022, , 268-282.	1.0	0
68	Quantity based time series fuzzified approach for forecasting stock index. AIP Conference Proceedings, 2023, , .	0.3	0