Full-Sun observations for identifying the source of the s

Nature Communications 6, 5947 DOI: 10.1038/ncomms6947

Citation Report

#	Article	IF	CITATIONS
1	ANOMALOUS RELATIVE AR/CA CORONAL ABUNDANCES OBSERVED BY THE <i>HINODE</i> /EUV IMAGING SPECTROMETER NEAR SUNSPOTS. Astrophysical Journal Letters, 2015, 808, L7.	3.0	39
2	Coronal Sources and In Situ Properties of the Solar Winds Sampled by ACE During 1999 – 2008. Solar Physics, 2015, 290, 1399-1415.	1.0	22
3	FIP BIAS EVOLUTION IN A DECAYING ACTIVE REGION. Astrophysical Journal, 2015, 802, 104.	1.6	36
4	THE EFFECT OF RECONNECTION ON THE STRUCTURE OF THE SUN'S OPEN–CLOSED FLUX BOUNDARY. Astrophysical Journal, 2015, 805, 39.	1.6	28
5	Evolution of active region outflows throughout an active region lifetime. Astronomy and Astrophysics, 2016, 594, A40.	2.1	15
7	CORRELATION OF CORONAL PLASMA PROPERTIES AND SOLAR MAGNETIC FIELD IN A DECAYING ACTIVE REGION. Astrophysical Journal, 2016, 826, 126.	1.6	14
8	AN INVESTIGATION OF THE SOURCES OF EARTH-DIRECTED SOLAR WIND DURING CARRINGTON ROTATION 2053. Astrophysical Journal, 2016, 823, 145.	1.6	20
9	Slow Solar Wind: Observations and Modeling. Space Science Reviews, 2016, 201, 55-108.	3.7	147
10	MEASUREMENTS OF NON-THERMAL LINE WIDTHS IN SOLAR ACTIVE REGIONS. Astrophysical Journal, 2016, 820, 63.	1.6	54
11	Minimal Magnetic States of the Sun and the Solar Wind: Implications for the Origin of the Slow Solar Wind. Space Science Reviews, 2017, 210, 227-247.	3.7	9
12	On-Disc Observations of Flux Rope Formation Prior to Its Eruption. Solar Physics, 2017, 292, 71.	1.0	52
13	Small Coronal Holes Near Active Regions as Sources of Slow Solar Wind. Astrophysical Journal, 2017, 841, 94.	1.6	19
14	Exploring the Inner Acceleration Region of Solar Wind: A Study Based on Coronagraphic UV and Visible Light Data. Astrophysical Journal, 2017, 846, 86.	1.6	30
15	A Solar cycle correlation of coronal element abundances in Sun-as-a-star observations. Nature Communications, 2017, 8, 183.	5.8	28
16	Coherent Structures at Ion Scales in Fast Solar Wind: Cluster Observations. Astrophysical Journal, 2017, 849, 49.	1.6	60
17	Observations of Reconnection Flows in a Flare on the Solar Disk. Astrophysical Journal Letters, 2017, 847, L1.	3.0	9
18	The Abundance of Helium in the Source Plasma of Solar Energetic Particles. Solar Physics, 2017, 292, 1.	1.0	24
19	A study of the long term evolution in active region upflows. Publication of the Astronomical Society of Japan, 2017, 69, .	1.0	9

		CITATION REPORT		
#	Article		IF	CITATIONS
20	Coronal Elemental Abundances in Solar Emerging Flux Regions. Astrophysical Journal, 2	018, 856, 71.	1.6	23
21	Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence. IV. S Turbulence. Astrophysical Journal, 2018, 854, 32.	olar Coronal	1.6	80
22	Abundances, Ionization States, Temperatures, and FIP in Solar Energetic Particles. Space Reviews, 2018, 214, 1.	e Science	3.7	51
23	The "FIP Effect―and the Origins of Solar Energetic Particles and of the Solar Wind. 2018, 293, 1.	Solar Physics,	1.0	36
24	Magnetic Structures at the Boundary of the Closed Corona: Interpretation of S-Web Ard Astrophysical Journal, 2018, 869, 60.	25.	1.6	18
25	Solar UV and X-ray spectral diagnostics. Living Reviews in Solar Physics, 2018, 15, 5.		7.8	158
26	Helium abundance and speed difference between helium ions and protons in the solar v coronal holes, active regions, and quiet Sun. Monthly Notices of the Royal Astronomica 2018, 478, 1884-1892.	vind from Society,	1.6	18
27	Solar Cycle Observations of the Neon Abundance in the Sun-as-a-star. Astrophysical Jou 42.	rnal, 2018, 861,	1.6	2
28	Deprojected Trajectory of Blobs in the Inner Corona. Solar Physics, 2018, 293, 1.		1.0	8
29	A Diagnostic of Coronal Elemental Behavior during the Inverse FIP Effect in Solar Flares. Astrophysical Journal, 2018, 863, 140.		1.6	5
30	A laboratory model for the Parker spiral and magnetized stellar winds. Nature Physics, 2 1095-1100.	019, 15,	6.5	9
31	Achievements of Hinode in the first eleven years. Publication of the Astronomical Societ 2019, 71, .	y of Japan,	1.0	69
32	Radio Occultation Observations of the Solar Corona Over 1.60–1.86Â <i>R</i> _{ Rotation and Frequency Shift Analysis. Journal of Geophysical Research: Space Physics, 7761-7777.}	iŠ™: Faraday 2019, 124,	0.8	11
33	The Variability of Solar Coronal Abundances in Active Regions and the Quiet Sun. Astro Journal, 2019, 884, 158.	bhysical	1.6	11
34	The Properties of the Solar Corona and Its Connection to the Solar Wind. Annual Review Astronomy and Astrophysics, 2019, 57, 157-187.	v of	8.1	83
35	Sun-Earth Connections. Astrophysics and Space Science Library, 2019, , 625-662.		1.0	1
36	Transient Inverse-FIP Plasma Composition Evolution within a Solar Flare. Astrophysical J 875, 35.	ournal, 2019,	1.6	22
37	The EUV spectrum of the Sun: Quiet- and active-Sun irradiances and chemical composit and Astrophysics, 2019, 624, A36.	ion. Astronomy	2.1	18

	CITAT	ION REPORT	
#	Article	IF	Citations
38	Elemental composition in quiescent prominences. Astronomy and Astrophysics, 2019, 625, A52.	2.1	13
39	Active Region Modulation of Coronal Hole Solar Wind. Astrophysical Journal, 2019, 887, 146.	1.6	13
40	Diagnosing solar wind origins using <i>in situ</i> measurements in the inner heliosphere. Monthly Notices of the Royal Astronomical Society, 2019, 482, 1706-1714.	1.6	48
41	The Solar Orbiter mission. Astronomy and Astrophysics, 2020, 642, A1.	2.1	514
42	Observations of the Solar Corona from Space. Space Science Reviews, 2020, 216, 1.	3.7	19
43	Can Subphotospheric Magnetic Reconnection Change the Elemental Composition in the Solar Corona?. Astrophysical Journal, 2020, 894, 35.	1.6	9
44	Coronal Magnetic Field Topology from Total Solar Eclipse Observations. Astrophysical Journal, 2020, 895, 123.	1.6	29
45	Data-Driven Classification of Coronal Hole and Streamer Belt Solar Wind. Solar Physics, 2020, 295, 1.	1.0	10
46	Four Distinct Pathways to the Element Abundances in Solar Energetic Particles. Space Science Reviews, 2020, 216, 1.	3.7	42
47	Element Abundances and FIP: SEPs, Corona, and Solar Wind. Lecture Notes in Physics, 2021, , 167-185.	0.3	0
48	Upflows in the Upper Solar Atmosphere. Solar Physics, 2021, 296, 1.	1.0	27
49	Analysis of Quasistationary Solar Wind Stream Forecasts for 2010–2019. Russian Meteorology and Hydrology, 2021, 46, 172-178.	0.2	5
50	The source of the major solar energetic particle events from super active region 11944. Science Advances, 2021, 7, .	4.7	25
51	The Evolution of Plasma Composition during a Solar Flare. Astrophysical Journal, 2021, 911, 86.	1.6	8
52	Critical Science Plan for the Daniel K. Inouye Solar Telescope (DKIST). Solar Physics, 2021, 296, 1.	1.0	65
53	The active region source of a type III radio storm observed by Parker Solar Probe during encounter 2. Astronomy and Astrophysics, 2021, 650, A7.	2.1	17
54	Plasma Upflows Induced by Magnetic Reconnection Above an Eruptive Flux Rope. Solar Physics, 2021, 296, 1.	1.0	3
55	Widespread occurrence of high-velocity upflows in solar active regions. Astronomy and Astrophysics, 2021, 650, L10.	2.1	8

CITATION REPORT

#	Article	IF	CITATIONS
56	Turbulent Generation of Magnetic Switchbacks in the Alfvénic Solar Wind. Astrophysical Journal, 2021, 915, 52.	1.6	43
57	The Effect of Thermal Nonequilibrium on Helmet Streamers. Astrophysical Journal, 2021, 916, 115.	1.6	7
58	The Formation and Lifetime of Outflows in a Solar Active Region. Astrophysical Journal, 2021, 917, 25.	1.6	8
59	Investigating the origin of magnetic perturbations associated with the FIP Effect. Astronomy and Astrophysics, 2021, 656, A87.	2.1	3
60	Signature and escape of highly fractionated plasma in an active region. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1831-1841.	1.6	4
61	Dynamics in the Transition Region beneath Active Region Upflows Viewed by IRIS. Astrophysical Journal, 2021, 918, 33.	1.6	1
62	Solar Energetic Particles. Lecture Notes in Physics, 2021, , .	0.3	44
63	Alfvénic Perturbations in a Sunspot Chromosphere Linked to Fractionated Plasma in the Corona. Astrophysical Journal, 2021, 907, 16.	1.6	20
64	Active region upflows. Astronomy and Astrophysics, 2015, 584, A38.	2.1	9
65	Directly comparing coronal and solar wind elemental fractionation. Astronomy and Astrophysics, 2020, 640, A28.	2.1	14
66	TRANSITION REGION ABUNDANCE MEASUREMENTS DURING IMPULSIVE HEATING EVENTS. Astrophysical Journal, 2016, 824, 56.	1.6	22
67	The Drivers of Active Region Outflows into the Slow Solar Wind. Astrophysical Journal, 2020, 894, 144.	1.6	19
68	IRIS Observations of the Low-atmosphere Counterparts of Active Region Outflows. Astrophysical Journal, 2020, 903, 68.	1.6	9
69	Investigating the Chromospheric Footpoints of the Solar Wind. Astrophysical Journal Letters, 2020, 905, L33.	3.0	8
70	First observations from the SPICE EUV spectrometer on Solar Orbiter. Astronomy and Astrophysics, 2021, 656, A38.	2.1	8
71	Minimal Magnetic States of the Sun and the Solar Wind: Implications for the Origin of the Slow Solar Wind. Space Sciences Series of ISSI, 2015, , 227-247.	0.0	0
72	Low Brightness Temperature in Microwaves at Periphery of Some Solar Active Regions. Latvian Journal of Physics and Technical Sciences, 2017, 54, 58-67.	0.4	1
73	The Origin of the Solar Wind. Astrophysics and Space Science Library, 2018, , 95-102.	1.0	0

#	Article	IF	Citations
74	Solar Extreme Ultraviolet Spectroscopy: zur NachElSzeit. Astrophysics and Space Science Library, 2018, , 53-62.	1.0	0
75	Identification of Hot Plasma Anomalies in Solar Wind Using Fe Ion Charge Distributions. Astrophysical Journal Letters, 2020, 905, L17.	3.0	5
76	Evolution of Plasma Composition in an Eruptive Flux Rope. Astrophysical Journal, 2022, 924, 17.	1.6	5
79	On the Formation of Solar Wind and Switchbacks, and Quiet Sun Heating. Astrophysical Journal, 2022, 926, 138.	1.6	9
80	Testing the Alfvén-wave Model of the Solar Wind with Interplanetary Scintillation. Astrophysical Journal, 2022, 928, 130.	1.6	1
81	Detection of Stellar-like Abundance Anomalies in the Slow Solar Wind. Astrophysical Journal Letters, 2022, 930, L10.	3.0	2
82	New Solar Flare Calcium Abundances with No Surprises: Results from the Solar Maximum Mission Bent Crystal Spectrometer. Astrophysical Journal, 2022, 930, 77.	1.6	2
83	Magnetic reconnection: MHD theory and modelling. Living Reviews in Solar Physics, 2022, 19, 1.	7.8	43
84	The Dynamic Structure of Coronal Hole Boundaries. Astrophysical Journal, 2022, 931, 96.	1.6	4
85	Coronal spectroscopy: probing sources of slow solar wind in active regions, and the early phases of solar flares. Advances in Space Research, 2022, , .	1.2	0
86	Constraining Global Coronal Models with Multiple Independent Observables. Astrophysical Journal, 2022, 932, 135.	1.6	12
87	The Chinese Hα Solar Explorer (CHASE) mission: An overview. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	38
88	Fast prograde coronal flows in solar active regions. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 515, L84-L88.	1.2	3
89	What Determines Active Region Coronal Plasma Composition?. Astrophysical Journal, 2022, 933, 245.	1.6	5
90	Connecting Solar Orbiter remote-sensing observations and Parker Solar Probe in-situ measurements with a numerical MHD reconstruction of the Parker spiral. Astronomy and Astrophysics, 0, , .	2.1	0
91	Magnetic Field Structure, Doppler Shift, and Intensity of Active Regions and Their Connections with the Solar Wind. Astrophysical Journal, 2022, 939, 20.	1.6	1
92	Scattered Light in the Hinode/EIS and SDO/AIA Instruments Measured from the 2012 Venus Transit. Astrophysical Journal, 2022, 938, 27.	1.6	1
93	The Solar Cycle Dependence of In Situ Properties of Two Types of Interplanetary CMEs during 1999–2020. Astrophysical Journal, 2022, 940, 103.	1.6	4

CITATION REPORT

#	Article	IF	CITATIONS
94	Deciphering the birth region, formation, and evolution of ambient and transient solar wind using heavy ion observations. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	3
95	The case for solar full-disk spectral diagnostics: Chromosphere to corona. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	1
96	Waves in the lower solar atmosphere: the dawn of next-generation solar telescopes. Living Reviews in Solar Physics, 2023, 20, .	7.8	13
97	Solar wind H+ fluxes at 1 AU for solar cycles 23 and 24. Advances in Space Research, 2023, 71, 4923-4957.	1.2	0
98	Coronal Abundances in an Active Region: Evolution and Underlying Chromospheric and Transition Region Properties. Astrophysical Journal, 2023, 944, 117.	1.6	2
99	On orbit performance of the solar flare trigger for the Hinode EUV imaging spectrometer. Frontiers in Astronomy and Space Sciences, 0, 10, .	1.1	0
100	Strategic Study for the Development of Solar Physics in Space. Kongjian Kexue Xuebao, 2023, 43, 199.	0.2	1
107	The Solar X-Ray Corona. , 2023, , 1-38.		Ο
115	The Solar X-ray Corona. , 2024, , 3075-3112.		0

CITATION REPORT