Dissecting noncoding and pathogen RNA–protein inte

Rna

21, 135-143

DOI: 10.1261/rna.047803.114

Citation Report

#	Article	IF	CITATIONS
1	DDX5 and its associated lncRNA Rmrp modulate TH17 cell effector functions. Nature, 2015, 528, 517-522.	13.7	154
2	Systematic Discovery of Xist RNA Binding Proteins. Cell, 2015, 161, 404-416.	13.5	886
3	Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature, 2015, 522, 221-225.	13.7	507
4	Structural imprints in vivo decode RNA regulatory mechanisms. Nature, 2015, 519, 486-490.	13.7	639
5	Linking RNA biology to IncRNAs. Genome Research, 2015, 25, 1456-1465.	2.4	158
6	Improved binding site assignment by high-resolution mapping of RNA–protein interactions using iCLIP. Nature Communications, 2015, 6, 7921.	5.8	32
8	Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma. Molecular Cell, 2016, 62, 34-46.	4.5	71
9	irCLIP platform for efficient characterization of protein–RNA interactions. Nature Methods, 2016, 13, 489-492.	9.0	222
10	A novel role for poly(C) binding proteins in programmed ribosomal frameshifting. Nucleic Acids Research, 2016, 44, 5491-5503.	6.5	44
11	Easier, Better, Faster, Stronger: Improved Methods for RNA-Protein Interaction Studies. Molecular Cell, 2016, 62, 650-651.	4.5	3
12	Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nature Protocols, 2016, 11, 273-290.	5.5	147
13	7SK-BAF axis controls pervasive transcription at enhancers. Nature Structural and Molecular Biology, 2016, 23, 231-238.	3.6	92
14	The Emerging Function and Mechanism of ceRNAs in Cancer. Trends in Genetics, 2016, 32, 211-224.	2.9	164
15	Strategies for modulating innate immune activation and protein production of in vitro transcribed mRNAs. Journal of Materials Chemistry B, 2016, 4, 1619-1632.	2.9	17
16	CLIPSeqToolsâ€"a novel bioinformatics CLIP-seq analysis suite. Rna, 2016, 22, 1-9.	1.6	49
17	The Poly(C) Binding Protein Pcbp2 and Its Retrotransposed Derivative Pcbp1 Are Independently Essential to Mouse Development. Molecular and Cellular Biology, 2016, 36, 304-319.	1.1	55
18	Cellular DEAD-box RNA helicase DDX6 modulates interaction of miR-122 with the $5\hat{a} \in \mathbb{Z}^2$ untranslated region of hepatitis C virus RNA. Virology, 2017, 507, 231-241.	1.1	17
19	Sensing Self and Foreign Circular RNAs by Intron Identity. Molecular Cell, 2017, 67, 228-238.e5.	4.5	346

#	Article	IF	CITATIONS
20	sCLIP—an integrated platform to study RNA–protein interactomes in biomedical research: identification of CSTF2tau in alternative processing of small nuclear RNAs. Nucleic Acids Research, 2017, 45, 6074-6086.	6.5	43
21	The Mammalian Ribo-interactome Reveals Ribosome Functional Diversity and Heterogeneity. Cell, 2017, 169, 1051-1065.e18.	13.5	314
22	Comprehensive and quantitative mapping of RNA–protein interactions across a transcribed eukaryotic genome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3619-3624.	3.3	54
23	Kinetic CRAC uncovers a role for Nab3 in determining gene expression profiles during stress. Nature Communications, 2017, 8, 12.	5.8	78
24	The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline. ELife, $2017, 6, .$	2.8	167
25	RNA Binding Proteins in Intestinal Epithelial Biology and Colorectal Cancer. Trends in Molecular Medicine, 2018, 24, 490-506.	3.5	124
26	HNRNPA1 promotes recognition of splice site decoys by U2AF2 in vivo. Genome Research, 2018, 28, 689-698.	2.4	28
27	Advances in CLIP Technologies for Studies of Protein-RNA Interactions. Molecular Cell, 2018, 69, 354-369.	4.5	239
28	Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders. Nature, 2018, 554, 112-117.	13.7	125
29	Individual Nucleotide Resolution UV Cross-Linking and Immunoprecipitation (iCLIP) to Determine Protein–RNA Interactions. Methods in Molecular Biology, 2018, 1649, 427-454.	0.4	8
30	Regulation of Transcription by Circular RNAs. Advances in Experimental Medicine and Biology, 2018, 1087, 81-94.	0.8	68
31	The Future of Cross-Linking and Immunoprecipitation (CLIP). Cold Spring Harbor Perspectives in Biology, 2018, 10, a032243.	2.3	51
32	Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication. Frontiers in Microbiology, 2018, 9, 395.	1.5	36
33	CLIP-related methodologies and their application to retrovirology. Retrovirology, 2018, 15, 35.	0.9	12
34	N6-Methyladenosine Modification Controls Circular RNA Immunity. Molecular Cell, 2019, 76, 96-109.e9.	4.5	348
35	Distinct and Collaborative Functions of Yb and Armitage in Transposon-Targeting piRNA Biogenesis. Cell Reports, 2019, 27, 1822-1835.e8.	2.9	37
36	eIF4G2 balances its own mRNA translation via a PCBP2-based feedback loop. Rna, 2019, 25, 757-767.	1.6	14
37	RNA structure maps across mammalian cellular compartments. Nature Structural and Molecular Biology, 2019, 26, 322-330.	3.6	183

#	Article	IF	CITATIONS
38	Genome-Wide Discovery of DEAD-Box RNA Helicase Targets Reveals RNA Structural Remodeling in Transcription Termination. Genetics, 2019, 212, 153-174.	1.2	19
39	A Combined ELONA-(RT)qPCR Approach for Characterizing DNA and RNA Aptamers Selected against PCBP-2. Molecules, 2019, 24, 1213.	1.7	14
40	Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification. Genetics, 2019, 213, 1093-1110.	1.2	24
41	Nuclear RNA export factor variant initiates piRNAâ€guided coâ€transcriptional silencing. EMBO Journal, 2019, 38, e102870.	3.5	57
42	Functional significance of U2AF1 S34F mutations in lung adenocarcinomas. Nature Communications, 2019, 10, 5712.	5.8	27
43	Human astroviruses: in silico analysis of the untranslated region and putative binding sites of cellular proteins. Molecular Biology Reports, 2019, 46, 1413-1424.	1.0	7
44	All About the RNA: Interferon-Stimulated Genes That Interfere With Viral RNA Processes. Frontiers in Immunology, 2020, 11, 605024.	2.2	82
45	Retroviruses of the Human Virobiota: The Recycling of Viral Genes and the Resulting Advantages for Human Hosts During Evolution. Frontiers in Microbiology, 2020, 11, 1140.	1.5	10
46	Monitoring Protein-RNA Interaction Dynamics in vivo at High Temporal Resolution using & amp;#967;CRAC. Journal of Visualized Experiments, 2020, , .	0.2	6
47	Pan-interactomics and its applications. , 2020, , 397-435.		1
48	Analysis of the nucleocytoplasmic shuttling RNA-binding protein HNRNPU using optimized HITS-CLIP method. PLoS ONE, 2020, 15, e0231450.	1.1	16
49	Roadblocks and fast tracks: How RNA binding proteins affect the viral RNA journey in the cell. Seminars in Cell and Developmental Biology, 2021, 111, 86-100.	2.3	16
51	CLIP and complementary methods. Nature Reviews Methods Primers, 2021, 1, .	11.8	152
52	RNA-Binding Proteins at the Host-Pathogen Interface Targeting Viral Regulatory Elements. Viruses, 2021, 13, 952.	1.5	15
53	Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell, 2021, 184, 3109-3124.e22.	13.5	260
54	A p53-dependent translational program directs tissue-selective phenotypes in a model of ribosomopathies. Developmental Cell, 2021, 56, 2089-2102.e11.	3.1	26
55	Efficient Linear dsDNA Tagging Using Deoxyuridine Excision**. ChemBioChem, 2021, 22, 3214-3224.	1.3	2
58	Sequence features of viral and human Internal Ribosome Entry Sites predictive of their activity. PLoS Computational Biology, 2017, 13, e1005734.	1.5	23

#	Article	IF	CITATIONS
59	Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress. Oncotarget, 2016, 7, 28169-28182.	0.8	62
62	Poly(rC)-Binding Protein 1 Limits Hepatitis C Virus Virion Assembly and Secretion. Viruses, 2022, 14, 291.	1.5	5
63	Siwi cooperates with Par-1 kinase to resolve the autoinhibitory effect of Papi for Siwi-piRISC biogenesis. Nature Communications, 2022, 13, 1518.	5.8	1
64	RNA–protein interactomes as invaluable resources to study RNA viruses: Insights from SARS CoVâ€2 studies. Wiley Interdisciplinary Reviews RNA, 2022, , e1727.	3.2	3
65	Next-generation sequencing: A new avenue to understand viral RNA–protein interactions. Journal of Biological Chemistry, 2022, 298, 101924.	1.6	4
67	Generation of PCBP1-deficient pigs using CRISPR/Cas9-mediated gene editing. IScience, 2022, 25, 105268.	1.9	3
68	Bombyx Vasa sequesters transposon mRNAs in nuage via phase separation requiring RNA binding and self-association. Nature Communications, 2023, 14 , .	5.8	1