A Third Wave in the Economics of Climate Change

Environmental and Resource Economics 62, 329-357 DOI: 10.1007/s10640-015-9965-2

Citation Report

#	Article	IF	CITATIONS
1	Beyond IPCC, Research for Paris 2015 and Beyond. Environmental and Resource Economics, 2015, 62, 207-215.	1.5	2
2	Enhanced economic connectivity to foster heat stress–related losses. Science Advances, 2016, 2, e1501026.	4.7	50
3	Estimating option values of solar radiation management assuming that climate sensitivity is uncertain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5886-5891.	3.3	16
4	Sustainable management of fossil fuels: A dynamic stochastic optimization approach with jump-diffusion. European Journal of Operational Research, 2016, 255, 288-297.	3.5	5
5	The technosphere in Earth System analysis: A coevolutionary perspective. Infrastructure Asset Management, 2017, 4, 23-33.	1.2	30
6	Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review. Renewable and Sustainable Energy Reviews, 2017, 78, 61-71.	8.2	152
7	Complexity and the Economics of Climate Change: A Survey and aÂLookÂForward. Ecological Economics, 2017, 138, 252-265.	2.9	127
8	Optimal policy identification: Insights from the German electricity market. Technological Forecasting and Social Change, 2017, 122, 71-90.	6.2	19
9	Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate. Journal of Economic Dynamics and Control, 2017, 83, 232-269.	0.9	70
10	Quantifying the economic risks of climate change. Nature Climate Change, 2017, 7, 774-782.	8.1	192
11	Opportunities for knowledge co-production across the energy-food-water nexus: Making interdisciplinary approaches work for better climate decision making. Environmental Science and Policy, 2017, 75, 103-110.	2.4	96
12	Temperature shocks and welfare costs. Journal of Economic Dynamics and Control, 2017, 82, 331-355.	0.9	69
13	The Green Climate Fund as an effective compensatory mechanism in global climate negotiations. Environmental Science and Policy, 2017, 77, 49-68.	2.4	25
14	The Tightening Links Between Financial Systems and the Low-Carbon Transition. , 2017, , 313-356.		20
15	Hazardous Weather Prediction and Communication in the Modern Information Environment. Bulletin of the American Meteorological Society, 2017, 98, 2653-2674.	1.7	54
16	Wind Power and Externalities. Ecological Economics, 2017, 141, 245-260.	2.9	85
17	Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation. Complexity, 2017, 2017, 1-23.	0.9	41
18	Climat, finance et croissance : l'introuvable tango à trois des modèles économie-climat�. Revue D'economie FinanciÃ^re, 2017, N° 127, 237-252.	0.1	О

#	Article	IF	CITATIONS
19	As Bad as it Gets: How Climate Damage Functions Affect Growth and the Social Cost of Carbon. SSRN Electronic Journal, 0, , .	0.4	0
20	Towards representing human behavior and decision making in Earth system models – an overview of techniques and approaches. Earth System Dynamics, 2017, 8, 977-1007.	2.7	57
21	Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-Based Integrated Assessment Model. SSRN Electronic Journal, 0, , .	0.4	7
22	Debt and damages: What are the chances of staying under the 2 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo>Â[°]</mml:mo>C warming threshold?. International Economics. 2018. 155. 92-108.</mml:math 	1.6	19
23	A Financial Macro-Network Approach to Climate Policy Evaluation. Ecological Economics, 2018, 149, 239-253.	2.9	88
24	Building equity in: strategies for integrating equity into modelling for a 1.5°C world. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160461.	1.6	19
25	Integrating behavioural economics into climate-economy models: some policy lessons. Climate Policy, 2018, 18, 485-498.	2.6	4
26	A Win-Win-Win? Motivating innovation in a knowledge economy with tax incentives. Technological Forecasting and Social Change, 2018, 127, 38-56.	6.2	20
27	An Agent-based Stock-flow Consistent Model of the Sustainable Transition in the Energy Sector. Ecological Economics, 2018, 145, 274-300.	2.9	98
28	The EIRIN Flow-of-funds Behavioural Model of Green Fiscal Policies and Green Sovereign Bonds. Ecological Economics, 2018, 144, 228-243.	2.9	148
29	The theory-practice gap of black carbon mitigation technologies in rural China. Atmospheric Environment, 2018, 174, 122-131.	1.9	10
30	Don't Forget Climate Sentiments: Real and Financial Markets' Reactions to Climate Risks. SSRN Electronic Journal, 0, , .	0.4	5
31	Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model. Ecological Economics, 2018, 150, 315-339.	2.9	116
32	Residual fossil CO2 emissions in 1.5–2 °C pathways. Nature Climate Change, 2018, 8, 626-633.	8.1	380
33	Impact and distribution of climatic damages: a methodological proposal with a dynamic CGE model applied to global climate negotiations. Economia Politica, 2018, 35, 809-843.	1.2	5
34	Developing a framework to quantify potential Sea level rise-driven environmental losses: A case study in Semarang coastal area, Indonesia. Environmental Science and Policy, 2018, 89, 216-230.	2.4	19
35	Directed Technological Change in a Post-Keynesian Ecological Macromodel. Ecological Economics, 2018, 154, 168-188.	2.9	32
37	When optimization for governing human-environment tipping elements is neither sustainable nor safe. Nature Communications, 2018, 9, 2354.	5.8	31

ARTICLE IF CITATIONS # Estimating the social carbon costs from power and desalination productions in UAE. Renewable and 38 8.2 15 Sustainable Energy Reviews, 2019, 114, 109284. Economics of climate change: introducing the Basic Climate Economic (BCE) model. Environment and 1.3 Development Economics, 2019, 24, 560-582. 40 Frontiers of Heterodox Macroeconomics., 2019,,. 3 Optimal Environmental Tax Rate in an Open Economy with Labor Migrationâ€"An E-DSGE Model Approach. Sustainability, 2019, 11, 5147. Using agent-based modelling to simulate social-ecological systems across scales. GeoInformatica, 42 2.0 46 2019, 23, 269-298. Uncertainty of climate policies and implications for economics and finance: An evolutionary economics approach. Ecological Economics, 2019, 163, 177-182. How to Accelerate Green Technology Diffusion? An Agent-based Approach to Directed Technological 44 0.4 0 Change with Coevolving Absorptive Capacity. SSRN Electronic Journal, 2019, , . A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS. Energies, 2019, 12, 1747. 1.6 119 Farmers' Riskâ€Based Decision Making Under Pervasive Uncertainty: Cognitive Thresholds and Hazy 46 1.5 35 Hedging. Risk Analysis, 2019, 39, 1755-1770. Computational Methods in Environmental and Resource Economics. Annual Review of Resource 1.5 Economics, 2019, 11, 59-82. The Environmental Impacts and Optimal Environmental Policies of Macroeconomic Uncertainty 49 7 1.6 Shocks: A Dynamic Model Approach. Sustainability, 2019, 11, 4993. Planning a Low-Carbon Energy Transition: What Can and Can't the Models Tell Us?. Joule, 2019, 3, 11.7 1795-1798. Climate Risks, Economics and Finance: Insights from Complex Systems. Contemporary Systems Thinking, 51 0.3 8 2019, , 97-119. Modelling the Evolution of Economic Structure and Climate Change: A Review. Ecological Economics, 2019, 158, 51-64. Best policy response to environmental shocks: Applying a stochastic framework. Journal of 53 2.1 33 Environmental Economics and Management, 2019, 97, 23-41. From financial instability to green finance: the role of banking and credit market regulation in the Eurace model. Journal of Evolutionary Economics, 2019, 29, 429-465. Towards agent-based integrated assessment models: examples, challenges, and future developments. 55 1.4 32 Regional Environmental Change, 2019, 19, 747-762. As Bad as it Gets: How Climate Damage Functions Affect Growth and the Social Cost of Carbon. 1.5 34 Environmental and Resource Economics, 2019, 72, 5-26.

#	Article	IF	CITATIONS
57	Exploring the competition between variable renewable electricity and a carbon-neutral baseload technology. Energy Systems, 2020, 11, 21-44.	1.8	8
58	Actors, decision-making, and institutions in quantitative system modelling. Technological Forecasting and Social Change, 2020, 151, 119480.	6.2	26
59	How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity. Energy Economics, 2020, 85, 104565.	5.6	44
60	The impact of climate damage function on the social cost of carbon and economic growth rate. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 1287-1304.	1.0	3
61	The desirability of transitions in demand: Incorporating behavioural and societal transformations into energy modelling. Energy Research and Social Science, 2020, 70, 101780.	3.0	41
62	Climate Change and the Financial System. Annual Review of Resource Economics, 2020, 12, 299-320.	1.5	106
63	Green Recovery Policies for the COVID-19 Crisis: Modelling the Impact on the Economy and Greenhouse Gas Emissions. Environmental and Resource Economics, 2020, 76, 731-750.	1.5	96
64	Transformational change: parallels for addressing climate and development goals. , 2020, , .		0
65	CLIMRISK-RIVER: Accounting for local river flood risk in estimating the economic cost of climate change. Environmental Modelling and Software, 2020, 132, 104784.	1.9	6
66	The impact of climate conditions on economic production. Evidence from a global panel of regions. Journal of Environmental Economics and Management, 2020, 103, 102360.	2.1	162
67	Optimal emissions tax rates under habit formation and social comparisons. Energy Policy, 2020, 146, 111809.	4.2	10
68	DICE-RD: an implementation of rate-related damages in the DICE model. Environmental Economics and Policy Studies, 2020, 22, 555-584.	0.8	9
69	Case-study - The transition of Belgium towards a low carbon society: A macroeconomic analysis fed by a participative approach. Energy Strategy Reviews, 2020, 29, 100463.	3.3	8
70	Collaborative optimal carbon tax rate under economic and energy price shocks: A dynamic stochastic general equilibrium model approach. Journal of Cleaner Production, 2020, 256, 120452.	4.6	10
71	Energy modellers should explore extremes more systematically in scenarios. Nature Energy, 2020, 5, 104-107.	19.8	71
72	Event-based models to understand the scale of the impact of extremes. Nature Energy, 2020, 5, 111-114.	19.8	24
73	Decarbonizing existing coal-fired power stations considering endogenous technology learning: A Turkish case study. Journal of Cleaner Production, 2020, 261, 121100.	4.6	12
74	A review of agentâ€based modeling of climateâ€energy policy. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e647.	3.6	39

-				
C 17		ON	REPORT	г
	IAL		REPOR	

#	Article	IF	CITATIONS
75	Coherent or conflicting? Assessing natural gas subsidy and energy efficiency policy interactions amid CO2 emissions reduction in Malaysia electricity sector. Journal of Cleaner Production, 2021, 279, 123374.	4.6	15
76	Modelling net-zero emissions energy systems requires a change in approach. Climate Policy, 2021, 21, 222-231.	2.6	85
77	Emission tax vs. permit trading under bounded rationality and dynamic markets. Energy Policy, 2021, 148, 112009.	4.2	14
78	Dynamic carbon dioxide taxation with revenue recycling. Journal of Cleaner Production, 2021, 289, 125045.	4.6	6
79	Complex Systems in Economics and Where to Find Them. Journal of Systems Science and Complexity, 2021, 34, 314-338.	1.6	19
80	Lowâ€carbon transition risks for finance. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e678.	3.6	120
81	Coupled Climate-Economy-Ecology-Biosphere Modeling: A Dynamic and Stochastic Approach. , 2021, , 1-63.		1
82	Valuation of Carbon Emissions. , 2021, , 72-75.		0
83	A macro-evolutionary approach to energyÂpolicy. , 2021, , 579-593.		0
84	Modeling myths: On <scp>DICE</scp> and dynamic realism in integrated assessment models of climate change mitigation. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e698.	3.6	24
85	National COVID debts: climate change imperils countries' ability to repay. Nature, 2021, 592, 184-187.	13.7	25
86	Dynamic interactive effect and co-design of SO2 emission tax and CO2 emission trading scheme. Energy Policy, 2021, 152, 112212.	4.2	15
87	Economic impacts and risks of climate change under failure and success of the Paris Agreement. Annals of the New York Academy of Sciences, 2021, 1504, 95-115.	1.8	14
88	Climate risks and financial stability. Journal of Financial Stability, 2021, 54, 100867.	2.6	124
89	Assessing the impacts of climate change to financial stability: evidence from China. International Journal of Climate Change Strategies and Management, 2021, 13, 375-393.	1.5	12
90	Cutting through the noise on negative emissions. Joule, 2021, 5, 1956-1970.	11.7	9
91	The value of CCUS in transitions to net-zero emissions. Electricity Journal, 2021, 34, 107004.	1.3	26
92	Risk-opportunity analysis for transformative policy design and appraisal. Global Environmental Change, 2021, 70, 102359.	3.6	20

#	Article	IF	CITATIONS
93	Exploring the links between total factor productivity and energy efficiency: Portugal, 1960–2014. Energy Economics, 2021, 101, 105407.	5.6	22
94	Innovation, growth and the transition to net-zero emissions. Research Policy, 2021, 50, 104293.	3.3	76
95	Critical reflections on Water-Energy-Food Nexus in Computable General Equilibrium models: A systematic literature review. Environmental Modelling and Software, 2021, 145, 105201.	1.9	17
96	Stolen Dreams or Collateral Damage: Climate and Economic Growth in Time of COVID-19. SSRN Electronic Journal, 0, , .	0.4	0
97	Creating a Model of the Earth System (MOTES): Some Experiences with Parallel ABM. Springer Proceedings in Complexity, 2021, , 459-472.	0.2	0
98	Fiscal Policy and Ecological Sustainability: A Post-Keynesian Perspective. , 2019, , 277-322.		16
99	Economy-wide impacts of behavioral climate change mitigation: Linking agent-based and computable general equilibrium models. Environmental Modelling and Software, 2020, 134, 104839.	1.9	35
100	Understanding the Role of CCS Deployment in Meeting Ambitious Climate Goals. RSC Energy and Environment Series, 2019, , 8-35.	0.2	4
102	Eight grand challenges in socio-environmental systems modeling. Socio-Environmental Systems Modeling, 0, 2, 16226.	0.0	82
103	Adding Quantity Certainty to a Carbon Tax. SSRN Electronic Journal, 0, , .	0.4	2
104	Escaping Damocles' Sword: Endogenous Climate Shocks in a Growing Economy. SSRN Electronic Journal, 0, , .	0.4	11
105	Computational Methods in Environmental and Resource Economics. SSRN Electronic Journal, 0, , .	0.4	3
106	On the Dependence of Investor's Probability of Default on Climate Transition Scenarios. SSRN Electronic Journal, 0, , .	0.4	6
107	Analysing stakeholders' perspectives towards a socio-technical change: The energy transition journey in Gela Municipality. AIMS Energy, 2018, 6, 645-657.	1.1	37
108	Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World–Earth modeling framework. Earth System Dynamics, 2020, 11, 395-413.	2.7	32
109	Review article: Hilbert problems for the climate sciences in the 21st century – 20 years later. Nonlinear Processes in Geophysics, 2020, 27, 429-451.	0.6	7
110	Neoclassical influences in agentâ€based literature: A systematic review. Journal of Economic Surveys, 2022, 36, 350-385.	3.7	4
111	Temperature Shocks and Welfare Costs. SSRN Electronic Journal, 0, , .	0.4	0

		REPORT	
# 112	ARTICLE Actors, Decision-Making, and Institutions in Quantitative System Modelling. SSRN Electronic Journal, 0, , .	IF 0.4	Citations
113	Economics of Climate Change: Introducing the Basic Climate Economic (BCE) Model. SSRN Electronic Journal, 0, , .	0.4	0
114	Rethinking Growth. , 2018, , 99-133.		0
115	Introduction: Defining Nexus Shocks. , 2019, , 1-21.		0
116	Climate Change and the Financial System. SSRN Electronic Journal, 0, , .	0.4	1
117	The Optimal Carbon Tax with An Endogenous Chance of a Tipping Climate. SSRN Electronic Journal, 0, ,	0.4	0
118	Requirements for a Future Economics. , 2019, , 315-354.		0
119	Drivers of fisheries production in complex socioecological systems. , 2019, , 35-38.		0
120	Multi-objective optimal control of a simple stochastic climate-economy model. IFAC-PapersOnLine, 2020, 53, 16593-16598.	0.5	5
121	Shocks to Transition Risk. SSRN Electronic Journal, 0, , .	0.4	1
122	DSGE models for a circular economy: a literature review. , 2021, , .		0
123	The Real Economic Dimensions of Climate Change. Journal of Extreme Events, 2020, 07, 2131001.	1.2	2
124	The cost of mitigation revisited. Nature Climate Change, 2021, 11, 1035-1045.	8.1	34
125	Agent-Based Modeling of Carbon Emission Trading Market With Heterogeneous Agents. SSRN Electronic Journal, 0, , .	0.4	0
126	Lessons from COVID-19 for managing transboundary climate risks and building resilience. Climate Risk Management, 2022, 35, 100395.	1.5	23
127	Visions before models: The ethos of energy modeling in an era of transition. Energy Research and Social Science, 2022, 88, 102497.	3.0	12
128	Plant conversions and abatement technologies cannot prevent stranding of power plant assets in 2 °C scenarios. Nature Communications, 2022, 13, 806.	5.8	13
129	Resilience of International Trade to Typhoon-Related Supply Disruptions. SSRN Electronic Journal, 0, , .	0.4	Ο

#	Article	IF	Citations
130	Charging the Macroeconomy with an Energy Sector: An Agent-based Model. SSRN Electronic Journal, 0, , .	0.4	0
131	The economics of immense risk, urgent action and radical change: towards new approaches to the economics of climate change. Journal of Economic Methodology, 2022, 29, 181-216.	0.6	55
132	Challenges and innovations in the economic evaluation of the risks of climate change. Ecological Economics, 2022, 197, 107437.	2.9	26
133	Effects of linking national carbon markets on international macroeconomics: An open-economy E-DSGE model. Computers and Industrial Engineering, 2022, 169, 108166.	3.4	8
134	From Dynamics to Novelty: An Agent-Based Model of the Economic System. Artificial Life, 2022, , 1-38.	1.0	1
135	Investors' Perception of Climate Risk: Evidence from Weather Disaster Events. SSRN Electronic Journal, 0, , .	0.4	0
136	Coupled Climate-Economy-Ecology-Biosphere Modeling: A Dynamic and Stochastic Approach. , 2022, , 225-287.		0
137	Climate change policy and carbon pricing. Energy Policy, 2022, 168, 112985.	4.2	13
138	Is economic crisis an opportunity for realizing the low-carbon transition? A simulation study on the interaction between economic cycle and energy regulation policy. Energy Policy, 2022, 168, 113114.	4.2	10
139	Climate Change and Financial Policy: A Literature Review. Finance and Economics Discussion Series, 2022, , 1-72.	0.2	2
140	The local costs of global climate change: spatial GDP downscaling under different climate scenarios. Spatial Economic Analysis, 0, , 1-21.	0.8	2
141	ABM-IAM: Optimal climate policy under bounded rationality and multiple inequalities. Environmental Research Letters, 0, , .	2.2	3
142	Acute climate risks in the financial system: examining the utility of climate model projections. , 2022, 1, 025002.		6
143	(In)justice in modelled climate futures: A review of integrated assessment modelling critiques through a justice lens. Energy Research and Social Science, 2022, 92, 102781.	3.0	17
144	Analysis of energy future pathways for Ecuador facing the prospects of oil availability using a system dynamics model. Is degrowth inevitable?. Energy, 2022, 259, 124963.	4.5	9
145	Socially Equitable Energy Transitions: Analytical Challenges and Policy Implications. RSC Energy and Environment Series, 2022, , 465-483.	0.2	0
146	Al for Global Climate Cooperation: Modeling Global Climate Negotiations, Agreements, and Long-Term Cooperation in RICE-N. SSRN Electronic Journal, 0, , .	0.4	1
147	Climate Change: A New Challenge for Land Resource Allocation. SSRN Electronic Journal, 0, , .	0.4	0

		Citation Ri	EPORT	
#	Article		IF	CITATIONS
148	Empirically grounded technology forecasts and the energy transition. Joule, 2022, 6, 2	057-2082.	11.7	138
149	Social tipping points and adaptation limits in the context of systemic risk: Concepts, n governance. Frontiers in Climate, 0, 4, .	nodels and	1.3	8
150	A model of behavioral climate change education for higher educational institutions. En Advances, 2022, 9, 100305.	vironmental	2.2	8
151	Financing the low-carbon transition: the impact of financial frictions on clean investme Macroeconomic Dynamics, 2023, 27, 1932-1971.	ent.	0.6	1
152	Optimal carbon tax rates in a dynamic stochastic general equilibrium model with a sup Economic Modelling, 2023, 119, 106109.	ply chain.	1.8	6
153	Environmental policy and carbon emissions in business cycles with public infrastructur Journal of Cleaner Production, 2023, 384, 135670.	e investment.	4.6	Ο
154	Agentâ€based modeling to integrate elements from different disciplines for ambitious Wiley Interdisciplinary Reviews: Climate Change, 2023, 14, .	climate policy.	3.6	10
155	Limits to adaptation: Building an integrated research agenda. Wiley Interdisciplinary Re Change, 2023, 14, .	eviews: Climate	3.6	1
156	Experimenting with Agent-Based Model Simulation Tools. Applied Sciences (Switzerlar	nd), 2023, 13, 13.	1.3	5
157	Better insurance could effectively mitigate the increase in economic growth losses from hurricanes under global warming. Science Advances, 2023, 9, .	m U.S.	4.7	3
158	Enter the MATRIX model:a Multi-Agent model for Transition Risks with application to e Journal of Economic Dynamics and Control, 2023, 146, 104589.	nergy shocks	0.9	5
159	Firm-level risk of climate change: Evidence from climate disasters. Global Finance Journ 100805.	al, 2023, 55,	2.8	6
160	The circular economy mitigates the material rebound due to investments in renewable of Cleaner Production, 2023, 402, 136753.	energy. Journal	4.6	7
161	Malaysia's Electricity Decarbonisation Pathways: Exploring the Role of Renewable Using Agent-Based Modelling. Energies, 2023, 16, 1720.	Energy Policies	1.6	2
162	Climate Change: Equity and Sustainability. , 2023, , 255-340.			0
163	Assessing the Macroeconomic Effects of Water Scarcity in South Africa using a CGE M Environmental Modeling and Assessment, 2023, 28, 259-272.	odel.	1.2	0
164	A Framework for Data-Driven Agent-Based Modelling of Agricultural Land Use. Land, 20	023, 12, 756.	1.2	6
170	Influence of Governance and Technology on the Environment and Economy Under Dua Target. , 2023, , 125-136.	al-Carbon		0

ARTICLE

IF CITATIONS