Evaluation of dimensional accuracy and material prope printer

Rapid Prototyping Journal 21, 618-627 DOI: 10.1108/rpj-09-2013-0093

Citation Report

#	Article	IF	CITATIONS
1	The use of rapid prototyping to assist medical applications. Rapid Prototyping Journal, 2006, 12, 53-58.	1.6	182
2	ANALYZING THE EFFECT OF NOZZLE DIAMETER IN FUSED DEPOSITION MODELING FOR EXTRUDING POLYLACTIC ACID USING OPEN SOURCE 3D PRINTING. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	27
3	Three-Dimensional Fabrication for Microfluidics by Conventional Techniques and Equipment Used in Mass Production. Micromachines, 2016, 7, 82.	1.4	11
4	Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Composite Structures, 2016, 153, 866-875.	3.1	451
5	Evaluation of Additive Manufacturing Processes in Fabrication of Personalized Robot. IFIP Advances in Information and Communication Technology, 2016, , 406-414.	0.5	1
6	Comparison on Dimensional Accuracy Using a Newly Developed Nozzle for Open-Source 3D Printer. Applied Mechanics and Materials, 0, 859, 15-19.	0.2	4
7	A dynamic model for nozzle clog monitoring in fused deposition modelling. Rapid Prototyping Journal, 2017, 23, 391-400.	1.6	52
8	Temperature-dependent mechanical properties of ABS parts fabricated by fused deposition modeling and vapor smoothing. International Journal of Precision Engineering and Manufacturing, 2017, 18, 763-769.	1.1	29
9	Thermo-mechanical properties of ABS parts fabricated by fused deposition modeling and vapor smoothing. , 2017, , .		0
10	Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties andÂtheir optimal selection. Materials and Design, 2017, 124, 143-157.	3.3	974
11	Tensile strength of partially filled FFF printed parts: meta modelling. Rapid Prototyping Journal, 2017, 23, 524-533.	1.6	17
12	Bonding quality and fracture analysis of polyamide 12 parts fabricated by fused deposition modeling. Rapid Prototyping Journal, 2017, 23, 973-982.	1.6	45
13	A review on additive manufacturing of polymer-fiber composites. Composite Structures, 2017, 182, 36-53.	3.1	817
14	Characterizing short-fiber-reinforced composites produced using additive manufacturing. Advanced Manufacturing: Polymer and Composites Science, 2017, 3, 81-91.	0.2	50
15	The improvement of mechanical and thermal properties of polyamide 12 3D printed parts by fused deposition modelling. EXPRESS Polymer Letters, 2017, 11, 963-982.	1.1	70
16	Multi-scale finite element modeling of 3D printed structures subjected to mechanical loads. Rapid Prototyping Journal, 2018, 24, 177-187.	1.6	15
17	Research on color 3D printing based on color adherence. Rapid Prototyping Journal, 2018, 24, 37-45.	1.6	9
18	Elastic properties of 3D printed fibre-reinforced structures. Composite Structures, 2018, 193, 8-18.	3.1	134

ATION REDO

#	Article	IF	CITATIONS
19	Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites. Polymer Testing, 2018, 65, 29-34.	2.3	224
20	Investigations into Complete Liquefier Dynamics and Optimization of Process Parameters for Fused Deposition Modeling. Materials Today: Proceedings, 2018, 5, 12940-12955.	0.9	13
21	Design, Analysis and Development of Mobile Robot with Flip-Flop Motion Ability. IFAC-PapersOnLine, 2018, 51, 436-440.	0.5	4
22	Slicer Method Comparison Using Open-source 3D Printer. IOP Conference Series: Earth and Environmental Science, 2018, 114, 012018.	0.2	10
23	Fatigue Performance of ABS Specimens Obtained by Fused Filament Fabrication. Materials, 2018, 11, 2521.	1.3	53
24	Investigating the effect of fused deposition modeling processing parameters using Taguchi design of experiment method. Journal of Manufacturing Processes, 2018, 36, 164-174.	2.8	173
25	Evaluation of Tensile Properties and Damage of Continuous Fibre Reinforced 3D-Printed Parts. Key Engineering Materials, 0, 774, 161-166.	0.4	33
26	Design of a 3D-printed, open-source wrist-driven orthosis for individuals with spinal cord injury. PLoS ONE, 2018, 13, e0193106.	1.1	41
27	Process optimization and stochastic modeling of void contents and mechanical properties in additively manufactured composites. Composites Part B: Engineering, 2019, 177, 107325.	5.9	40
28	Polymer additive manufacturing of ABS structure: Influence of printing direction on mechanical properties. Journal of Manufacturing Processes, 2019, 44, 288-298.	2.8	77
29	Flexural properties of three-dimensional printed continuous wire polymer composites. Materials Science and Technology, 2019, 35, 1471-1482.	0.8	4
30	Metal bellow hydroforming using additive manufactured die: a case study. Rapid Prototyping Journal, 2019, 25, 765-774.	1.6	7
31	Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites. Polymer Reviews, 2019, 59, 589-624.	5.3	223
32	Additive manufacturing of polymer composites: Processing and modeling approaches. Composites Part B: Engineering, 2019, 171, 166-182.	5.9	116
33	Design Optimization and FE Analysis of 3D Printed Carbon PEEK Based Mono Leaf Spring. Micromachines, 2019, 10, 279.	1.4	7
34	Review of acrylonitrile butadiene styrene in fused filament fabrication: A plastics engineering-focused perspective. Additive Manufacturing, 2019, 27, 363-371.	1.7	72
35	Dimensional accuracy of FDM-printed polymer parts. Rapid Prototyping Journal, 2019, 26, 288-298.	1.6	43
36	Investigation of future 3D printed brace design parameters: evaluation of mechanical properties and prototype outcomes. Journal of 3D Printing in Medicine, 2019, 3, 171-184.	1.0	9

#	Article	IF	CITATIONS
37	Flexure Behaviors of ABS-based Composites Containing Carbon and Kevlar Fibers by Material Extrusion 3D Printing. Polymers, 2019, 11, 1878.	2.0	56
38	Effect of Processing Parameters on the Dynamic Characteristic of Material Extrusion Additive Manufacturing Plates. Applied Sciences (Switzerland), 2019, 9, 5345.	1.3	3
39	A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Composites Part B: Engineering, 2019, 163, 393-402.	5.9	195
40	Deformation and fracture of 3D printed disordered lattice materials: Experiments and modeling. Materials and Design, 2019, 162, 143-153.	3.3	66
41	Single step 3D printing of bioinspired structures via metal reinforced thermoplastic and highly stretchable elastomer. Composite Structures, 2019, 210, 250-261.	3.1	32
42	Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. International Journal of Advanced Manufacturing Technology, 2019, 101, 1525-1536.	1.5	91
43	Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed Products. Experimental Mechanics, 2019, 59, 883-897.	1.1	154
44	3D printing assisted finite element analysis for optimising the manufacturing parameters of a lumbar fusion cage. Materials and Design, 2019, 163, 107540.	3.3	40
45	An innovative design approach in three-dimensional printing of continuous fiber–reinforced thermoplastic composites via fused deposition modeling process: In-melt simultaneous impregnation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234, 243-259.	1.5	50
46	Investigation of dimensional accuracy and international tolerance grades of 3D printed polycarbonate parts. Materials Today: Proceedings, 2020, 25, 537-543.	0.9	15
47	Numerical prediction of orthotropic elastic properties of 3D-printed materials using micro-CT and representative volume element. Acta Mechanica, 2020, 231, 503-516.	1.1	13
48	Topology optimization of structures considering local material uncertainties in additive manufacturing. Computer Methods in Applied Mechanics and Engineering, 2020, 360, 112786.	3.4	25
49	An Investigation on Process Capability Analysis for Fused Filament Fabrication. International Journal of Precision Engineering and Manufacturing, 2020, 21, 759-774.	1.1	11
50	On the Use of X-ray Computed Tomography in Assessment of 3D-Printed Components. Journal of Nondestructive Evaluation, 2020, 39, 1.	1.1	67
51	Developing a Novel Miniature 3D-Printed TLBS with High Mechanical Efficiency and Better Controllability. Micromachines, 2020, 11, 662.	1.4	0
52	Experimental study on tensile properties of 3D printed flexible kirigami specimens. Additive Manufacturing, 2020, 32, 101100.	1.7	7
53	Process capability analysis of binder jetting 3D printing process for fabrication of calcium sulphate based porous bone scaffolds Australian Journal of Mechanical Engineering, 2020, , 1-9.	1.5	4
54	Development of Microfluidic Components for Micro Total Analysis Systems. Chromatography, 2020, 41, 31-37.	0.8	6

#	Article	IF	Citations
55	Bead parameterization of desktop and room-scale material extrusion additive manufacturing: How print speed and thermal properties affect heat transfer. Additive Manufacturing, 2020, 34, 101239.	1.7	15
56	Mechanical characterisation of anisotropic silica sand/furan resin compound induced by binder jet 3D additive manufacturing technology. Ceramics International, 2020, 46, 17867-17880.	2.3	20
57	An overview of mechanical properties and form error for rapid prototyping. CIRP Journal of Manufacturing Science and Technology, 2020, 29, 53-70.	2.3	15
59	Design, manufacturing processes and their effects on bio-composite properties. , 2021, , 121-177.		2
60	Additive Manufacturing of Nylon Parts and Implication Study on Change in Infill Densities and Structures. Materials Forming, Machining and Tribology, 2021, , 245-260.	0.7	2
61	A Preliminary Study for Identification of Additive Manufactured Objects with Transmitted Images. Lecture Notes in Computer Science, 2021, , 439-458.	1.0	2
62	The Effect of a Phase Change on the Temperature Evolution during the Deposition Stage in Fused Filament Fabrication. Computers, 2021, 10, 19.	2.1	3
64	Feasibility analysis of manufacturing using rapid prototyping: A review. Materials Today: Proceedings, 2021, , .	0.9	3
65	Investigation of mechanical properties and form error of the components fabricated by rapid prototyping: A review. Materials Today: Proceedings, 2021, 47, 3901-3906.	0.9	3
66	3D printability of highly ductile poly(ethylene glycolâ€coâ€cyclohexaneâ€1,4â€dimethanol terephthalate) â€EMAA blends. Polymer Engineering and Science, 2021, 61, 1695-1705.	1.5	2
67	Structure-function assessment of 3D-printed porous scaffolds by a low-cost/open source fused filament fabrication printer. Materials Science and Engineering C, 2021, 123, 111945.	3.8	5
68	Topology and alignment optimization of additively manufactured, fiber-reinforced composites. Structural and Multidisciplinary Optimization, 2021, 63, 2673-2683.	1.7	9
69	Optimisation of Strength Properties of FDM Printed Parts—A Critical Review. Polymers, 2021, 13, 1587.	2.0	120
70	Development of Microfluidic Techniques for Onsite Analysis. Bunseki Kagaku, 2021, 70, 341-349.	0.1	1
71	Robust topological designs for extreme metamaterial micro-structures. Scientific Reports, 2021, 11, 15221.	1.6	11
72	A COMPARISON OF STRUCTURED LIGHT SCANNING AND PHOTOGRAMMETRY FOR THE DIGITISATION OF PHYSICAL PROTOTYPES. Proceedings of the Design Society, 2021, 1, 11-20.	0.5	2
73	Effect of Fibre Orientation on Novel Continuous 3D-Printed Fibre-Reinforced Composites. Polymers, 2021, 13, 2524.	2.0	25
74	Quality Assessment of 3D Printed Products. , 2021, , .		0

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
75	Study on the Importance of a Slicer Selection for the 3D Printing Process Parameters via the Investigation of G-Code Readings. Machines, 2021, 9, 163.	1.2	4
76	Accuracy of desktop versus professional 3D printers for maxillofacial model production. A systematic review and meta-analysis. Journal of Dentistry, 2021, 112, 103741.	1.7	9
77	Fused deposition modeling based polymeric materials and their performance: A review. Polymer Composites, 2021, 42, 5656-5677.	2.3	69
78	Geometrically nonlinear aeroelastic characteristics of highly flexible wing fabricated by additive manufacturing. Aerospace Science and Technology, 2021, 117, 106923.	2.5	16
79	Study on 3D printed graphene/carbon fiber multi-scale reinforced PLA composites. Materials Letters, 2021, 300, 130173.	1.3	12
80	Mechanical Characterization of Fused Deposition Modeling (FDM) 3D Printed Parts. Materials Forming, Machining and Tribology, 2021, , 131-150.	0.7	10
81	The influence of the MEX manufacturing parameters on the tensile elastic response of printed elements. Rapid Prototyping Journal, 2021, 27, 187-196.	1.6	2
82	Comparative Study and Measurement of Form Errors for the Component Printed by FDM and PolyJet Process. Instrumentation Mesure Metrologie, 2019, 18, 353-359.	0.2	19
83	Evaluation of Additive Manufacturing Processes in Fabrication of Personalized Robot. International Journal of Automation Technology, 2017, 11, 29-37.	0.5	5
84	3D-printed snorkel mask adapter for failed N95 fit tests and personal protective equipment shortages. Journal of 3D Printing in Medicine, 2020, 4, 203-209.	1.0	3
85	Numerical evaluation of ABS parts fabricated by fused deposition modeling and vapor smoothing. Advances in Science, Technology and Engineering Systems, 2017, 2, 157-161.	0.4	5
86	The Effect of Three Dimensional Printed Infill Pattern on Structural Strength. El-Cezeri Journal of Science and Engineering, 2018, 5, 785-796.	0.1	6
87	Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems. Micromachines, 2021, 12, 14.	1.4	26
88	Green Material for Fused Filament Fabrication. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 1-27.	0.3	1
89	Experimental and Computational Investigation on Mechanical Properties of Reinforced Additive Manufactured Component. Evergreen, 2019, 6, 207-214.	0.3	14
90	Structural and aerodynamic characteristics of additively manufactured flexible wings. Transactions of the JSME (in Japanese), 2020, 86, 19-00452-19-00452.	0.1	0
91	Micromechanical analysis of the tensile deformation behavior for 3D printed unidirectional continuous fiber reinforced thermos-plastic composites. Journal of Mechanical Science and Technology, 2020, 34, 5085-5092.	0.7	3
92	3D Printer Nozzle Design and Its Parameters: A Systematic Review. Smart Innovation, Systems and Technologies, 2020, , 777-785.	0.5	3

#	Article	IF	CITATIONS
93	Integration of Additive Manufacturing into Process Chain of Porcelain Preservation. , 2021, , 455-466.		2
94	Multi-parameter optimization of PLA/Coconut wood compound for Fused Filament Fabrication using Robust Design. International Journal of Advanced Manufacturing Technology, 2022, 119, 4317-4328.	1.5	32
95	Continuous Fiber-Reinforced Aramid/PETG 3D-Printed Composites with High Fiber Loading through Fused Filament Fabrication. Polymers, 2022, 14, 298.	2.0	21
96	Experimental Characterization and Analysis of the In-Plane Elastic Properties and Interlaminar Fracture Toughness of a 3D-Printed Continuous Carbon Fiber-Reinforced Composite. Polymers, 2022, 14, 506.	2.0	18
97	Key parameters controlling surface quality and dimensional accuracy: a critical review of FFF process. Materials and Manufacturing Processes, 2022, 37, 963-984.	2.7	83
98	Dimensional Accuracy of 3D - Printed Acrylonitrile Butadiene Styrene: Effect of Size, Layer Thickness, and Infill Density. Key Engineering Materials, 0, 913, 17-25.	0.4	3
99	Experimental assessment of thermal gradients and layout effects on the mechanical performance of components manufactured by fused deposition modeling. Rapid Prototyping Journal, 2022, 28, 1598-1608.	1.6	6
101	Novel designable strategy and multi-scale analysis of 3D printed thermoplastic fabric composites. Composites Science and Technology, 2022, 222, 109388.	3.8	9
102	Print fidelity metrics for additive manufacturing of cement-based materials. Additive Manufacturing, 2022, 55, 102784.	1.7	1
103	Tensile properties of FDM 3D-printed wood flour filled polymers and mathematical modeling through classical lamination theory. Rapid Prototyping Journal, 2022, 28, 1834-1842.	1.6	9
104	Characterization of Polylactic Acid Parts Produced Using the Fused Deposition Modelling. Mechanics of Composite Materials, 2022, 58, 169-180.	0.9	7
105	A miniaturized 3D printed pressure regulator (ÂμPR) for microfluidic cell culture applications. Scientific Reports, 2022, 12, .	1.6	8
106	The properties of 3D printed poly (lactic acid) (PLA)/poly (butylene-adipate-terephthalate) (PBAT) blend and oil palm empty fruit bunch (EFB) reinforced PLA/PBAT composites used in fused deposition modelling (FDM) 3D printing. ChemistrySelect, 2022, .	0.7	0
107	Identification of tensile behaviour of polylactic acid parts manufactured by fused deposition modelling under heat-treated conditions using nonlinear autoregressive with exogenous and transfer function models. Journal of Polymer Engineering, 2022, 42, 1004-1016.	0.6	1
108	Investigation of dimensional form errors of parts manufactured with an industrial 3-dimensional printer using ABS material. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 0, , .	0.0	0
109	In-Space Additive Manufacturing: A Review. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2023, 145, .	1.3	10
110	Fused Deposition Modeling with Induced Vibrations: A Study on the Mechanical Characteristics of Printed Parts. Applied Sciences (Switzerland), 2022, 12, 9327.	1.3	2
111	Effect of process parameters on surface roughness, dimensional accuracy and flatness of VeroBlue RGD840 rigid opaque materials. International Journal of Materials Research, 2022, 113, 935-950.	0.1	Ο

#	Article	IF	CITATIONS
112	The effect of six key process control parameters on the surface roughness, dimensional accuracy, and porosity in material extrusion 3D printing of polylactic acid: Prediction models and optimization supported by robust design analysis. Advances in Industrial and Manufacturing Engineering, 2022, 5, 100104.	1.2	13
113	Expansion of the dynamic strain field in 3D-printed structures using a hybrid modeling approach. Measurement: Journal of the International Measurement Confederation, 2023, 206, 112339.	2.5	Ο
114	Optimization of key quality indicators in material extrusion 3D printing of acrylonitrile butadiene styrene: The impact of critical process control parameters on the surface roughness, dimensional accuracy, and porosity. Materials Today Communications, 2023, 34, 105171.	0.9	22
115	Experimental investigation on porosity and flexural strength of polymer parts fabricated by fused deposition modeling. Polymer Engineering and Science, 2023, 63, 531-545.	1.5	3
116	Parametric design and stress analysis of 3D printed prosthetic finger. , 2023, , 57-80.		1
117	Anisotropy and internal flaws effects on fatigue response of notched 3D-printed PLA parts. Materials Today Communications, 2023, 35, 105734.	0.9	3
118	A Comparative Study of Different Poly (Lactic Acid) Bio-Composites Produced by Mechanical Alloying and Casting for Tribological Applications. Materials, 2023, 16, 1608.	1.3	2
130	A review on fused deposition modeling materials with analysis of key process parameters influence on mechanical properties. International Journal of Advanced Manufacturing Technology, 0, , .	1.5	0
135	The enhancement in process parameters of fused deposition modelling used for 3D printed components from the perspective of enhancement of mechanical strength properties: A narrative review. AIP Conference Proceedings, 2024, , .	0.3	0

CITATION REPORT