Grass Plants Bind, Retain, Uptake, and Transport Infect

Cell Reports 11, 1168-1175 DOI: 10.1016/j.celrep.2015.04.036

Citation Report

#	Article	IF	CITATIONS
1	Detection of prions in blood from patients with variant Creutzfeldt-Jakob disease. Science Translational Medicine, 2016, 8, 370ra183.	12.4	120
2	An assessment of the long-term persistence of prion infectivity in aquatic environments. Environmental Research, 2016, 151, 587-594.	7.5	12
3	Exploring perceptions about chronic wasting disease risks among wildlife and agriculture professionals and stakeholders. Wildlife Society Bulletin, 2016, 40, 32-40.	1.6	8
4	New feed ingredients: the insect opportunity. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1384-1397.	2.3	59
5	The Ecology of Prions. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	27
6	Induction of PrP ^{Sc} -specific systemic and mucosal immune responses in white-tailed deer with an oral vaccine for chronic wasting disease. Prion, 2017, 11, 368-380.	1.8	13
7	Prions. Methods in Molecular Biology, 2017, , .	0.9	2
8	Real-time Quaking-induced Conversion Assay for Detection of CWD Prions in Fecal Material. Journal of Visualized Experiments, 2017, , .	0.3	17
9	Experimental Transmission of the Chronic Wasting Disease Agent to Swine after Oral or Intracranial Inoculation. Journal of Virology, 2017, 91, .	3.4	43
10	Biosafety of Prions. Progress in Molecular Biology and Translational Science, 2017, 150, 455-485.	1.7	8
11	Preparation and Immunostaining of the Myenteric Plexus of Prion-Infected Mice. Methods in Molecular Biology, 2017, 1658, 285-292.	0.9	2
12	Detection of Prions in Blood of Cervids at the Asymptomatic Stage of Chronic Wasting Disease. Scientific Reports, 2017, 7, 17241.	3.3	40
13	Implications of peptide assemblies in amyloid diseases. Chemical Society Reviews, 2017, 46, 6492-6531.	38.1	262
14	Prion Diseases. Advances in Neurobiology, 2017, 15, 335-364.	1.8	9
15	Clay content and pH: soil characteristic associations with the persistent presence of chronic wasting disease in northern Illinois. Scientific Reports, 2017, 7, 18062.	3.3	17
16	Bovine spongiform encephalopathy (BSE) cases born after the total feed ban. EFSA Journal, 2017, 15, e04885.	1.8	13
17	Evolution of Diagnostic Tests for Chronic Wasting Disease, a Naturally Occurring Prion Disease of Cervids. Pathogens, 2017, 6, 35.	2.8	41
18	Destabilizing polymorphism in cervid prion protein hydrophobic core determines prion conformation and conversion efficiency. PLoS Pathogens, 2017, 13, e1006553.	4.7	29

		CITATION R	EPORT	
#	Article		IF	CITATIONS
19	How do PrPSc Prions Spread between Host Species, and within Hosts?. Pathogens, 201	7, 6, 60.	2.8	28
20	Design, implementation, and interpretation of amplification studies for prion detection 12, 73-82.	Prion, 2018,	1.8	10
21	Dehydration of Prions on Environmentally Relevant Surfaces Protects Them from Inactiv Freezing and Thawing. Journal of Virology, 2018, 92, .	/ation by	3.4	15
22	Efficient prion disease transmission through common environmental materials. Journal Chemistry, 2018, 293, 3363-3373.	of Biological	3.4	41
23	Chronic wasting disease management in ranched elk using rectal biopsy testing. Prion,	2018, 12, 93-108.	1.8	33
24	Winter feeding of elk in the Greater Yellowstone Ecosystem and its effects on disease c Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 2017	ynamics. 0093.	4.0	23
25	Molecular Mechanisms of Chronic Wasting Disease Prion Propagation. Cold Spring Har Perspectives in Medicine, 2018, 8, a024448.	oor	6.2	24
26	Mineral licks as environmental reservoirs of chronic wasting disease prions. PLoS ONE, 2 e0196745.	2018, 13,	2.5	47
27	Spores and soil from six sides: interdisciplinarity and the environmental biology of anth (<scp><i>Bacillus anthracis</i></scp>). Biological Reviews, 2018, 93, 1813-1831.	ax	10.4	74
28	Chronic wasting disease: an evolving prion disease of cervids. Handbook of Clinical Neu Edited By P J Vinken and G W Bruyn, 2018, 153, 135-151.	rology /	1.8	50
29	Chronic Wasting Disease in Cervids: Implications for Prion Transmission to Humans and Species. MBio, 2019, 10, .	Other Animal	4.1	62
30	Bovine Spongiform Encephalopathy – A Review from the Perspective of Food Safety. (Tokyo, Japan), 2019, 7, 21-47.	Food Safety	1.8	14
31	<p>Chronic Wasting Disease In Cervids: Prevalence, Impact And Management Stra Veterinary Medicine: Research and Reports, 2019, Volume 10, 123-139.</p>	itegies.	0.6	54
32	BSE infectivity survives burial for five years with only limited spread. Archives of Virolog 1135-1145.	y, 2019, 164,	2.1	21
33	Hunters' responses to urineâ€based scent bans tackling chronic wasting disease. Jo Management, 2019, 83, 457-466.	urnal of Wildlife	1.8	4
34	A review of chronic wasting disease in North America with implications for Europe. Euro of Wildlife Research, 2019, 65, 1.	pean Journal	1.4	24
36	Alteration of Prion Strain Emergence by Nonhost Factors. MSphere, 2019, 4, .		2.9	7
38	In Vitro detection of Chronic Wasting Disease (CWD) prions in semen and reproductive white tailed deer bucks (Odocoileus virginianus). PLoS ONE, 2019, 14, e0226560.	tissues of	2.5	29

#	Article	IF	CITATIONS
39	Update on chronic wasting disease (CWD) III. EFSA Journal, 2019, 17, e05863.	1.8	28
40	Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids. Scientific Reports, 2019, 9, 18595.	3.3	11
41	Bridging legal requirements and analytical methods: a review of monitoring opportunities of animal proteins in feed. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2019, 36, 46-73.	2.3	12
42	Cellulose ether treatment <i>in vivo</i> generates chronic wasting disease prions with reduced protease resistance and delayed disease progression. Journal of Neurochemistry, 2020, 152, 727-740.	3.9	14
43	The ecology of chronic wasting disease in wildlife. Biological Reviews, 2020, 95, 393-408.	10.4	38
44	Ecological Niche Modeling: An Introduction for Veterinarians and Epidemiologists. Frontiers in Veterinary Science, 2020, 7, 519059.	2.2	33
45	CHRONIC WASTING DISEASE MODELING: AN OVERVIEW. Journal of Wildlife Diseases, 2020, 56, 741-758.	0.8	10
46	Implications of farmed-cervid movements on the transmission of chronic wasting disease. Preventive Veterinary Medicine, 2020, 182, 105088.	1.9	2
47	Monitoring of chronic wasting disease using real-time quaking-induced conversion assay in Japan. Journal of Veterinary Medical Science, 2021, 83, 1735-1739.	0.9	1
48	Cervid Prion Protein Polymorphisms: Role in Chronic Wasting Disease Pathogenesis. International Journal of Molecular Sciences, 2021, 22, 2271.	4.1	29
49	Clinical Use of Improved Diagnostic Testing for Detection of Prion Disease. Viruses, 2021, 13, 789.	3.3	17
50	Prion Dissemination through the Environment and Medical Practices: Facts and Risks for Human Health. Clinical Microbiology Reviews, 2021, 34, e0005919.	13.6	8
51	New and distinct chronic wasting disease strains associated with cervid polymorphism at codon 116 of the Prnp gene. PLoS Pathogens, 2021, 17, e1009795.	4.7	13
52	Chronic Wasting Disease Transmission Risk Assessment for Farmed Cervids in Minnesota and Wisconsin. Viruses, 2021, 13, 1586.	3.3	4
53	Detection of CWD prions in naturally infected white-tailed deer fetuses and gestational tissues by PMCA. Scientific Reports, 2021, 11, 18385.	3.3	15
54	Chronic wasting disease: a cervid prion infection looming to spillover. Veterinary Research, 2021, 52, 115.	3.0	16
55	Chronic Wasting Disease (CWD) in Sami Reindeer Herding: The Socio-Political Dimension of an Epizootic in an Indigenous Context. Animals, 2021, 11, 297.	2.3	8
56	Cross-validation of the RT-QuIC assay for the antemortem detection of chronic wasting disease in elk. Prion, 2020, 14, 47-55.	1.8	21

CITATION REPORT

CITATION REPORT

#	Article	lF	CITATIONS
58	Early and Non-Invasive Detection of Chronic Wasting Disease Prions in Elk Feces by Real-Time Quaking Induced Conversion. PLoS ONE, 2016, 11, e0166187.	2.5	64
59	The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein. PLoS ONE, 2017, 12, e0188308.	2.5	10
60	Chronic Wasting Disease: Neuro-infectivity as a Result of Oral-fecal Transmission by a Prion. Journal of Headache & Pain Management, 2016, 01, .	0.1	0
61	Chronic wasting disease detection and mortality sources in semiâ€protected deer population. Wildlife Biology, 2018, 2018, 1-7.	1.4	4
62	Prion Diseases: A Concern for Mankind. , 2019, , 283-302.		1
63	Chronic wasting disease in Europe: new strains on the horizon. Acta Veterinaria Scandinavica, 2021, 63, 48.	1.6	37
64	The Role of the Nasal Cavity in the Pathogenesis of Prion Diseases. Viruses, 2021, 13, 2287.	3.3	1
65	Uptake, Retention, and Excretion of Infectious Prions by Experimentally Exposed Earthworms. Emerging Infectious Diseases, 2021, 27, 3151-3154.	4.3	4
66	Prion protein polymorphisms in Michigan white-tailed deer (<i>Odocoileus virginianus</i>). Prion, 2021, 15, 183-190.	1.8	0
67	Gene-Edited Cell Models to Study Chronic Wasting Disease. Viruses, 2022, 14, 609.	3.3	0
68	Increased Attack Rates and Decreased Incubation Periods in Raccoons with Chronic Wasting Disease Passaged through Meadow Voles. Emerging Infectious Diseases, 2022, 28, 793-801.	4.3	3
69	Assessment of Real-Time Quaking-Induced Conversion (RT-QuIC) Assay, Immunohistochemistry and ELISA for Detection of Chronic Wasting Disease under Field Conditions in White-Tailed Deer: A Bayesian Approach. Pathogens, 2022, 11, 489.	2.8	6
71	Susceptibility of Beavers to Chronic Wasting Disease. Biology, 2022, 11, 667.	2.8	1
72	X-ray fluorescence microscopy methods for biological tissues. Metallomics, 2022, 14, .	2.4	19
73	Cellular prion protein distribution in the vomeronasal organ, parotid, and scent glands of white-tailed deer and mule deer. Prion, 2022, 16, 40-57.	1.8	2
74	Sensitive detection of chronic wasting disease prions recovered from environmentally relevant surfaces. Environment International, 2022, 166, 107347.	10.0	6
75	Review of food safety hazards in circular food systems in Europe. Food Research International, 2022, 158, 111505.	6.2	23
76	Informing Surveillance through the Characterization of Outbreak Potential of Chronic Wasting Disease in White-Tailed Deer, Ecological Modelling, 2022, 471, 110054	2.5	3

#	Article	IF	Citations
77	Transmission, Strain Diversity, and Zoonotic Potential of Chronic Wasting Disease. Viruses, 2022, 14, 1390.	3.3	5
79	Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD. Acta Neuropathologica, 2022, 144, 767-784.	7.7	17
80	Chronic wasting disease prions in mule deer interdigital glands. PLoS ONE, 2022, 17, e0275375.	2.5	2
81	Prions: detection of bovine spongiform encephalopathy and links to variant Creutzfeldt–Jakob disease. , 2023, , 737-751.		0
82	PMCA for ultrasensitive detection of prions and to study disease biology. Cell and Tissue Research, 2023, 392, 307-321.	2.9	4
83	Amyloid Protein Cross-Seeding Provides a New Perspective on Multiple Diseases <i>In Vivo</i> . Biomacromolecules, 2023, 24, 1-18.	5.4	4
84	Biodegradation of bovine spongiform encephalopathy prions in compost. Scientific Reports, 2022, 12, .	3.3	0
85	Prions in the Environment. , 2023, , 181-193.		0
86	Protein Misfolding Cyclic Amplification. , 2023, , 637-652.		2
87	Out of sight, out of mind? BSE 30 years on: continuing environmental risks to human health. Land Use Policy, 2023, 126, 106521.	5.6	1
88	A behavioral economic assessment of the role of stakeholder preferences in managing an infectious wildlife disease. Wildlife Society Bulletin, 2023, 47, .	0.8	0
89	The consequence of leaf life span to virus infection of herbivorous insects. Oecologia, 2023, 201, 449-459.	2.0	2
90	Prions: a threat to health security and the need for effective medical countermeasures. Global Health Journal (Amsterdam, Netherlands), 2023, 7, 43-48.	3.6	1
91	Vaccines for prion diseases: a realistic goal?. Cell and Tissue Research, 2023, 392, 367-392.	2.9	1
92	New developments in prion disease research using genetically modified mouse models. Cell and Tissue Research, 2023, 392, 33-46.	2.9	3
93	Oral vaccination as a potential strategy to manage chronic wasting disease in wild cervid populations. Frontiers in Immunology, 0, 14, .	4.8	1
94	Ticks harbor and excrete chronic wasting disease prions. Scientific Reports, 2023, 13, .	3.3	3
95	Classical bovine spongiform encephalopathy and chronic wasting disease: two sides of the prion coin. Animal Diseases, 2023, 3, .	1.4	0

CITATION REPORT

		Citatio	Citation Report	
#	Article		IF	CITATIONS
96	Herd-level risk factors associated with chronic wasting disease-positive herd status in I Pennsylvania, and Wisconsin cervid herds. Preventive Veterinary Medicine, 2023, 218,	∕linnesota, 106000.	1.9	0
97	Identification of chronic wasting disease prions in decaying tongue tissues from exhur white-tailed deer. MSphere, 2023, 8, .	ned	2.9	0
98	Propagation of PrPSc in mice reveals impact of aggregate composition on prion diseas Communications Biology, 2023, 6, .	e pathogenesis.	4.4	0
99	PMCA screening of retropharyngeal lymph nodes in white-tailed deer and comparisons IHC. Scientific Reports, 2023, 13, .	with ELISA and	3.3	0
100	Dynamics of CWD prion detection in feces and blood from naturally infected white-tai Scientific Reports, 2023, 13, .	led deer.	3.3	0
101	Plants as vectors for environmental prion transmission. IScience, 2023, 26, 108428.		4.1	1
102	Nasal bots carry relevant titers of CWD prions in naturally infected white-tailed deer. E 2024, 25, 334-350.	MBO Reports,	4.5	0
103	Chronic Wasting Disease: State of the Science. Pathogens, 2024, 13, 138.		2.8	0