Cavity-based quantum networks with single atoms and

Reviews of Modern Physics 87, 1379-1418

DOI: 10.1103/revmodphys.87.1379

Citation Report

#	Article	IF	Citations
1	Quantum Process Tomography of an Optically-Controlled Kerr Non-linearity. Scientific Reports, 2015, 5, 16581.	1.6	8
2	Quantum State Engineering. Progress in Optics, 2015, 60, 1-117.	0.4	3
3	A photon–photon quantum gate based on a single atom in an optical resonator. Nature, 2016, 536, 193-196.	13.7	227
4	Quantum phase gate based on electromagnetically induced transparency in optical cavities. Physical Review A, 2016, 94, .	1.0	20
5	Modelling defect cavities formed in inverse three-dimensional rod-connected diamond photonic crystals. Europhysics Letters, 2016, 116, 64007.	0.7	7
6	Open-system many-body dynamics through interferometric measurements and feedback. Physical Review A, 2016, 94, .	1.0	10
7	Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities. Science Advances, 2016, 2, e1600987.	4.7	90
8	Actively tunable double-Fano and Ramsey-Fano resonances in photonic molecules and improved sensing performance. Physical Review A, 2016, 94, .	1.0	12
9	A new take on the slit experiment. Nature Photonics, 2016, 10, 290-291.	15.6	0
10	Momentum in metamaterials. Nature Photonics, 2016, 10, 291-293.	15.6	7
11	Suppression of single-cesium-atom heating in a microscopic optical dipole trap for demonstration of an 852-nm triggered single-photon source. Physical Review A, 2016, 94, .	1.0	9
12	Experimental creation of superposition of unknown photonic quantum states. Physical Review A, 2016, 94, .	1.0	13
13	Localization transition in the presence of cavity backaction. Physical Review A, 2016, 94, .	1.0	16
14	Deterministic nonclassicality for quantum-mechanical oscillators in thermal states. Physical Review A, 2016, 94, .	1.0	8
15	Photon Molecules in Atomic Gases Trapped Near Photonic Crystal Waveguides. Physical Review X, 2016, 6, .	2.8	39
16	Entanglement spectrum and Rényi entropies of nonrelativistic conformal fermions. Physical Review B, 2016, 94, .	1.1	8
17	Asymmetric sequential Landau-Zener dynamics of Bose-condensed atoms in a cavity. Physical Review A, 2016, 94, .	1.0	3
18	Chiral quantum optics with V-level atoms and coherent quantum feedback. Physical Review A, 2016, 94,	1.0	43

#	ARTICLE	IF	CITATIONS
19	Measurement-induced long-distance entanglement of superconducting qubits using optomechanical transducers. Physical Review A, 2016, 94, .	1.0	26
20	Controlling spin-dependent localization and directed transport in a bipartite lattice. Physical Review A, 2016, 93, .	1.0	11
21	Quantum simulators based on the global collective light-matter interaction. Physical Review A, 2016, 93, .	1.0	28
22	Robust Quantum-Network Memory Using Decoherence-Protected Subspaces of Nuclear Spins. Physical Review X, 2016, 6, .	2.8	92
23	Atom-field dressed states in slow-light waveguide QED. Physical Review A, 2016, 93, .	1.0	137
24	Simultaneous All-Optical or and xor Logic Gates Based on the Bimodal Photonic Cavity Containing a Quantum Dot. IEEE Photonics Journal, 2016, 8, 1-10.	1.0	2
25	A simple and general strategy for generating frequency-anticorrelated photon pairs. Scientific Reports, 2016, 6, 24509.	1.6	3
26	Controllable and fast quantum-information transfer between distant nodes in two-dimensional networks. Scientific Reports, 2016, 6, 8.	1.6	117
27	Photonic Programmable Tele-Cloning Network. Scientific Reports, 2016, 6, 28903.	1.6	0
28	Bond order via light-induced synthetic many-body interactions of ultracold atoms in optical lattices. New Journal of Physics, 2016, 18, 113010.	1.2	17
29	Nondestructive detection of ions using atom-cavity collective strong coupling. Physical Review A, 2016, 94, .	1.0	8
30	Photonic quantum information processing. Contemporary Physics, 2016, 57, 526-544.	0.8	8
31	Quantum and Nonlinear Optics in Strongly Interacting Atomic Ensembles. Advances in Atomic, Molecular and Optical Physics, 2016, , 321-372.	2.3	36
32	Interplay of classical and quantum dynamics in a thermal ensemble of atoms. New Journal of Physics, 2016, 18, 053022.	1.2	5
33	Interference and dynamics of light from a distance-controlled atom pair in an optical cavity. Nature Photonics, 2016, 10, 303-306.	15.6	64
34	Deterministic photon-atom and photon-photon interactions based on single-photon Raman interaction. , $2016, , .$		0
35	An efficient numerical progressive diagonalization scheme for the quantum Rabi model revisited. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 064002.	0.7	1
36	Chiral quantum optics. Nature, 2017, 541, 473-480.	13.7	1,007

#	Article	IF	CITATIONS
37	Contactless nonlinear optics mediated by long-range Rydberg interactions. Nature Physics, 2017, 13, 655-658.	6.5	76
38	Generating multi-mode entangled coherent W and GHZ states via optical system based fusion mechanism. Quantum Information Processing, 2017, 16, 1.	1.0	3
39	Quantum networks: where should we be heading?. Quantum Science and Technology, 2017, 2, 020501.	2.6	26
40	All-optical switching in a continuously operated and strongly coupled atom-cavity system. Applied Physics Letters, 2017, 110, 121107.	1.5	10
41	Quantum State Transfer via Noisy Photonic and Phononic Waveguides. Physical Review Letters, 2017, 118, 133601.	2.9	100
42	Robust quantum state transfer via topologically protected edge channels in dipolar arrays. Quantum Science and Technology, 2017, 2, 015001.	2.6	53
43	Cavity-assisted spontaneous emission of a single <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">i></mml:mi></mml:math> -type emitter as a source of single-photon packets with controlled shape. Physical Review A, 2017, 95, .	1.0	5
44	Ultralow-Noise Room-Temperature Quantum Memory for Polarization Qubits. Physical Review Applied, 2017, 8, .	1.5	31
45	Efficient quantum computation in a network with probabilistic gates and logical encoding. Physical Review A, 2017, 95, .	1.0	5
46	Nonlinear photon-atom coupling with 4Pi microscopy. Nature Communications, 2017, 8, 1200.	5.8	12
47	Heralded quantum gates for atomic systems assisted by the scattering of photons off single emitters. Annals of Physics, 2017, 387, 152-165.	1.0	5
48	Microwave photonics with superconducting quantum circuits. Physics Reports, 2017, 718-719, 1-102.	10.3	853
49	Single atoms coupled to a near-concentric cavity. Physical Review A, 2017, 96, .	1.0	6
50	Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nature Communications, 2017, 8, 889.	5.8	185
51	Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array. Physical Review A, 2017, 96, .	1.0	18
52	Comment on "Nondestructive light-shift measurements of single atoms in optical dipole traps― Physical Review A, 2017, 96, .	1.0	1
53	Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide. New Journal of Physics, 2017, 19, 083018.	1.2	15
54	A high-fidelity memory scheme for quantum data buses. Chinese Physics B, 2017, 26, 090303.	0.7	1

#	Article	IF	CITATIONS
55	A photonic platform for donor spin qubits in silicon. Science Advances, 2017, 3, e1700930.	4.7	75
56	Quantum Spin Lenses in Atomic Arrays. Physical Review X, 2017, 7, .	2.8	12
57	Qubit-mediated deterministic nonlinear gates for quantum oscillators. Scientific Reports, 2017, 7, 11536.	1.6	8
58	Quantum Nonlinear Optics in Optomechanical Nanoscale Waveguides. Physical Review Letters, 2017, 119, 123602.	2.9	16
59	Quantum acoustics with superconducting qubits. Science, 2017, 358, 199-202.	6.0	284
60	Dynamics of a mesoscopic qubit ensemble coupled to a cavity: Role of collective dark states. Physical Review A, 2017, 96, .	1.0	7
61	Coherent Photon Manipulation in Interacting Atomic Ensembles. Physical Review X, 2017, 7, .	2.8	22
62	Control of optical bistability in the nonlinear regime of two-sided cavity quantum electrodynamics. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1780.	0.9	7
63	Quantum trajectories for propagating Fock states. Physical Review A, 2017, 96, .	1.0	32
64	Free-Space Quantum Electrodynamics with a Single Rydberg Superatom. Physical Review X, 2017, 7, .	2.8	44
65	Cavity Carving of Atomic Bell States. Physical Review Letters, 2017, 118, 210503.	2.9	64
66	Simultaneously exciting two atoms with photon-mediated Raman interactions. Physical Review A, 2017, 95, .	1.0	9
67	Theory of Deterministic Entanglement Generation between Remote Superconducting Atoms. Physical Review Applied, 2017, 7, .	1.5	11
68	Suppressed dissipation of a quantum emitter coupled to surface plasmon polaritons. Physical Review B, 2017, 95, .	1.1	41
69	Coupled mode theory of microtoroidal resonators with a one-dimensional waveguide. Optics Communications, 2017, 402, 296-301.	1.0	0
70	Waveguide transport mediated by strong coupling with atoms. Physical Review A, 2017, 95, .	1.0	70
71	Cavity-enhanced room-temperature high sensitivity optical Faraday magnetometry. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 129-135.	0.9	6
72	Free-Space Quantum Communication with a Portable Quantum Memory. Physical Review Applied, 2017, 8, .	1.5	8

#	Article	IF	Citations
73	Changing optical band structure with single photons. New Journal of Physics, 2017, 19, 115002.	1.2	11
74	Fabrication of a centimeter-long cavity on nanofibe for strong-coupling regime of cavity QED., 2017,,.		0
75	An Ultraviolet Fiber Fabry–Pérot Cavity for Florescence Collection of Trapped Ions. Chinese Physics Letters, 2017, 34, 013701.	1.3	6
76	Design and characterization of an integrated surface ion trap and micromirror optical cavity. Applied Optics, 2017, 56, 6511.	0.9	1
77	Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system. Optics Express, 2017, 25, 16931.	1.7	62
78	Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling [Invited]. Optical Materials Express, 2017, 7, 415.	1.6	34
79	Collective strong coupling of cold atoms to an all-fiber ring cavity. Optica, 2017, 4, 576.	4.8	37
80	On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information. Sensors, 2017, 17, 1748.	2.1	44
81	Optical Nanofibers. Advances in Atomic, Molecular and Optical Physics, 2017, 66, 439-505.	2.3	69
82	Small-mode-volume, channel-connected Fabry–Perot microcavities on a chip. Applied Optics, 2017, 56, 9992.	0.9	10
83	Fabrication of a centimeter-long cavity on a nanofiber for cavity quantum electrodynamics. Optics Letters, 2017, 42, 1003.	1.7	27
84	Photonic coherent perfect transmission, absorption, and synthesis in a bimodal cavity quantum electrodynamics system. Optik, 2018, 161, 293-300.	1.4	1
85	Parameter regimes for a single sequential quantum repeater. Quantum Science and Technology, 2018, 3, 034002.	2.6	44
86	High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities. Annals of Physics, 2018, 391, 150-160.	1.0	17
87	General implementation of arbitrary nonlinear quadrature phase gates. Physical Review A, 2018, 97, .	1.0	40
88	Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide. Nano Letters, 2018, 18, 1801-1806.	4.5	49
89	Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification. Physical Review Letters, 2018, 120, 093601.	2.9	158
90	Deterministically swapping frequency-bin entanglement from photon-photon to atom-photon hybrid systems. Physical Review A, 2018, 97, .	1.0	2

#	Article	IF	CITATIONS
91	Multiple transparency windows and Fano interferences induced by dipole-dipole couplings. Physical Review A, $2018, 97, .$	1.0	8
92	First observation of the quantized exciton-polariton field and effect of interactions on a single polariton. Science Advances, 2018, 4, eaao6814.	4.7	57
93	Analytic few-photon scattering in waveguide QED. Physical Review A, 2018, 97, .	1.0	12
94	Photon scattering from a system of multilevel quantum emitters. I. Formalism. Physical Review A, 2018, 97, .	1.0	18
95	Photon scattering from a system of multilevel quantum emitters. II. Application to emitters coupled to a one-dimensional waveguide. Physical Review A, 2018, 97, .	1.0	18
96	Magneto-optical rotation in cavity QED with Zeeman coherence. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 1556-1562.	0.9	6
97	Physical approach to quantum networks with massive particles. Physical Review B, 2018, 97, .	1.1	3
98	High fidelity heralded single-photon source using cavity quantum electrodynamics. Scientific Reports, 2018, 8, 3140.	1.6	7
99	Three-dimensional cavity-assisted spontaneous emission as a single-photon source: Two cavity modes and Rabi resonance. Physical Review A, 2018, 97, .	1.0	4
100	Polarization-induced interference within electromagnetically induced transparency for atoms of double- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext mathvariant="sans-serif">V</mml:mtext></mml:math> linkage. Physical Review A, 2018, 97, .	1.0	2
101	Generation and control of optical frequency combs using cavity electromagnetically induced transparency. Physical Review A, 2018, 97, .	1.0	20
102	Fabrication of ultrahigh-precision hemispherical mirrors for quantum-optics applications. Scientific Reports, 2018, 8, 221.	1.6	5
103	Heralded entangling quantum gate via cavity-assisted photon scattering. Physical Review A, 2018, 97, .	1.0	9
104	Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity. Physical Review X, 2018, 8, .	2.8	69
105	Multiqubit subradiant states in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> -port waveguide devices: ε-and-μ-near-zero hubs and nonreciprocal circulators. Physical Review A, 2018, 97, .	1.0	18
106	Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings. Applied Physics Letters, 2018, 112, .	1.5	9
107	Theory of a Quantum Scanning Microscope for Cold Atoms. Physical Review Letters, 2018, 120, 133601.	2.9	28
108	Optical Switch Based on Dressed Intracavity Dark States. Annalen Der Physik, 2018, 530, 1700427.	0.9	2

#	ARTICLE	IF	Citations
109	Quantum non-demolition detection of an itinerant microwave photon. Nature Physics, 2018, 14, 546-549.	6.5	109
110	Quantum-dot based photonic quantum networks. Quantum Science and Technology, 2018, 3, 013001.	2.6	108
111	Vacuum-induced quantum memory in an opto-electromechanical system. Optics Communications, 2018, 410, 102-107.	1.0	4
112	Entanglement between atomic thermal states and coherent or squeezed photons in a damping cavity. Physica A: Statistical Mechanics and Its Applications, 2018, 492, 472-484.	1.2	3
113	Operating a near-concentric cavity at the last stable resonance. Physical Review A, 2018, 98, .	1.0	13
114	Exploring unresolved sideband, optomechanical strong coupling using a single atom coupled to a cavity. New Journal of Physics, 2018, 20, 083004.	1.2	10
115	Inelastic Resonant Transmission of a Single Photon Through Optical Cavities with the Amplitude Approaching Unity. , 2018, , .		0
116	Optimal design of diamond-air microcavities for quantum networks using an analytical approach. New Journal of Physics, 2018, 20, 115004.	1.2	17
117	Scaling Phononic Quantum Networks of Solid-State Spins with Closed Mechanical Subsystems. Physical Review X, 2018, 8, .	2.8	46
118	Creating a switchable optical cavity with controllable quantum-state mapping between two modes. Scientific Reports, 2018, 8, 14740.	1.6	6
119	Near optimal discrimination of binary coherent signals via atom–light interaction. New Journal of Physics, 2018, 20, 043005.	1.2	14
120	Optimal storage of a single photon by a single intra-cavity atom. New Journal of Physics, 2018, 20, 105009.	1.2	31
121	Cavity-controlled formation of ultracold molecules. New Journal of Physics, 2018, 20, 123015.	1.2	11
122	All-optical active control of photon correlations: Dressed-state-assisted quantum interference effects. Physical Review A, 2018, 98, .	1.0	12
123	Deterministic Free-Space Source of Single Photons Using Rydberg Atoms. Physical Review Letters, 2018, 121, 123605.	2.9	23
124	A multitasking device based on electromagnetically induced transparency in optical cavities. Quantum Information Processing, 2018, 17, 1.	1.0	3
125	Hybrid two-qubit gate using a circuit QED system with a triple-leg stripline resonator. Physical Review A, 2018, 98, .	1.0	3
126	Non-Markovian Master Equation for Distant Resonators Embedded in a One-Dimensional Waveguide. Communications in Theoretical Physics, 2018, 70, 273.	1.1	4

#	Article	IF	Citations
127	Free-space photonic quantum link and chiral quantum optics. Physical Review A, 2018, 98, .	1.0	57
128	Quantum internet: A vision for the road ahead. Science, 2018, 362, .	6.0	1,098
129	Few-photon scattering and emission from low-dimensional quantum systems. Physical Review B, 2018, 98, .	1.1	34
130	Observation of Three-Body Correlations for Photons Coupled to a Rydberg Superatom. Physical Review Letters, 2018, 121, 103601.	2.9	30
131	Increased atom-cavity coupling and stability using a parabolic ring cavity. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 195002.	0.6	6
132	Optomechanical entanglement of remote microwave cavities. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2509.	0.9	5
133	Enabling Lasing Action in Hybrid Atomic–Nanophotonic Integrated Structures. Annalen Der Physik, 2018, 530, 1800203.	0.9	1
134	Superconducting metamaterials for waveguide quantum electrodynamics. Nature Communications, 2018, 9, 3706.	5.8	81
135	Photon-number dependent cavity vacuum induced transparency and single photon separation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 3156-3164.	0.9	0
136	Tunable SNAP microresonators via internal ohmic heating. Optics Letters, 2018, 43, 4316.	1.7	18
137	Relative resilience to noise of standard and sequential approaches to measurement-based quantum computation. Physical Review A, 2018, 97, .	1.0	1
138	Generation of single- and two-mode multiphoton states in waveguide QED. Physical Review A, 2018, 97, .	1.0	8
139	Scattering of a single photon in a one-dimensional coupled resonator waveguide with a \hat{l} -type emitter assisted by an additional cavity. Chinese Physics B, 2018, 27, 054206.	0.7	3
140	Deterministic nonlinear phase gates induced by a single qubit. New Journal of Physics, 2018, 20, 053022.	1.2	13
141	Nanofiber quantum photonics. Journal of Optics (United Kingdom), 2018, 20, 073001.	1.0	83
142	Increased dimensionality of Raman cooling in a slightly nonorthogonal optical lattice. Physical Review A, 2018, 98, .	1.0	3
143	Reaching the optomechanical strong-coupling regime with a single atom in a cavity. Physical Review A, 2018, 97, .	1.0	21
144	Observation of efficient sub-Doppler cooling under a nonzero magnetic field in a moving optical lattice. Physical Review A, 2018, 97, .	1.0	1

#	Article	IF	CITATIONS
145	 'i>Colloquium $$ 'i> : Quantum matter built from nanoscopic lattices of atoms and photons. Reviews of Modern Physics, 2018, 90, .	16.4	292
146	Controlling multiple-dipole interactions mediated by nanophotonic structures and their application in W state generation. Optics Express, 2018, 26, 2720.	1.7	1
147	Cooperativity enhancement in buckled-dome microcavities with omnidirectional claddings. Optics Express, 2018, 26, 11201.	1.7	5
148	Tailoring a nanofiber for enhanced photon emission and coupling efficiency from single quantum emitters. Optics Letters, 2018, 43, 1674.	1.7	18
149	Localization of light in an optical microcapillary induced by a droplet. Optica, 2018, 5, 382.	4.8	21
150	On-demand entanglement could lead to scalable quantum networks. Nature, 2018, 558, 192-193.	13.7	3
151	Quantum phase gate based on multiphoton process in multimode cavity QED. Quantum Information Processing, 2018, 17 , 1 .	1.0	8
152	Universal photonic three-qubit quantum gates with two degrees of freedom assisted by charged quantum dots inside single-sided optical microcavities. Laser Physics, 2018, 28, 095201.	0.6	22
153	Tunable bandwidth and nonlinearities in an atom-photon interface with subradiant states. Physical Review A, 2018, 98, .	1.0	4
154	Tumour tamed by transfer of one T cell. Nature, 2018, 558, 193-195.	13.7	2
155	Generation of photonic Cooper pairs in nanoscale optomechanical waveguides. Physical Review A, 2018, 98, .	1.0	4
156	Continuous parametric feedback cooling of a single atom in an optical cavity. Physical Review A, 2018, 97, .	1.0	4
157	Influence of disorder on electromagnetically induced transparency in chiral waveguide quantum electrodynamics. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1149.	0.9	19
158	Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide. Physical Review A, 2018, 98, .	1.0	38
159	Optically induced phonon blockade in an optomechanical system with second-order nonlinearity. Physical Review A, 2018, 98, .	1.0	34
160	Quantum memory and gates using a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">ĥ</mml:mi></mml:math> -type quantum emitter coupled to a chiral waveguide. Physical Review A, 2018, 97	1.0	67
161	Deterministic quantum state transfer and remote entanglement using microwave photons. Nature, 2018, 558, 264-267.	13.7	175
162	Deterministic delivery of remote entanglement on a quantum network. Nature, 2018, 558, 268-273.	13.7	348

#	Article	IF	Citations
163	Strong coupling between photons of two light fields mediated by one atom. Nature Physics, 2018, 14, 885-889.	6.5	22
164	Transport and entanglement for single photons in optical waveguide ladders. Physical Review A, 2019, 100, .	1.0	12
165	Quantum Networks with Deterministic Spin–Photon Interfaces. Advanced Quantum Technologies, 2019, 2, 1800091.	1.8	51
166	Phaseâ€Dependent Quantum Correlation in a Cavityâ€Atom System. Annalen Der Physik, 2019, 531, 1900159.	0.9	1
167	Multiple Fano interferences due to waveguide-mediated phase coupling between atoms. Physical Review A, 2019, 100, .	1.0	27
168	Ultrastrong coupling probed by Coherent Population Transfer. Scientific Reports, 2019, 9, 9249.	1.6	15
169	Optimization of a magneto–optic trap using nanofibers. Chinese Physics B, 2019, 28, 073701.	0.7	3
170	Towards a realization of device-independent quantum key distribution. Quantum Science and Technology, 2019, 4, 035011.	2.6	34
171	Cavity Dark Mode of Distant Coupled Atom-Cavity Systems. Physical Review Letters, 2019, 122, 253603.	2.9	18
172	Towards long-distance quantum networks with superconducting processors and optical links. Quantum Science and Technology, 2019, 4, 045003.	2.6	16
173	Mahaux-Weidenm $\tilde{A}^{1/4}$ ller approach to cavity quantum electrodynamics and complete resonant down-conversion of the single-photon frequency. Physical Review A, 2019, 100, .	1.0	6
174	A scalable quantum computing platform using symmetric-top molecules. New Journal of Physics, 2019, 21, 093049.	1.2	62
175	Towards Large-Scale Quantum Networks. , 2019, , .		59
176	Quantum Network Nodes Based on Diamond Qubits with an Efficient Nanophotonic Interface. Physical Review Letters, 2019, 123, 183602.	2.9	133
177	Resource-efficient analyzer of Bell and Greenberger-Horne-Zeilinger states of multiphoton systems. Physical Review A, 2019, 100, .	1.0	21
178	An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. Physical Review B, 2019, 100, .	1.1	111
179	Microelectromechanical-System-Based Design of a High-Finesse Fiber Cavity Integrated with an Ion Trap. Physical Review Applied, 2019, 12, .	1.5	11
180	Microwave to optical conversion with atoms on a superconducting chip. New Journal of Physics, 2019, 21, 073033.	1.2	34

#	Article	IF	CITATIONS
181	Vacuum radiation and frequency-mixing in linear light-matter systems. Journal of Physics Communications, 2019, 3, 065012.	0.5	4
182	Enhanced photon antibunching via interference effects in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Î"</mml:mi></mml:math> configuration. Physical Review A, 2019, 100, .	1.0	17
183	Input-Output Theory with Quantum Pulses. Physical Review Letters, 2019, 123, 123604.	2.9	62
184	Semideterministic Entanglement between a Single Photon and an Atomic Ensemble. Physical Review Letters, 2019, 123, 140504.	2.9	18
185	Deterministic Shaping and Reshaping of Single-Photon Temporal Wave Functions. Physical Review Letters, 2019, 123, 133602.	2.9	39
186	Geometrically asymmetric optical cavity for strong atom-photon coupling. Physical Review A, 2019, 99,	1.0	17
187	Deterministic creation of entangled atom–light Schrödinger-cat states. Nature Photonics, 2019, 13, 110-115.	15.6	129
188	Ultraviolet afterglow. Nature Photonics, 2019, 13, 74-75.	15.6	25
189	Entanglement protection in Jaynes–Cummings model. Quantum Information Processing, 2019, 18, 1.	1.0	16
190	Electrically Tuneable Excitonâ€Polaritons through Free Electron Doping in Monolayer WS ₂ Microcavities. Advanced Optical Materials, 2019, 7, 1900484.	3.6	17
191	Hybrid quantum systems based on magnonics. Applied Physics Express, 2019, 12, 070101.	1.1	404
192	Figure of merit for single-photon generation based on cavity quantum electrodynamics. Physical Review A, 2019, 99, .	1.0	14
193	Prospects for strongly coupled atom-photon quantum nodes. Scientific Reports, 2019, 9, 7798.	1.6	1
194	Manipulating photonic quantum states with long-range interactions. Physical Review A, 2019, 99, .	1.0	4
195	The study of interference effect in a globally coupled quantum network. Quantum Information Processing, 2019, 18, 1.	1.0	5
196	Multimode interferometry for entangling atoms in quantum networks. Quantum Science and Technology, 2019, 4, 025008.	2.6	5
197	Telecom-Band Quantum Optics with Ytterbium Atoms and Silicon Nanophotonics. Physical Review Applied, 2019, 11, .	1.5	39
198	Entanglement preservation in a system of two dipole–dipole interacting two-level atoms coupled with single mode cavity. Physica Scripta, 2019, 94, 085104.	1.2	5

#	Article	IF	Citations
199	Strongly correlated photon transport in nonlinear photonic lattices with disorder: Probing signatures of the localization transition. Physical Review A, 2019, 99, .	1.0	6
200	Polarization Oscillations in Birefringent Emitter-Cavity Systems. Physical Review Letters, 2019, 122, 083602.	2.9	10
201	Jaynes–Cummings model with degenerate atomic levels and two polarization modes of the quantized field. Laser Physics Letters, 2019, 16, 046001.	0.6	1
202	Multiphoton Jaynes-Cummings Model: Arbitrary Rotations in Fock Space and Quantum Filters. Physical Review Letters, 2019, 122, 123604.	2.9	27
203	Observation of dressed states of distant atoms with delocalized photons in coupled-cavities quantum electrodynamics. Nature Communications, 2019, 10, 1160.	5.8	36
204	Tunable single-photon quantum router. Physical Review A, 2019, 99, .	1.0	37
205	Silicon microcavity arrays with open access and a finesse of half a million. Light: Science and Applications, 2019, 8, 37.	7.7	40
206	Quantum trajectories for a system interacting with environment in $\langle i \rangle N \langle i \rangle$ -photon state. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 105303.	0.7	13
207	Single-Photon Distillation via a Photonic Parity Measurement Using Cavity QED. Physical Review Letters, 2019, 122, 133603.	2.9	17
208	Almost minimum error discrimination of N-ary weak coherent states by Jaynes-Cummings Hamiltonian dynamics. Scientific Reports, 2019, 9, 19664.	1.6	11
209	Making Diamond Qubits Talk to Light. Physics Magazine, 0, 12, .	0.1	1
210	Emission of photon pairs by mechanical stimulation of the squeezed vacuum. Physical Review A, 2019, 100, .	1.0	48
211	One-way steering of the optical fields with respect to the low-Q cavity via the thermal noise. Laser Physics Letters, 2019, 17, 125201.	0.6	2
212	Tunable quantum switch realized with a single <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">î></mml:mi></mml:math> -level atom coupled to the microtoroidal cavity. Physical Review A, 2019, 100, .	1.0	5
213	The microscopic origin of magnon-photon level attraction by traveling waves: Theory and experiment. Physical Review B, 2019, 100, .	1.1	33
214	Triply Magic Conditions for Microwave Transition of Optically Trapped Alkali-Metal Atoms. Physical Review Letters, 2019, 123, 253602.	2.9	8
215	Observation of Collective Superstrong Coupling of Cold Atoms to a 30-m Long Optical Resonator. Physical Review Letters, 2019, 123, 243602.	2.9	26
216	Real-Time Observation of Single Atoms Trapped and Interfaced to a Nanofiber Cavity. Physical Review Letters, 2019, 123, 213602.	2.9	27

#	Article	IF	CITATIONS
217	One-way steering of the optical fields with respect to the low-Q cavity via the thermal noise. Laser Physics Letters, 2019, 16, 125205.	0.6	2
218	Overcoming the efficiency-bandwidth tradeoff for optical harmonics generation using nonlinear time-variant resonators. Physical Review A, 2019, 100, .	1.0	18
219	Securing quantum networking tasks with multipartite Einstein-Podolsky-Rosen steering. Physical Review A, 2019, 99, .	1.0	21
220	Weak coherent pulses for single-photon quantum memories. Physica Scripta, 2019, 94, 014012.	1.2	3
221	Quantum computing with neutral atoms. National Science Review, 2019, 6, 24-25.	4.6	23
222	Quantum Effects in a Mechanically Modulated Single-Photon Emitter. Physical Review Letters, 2019, 122, 023602.	2.9	23
223	Creating Schrödinger-cat states. Nature Photonics, 2019, 13, 73-74.	15.6	20
224	Real-time state estimation and feedback control of an oscillating qubit via self-fulfilling prophecy (SFP). Metrologia, 2019, 56, 014003.	0.6	1
225	A Cratered Photonic Crystal Cavity Mode for Nonlocal Exciton–Photon Interactions. Advanced Quantum Technologies, 2020, 3, 1900024.	1.8	3
226	Perfect Quantum State Transfer in Glauber-Fock Cavity Array. International Journal of Theoretical Physics, 2020, 59, 218-228.	0.5	2
227	Multiphoton process in cavity QED photons for implementing a three-qubit quantum gate operation. Quantum Information Processing, 2020, 19, 1.	1.0	9
228	Atom-Photon Spin-Exchange Collisions Mediated by Rydberg Dressing. Physical Review Letters, 2020, 125, 143601.	2.9	7
229	A network-ready random-access qubits memory. Npj Quantum Information, 2020, 6, .	2.8	17
230	Spectrally reconfigurable quantum emitters enabled by optimized fast modulation. Npj Quantum Information, 2020, 6, .	2.8	38
231	Pushing Purcell enhancement beyond its limits. New Journal of Physics, 2020, 22, 063013.	1.2	9
232	Deterministic Generation of Loss-Tolerant Photonic Cluster States with a Single Quantum Emitter. Physical Review Letters, 2020, 125, 223601.	2.9	24
233	Unconventional Phonon Blockade in a Tavis–Cummings Coupled Optomechanical System. Annalen Der Physik, 2020, 532, 2000299.	0.9	14
234	Delayed transfer of entanglement to initially populated qubits. Physical Review A, 2020, 102, .	1.0	6

#	ARTICLE	IF	CITATIONS
235	Accurate Lindblad-form master equation for weakly damped quantum systems across all regimes. Npj Quantum Information, 2020, 6 , .	2.8	31
236	Nanostructured Alkali-Metal Vapor Cells. Physical Review Applied, 2020, 14, .	1.5	23
237	Quantum interactions with pulses of radiation. Physical Review A, 2020, 102, .	1.0	25
238	Dissipative generation of steady-state entanglement of two separated SiV\$\$^{-}\$\$ centers coupled to photonic crystal cavities. Quantum Information Processing, 2020, 19, 1.	1.0	2
239	Analytic and geometric properties of scattering from periodically modulated quantum-optical systems. Physical Review A, 2020, 102, .	1.0	6
240	Error-Detected Generation of High-Fidelity Photonic Hyperentanglement in Polarization-Spatial-Time Three Degrees of Freedom Assisted by Quantum-Dot Spins. International Journal of Theoretical Physics, 2020, 59, 4025-4039.	0.5	2
241	Indistinguishable photons from a trapped-ion quantum network node. Physical Review A, 2020, 102, .	1.0	18
242	Topologically Protected Strong Coupling and Entanglement Between Distant Quantum Emitters. Physical Review Applied, 2020, 14, .	1.5	10
243	Coupling spins to nanomechanical resonators: Toward quantum spin-mechanics. Applied Physics Letters, 2020, 117, .	1.5	21
244	Coherent and Purcell-Enhanced Emission from Erbium Dopants in a Cryogenic High- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi> Q < /mml:mi > </mml:mi></mml:math> Resonator. Physical Review X, 2020, 10, .	2.8	31
245	Coupling of light and mechanics in a photonic crystal waveguide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29422-29430.	3.3	9
246	Nonadiabatic storage of short light pulses in an atom-cavity system. Physical Review A, 2020, 101, .	1.0	11
247	Counting Classical Nodes in Quantum Networks. Physical Review Letters, 2020, 124, 180503.	2.9	8
248	Tunable single-photon diode and circulator via chiral waveguide–emitter couplings. Laser Physics Letters, 2020, 17, 065201.	0.6	13
249	Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system*. Chinese Physics B, 2020, 29, 050308.	0.7	0
250	Boundary Element Method Simulations of Tunable Chiral Radiation and Active Chirality Switching from Rectangular Graphene Nanosheets: Implications for Dynamic Control of Light Chirality. ACS Applied Nano Materials, 2020, 3, 6816-6826.	2.4	6
251	Microresonators enhancing long-distance dynamical entanglement generation in chiral quantum networks. Physical Review A, 2020, 101, .	1.0	11
252	Strongly correlated Fermions strongly coupled to light. Nature Communications, 2020, 11, 2974.	5.8	23

#	Article	IF	CITATIONS
253	Photon emission by an atom with degenerate levels into a micro-cavity with polarization-degenerate mode. Laser Physics, 2020, 30, 086001.	0.6	0
254	Quantum Queuing Delay. IEEE Journal on Selected Areas in Communications, 2020, 38, 605-618.	9.7	12
255	Cavity-Enhanced Raman Scattering for <i>In Situ</i> Alignment and Characterization of Solid-State Microcavities. Physical Review Applied, 2020, 13, .	1.5	17
256	Quantum stabilization of microcavity excitation in a coupled microcavity–half-cavity system. Physical Review B, 2020, 101, .	1.1	3
257	Continuous Generation of Quantum Light from a Single Ground-State Atom in an Optical Cavity. Physical Review Letters, 2020, 124, 093603.	2.9	9
258	Experimental demonstration of memory-enhanced quantum communication. Nature, 2020, 580, 60-64.	13.7	325
259	Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature, 2020, 580, 201-204.	13.7	138
260	Fabrication and optical characterization of photonic crystal nanocavities with electrodes for gate-defined quantum dots. Japanese Journal of Applied Physics, 2020, 59, SGGI05.	0.8	6
261	Tunable Magnon-Magnon Coupling Mediated by Dynamic Dipolar Interaction in Synthetic Antiferromagnets. Physical Review Letters, 2020, 125, 017203.	2.9	72
262	Preparation of entangled states in multiple cavities. Laser Physics Letters, 2020, 17, 085202.	0.6	1
263	Fabrication of optical nanofibre-based cavities using focussed ion-beam milling: a review. Applied Physics B: Lasers and Optics, 2020, 126, 1.	1.1	20
264	Quantum Antennas. Advanced Quantum Technologies, 2020, 3, 1900120.	1.8	19
265	From cavity to circuit quantum electrodynamics. Nature Physics, 2020, 16, 243-246.	6.5	55
266	Topological quantum walks in cavity-based quantum networks. Quantum Information Processing, 2020, 19, 1.	1.0	3
267	Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 2020, 578, 240-245.	13.7	198
268	Strong Coupling of Two Individually Controlled Atoms via a Nanophotonic Cavity. Physical Review Letters, 2020, 124, 063602.	2.9	66
269	Unraveling the Quantum Nature of Atomic Self-Ordering in a Ring Cavity. Physical Review Letters, 2020, 124, 033601.	2.9	15
270	Diabolical points in coupled active cavities with quantum emitters. Light: Science and Applications, 2020, 9, 6.	7.7	20

#	Article	IF	Citations
271	The dynamics of an atom-field system with degenerate atomic levels and a polarization-degenerate mode of the quantised field in a damped micro-cavity. Laser Physics Letters, 2020, 17, 026001.	0.6	1
272	Scheme for realizing quantum dense coding via entanglement swapping. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 065502.	0.6	8
273	<i>AbÂlnitio</i> Few-Mode Theory for Quantum Potential Scattering Problems. Physical Review X, 2020, 10, .	2.8	16
274	Cavity QED based on room temperature atoms interacting with a photonic crystal cavity: a feasibility study. Applied Physics B: Lasers and Optics, 2020, 126, 1.	1.1	11
275	Controlling Quantum Pathways in Molecular Vibrational Polaritons. ACS Photonics, 2020, 7, 919-924.	3.2	25
276	A quantum network node with crossed optical fibre cavities. Nature Physics, 2020, 16, 647-651.	6.5	48
277	Localization properties of a two-channel 3D Anderson model. Journal of Physics Condensed Matter, 2020, 32, 285504.	0.7	2
278	Cooperative emission spectra as an efficient key probe of qubits pair entanglement along with field state tomography: an effective response to nonlinearity and classical drive power. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 145001.	0.6	2
279	Diamond quantum nanophotonics and optomechanics. Semiconductors and Semimetals, 2021, 104, 219-251.	0.4	2
280	Bosonic quantum error correction codes in superconducting quantum circuits. Fundamental Research, 2021, 1, 50-67.	1.6	83
281	A polarization encoded photon-to-spin interface. Npj Quantum Information, 2021, 7, .	2.8	12
282	Protocols for Packet Quantum Network Intercommunication. IEEE Transactions on Quantum Engineering, 2021, 2, 1-9.	2.9	11
283	Plug-and-play fiber coupled single emitters under cryogenic conditions. AIP Conference Proceedings, 2021, , .	0.3	0
284	The Photonic Bound State in a Waveguide with Defect. International Journal of Theoretical Physics, 2021, 60, 886-892.	0.5	0
285	Implementation of a single-photon fully quantum router with cavity QED and linear optics. Optical and Quantum Electronics, 2021, 53, 1.	1.5	5
286	Bright Single Photon Emission from Quantum Dots Embedded in a Broadband Planar Optical Antenna. Advanced Optical Materials, 2021, 9, 2001490.	3.6	10
287	A quantum-logic gate between distant quantum-network modules. Science, 2021, 371, 614-617.	6.0	86
288	Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies. PRX Quantum, 2021, 2, .	3.5	172

#	Article	IF	CITATIONS
289	High-efficiency single-photon router in a network with multiple outports based on chiral waveguide–emitter couplings. Laser Physics Letters, 2021, 18, 035204.	0.6	5
290	Fully Quantum Scalable Description of Driven-Dissipative Lattice Models. PRX Quantum, 2021, 2, .	3.5	13
291	Resonant Excitation and Purcell Enhancement of Coherent Nitrogen-Vacancy Centers Coupled to a Fabry-Perot Microcavity. Physical Review Applied, 2021, 15, .	1.5	39
292	Continuous quantum light from a dark atom. Communications Physics, 2021, 4, .	2.0	2
293	Formation of spectral triplets induced by parity deformation in a quantum dot–cavity system. Physica B: Condensed Matter, 2021, 604, 412698.	1.3	1
294	Quantum routings for single photons with different frequencies. Optics Express, 2021, 29, 8861.	1.7	12
295	Cavity-Enhanced Atom-Photon Entanglement with Subsecond Lifetime. Physical Review Letters, 2021, 126, 090501.	2.9	23
296	Efficient microwave-to-optical single-photon conversion with a single flying circular Rydberg atom. Optics Express, 2021, 29, 9942.	1.7	5
297	Chiral single-photon switch-assisted quantum logic gate with a nitrogen-vacancy center in a hybrid system. Photonics Research, 2021, 9, 405.	3.4	15
298	Quantum State Transfer with Seamless Frequencyâ€Connection Through Diamond Optomechanical Cavity. Advanced Quantum Technologies, 2021, 4, 2000127.	1.8	1
299	Nondestructive detection of photonic qubits. Nature, 2021, 591, 570-574.	13.7	30
300	A robust fiber-based quantum thermometer coupled with nitrogen-vacancy centers. Review of Scientific Instruments, 2021, 92, 044904.	0.6	20
301	Magnon-assisted photon-phonon conversion in the presence of structured environments. Physical Review A, 2021, 103, .	1.0	28
302	Enhancing spin-photon coupling with a micromagnet. Physical Review A, 2021, 103, .	1.0	12
303	Coherent single-spin electron resonance spectroscopy manifested at an exceptional-point singularity in doped polyacetylene. Physical Review A, 2021, 103, .	1.0	5
304	Weakly invasive metrology: quantum advantage and physical implementations. Quantum - the Open Journal for Quantum Science, 0, 5, 446.	0.0	5
305	Strong photon blockade in an all-fiber emitter-cavity quantum electrodynamics system. Physical Review A, 2021, 103, .	1.0	14
306	Cavity-assisted preparation and detection of a unitary Fermi gas. New Journal of Physics, 2021, 23, 043029.	1.2	12

#	Article	IF	CITATIONS
307	Measurement-feedback control of the chiral photon emission from an atom chain into a nanofiber. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1470.	0.9	1
308	Static Hybrid Quantum Nodes: Toward Perfect State Transfer on a Photonic Chip. Physical Review Applied, 2021, 15, .	1.5	6
310	Integrating photoluminescent nanomaterials with photonic nanostructures. Journal of Luminescence, 2021, 233, 117870.	1.5	10
311	Stable iPEPO Tensor-Network Algorithm for Dynamics of Two-Dimensional Open Quantum Lattice Models. Physical Review X, 2021, 11, .	2.8	14
312	Controlling Interactions between Quantum Emitters Using Atom Arrays. Physical Review Letters, 2021, 126, 223602.	2.9	22
313	Cavity quantum electrodynamics with a single molecule: Purcell enhancement, strong coupling and single-photon nonlinearity. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 133001.	0.6	5
314	Detecting an Itinerant Optical Photon Twice without Destroying It. Physical Review Letters, 2021, 126, 253603.	2.9	12
316	Interface between Trapped-Ion Qubits and Traveling Photons with Close-to-Optimal Efficiency. PRX Quantum, 2021, 2, .	3.5	40
317	Deterministic generation of high-dimensional entanglement between distant atomic memories via multiphoton exchange. Physical Review A, 2021, 103, .	1.0	2
318	Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles. Nature Communications, 2021, 12, 3570.	5.8	36
319	Quantum Repeater Node Demonstrating Unconditionally Secure Key Distribution. Physical Review Letters, 2021, 126, 230506.	2.9	30
320	Coupling a Single Trapped Atom to a Whispering-Gallery-Mode Microresonator. Physical Review Letters, 2021, 126, 233602.	2.9	27
321	Quantum Photonic Interface for Tin-Vacancy Centers in Diamond. Physical Review X, 2021, 11, .	2.8	34
322	Fast Quantum Memory on a Single Atom in a High-Q Cavity. Journal of Russian Laser Research, 2021, 42, 378-387.	0.3	4
323	Unconventional quantum correlations of light emitted by a single atom in free space. Physical Review A, 2021, 104, .	1.0	1
324	Study of single photon source efficiency based on cavity quantum electrodynamics. Physica B: Condensed Matter, 2021, 612, 412945.	1.3	2
325	Long-lived and multiplexed atom-photon entanglement interface with feed-forward-controlled readouts. Communications Physics, 2021, 4, .	2.0	12
326	Hybrid coupling optomechanical assisted nonreciprocal photon blockade. Optics Express, 2021, 29, 25161.	1.7	5

#	Article	IF	CITATIONS
327	Coherent coupling between multiple ferrimagnetic spheres and a microwave cavity at millikelvin temperatures. Physical Review B, 2021, 104, .	1.1	12
328	A nanophotonic interface for tin-vacancy spin qubits in diamond. , 2021, , .		1
329	Collective self-trapping of atoms in a cavity. New Journal of Physics, 2021, 23, 083036.	1.2	3
330	Spatiotemporal mode-selective quantum frequency converter. Physical Review A, 2021, 104, .	1.0	2
331	Quantum network coding reducing decoherence effect. Quantum Information Processing, 2021, 20, 1.	1.0	2
332	Quantum networks based on color centers in diamond. Journal of Applied Physics, 2021, 130, .	1.1	105
333	Universal pair polaritons in a strongly interacting Fermi gas. Nature, 2021, 596, 509-513.	13.7	14
334	Strongly resonant reconstruction of attosecond beating by interference of two-photon transitions on lithium. Physical Review A, 2021, 104, .	1.0	9
335	Fano resonance for applications. Advances in Optics and Photonics, 2021, 13, 703.	12.1	61
336	Magnetic control of biexcitons in a quantum dot-cavity system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 409, 127512.	0.9	1
337	Observation of a narrow inner-shell orbital transition in atomic erbium at 1299Ânm. Physical Review Research, 2021, 3, .	1.3	8
338	Entanglement transport and a nanophotonic interface for atoms in optical tweezers. Science, 2021, 373, 1511-1514.	6.0	52
339	Dynamical Phases and Quantum Correlations in an Emitter-Waveguide System with Feedback. Physical Review Letters, 2021, 127, 133601.	2.9	21
340	Spontaneous emission in micro- or nanophotonic structures. PhotoniX, 2021, 2, .	5.5	28
341	Tree-Type Photonic Cluster State Generation with a Single Quantum Emitter. , 2021, , .		0
342	Enhanced Photon-Emitter Coupling in Micro/Nano Photonic Structures. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-10.	1.9	6
343	Cavity Induced Interfacing of Atoms and Light. Nano-optics and Nanophotonics, 2015, , 3-38.	0.2	6
344	Nanophotonic quantum network node with neutral atoms and an integrated telecom interface. New Journal of Physics, 2020, 22, 073033.	1.2	12

#	ARTICLE	IF	CITATIONS
345	Optimal work extraction and the minimum description length principle. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2020, 093403.	0.9	5
346	Practical figures of merit and thresholds for entanglement distribution in quantum networks. Physical Review Research, 2019, 1, .	1.3	56
347	Bandgap-assisted quantum control of topological edge states in a cavity. Physical Review Research, 2020, 2, .	1.3	15
348	Long-distance dissipation-assisted transport of entangled states via a chiral waveguide. Physical Review Research, 2020, 2, .	1.3	13
349	<i>Ab initio</i> quantum models for thin-film x-ray cavity QED. Physical Review Research, 2020, 2, .	1.3	16
350	Cold atoms in micromachined waveguides: A new platform for atom-photon interactions. Physical Review Research, 2020, 2, .	1.3	4
351	Emergence of chaos and controlled photon transfer in a cavity-QED network. Physical Review Research, 2020, 2, .	1.3	3
352	Designing a quantum network protocol. , 2020, , .		59
353	Deterministic local doubling of W states. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 2313.	0.9	28
354	Atomic quadrature squeezing and quantum state transfer in a hybrid atom–optomechanical cavity with two Duffing mechanical oscillators. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 775.	0.9	4
355	High purity single photons entangled with an atomic qubit. Optics Express, 2019, 27, 28143.	1.7	23
356	Efficient ion-photon qubit SWAP gate in realistic ion cavity-QED systems without strong coupling. Optics Express, 2020, 28, 11822.	1.7	8
357	Multipartite quantum entanglement creation for distant stationary systems. Optics Express, 2020, 28, 1316.	1.7	14
358	Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate. Optics Express, 2020, 28, 2857.	1.7	29
359	Coupling silicon vacancy centers in a thin diamond membrane to a silica optical microresonator. Optics Express, 2020, 28, 27300.	1.7	2
360	Coupling between waveguides and microresonators: the local approach. Optics Express, 2020, 28, 25908.	1.7	13
361	Optical bottle microresonators with axially uniform eigenmode field distribution. Optics Letters, 2020, 45, 4116.	1.7	11
362	Ultra-low-loss nanofiber Fabry–Perot cavities optimized for cavity quantum electrodynamics. Optics Letters, 2020, 45, 4875.	1.7	11

#	Article	IF	CITATIONS
363	High-quality-factor microring resonator for strong atom–light interactions using miniature atomic beams. Optics Letters, 2020, 45, 5958.	1.7	8
364	Design-flexible entanglement of two distant quantum dots bridged by dark whispering gallery modes. Optics Letters, 2020, 45, 6506.	1.7	1
365	SNAP microresonators introduced by strong bending of optical fibers. Optics Letters, 2019, 44, 3218.	1.7	22
366	Cavity quantum electrodynamics with color centers in diamond. Optica, 2020, 7, 1232.	4.8	72
367	Temporal switching to extend the bandwidth of thin absorbers. Optica, 2021, 8, 24.	4.8	44
368	Analysis of atom–photon quantum interface with intracavity Rydberg-blocked atomic ensemble via two-photon transition. Optica, 2018, 5, 1492.	4.8	18
369	Nanomechanical single-photon routing. Optica, 2019, 6, 524.	4.8	41
370	Probing quantum optical excitations with fast electrons. Optica, 2019, 6, 1524.	4.8	89
371	Quantum repeaters with individual rare-earth ions at telecommunication wavelengths. Quantum - the Open Journal for Quantum Science, 0, 2, 93.	0.0	29
372	Reversible optical–microwave quantum conversion assisted by optomechanical dynamically dark modes. Quantum Information Processing, 2021, 20, 1.	1.0	0
373	Requirements for fault-tolerant quantum computation with cavity-QED-based atom-atom gates mediated by a photon with a finite pulse length. Physical Review A, 2021, 104, .	1.0	3
374	High-Fidelity Geometric Gates with Single Ions Doped in Crystals. Chinese Physics Letters, 2021, 38, 094203.	1.3	2
375	Control engineering of continuous-mode single-photon states: a review. Control Theory and Technology, 2021, 19, 544-562.	1.0	4
376	Coherent manipulation of single collective excitations in a cold atomic ensemble. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 224203.	0.2	1
377	Nonlinear photon-atom coupling in free space. , 2018, , .		0
378	Quasinormal mode analysis of extremely localized optical field in body-of-revolution plasmonic structures. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 147104.	0.2	6
379	Interactions between photons and excitons in micro-nano photonic structures. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 144201.	0.2	1
380	Photon-mediated interactions between quantum emitters in a diamond nanocavity., 2019,,.		0

#	Article	IF	CITATIONS
381	Detection of "anomalies―inside microcavities through parametric fluorescence: a formalism based on modulated commutation relations and consequences on the concept of density of states. Journal of the Optical Society of America B: Optical Physics, 2019, 36, C62.	0.9	2
382	Spatial multiplexing in a cavity-enhanced quantum memory. , 2019, , .		0
383	Enhancing harmonics generation by time-variant metasurfaces., 2019,,.		0
384	Tuning the coupling between quantum dot and microdisk with photonic crystal nanobeam cavity. Optics Express, 2019, 27, 20211.	1.7	5
385	Photothermal tuning and stabilization of a photonic crystal nanofiber cavity. Optics Letters, 2019, 44, 3996.	1.7	2
386	Numerical verification of nonlinear response beyond the efficiency-bandwidth limit in time-variant metasurfaces. AIP Conference Proceedings, 2020, , .	0.3	0
387	High-order photon correlations through double Hanbury Brown–Twiss measurements. Journal of Optics (United Kingdom), 2020, 22, 095202.	1.0	6
388	Open-Cavity in Closed-Cycle Cryostat as a Quantum Optics Platform. PRX Quantum, 2021, 2, .	3.5	12
389	Bipartite and tripartite entanglement caused by squeezed drive in magnetic-cavity quantum electrodynamics system. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 220301.	0.2	2
390	Generation and distribution of atomic entanglement in coupled-cavity arrays. Physical Review A, 2020, 102, .	1.0	1
391	Observation of the Parameters Describing Coupling between Waveguides and Elongated Bottle Microresonators Designed for Quantum Applications. , 2020, , .		0
392	A Single Mode Optical Cavity Containing Four (up to 1000) Independent Spin Waves. , 2020, , .		0
393	Analysis and measurement of high-order photon correlations of light fields. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 174204.	0.2	0
394	From a posteriori to a priori solutions for a two-level system interacting with a single-photon wavepacket. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1240.	0.9	8
395	Deterministic photonic quantum computation in a synthetic time dimension. Optica, 2021, 8, 1515.	4.8	21
396	Asymmetric field photovoltaic effect of neutral atoms. Optics Communications, 2021, 507, 127607.	1.0	0
397	Monitored wet-etch removal of individual dielectric layers from high-finesse Bragg mirrors. Optics Express, 2020, 28, 33823.	1.7	1
398	Manipulation of Laser-cooled Atoms Using an Optical Nanofiber. Vacuum and Surface Science, 2020, 63, 530-535.	0.0	0

#	Article	IF	CITATIONS
399	Theoretical study of silicon-based Bragg mirrors for cavity QED applications. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3707.	0.9	2
400	Photon routing based on non-chiral interaction between atoms and waveguides. Laser Physics Letters, 2022, 19, 015203.	0.6	2
401	Broadband coherent perfect absorption by cavity coupled to three-level atoms in linear and nonlinear regimes. New Journal of Physics, 2021, 23, 123040.	1.2	7
402	Photon antibunching as a probe of trajectory information of individual neutral atoms traversing an optical cavity. Physical Review A, 2021, 104, .	1.0	1
403	High finesse microcavities in the optical telecom O-band. Applied Physics Letters, 2021, 119, 221112.	1.5	7
404	Eternally non-Markovian dynamics of a qubit interacting with a single-photon wavepacket. New Journal of Physics, 2021, 23, 123019.	1.2	8
405	Computation-Aided Classical-Quantum Multiple Access to Boost Network Communication Speeds. Physical Review Applied, 2021, 16 , .	1.5	5
406	Quantum-coherent nanoscience. Nature Nanotechnology, 2021, 16, 1318-1329.	15.6	73
407	Generation of entangled coherent states for distant Bose-Einstein condensates via Faraday rotation of the photonic polarization. , $2021, \dots$		0
408	Limitations in Quantum Computing from Resource Constraints. PRX Quantum, 2021, 2, .	3.5	13
409	Entangling operations in nonlinear two-atom Tavis-Cummings models. Physical Review A, 2021, 104, .	1.0	1
411	Dynamic Control of Light Chirality with Nanostructured Monolayer Black Phosphorus for Broadband Terahertz Applications. Advanced Optical Materials, 2022, 10, .	3.6	10
412	Two proposals to protect a qubit using CQED techniques: Inequality between atomic velocity dispersion and losses of a quantum memory. Physica A: Statistical Mechanics and Its Applications, 2022, 591, 126802.	1.2	0
413	Survey of emerging information teleportation networks and protocols. URSI Radio Science Bulletin, 2017, 2017, 34-54.	0.2	1
414	Spontaneous decay-induced quantum dynamics in Rydberg-blockaded $\hat{\nu}$ -type atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 205501.	0.6	3
415	(INVITED)Planar microcavities: Materials and processing for light control. Optical Materials: X, 2022, 13, 100130.	0.3	5
416	Achievements and perspectives of optical fiber Fabry–Perot cavities. Applied Physics B: Lasers and Optics, 2022, 128, 1.	1.1	24
417	Experimental study of retrieval efficiency of Duan-Lukin-Cirac-Zoller quantum memory by optical cavity-enhanced. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 020301.	0.2	0

#	Article	IF	CITATIONS
418	Monolithic elliptical dome Fabry-Perot microcavities exhibiting large birefringence. Journal of the Optical Society of America B: Optical Physics, 0, , .	0.9	1
419	Generation of entanglement between a highly wave-packet-tunable photon and a spin-wave memory in cold atoms. Optics Express, 2022, 30, 2792.	1.7	1
420	Beyond the Tavis-Cummings model: Revisiting cavity QED with ensembles of quantum emitters. Physical Review A, 2022, 105, .	1.0	9
421	Phase-modulated single-photon nonreciprocal transport and directional router in a waveguide–cavity–emitter system beyond the chiral coupling. Quantum Science and Technology, 2022, 7, 015025.	2.6	16
422	Optomechanical strong coupling between a single photon and a single atom. New Journal of Physics, 2022, 24, 023006.	1.2	1
423	Plexcitonic strong coupling: unique features, applications, and challenges. Journal Physics D: Applied Physics, 2022, 55, 203002.	1.3	31
424	Towards Realâ€World Quantum Networks: A Review. Laser and Photonics Reviews, 2022, 16, .	4.4	59
425	Interaction-free bidirectional multi-channel all-optical switching in a multi-level coupling atom–cavity system. Optics Letters, 2022, 47, 830.	1.7	1
426	Photon transport enhancement through a coupled-cavities QED system with dynamic modulation. Optics Express, 2022, 30, 6798-6807.	1.7	0
428	Generation of Bell and Greenberger-Horne-Zeilinger states from a hybrid qubit-photon-magnon system. Physical Review A, 2022, 105, .	1.0	21
429	Strongly Confining Light with Air-Mode Cavities in Inverse Rod-Connected Diamond Photonic Crystals. Crystals, 2022, 12, 303.	1.0	0
430	Direct detection of quantum non-Gaussian light from a dispersively coupled single atom. Quantum - the Open Journal for Quantum Science, 0, 6, 660.	0.0	1
431	Superresolution Microscopy of Optical Fields Using Tweezer-Trapped Single Atoms. Physical Review Letters, 2022, 128, 083201.	2.9	18
432	One-sided composite cavity on an optical nanofiber for cavity QED. Applied Physics Letters, 2022, 120, .	1.5	6
433	Quantum Routing for Single Plasmons Modulated by the Dipole–Dipole Interaction in a π-Shaped Channel. Journal of Low Temperature Physics, 2022, 207, 58-70.	0.6	3
434	Bright and Dark States of Two Distant Macrospins Strongly Coupled by Phonons. Physical Review X, 2022, 12, .	2.8	15
435	Photon transport mediated by a trimer QED system with PT-symmetry. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 1147.	0.9	0
436	Wading through the void: Exploring quantum friction and nonequilibrium fluctuations. APL Photonics, 2022, 7, .	3.0	18

#	ARTICLE	IF	CITATIONS
437	Photon-photon interactions in Rydberg-atom arrays. Quantum - the Open Journal for Quantum Science, 0, 6, 674.	0.0	21
438	Precise and extensive characterization of an optical resonator for cavity-based quantum networks. , 2022, $1,603.$		1
439	A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume. Journal of Applied Physics, 2022, 131, .	1.1	10
440	Semi-empirical quantum optics for mid-infrared molecular nanophotonics. Journal of Chemical Physics, 2022, 156, 124110.	1.2	8
441	Quantum information processing with integrated silicon carbide photonics. Journal of Applied Physics, 2022, 131, .	1.1	16
442	Manipulating photonic signals by a multipurpose quantum junction. Physical Review A, 2022, 105, .	1.0	1
443	Quantum entanglement creation for distant quantum memories via time-bin multiplexing. Physical Review A, 2021, 104, .	1.0	13
444	Retrieval of single photons from solid-state quantum transducers. Physical Review A, 2021, 104, .	1.0	1
445	Multiplexed telecommunication-band quantum networking with atom arrays in optical cavities. Physical Review Research, 2021, 3, .	1.3	12
446	Formation of photon molecules in nanoscale waveguides. Physical Review A, 2021, 104, .	1.0	1
447	Collective Spin-Light and Light-Mediated Spin-Spin Interactions in an Optical Cavity. PRX Quantum, 2022, 3, .	3.5	20
448	Stable entanglement and one-way steering via engineering of a single-atom reservoir. Optics Express, 2022, 30, 15830.	1.7	4
449	On the remote entanglement of MW qubits using hybrid Rydberg systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, , 128142.	0.9	1
450	Few-particle scattering from localized quantum systems in spatially structured bosonic baths. Quantum - the Open Journal for Quantum Science, 0, 6, 691.	0.0	0
451	Temperature dependence of the single photon source efficiency based on QD-cQED. Physica B: Condensed Matter, 2022, 638, 413907.	1.3	1
452	Superglass formation in an atomic BEC with competing long-range interactions. Physical Review Research, 2022, 4, .	1.3	3
453	Raman imaging of atoms inside a high-bandwidth cavity. Physical Review A, 2022, 105, .	1.0	1
454	Intracavity Rydberg Superatom for Optical Quantum Engineering: Coherent Control, Single-Shot Detection, and Optical <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ï€</mml:mi></mml:math> Phase Shift. Physical Review X, 2022, 12, .	2.8	14

#	Article	IF	Citations
455	Unidirectional Gaussian Oneâ€Way Steering. Annalen Der Physik, 2022, 534, .	0.9	4
456	Chiral quantum network with giant atoms. Quantum Science and Technology, 2022, 7, 035007.	2.6	32
457	Collection efficiency of optical photons generated from microwave excitations of a Bose-Einstein condensate. Physical Review A, 2022, 105, .	1.0	0
458	Accelerated adiabatic passage in cavity magnomechanics. Physical Review A, 2022, 105, .	1.0	11
459	Multiresonator Quantum Memory with Single Atoms. JETP Letters, 2022, 115, 318-323.	0.4	4
460	Synergistic enhancement of spin–phonon interaction in a hybrid system. Photonics Research, 2022, 10, 1640.	3.4	11
461	Linear quantum systems: A tutorial. Annual Reviews in Control, 2022, 54, 274-294.	4.4	13
462	Controlling Single Photons with Rydberg Superatoms. Physics Magazine, 0, 15, .	0.1	0
463	Unified generation and fast emission of arbitrary single-photon multimode <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>W</mml:mi></mml:math> states. Physical Review A, 2022, 105, .	1.0	8
464	Quantum state transfer between a frequency-encoded photonic qubit and a quantum-dot spin in a nanophotonic waveguide. Physical Review A, 2022, 105, .	1.0	4
465	Qubit-photon bound states in superconducting metamaterials. Physical Review B, 2022, 105, .	1.1	0
466	Reservoir-engineering shortcuts to adiabaticity. Physical Review Research, 2022, 4, .	1.3	3
467	Micius quantum experiments in space. Reviews of Modern Physics, 2022, 94, .	16.4	71
468	Micro-fabricated mirrors with finesse exceeding one million. Optica, 2022, 9, 965.	4.8	23
469	Storage and manipulation of single x-ray photons via nuclear hyperfine splitting. Physical Review A, 2022, 106, .	1.0	0
470	Quantum nondemolition measurements of photon number in monolithic microcavities. Physical Review A, 2022, 106, .	1.0	4
471	Efficient Source of Shaped Single Photons Based on an Integrated Diamond Nanophotonic System. Physical Review Letters, 2022, 129, .	2.9	27
472	An architecture for quantum networking of neutral atom processors. Applied Physics B: Lasers and Optics, 2022, 128, .	1.1	6

#	Article	IF	Citations
473	Cavity spectral-hole-burning to boost coherence in plasmon-emitter strong coupling systems. Nanotechnology, 2022, 33, 475001.	1.3	2
474	Gaussian soft control for controlled-Z gate on superconducting qubits with unilateral external driving. Laser Physics Letters, 2022, 19, 095206.	0.6	2
475	Purification for hybrid logical qubit entanglement. Quantum Information Processing, 2022, 21, .	1.0	5
476	Gaussian-wave-packet model for single-photon generation based on cavity quantum electrodynamics under adiabatic and nonadiabatic conditions. Physical Review A, 2022, 106, .	1.0	2
477	High-performance dielectric nano-cavities for near- and mid-infrared frequency applications. Journal of Optics (United Kingdom), 2022, 24, 094006.	1.0	4
478	Controllable Nonclassical Correlation by an Incoherent Pumping Field in a ĥâ€Type Atomâ€Cavity System. Annalen Der Physik, 0, , 2200167.	0.9	0
479	Few-mode field quantization for multiple emitters. Nanophotonics, 2022, 11, 4363-4374.	2.9	14
480	Efficient generation of entangled multiphoton graph states from a single atom. Nature, 2022, 608, 677-681.	13.7	49
481	Gate fidelity, dephasing, and â€~magic' trapping of optically trapped neutral atom. New Journal of Physics, 2022, 24, 083028.	1.2	1
482	Diamond Integrated Quantum Nanophotonics: Spins, Photons and Phonons. Journal of Lightwave Technology, 2022, 40, 7538-7571.	2.7	15
483	A review on quantum information processing in cavities. European Physical Journal Plus, 2022, 137, .	1.2	11
484	From counterportation to local wormholes. Quantum Science and Technology, 2023, 8, 025016.	2.6	3
485	Exploiting non-linear effects in optomechanical sensors with continuous photon-counting. Quantum - the Open Journal for Quantum Science, 0, 6, 812.	0.0	1
486	Chiral current in Floquet cavity magnonics. Physical Review A, 2022, 106, .	1.0	1
487	Scheme for implementing nonlocal high-fidelity quantum controlled-not gates on quantum-dot-confined electron spins using optical microcavities and photonic hyperentanglement. Frontiers in Physics, 0, 10, .	1.0	3
488	Vibration induced transparency: Simulating an optomechanical system via the cavity QED setup with a movable atom. Fundamental Research, 2022, , .	1.6	0
489	Quantum-to-classical transition in a spin star network. Pramana - Journal of Physics, 2022, 96, .	0.6	0
490	Asymmetric comb waveguide for strong interactions between atoms and light. Optics Express, 2022, 30, 45093.	1.7	3

#	Article	IF	Citations
491	Narrow Optical Transitions in Erbium-Implanted Silicon Waveguides. Physical Review X, 2022, 12, .	2.8	16
492	Polariton Formation from Soret Band Excitons in Metal–Organic Frameworks and Plasmonic Lattices. Journal of Physical Chemistry C, 2022, 126, 18778-18783.	1.5	1
493	Spectral multiplexing of telecom emitters with stable transition frequency. Science Advances, 2022, 8,	4.7	20
494	Transformations of Stabilizer States in Quantum Networks. Quantum - the Open Journal for Quantum Science, 0, 6, 846.	0.0	2
495	Two-Photon Interference of Single Photons from Dissimilar Sources. Physical Review Applied, 2022, 18,	1.5	2
496	Robust multi-qubit quantum network node with integrated error detection. Science, 2022, 378, 557-560.	6.0	59
497	Berry Phase of Two Impurity Qubits as a Signature of Dicke Quantum Phase Transition. Photonics, 2022, 9, 844.	0.9	2
498	Feedback and compensation scheme to suppress the thermal effects from a dipole trap beam for the optical fiber microcavity. Optics Express, 2022, 30, 46280.	1.7	2
499	Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator. Chinese Physics Letters, 2022, 39, 124202.	1.3	2
500	Tunable magnon-magnon coupling mediated by in-plane magnetic anisotropy in synthetic antiferromagnets. Journal of Magnetism and Magnetic Materials, 2023, 565, 170283.	1.0	1
501	Magnetic-field-engineered coherent perfect absorption and transmission. Physical Review A, 2022, 106, .	1.0	3
502	Digital Quantum Simulation of the Spin-Boson Model under Markovian Open-System Dynamics. Entropy, 2022, 24, 1766.	1.1	3
503	Effects of cavity birefringence in polarisation-encoded quantum networks. New Journal of Physics, 2023, 25, 013004.	1.2	4
504	Controlling quantum effects in enhanced strong-field ionisation with machine-learning techniques. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 245501.	0.6	1
505	Nonclassical correlated optical multistability at low photon level for cavity electromagnetically induced transparency. New Journal of Physics, 2022, 24, 123021.	1.2	1
506	Quantifying the Spectral Diffusion of N- <i>V</i> Centers by Symmetry. Physical Review Applied, 2022, 18, .	1.5	5
507	<i>Colloquium</i> : Cavity-enhanced quantum network nodes. Reviews of Modern Physics, 2022, 94, .	16.4	15
508	Non-Adiabatic Fast Quantum Memory on an Atom-Resonator System Provided by Optimal Switching on a Control Field. Bulletin of the Russian Academy of Sciences: Physics, 2022, 86, 1507-1510.	0.1	1

#	Article	IF	Citations
509	Chiral SQUID-metamaterial waveguide for circuit-QED. New Journal of Physics, 2022, 24, 123010.	1.2	3
511	Magneto-Optical Chirality in a Coherently Coupled Exciton–Plasmon System. Nano Letters, 2023, 23, 614-618.	4.5	4
512	Principles ofÂQuantum Memories. Springer Theses, 2023, , 15-29.	0.0	0
514	Generation of long-lived <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>W</mml:mi></mml:math> states via reservoir engineering in dissipatively coupled systems. Physical Review A, 2023, 107, .	1.0	9
515	Optimization of Scalable Ion-Cavity Interfaces for Quantum Photonic Networks. Physical Review Applied, 2023, 19, .	1.5	5
516	Quantum memories for fundamental science in space. Quantum Science and Technology, 2023, 8, 024006.	2.6	4
517	Quantum sensing of strongly coupled light-matter systems using free electrons. Science Advances, 2023, 9, .	4.7	4
518	Tunable single-photon routing between two single-mode waveguides by a giant <mml:math altimg="si42.svg" display="inline" id="d1e1058" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>î></mml:mi></mml:math> -type three-level atom. Optik, 2023, 274, 170568.	1.4	1
519	Shot-noise-suppressing quantum nonlinearity in the vacuum-field-induced photon-photon interaction. Physical Review A, 2022, 106, .	1.0	0
520	Intra-atomic frequency-comb-based photonic quantum memory using single-atom-cavity setup. Physical Review A, 2023, 107, .	1.0	0
521	Resonant Multilevel Amplitude Damping Channels. Quantum - the Open Journal for Quantum Science, 0, 7, 902.	0.0	3
522	Dynamics of quantum coherence in the Jaynes–Cummings model with quenched disorder. Physics Open, 2023, 15, 100146.	0.7	1
523	Photon amplification and cavity-polariton-like generation in metallic nanoshells localized in optical cavity. Optics Express, 2023, 31, 5640.	1.7	0
524	Ultrafast intermode parametric scattering dynamics in room-temperature polariton condensates. Physical Review B, 2023, 107, .	1.1	0
525	Exciton–Photon Interactions in Two-Dimensional Semiconductor Microcavities. ACS Photonics, 2023, 10, 2064-2077.	3.2	5
526	A subwavelength atomic array switched by a single Rydberg atom. Nature Physics, 2023, 19, 714-719.	6.5	25
527	Self-organized limit cycles in red-detuned atom-cavity systems. Physical Review A, 2023, 107, .	1.0	1
528	Performance analysis of quantum repeaters enabled by deterministically generated photonic graph states. Quantum - the Open Journal for Quantum Science, 0, 7, 924.	0.0	1

#	Article	IF	CITATIONS
529	Parallel and heralded multiqubit entanglement generation for quantum networks. Physical Review A, $2023, 107, .$	1.0	9
530	Tunable nonlinear coherent perfect absorption in cavity QED. Physical Review A, 2023, 107, .	1.0	2
531	Coupling Single Atoms to a Nanophotonic Whispering-Gallery-Mode Resonator via Optical Guiding. Physical Review Letters, 2023, 130, .	2.9	11
532	Metasurface structures for control of quantum emitters. , 2023, , .		0
533	Entangled Frequency-Tunable Microwave Photons in a Superconducting Circuit. Applied Sciences (Switzerland), 2023, 13, 3688.	1.3	0
534	Photon counting probabilities of the output field for a single-photon input. Journal of the Optical Society of America B: Optical Physics, 0, , .	0.9	0
535	Integrated Multiresonator Quantum Memory. Entropy, 2023, 25, 623.	1.1	0
536	Trapping a single atom and manipulating the coupling strength in an optical micro-cavity. Wuli Xuebao/Acta Physica Sinica, 2023, .	0.2	0
537	About Roy Glauber. Natural Sciences, 2023, 3, .	1.0	0
538	Optical-mode hyperconversion in the bad-cavity regime. Physical Review A, 2023, 107, .	1.0	0
539	Broadband quantum memory in atomic ensembles. Advances in Atomic, Molecular and Optical Physics, 2023, , .	2.3	3
561	â€~Sawfish' Spin-Photon Interface for Near-Unity Emitter-to-Waveguide Coupling. , 2023, , .		0
562	Coherent Spin Control of a Tin Vacancy Center in Diamond. , 2023, , .		0
566	Quantum Photonics on a Tapered Optical Fiber. , 2023, , .		0
574	Quantum networks with neutral atom processing nodes. Npj Quantum Information, 2023, 9, .	2.8	3
576	Nuclear Spins in the Proximity of Individual Erbium Dopants. , 2023, , .		0
577	Progress towards photon-photon nonlinearities based on multi-cavity quantum electrodynamics. , 2023, , .		0
585	Two-dimensional semiconductors for chiral directionality and electro-optic modulation in photonic systems. , 2023, , .		0

#	Article	IF	CITATIONS
599	Self-assembling structures close the gap to trap light. Nature, 2023, 624, 49-50.	13.7	0
601	Single-sided cavity quantum electrodynamics effects on an optical nanofiber. , 2023, , .		0
608	A Hierarchical Entanglement Routing Protocol in Quantum Networks. , 2023, , .		0
613	Light–matter interactions in quantum nanophotonic devices. Nature Reviews Physics, 2024, 6, 166-179.	11.9	1
616	Fano resonances in all-dielectric nanostructures. , 2024, , 115-155.		0