Angiotensin II-Induced Egr-1 Expression is Suppressed Receptor- \hat{I}^3 Ligand 15d-PGJ2 in Macrophages

Cellular Physiology and Biochemistry 35, 689-698 DOI: 10.1159/000369729

Citation Report

#	Article	IF	CITATIONS
1	A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. Journal of Nutritional Biochemistry, 2015, 26, 960-969.	1.9	42
2	Activation of peroxisome proliferator-activated receptor Î ³ ameliorates monocrotaline-induced pulmonary arterial hypertension in rats. Biomedical Reports, 2015, 3, 537-542.	0.9	20
3	Macrophage CGI-58 Attenuates Inflammatory Responsiveness via Promotion of PPARÎ ³ Signaling. Cellular Physiology and Biochemistry, 2016, 38, 696-713.	1.1	10
4	Pioglitazone, a Peroxisome Proliferator-Activated Receptor Î ³ Agonist, Ameliorates Chronic Kidney Disease by Enhancing Antioxidative Capacity and Attenuating Angiogenesis in the Kidney of a 5/6 Nephrectomized Rat Model. Cellular Physiology and Biochemistry, 2016, 38, 1831-1840.	1.1	25
5	Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARÎ ³ -dependent pathway. International Immunopharmacology, 2016, 34, 16-24.	1.7	102
6	Nogo-B Facilitates LPS-Mediated Immune Responses by Up-Regulation of TLR4-Signaling in Macrophage RAW264.7. Cellular Physiology and Biochemistry, 2017, 41, 274-285.	1.1	16
7	Activation of PPARÎ ³ inhibits HDAC1-mediated pulmonary arterial smooth muscle cell proliferation and its potential mechanisms. European Journal of Pharmacology, 2017, 814, 324-334.	1.7	18
8	Peroxisome proliferator-activated receptor Î ³ agonist suppresses mast cell maturation and induces apoptosis. Molecular Medicine Reports, 2017, 16, 1793-1800.	1.1	13
9	NLRP3 Gene Deletion Attenuates Angiotensin II-Induced Phenotypic Transformation of Vascular Smooth Muscle Cells and Vascular Remodeling. Cellular Physiology and Biochemistry, 2017, 44, 2269-2280.	1.1	88
10	PPARÎ ³ Alleviates Right Ventricular Failure Secondary to Pulmonary Arterial Hypertension in Rats. International Heart Journal, 2017, 58, 948-956.	0.5	10
11	Father's obesity programs the adipose tissue in the offspring via the local renin–angiotensin system and MAPKs pathways, especially in adult male mice. European Journal of Nutrition, 2018, 57, 1901-1912.	1.8	9
12	15-Deoxy-â^†- ^{12,14} -Prostaglandin J2 (15d-PGJ2), an Endogenous Ligand of PPAR- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>î³</mml:mi></mml:mrow>: Function and Mechanism. PPAR Research. 2019. 2019. 1-10.</mml:math 	1.1	61
13	The Nuclear Export and Ubiquitin-Proteasome-Dependent Degradation of PPARÎ ³ Induced By Angiotensin II. International Journal of Biological Sciences, 2019, 15, 1215-1224.	2.6	7
14	Hyperglycaemia cause vascular inflammation through advanced glycation end products/early growth response-1 axis in gestational diabetes mellitus. Molecular and Cellular Biochemistry, 2019, 456, 179-190.	1.4	25
15	Anti-inflammatory effects of Ang-(1–7) via TLR4-mediated inhibition of the JNK/FoxO1 pathway in lipopolysaccharide-stimulated RAW264.7â€⁻cells. Developmental and Comparative Immunology, 2019, 92, 291-298.	1.0	15
16	Involvement of the MiR-181b-5p/HMGB1 Pathway in Ang II-induced Phenotypic Transformation of Smooth Muscle Cells in Hypertension. , 2019, 10, 231.		35
17	PPARÎ ³ Activation-Mediated Egr-1 Inhibition Benefits Against Brain Injury in an Experimental Ischaemic Stroke Model. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 105255.	0.7	5
18	The roles of smallâ€molecule inflammatory mediators in rheumatoid arthritis. Scandinavian Journal of Immunology, 2021, 93, e12982.	1.3	12

CITATION REPORT

#	Article	IF	CITATIONS
19	Peroxisome proliferator-activated receptor gamma: a novel therapeutic target for cognitive impairment and mood disorders that functions via the regulation of adult neurogenesis. Archives of Pharmacal Research, 2021, 44, 553-563.	2.7	16
20	Agomelatine prevents angiotensin II-induced endothelial and mononuclear cell adhesion. Aging, 2021, 13, 18515-18526.	1.4	9
21	Sildenafil improves right ventricular remodelling in monocrotaline-induced rats by decreasing myocardial apoptosis and activating peroxisome proliferator-activated receptors. Journal of Pharmacy and Pharmacology, 2021, 73, 145-151.	1.2	1
22	Angiotensin I-converting enzyme inhibitory peptide: an emerging candidate for vascular dysfunction therapy. Critical Reviews in Biotechnology, 2022, 42, 736-755.	5.1	4
23	15d-PGJ2 is a new hope for controlling tumor growth. American Journal of Translational Research (discontinued), 2018, 10, 648-658.	0.0	13