Evolution of stickleback in 50 years on earthquake-upli

Proceedings of the National Academy of Sciences of the Unite 112, E7204-12

DOI: 10.1073/pnas.1512020112

Citation Report

#	Article	IF	Citations
1	New directions in island biogeography. Global Ecology and Biogeography, 2016, 25, 751-768.	5.8	66
2	Adaptation in isolated populations: when does it happen and when can we tell?. Molecular Ecology, 2016, 25, 3901-3911.	3.9	11
3	The life aquatic: advances in marine vertebrate genomics. Nature Reviews Genetics, 2016, 17, 523-534.	16.3	69
4	Lateral plate number in lowâ€plated threespine stickleback: a study of plasticity and heritability. Ecology and Evolution, 2016, 6, 3154-3160.	1.9	8
5	Can Population Genetics Adapt to Rapid Evolution?. Trends in Genetics, 2016, 32, 408-418.	6.7	171
6	Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats?. Ecology and Evolution, 2016, 6, 5342-5357.	1.9	44
7	Regionâ€wide and ecotypeâ€specific differences in demographic histories of threespine stickleback populations, estimated from whole genome sequences. Molecular Ecology, 2016, 25, 5187-5202.	3.9	34
8	Resistance to low oxygen in the Ponto–Caspian amphipod Pontogammarus robustoides varies among lentic habitats of its northern invaded range. Limnologica, 2016, 61, 7-13.	1.5	15
9	Strong neutral genetic differentiation in a host, but not in its parasite. Infection, Genetics and Evolution, 2016, 44, 261-271.	2.3	7
10	Three routes to crypsis: Stasis, convergence, and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae). Molecular Phylogenetics and Evolution, 2016, 99, 103-115.	2.7	42
11	Freshwater Fish Inventory of the Aleutian Archipelago, Alaska. American Midland Naturalist, 2017, 177, 44-56.	0.4	2
12	Rapid adaptive phenotypic change following colonization of a newly restored habitat. Nature Communications, 2017, 8, 14159.	12.8	20
13	Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback <i>Gasterosteus aculeatus</i> . G3: Genes, Genomes, Genetics, 2017, 7, 165-178.	1.8	22
14	Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga. BMC Ecology, 2017, 17, 14.	3.0	15
15	Evolution caused by extreme events. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160146.	4.0	170
16	Genome-Wide DNA Methylation Profiling Reveals Epigenetic Adaptation of Stickleback to Marine and Freshwater Conditions. Molecular Biology and Evolution, 2017, 34, 2203-2213.	8.9	105
17	Lost in parameter space: a road map for <scp>stacks</scp> . Methods in Ecology and Evolution, 2017, 8, 1360-1373.	5.2	466
19	Advances of genotyping-by-sequencing in fisheries and aquaculture. Reviews in Fish Biology and Fisheries, 2017, 27, 535-559.	4.9	34

ATION REDO

#	Article	IF	CITATIONS
20	Metabolic depression and the evolution of hypoxia tolerance in threespine stickleback, <i>Gasterosteus aculeatus</i> . Biology Letters, 2017, 13, 20170392.	2.3	28
21	Adaptive and non-adaptive divergence in a common landscape. Nature Communications, 2017, 8, 267.	12.8	66
22	Ancient three-spined stickleback (Gasterosteus aculeatus) mtDNA lineages are not associated with phenotypic or nuclear genetic variation. Biological Journal of the Linnean Society, 2017, 122, 579-588.	1.6	4
23	Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. Journal of Evolutionary Biology, 2017, 30, 1450-1477.	1.7	399
24	Developmental timing differences underlie armor loss across threespine stickleback populations. Evolution & Development, 2017, 19, 231-243.	2.0	7
25	Manipulation of habitat isolation and area implicates deterministic factors and limited neutrality in community assembly. Ecology and Evolution, 2017, 7, 5845-5860.	1.9	6
26	Ethological and phenotypic divergence in insular fire salamanders: diurnal activity mediated by predation?. Acta Ethologica, 2017, 20, 243-253.	0.9	14
27	Metaâ€analysis of chromosomeâ€scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Molecular Ecology, 2018, 27, 2477-2497.	3.9	144
28	Ancient genomic variation underlies repeated ecological adaptation in young stickleback populations. Evolution Letters, 2018, 2, 9-21.	3.3	127
29	Impact of the huge 2011 Tohoku-oki tsunami on the phenotypes and genotypes of Japanese coastal threespine stickleback populations. Scientific Reports, 2018, 8, 1684.	3.3	5
30	Evolutionary rescue in a host–pathogen system results in coexistence not clearance. Evolutionary Applications, 2018, 11, 681-693.	3.1	14
31	Rapid evolution meets invasive species control: the potential for pesticide resistance in sea lamprey. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 152-168.	1.4	47
32	Rapid microevolution during recent range expansion to harsh environments. BMC Evolutionary Biology, 2018, 18, 187.	3.2	29
33	Temperature-controlled thermophilic bacterial communities in hot springs of western Sichuan, China. BMC Microbiology, 2018, 18, 134.	3.3	45
34	A draft genome assembly of the Chinese sillago (Sillago sinica), the first reference genome for Sillaginidae fishes. GigaScience, 2018, 7, .	6.4	30
35	Repeated Selection of Alternatively Adapted Haplotypes Creates Sweeping Genomic Remodeling in Stickleback. Genetics, 2018, 209, 921-939.	2.9	64
36	Rapid genetic adaptation to a novel environment despite a genomeâ€wide reduction in genetic diversity. Molecular Ecology, 2018, 27, 4041-4051.	3.9	65
37	Genomic parallelism and lack thereof in contrasting systems of threeâ€spined sticklebacks. Molecular Ecology, 2018, 27, 4725-4743.	3.9	44

#	Article	IF	CITATIONS
38	Lessons from a natural experiment: Allopatric morphological divergence and sympatric diversification in the Midas cichlid species complex are largely influenced by ecology in a deterministic way. Evolution Letters, 2018, 2, 323-340.	3.3	39
39	Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nature Ecology and Evolution, 2018, 2, 1128-1138.	7.8	63
40	Varied Genomic Responses to Maladaptive Gene Flow and Their Evidence. Genes, 2018, 9, 298.	2.4	13
41	Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine stickleback. BMC Evolutionary Biology, 2018, 18, 113.	3.2	29
42	The genomic landscape at a late stage of stickleback speciation: High genomic divergence interspersed by small localized regions of introgression. PLoS Genetics, 2018, 14, e1007358.	3.5	82
43	Evolution of steroid hormones in reproductive females of the threespine stickleback fish. General and Comparative Endocrinology, 2018, 268, 71-79.	1.8	7
44	A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila. Genome Biology, 2018, 19, 119.	8.8	71
45	A new lacewing species of the Chrysoperla carnea species-group from central Asia associated with conifers (Neuroptera: Chrysopidae). Journal of Natural History, 2019, 53, 1277-1300.	0.5	0
46	Genetic divergence outpaces phenotypic evolution among threespine stickleback populations in old freshwater habitats. Biological Journal of the Linnean Society, 0, , .	1.6	3
47	Repeatability of Adaptive Radiation Depends on Spatial Scale: Regional Versus Global Replicates of Stickleback in Lake Versus Stream Habitats. Journal of Heredity, 2020, 111, 43-56.	2.4	17
48	The Population Genomics of Parallel Adaptation: Lessons from Threespine Stickleback. Population Genomics, 2019, , 249-276.	0.5	7
49	Selection, Linkage, and Population Structure Interact To Shape Genetic Variation Among Threespine Stickleback Genomes. Genetics, 2019, 212, 1367-1382.	2.9	6
50	Architecture of Parallel Adaptation in Ten Lacustrine Threespine Stickleback Populations from the White Sea Area. Genome Biology and Evolution, 2019, 11, 2605-2618.	2.5	23
51	Predictable genome-wide sorting of standing genetic variation during parallel adaptation to basic versus acidic environments in stickleback fish. Evolution Letters, 2019, 3, 28-42.	3.3	41
52	Evolving Inversions. Trends in Ecology and Evolution, 2019, 34, 239-248.	8.7	179
53	Incipient speciation, driven by distinct environmental conditions, in the marine catfishes of the genus Aspistor (Siluriformes, Ariidae), from the Atlantic coast of South America. Journal of Zoological Systematics and Evolutionary Research, 2019, 57, 400-417.	1.4	8
54	Life History Evolution in Lampreys: Alternative Migratory and Feeding Types. , 2019, , 287-409.		24
55	Inferring boundaries among fish species of the new world silversides (Atherinopsidae; genus) Tj ETQq1 1 0.7843	14 rgBT /O	verlock 10 T 9

Odontesthes argentinensis. Genetica, 2019, 147, 217-229.

		CITATION REPORT	
#	Article	IF	CITATIONS
56	Evidence for contemporary and historical gene flow between guppy populations in different watersheds, with a test for associations with adaptive traits. Ecology and Evolution, 2019, 9, 4504-4517.	1.9	17
57	Niche conservatism predominates in adaptive radiation: comparing the diversification of Hawa arthropods using ecological niche modelling. Biological Journal of the Linnean Society, 2019, 1 479-492.	aiian 127, 1.6	15
58	Dynamics of genomic change during evolutionary rescue in the seed beetle <i>Callosobruchus maculatus</i> . Molecular Ecology, 2019, 28, 2136-2154.	5 3.9	25
59	lonome and elemental transport kinetics shaped by parallel evolution in threespine sticklebach Ecology Letters, 2019, 22, 645-653.	r. 6.4	18
60	Parallel changes in gut microbiome composition and function during colonization, local adapt and ecological speciation. Proceedings of the Royal Society B: Biological Sciences, 2019, 286,		41
61	Genetic insights into the past, present, and future of a keystone species. Proceedings of the N Academy of Sciences of the United States of America, 2019, 116, 344-346.	lational 7.1	6
62	From low to high gear: there has been a paradigm shift in our understanding of evolution. Eco Letters, 2019, 22, 233-244.	logy 6.4	84
63	Identification, characterization and expression analysis of lineage-specific genes within Triticea Genomics, 2020, 112, 1343-1350.	ae. 2.9	16
64	Gliding Dragons and Flying Squirrels: Diversifying versus Stabilizing Selection on Morphology following the Evolution of an Innovation. American Naturalist, 2020, 195, E51-E66.	2.1	9
65	Genetic variation within and among range-wide populations of three ecotypes of the Japanese grenadier anchovy Coilia nasus with implications to its conservation and management. Journa Oceanology and Limnology, 2020, 38, 851-861.	e l of 1.3	2
66	Evidence of a landlocked reproducing population of the marine pejerrey Odontesthes argentir (Actinopterygii; Atherinopsidae). Journal of Fish Biology, 2020, 96, 202-216.	nensis 1.6	10
67	The relationship between morphology and behavior in mixedâ€species flocks of island birds. E Evolution, 2020, 10, 10593-10606.	cology and 1.9	5
68	The tree and the table: Darwin, Mendeleev and the meaning of â€~theory'. Philosophical Tr Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190309.	ransactions 3.4	3
69	Insects in highâ€elevation streams: Life in extreme environments imperiled by climate change. Change Biology, 2020, 26, 6667-6684.	. Global 9.5	57
70	A Few Stickleback Suffice for the Transport of Alleles to New Lakes. G3: Genes, Genomes, Gen 2020, 10, 505-514.	etics, 1.8	19
71	Lizards, toepads, and the ghost of hurricanes past. Proceedings of the National Academy of So of the United States of America, 2020, 117, 11194-11196.	ciences 7.1	5
72	On the causes of geographically heterogeneous parallel evolution in sticklebacks. Nature Ecole and Evolution, 2020, 4, 1105-1115.	ogy 7.8	72
73	Asymmetric Isolation and the Evolution of Behaviors Influencing Dispersal: Rheotaxis of Guppi above Waterfalls. Genes, 2020, 11, 180.	es 2.4	6

#	Article	IF	CITATIONS
74	Genomic release-recapture experiment in the wild reveals within-generation polygenic selection in stickleback fish. Nature Communications, 2020, 11, 1928.	12.8	21
75	Estimating the potential for coral adaptation to global warming across the Indoâ€West Pacific. Global Change Biology, 2020, 26, 3473-3481.	9.5	54
76	Postâ€glacial establishment of locally adapted fish populations over a steep salinity gradient. Journal of Evolutionary Biology, 2021, 34, 138-156.	1.7	28
77	Genomic Architecture of Rapid Parallel Adaptation to Fresh Water in a Wild Fish. Molecular Biology and Evolution, 2021, 38, 1317-1329.	8.9	17
78	Fitness maps to a large-effect locus in introduced stickleback populations. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	45
79	Heritability of DNA methylation in threespine stickleback (<i>Gasterosteus aculeatus</i>). Genetics, 2021, 217, 1-15.	2.9	31
80	Environmental correlates of genetic variation in the invasive European starling in North America. Molecular Ecology, 2021, 30, 1251-1263.	3.9	23
81	A framework for understanding gene expression plasticity and its influence on stress tolerance. Molecular Ecology, 2021, 30, 1381-1397.	3.9	71
82	Incorporating evolutionary based tools in cephalopod fisheries management. Reviews in Fish Biology and Fisheries, 2021, 31, 485-503.	4.9	0
83	Using seasonal genomic changes to understand historical adaptation to new environments: Parallel selection on stickleback in highlyâ€variable estuaries. Molecular Ecology, 2021, 30, 2054-2064.	3.9	20
84	Rapid Parallel Adaptation to Anthropogenic Heavy Metal Pollution. Molecular Biology and Evolution, 2021, 38, 3724-3736.	8.9	19
85	Ancient and modern stickleback genomes reveal the demographic constraints on adaptation. Current Biology, 2021, 31, 2027-2036.e8.	3.9	33
86	Predicting future from past: The genomic basis of recurrent and rapid stickleback evolution. Science Advances, 2021, 7, .	10.3	62
87	Advancing human disease research with fish evolutionary mutant models. Trends in Genetics, 2022, 38, 22-44.	6.7	23
88	Reinventing the wheel? Reassessing the roles of gene flow, sorting and convergence in repeated evolution. Molecular Ecology, 2021, 30, 4162-4172.	3.9	26
89	Physiological insight into the evolution of complex phenotypes: aerobic performance and the O2 transport pathway of vertebrates. Journal of Experimental Biology, 2021, 224, .	1.7	9
90	Threespine Stickleback: A Model System For Evolutionary Genomics. Annual Review of Genomics and Human Genetics, 2021, 22, 357-383.	6.2	46
91	Contrasted patterns in climate change risk for Mediterranean fisheries. Global Change Biology, 2021, 27, 5920-5933.	9.5	10

CITATION REP	ORT

#	Article	IF	CITATIONS
94	Genetic response to humanâ€induced habitat changes in the marine environment: A century of evolution of European sprat in Landvikvannet, Norway. Ecology and Evolution, 2021, 11, 1691-1718.	1.9	4
95	Habitat fragmentation induces rapid divergence of migratory and isolated sticklebacks. Behavioral Ecology, 2022, 33, 167-177.	2.2	4
96	Deriving genotypes from RAD-seq short-read data using Stacks. Nature Protocols, 2017, 12, 2640-2659.	12.0	335
103	Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback. PLoS Genetics, 2016, 12, e1005887.	3.5	195
104	Impact of Natural Disasters on Biodiversity: Evidence Using Quantile Regression Approach. Jurnal Ekonomi Malaysia, 2019, 53, .	0.2	1
109	A Post-pleistocene Calibrated Mutation Rate from Insect Museum Specimens. PLOS Currents, 2018, 10, .	1.4	7
118	Drivers of rapid evolution during biological invasions. , 2022, , 79-97.		0
123	The maintenance of standing genetic variation: Gene flow vs. selective neutrality in Atlantic stickleback fish. Molecular Ecology, 2022, 31, 811-821.	3.9	4
124	No signs of behavioral evolution of threespine stickleback following northern pike invasion. Behavioral Ecology, 2022, 33, 624-633.	2.2	4
125	Rapid evolutionary divergence of a songbird population following recent colonization of an urban area. Molecular Ecology, 2022, 31, 2625-2643.	3.9	5
126	The EDA receptor (EDAR) is a candidate gene for lateral plate number variation in stickleback fish. G3: Genes, Genomes, Genetics, 2022, , .	1.8	2
129	Parallel recolonizations generate distinct genomic sectors in kelp following highâ€magnitude earthquake disturbance. Molecular Ecology, 2022, 31, 4818-4831.	3.9	7
132	Freshwater Colonization, Adaptation, and Genomic Divergence in Threespine Stickleback. Integrative and Comparative Biology, 2022, 62, 388-405.	2.0	6
133	Cenetic impacts of physical disturbance processes in coastal marine ecosystems. Journal of Biogeography, 2022, 49, 1877-1890.	3.0	8
134	Chromosomal inversions can limit adaptation to new environments. Molecular Ecology, 2022, 31, 4435-4439.	3.9	6
135	Allopatric origin of sympatric whitefish morphs with insights on the genetic basis of their reproductive isolation. Evolution; International Journal of Organic Evolution, 2022, 76, 1905-1913.	2.3	0
136	Selection in the city: Rapid and fineâ€scale evolution of urban eastern water dragons. Evolution; International Journal of Organic Evolution, 0, , .	2.3	1
137	Dimensionality and Modularity of Adaptive Variation: Divergence in Threespine Stickleback from Diverse Environments. American Naturalist, 2023, 201, 175-199.	2.1	2

#	Article	IF	CITATIONS
141	Salinityâ€induced transcriptome profiles in marine and freshwater threespine stickleback after an abrupt 6â€hour exposure. Ecology and Evolution, 2022, 12, .	1.9	2
143	Selection on early survival does not explain germination rate clines in <i>Mimulus cardinalis</i> . American Journal of Botany, 2022, 109, 1811-1821.	1.7	3
144	Intraspecific diversity of threespine stickleback (Gasterosteus aculeatus) populations in eastern Canada. Environmental Biology of Fishes, 2023, 106, 1177-1194.	1.0	1
145	A complete <scp>COI</scp> library of Samoan butterflies reveals layers of endemic diversity on oceanic islands. Zoologica Scripta, 0, , .	1.7	0
146	Phylogenetic relationships of the North American catfishes (Ictaluridae, Siluriformes): Investigating the origins and parallel evolution of the troglobitic species. Molecular Phylogenetics and Evolution, 2023, 182, 107746.	2.7	0
147	High Nucleotide Diversity Accompanies Differential DNA Methylation in Naturally Diverging Populations. Molecular Biology and Evolution, 2023, 40, .	8.9	3
148	Mesocosm experiment reveals scale dependence of movement tendencies in sticklebacks. Biology Letters, 2023, 19, .	2.3	1
149	Freshwater fishes maintain multiâ€trait phenotypic stability across an environmental gradient in aqueous calcium. Journal of Fish Biology, 2023, 103, 143-154.	1.6	1
150	Sex-specific transgenerational plasticity: developmental temperatures of mothers and fathers have different effects on sons and daughters. Journal of Experimental Biology, 2023, 226, .	1.7	2
151	How can physiology best contribute to wildlife conservation in a warming world?. , 2023, 11, .		3
152	On the origins of phenotypic parallelism in benthic and limnetic stickleback. Molecular Biology and Evolution, 0, , .	8.9	0
153	Extreme events, trophic chain reactions, and shifts in phenotypic selection. Scientific Reports, 2023, 13,	3.3	0
154	Variation in morphology among populations of threespine stickleback (Gasterosteus aculeatus) from western Newfoundland, Canada. Environmental Biology of Fishes, 2023, 106, 1889-1905.	1.0	0
156	Morphological description of spontaneous pelvic fin loss in a neotropical cichlid fish. Journal of Morphology, 2024, 285, .	1.2	0